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ARTICLE

Global reward state affects learning and activity
in raphe nucleus and anterior insula in monkeys
Marco K. Wittmann 1✉, Elsa Fouragnan 1,2, Davide Folloni 1, Miriam C. Klein-Flügge 1,

Bolton K. H. Chau 3, Mehdi Khamassi 4 & Matthew F. S. Rushworth1,5

People and other animals learn the values of choices by observing the contingencies between

them and their outcomes. However, decisions are not guided by choice-linked reward

associations alone; macaques also maintain a memory of the general, average reward rate –

the global reward state – in an environment. Remarkably, global reward state affects the way

that each choice outcome is valued and influences future decisions so that the impact of both

choice success and failure is different in rich and poor environments. Successful choices are

more likely to be repeated but this is especially the case in rich environments. Unsuccessful

choices are more likely to be abandoned but this is especially likely in poor environments.

Functional magnetic resonance imaging (fMRI) revealed two distinct patterns of activity, one

in anterior insula and one in the dorsal raphe nucleus, that track global reward state as well as

specific outcome events.
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Humans and animals make a multitude of choices every
day. Ideally the choice taken should be the one with the
highest value – the one most likely to yield positive

results. It is widely held that choice value estimates reflect past
experience of the consequences of making the same choices; if a
choice has led to a positive outcome in the past then it has a
higher value than one lacking such a consequence1–3. A choice
outcome that is better than previously expected generates a
positive prediction error (PE) and, as a consequence, increases
the choice’s value. Conversely, negative PEs decrease a choice’s
value estimate. Therefore, implicit in such models is the notion
that the experience of choice-reward conjunctions determines
choice valuations.

While substantial evidence suggests that this is indeed the case
and that such a process can be captured in reinforcement learning
(RL) models2–5 there is evidence that other aspects of choice
experience are also important determinants of whether they will
be taken again. For example, there is a tendency for both animals
and humans simply to repeat previous choices6,7; taking the
choice on one occasion makes it more likely that it will be taken
again on another. In addition, there is evidence for the existence
of non-conjunctive effects – the forging of inappropriate links
between an unrelated choice and reward8–14.

Here we first report analyses of decision-making behavior in
four macaques. We show that in addition to conjunctive choice-
reward associations, unlinked memories of both choice and
reward persist over several trials and influence current and future
choices the monkeys take. Rewards related to the latter effect – an
influence of reward experience that is unlinked to any particular
choice – we term global reward state (GRS). It has a striking
impact on behavior: Animals stayed increasingly with rewarded
choices if those were encountered in high GRS, while they
abandoned poor choices particularly when encountered in low
GRS. This meant that a low GRS drove animals to explore
alternative choices. Drawing on previous models15–18, we con-
structed a new RL model that captures both conjunctive choice-
reward associations and GRS effects to explain the monkeys’
behavior.

Finally, we applied the RL model to neural activity recorded
with fMRI. Activity in two areas, the anterior agranular insular
cortex (Ia) adjacent to posterior orbitofrontal cortex (OFC) and
the dorsal raphe nucleus (DRN) reliably reflected specific
instances of rewards and non-rewards but also the GRS. The
temporal pattern of activity in Ia suggested Ia gradually integrates
new rewards into a longer-term global estimate of value. By
contrast, the DRN pattern suggested a role in regulating the
impact that any negative event will have as a function of GRS.

Results
Task structure. We analyzed behavioral data from four macaque
monkeys in three experiments using a binary-choice probabilistic
bandit task (overall 65 sessions of 200 trials each). In addition, we
also analyzed neural data from one of the three experiments
(25 sessions)19,20. Choice options were allocated pseudorandomly
to the right and left side of the screen and monkeys responded
towards congruently located right or left sensors. Choice out-
comes were either a drop of juice or nothing (Fig. 1a). The
rewards were delivered probabilistically and the probabilities of
two of the options reversed towards the middle of a session and
monkeys’ choice frequencies followed this reversal (Fig. 1b).

Importantly, each session contained three new choice stimuli,
but only two of them were choosable on each trial (Fig. 1c). This
was crucial in several respects. First, it enabled dissocation of
choice repetition effects linked to either a choice’s location or
target stimulus. Second, selective choice presentation and the

probabilistic nature of the task ensured that effects of the GRS
were dissociable from conjunctive choice-reward effects and that
the GRS would fluctuate continuously over the course of a session
(Fig. 1d). Finally, it ensured that the GRS would be dissociable
from reversals in the relative rates of reward associated with
different options (compare Fig. 1b, d).

Behavioral effects of unlinked choice and reward memories. To
discover potential effects of unlinked memory traces of choice
and reward on decision making, we conceptualized monkeys’
binary choices as stay/switch decisions to either continue a cur-
rent course of action or switch to an alternative21–23. We con-
structed a detailed logistic general linear model (GLM) for which
we concatenated data per monkey per experiment, pooling data
over all three experiments (n= 12 monkey data sets; 4 maca-
ques). For every trial t, we identified the chosen stimulus C and
examined whether the animals would choose C again the next
time C was offered (Fig. 1e). We tested whether the stay/switch
decision was predicted, first, by the conjunctive choice-reward
history of C (CxR-history), second, by the (reward-unlinked)
choice history of C (C-history) and, third, by the (choice-
unlinked) reward history (R-history; note that the regressor
construction is explained in detail in Supplementary Fig. 1a).

We found that all three sets of regressors, CxR-history, C-
history, and R-history, significantly promoted stay behavior
(Fig. 1f). Firstly, macaques stayed with options if choosing them
had been rewarded recently; reward on trial t increased the
likelihood of repeating the choice made on that trial (one-sample
t-test; CxR-history(t): t11= 8.883; p < 0.001). Secondly, macaques
repeated choices they had made most recently irrespective of
reward (C-history(t−1): t11= 6.496; p < 0.001). The strength of
these effects decreased with time (main effect of recency in 5
[recency] × 2 [history type] ANOVA: F(4,44)= 20.09; p < 0.001).
Finally, and most intriguingly, R-history also had a significantly
positive effect on choice (R-history: t11= 4.711; p < 0.001). That
means that irrespective of directly reinforced choices and choice
repetitions, animals repeated choices that they had previously
made at times of a high GRS. In turn, they switch away from a
choice - even if that specific choice has been rewarded lately –
more often if it is encountered when in a low GRS. Note that this
analysis also controls for the history of the upcoming alternative
option (Supplementary Fig. 1b), is stable when varying the length
of the reward history considered (Supplementary Fig. 1c) and
even holds when analyizing monkeys individually (Supplemen-
tary Fig. 2).

These results suggest that the GRS alters the animals’ response
to rewards received for a current choice. To investigate this
directly, we regressed all effects of the previous GLM (Fig. 1f),
except those of CxR-history(t) and R-history, out of the choice
data. We then examined the residual choice probabilities (as
provided by Matlab’s glmfit function). We binned them, first, by
the current outcome, and second, by the binarized GRS (median
split of R-history; Fig. 1g). Animals were more likely to stay after
a win and more likely to switch after a loss. However, in addition,
staying after a win was more likely when R-history was high
compared to when it was low and vice versa switching away from
a loss was more likely in low reward environments (2 × 2
ANOVA; interaction: F1,11= 31.68; p < 0.001). This indicates,
remarkably, that the monkeys not only evaluate an option as a
function of the outcomes contingent on its choice, but that they
do so more strongly when those outcomes are consistent with the
overall reward context: In a high GRS, negative feedback has a
relatively weaker impact on an options’ value than it does in a low
GRS; switching is less likely to occur after non-reward in a high as
opposed to low GRS.
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RL model incorporating choice memory and global reward
state. After providing evidence for the unlinked influence of
choice memories and GRS on decision making, we went on
to formalize a possible computational mechanism for the
observed effects in an RL framework. We used hierarchical model
fitting24–26 over all three data sets collapsed.

In addition to a standard RL architecture, we added unlinked
choice and reward memory traces in the model. A choice-location
trace (CL-trace) and choice-stimulus traces (CS-traces) captured
recency-weighted averages of past choice locations and past
choice stimuli, respectively4,27 (Fig. 2a, b). Thus CL-trace and CS-
trace capture two aspects of choices – their locations and their
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Fig. 1 Task design and behavior. aMonkeys performed a probabilistic binary-choice task for juice reward. b One session comprised three options indicated
by different stimuli, only two of which were choosable each trial (experimenter determined, pseudo-random). c Smoothed choice frequency (moving
window of 20 trials) followed the reversal in reward probabilities of two of the three options (blue and yellow). d The smoothed overall average reward rate
(moving window of 20 trials) fluctuated continuously over the course of the session. e Illustration of GLM analysis. For every trial we predicted whether the
chosen option (C in this example) would be repeated on the next occasion it was presented using three sets of regressors. The first set reflected the reward
probability of C if it was chosen (CxR-history), the second set reflected the tendency to choose C in the past if it was one of the offered options (C-history),
and the third reflected the global reward state unrelated to a specific choice (R-history). f Significantly positive effects of CxR-history, C-history, and R-
history on the decision to stay with an option. g Residual probability of making a stay or switch choice. Stay/switch behavior was consistent with the
outcome (win/lose) on trial t, but the effect was facilitated if the outcome was in accordance with global reward state: Switching away from an option was
more likely if R-history was low, while staying with a rewarded option was more likely in high-reward contexts. (in panels b, d, data related to the MRI
experiment is shown as mean values ± SEM across sessions; n= 25; panels f, g concatenate sessions per monkey per experiment resulting in three data
points per individual; data are presented as mean values ±SEM across monkey data sets; n= 12; asterisks indicate p < 0.001; we used one-sample two-
sided t-tests against zero and analyses of variance). Source data are provided as Source Data file. Symbols indicate monkey identity in panels f, g; MK
abbreviates monkey. (Panels a, c are adapted from Chau et al.19).
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identities. A reward trace (R-trace) captured the recency-weighted
GRS. R-trace corresponded to the disembodied average of past
rewards, irrespective of the choice stimuli or choice locations
linked to it (Fig. 2c).

In the simplest RL implementation (RLsimple), the decision
variable (DV) was calculated as the difference in Q-value between
the left and right option, (plus an added side bias, see Methods;
Fig. 2d). We extended the RLsimple model by incorporating also
the weighted choice trace differences in the DV. In the final
model, the weights associated with both CL and CS traces were
positive indicating choice repetition on both levels consistent with
the behavioral analyses (Fig. 1f; Supplementary Figs. 2 and 3). In
contrast to choice traces, R-trace is unlinked to specific options.
For this reason, we added R-trace to the PE calculation scaled by a
weight parameter wR. This meant that the PE was no longer

conceived as simply the difference of expectation and outcome.
Instead the PEs could be enhanced or diminished by low or high
levels of global rewards. The directionality of the R-trace effect
depended on wR which was empirically fitted and allowed to
range between −1 and 1. Such use of R-trace is inspired by
models of average reward rate learning15,28.

In our nested model comparison, we considered models with
every possible permutation of the components as well as the full
model (Fig. 2e, f). We calculated the integrated Bayesian
information criterion (BICint)25 (Fig. 2e). We observed a steady
decrease of BICint (indicating better model fit) when including
memory traces. The full model (RL+ cl+ cs+ rt) won the model
comparison. As an additional validation, we calculated the
exceedance probability, i.e., the posterior probability that a model
is the most likely model used by the population among a given set
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of models, and again found that the full model was the best one
(exceedance probability= 1.0; Fig. 2f)29. These results are stable
even when considering the experiments separately or the tested
monkeys individually (Supplementary Fig. 3). Moreover, we used
such experiment-wise fitted models to specifically compare the
full model with the second best one (RL+ cl+ cs) via log Bayes
factors (Methods; Fig. 2g–i). Over all data sets, the majority of
sessions were in favor of the best over the second-best model (47
out of 65; binomial test against 0.5; p < 0.001).

RL learning dynamics induced by the global reward state.
Animals learn the value of choices based on their reward con-
sequences. Our behavioral (Fig. 1f, g) and modeling results
(Fig. 2e, f) suggest that in our data, in addition, the GRS affects
animals’ learning of choice values. In our model, the direction of
the influence of GRS on PE calculations critically depends on wR.
Note that supplementary model comparison indicates that our
model also fits better than models where the effect of R-trace is
not mediated by the PEs (Supplementary Fig. 4j, k). In principle,
the model allows GRS to have negative, contrasting effects (wR <
0), no effect at all (wR= 0), or positive, facilitating effects (wR >
0). We therefore examined the fitted parameter values of wR, i.e
the final group–level point-estimates of μ and σ associated
with wR (Methods). We found that the posterior density of the
fitted wR was overwhelmingly positive for all three experiments
(Fig. 3a, b).

Such positive wR lead both positive and negative PEs to be
shifted in a positive direction when R-trace is high compared to
when R-trace is low (Fig. 3c; sessions are fitted to the mean of the
posterior). In theory it could even turn negative PEs positive
when R-trace is very high. The implications of this become more
transparent when reframing the PEs as absolute PEs – reflecting
the degree to which outcomes suggest a need for re-evaluation
regardless of direction (or surprise24). Then it becomes clear that
positive value updates become stronger in a high GRS and
negative value updates become stronger in a low GRS (Fig. 3d;
median split of R-trace; 2 × 2 ANOVA interaction; F1,64= 849;
p < 0.001). This means that the model effectively implements
asymmetric learning rates for positive and negative outcomes that
change dynamically as a function of GRS. We further
demonstrate this by estimating the effective learning rates from
our model and indeed find a significant interaction depending on
outcome type and GRS being low or high (Fig. 3e; F1,64= 18.357;
p < 0.001). This maps directly onto the pattern of stay-switch
choices observed in the initial behavioral analysis, showing that a
high GRS promotes win-stay and a low GRS promotes lose-
switch behavior (Fig. 1f, g). It also explains why our model fits
better than models assuming different learning rates for positive
and negative outcomes (AsyAlpha) or models assuming dynamic
learning rates based on the degree of surprise encountered over
time (dynAlpha; Fig. 3f, g; Supplementary Fig. 4j, k). The reason
is that reference to the GRS is critical to explain the dynamics of
value updates in our data.

Our RL model allows rewards not only to influence concurrent
choices, but also choices that occur later in time and are logically
unrelated (via R-trace). For this reason, we used model
simulations to examine whether our model also predicts some
previously reported cases of credit misassignment8,11,13, in
particular when past rewards are mistakenly credited to
subsequent choices11,13. We used previously reported GLM
designs11,13. These simulations show that repeating a choice
made at time point t is more likely if reward is received at t, but
strikingly also if reward is received before at t−1; however only if
wR positive. Negative wR on the other hand lead to contrasting
effects of reward (Fig. 4). This suggests that indeed a GRS

informed learning rule such as in our model can cause reward to
spread forward to choices that are made after such reward is
delivered.

Finally, rather than biasing decision making exclusively, the
GRS may influence reaction times (RTs) as well28,30. We
predicted the trialwise negative logarithm of RTs using linear
regression (Fig. 5). Q-values of the chosen and unchosen options
had no significant influence (both t64 < 1.27; both p > 0.2), and
neither did their difference (t64= 1.57; p > 0.13). Instead, animals
responded quicker when stimuli were offered that had been
picked more recently: when the chosen CS-trace (t64= 6.63; p <
0.001) and or the unchosen CS-trace was high (t64= 3.08; p=
0.003). Finally, the single most significant predictor of RT in the
GLM was R-trace (t64= 8.07; p < 0.001). Therefore, quicker
responding was not a function of specific choice-reward
associations presented in a trial but of the GRS.

In sum, R-trace in our model encapsulates the persistence of
previous unrelated rewards in memory, implements asymmetric
and dynamic learning and affects reaction times. The dynamics of
PEs emerging from this are consistent with the behaviorally
observed pattern of stay/switch choices (Fig. 1) and create
patterns of learning akin to spread of reward11–13.

Global reward state representation in Ia and DRN. One of the
main predictions from our winning RL model (RL+ cl+ cs+ rt)
is that the brain should hold a representation of the GRS. In a first
GLM (GLM1) we indeed found such signals coding the R-trace
variable from our winning model. We found the strongest evi-
dence of encoding of R-trace in bilateral anterior insular cortex at
the time of choice feedback (cluster-corrected at Z > |2.6|, p=
0.05), just posterior to OFC, which we refer to as agranular insula
(Ia; Fig. 6a; Supplementary Table 1)31. It is notable that precisely
this region of the macaque brain has recently been implicated in
discrimination reversal learning32 and may be important for
balancing the influence of reward context versus specific reward
outcomes. Consistent with this idea, we not only observed an
effect of R-trace on bilateral Ia activity but also large signals,
overlapping but slightly more posterior, reflecting specific out-
come events (reward versus non-reward) (Fig. 6b). Both R-trace
and outcome signals were positively signed which mirrored the
positive effects that both R-trace and outcome had on PEs and
therefore value updates in our RL model.

Another key feature of the model is that R-trace has a positive
effect on choice value updates during both rewarded and
unrewarded trials. This main effect makes positive PEs more
positive and negative PEs less negative as a function of the GRS
(Fig. 3c, d). For this reason, we examined, whether, similarly, Ia
carries a positive representation of R-trace both during rewarded
and unrewarded trials. We used a new GLM (GLM2) and applied
a leave-one-out procedure to the previously identified peak
coordinates. We extracted the effect sizes (COPE images) and
performed a square-root transformation to de-weight outlying
data points. We found that, strikingly, Ia represented R-trace
during both rewarded and non-rewarded trials in the left
(rewarded: t24= 2.07; p= 0.049; unrewarded: t24= 3.68; p=
0.01) as well as in the right hemisphere (rewarded: t24= 3.44; p=
0.002; unrewarded: t24= 3.64; p= 0.001; Fig. 6c, d). There was no
significant difference between conditions in left (t24= 1.23; p=
0.23) or right Ia (t24= 0.73; p= 0.47), nor did the effects differ
between monkeys in the left (one-way ANOVA on averaged
effect sizes: F(3,21)= 1.206; p= 0.332) or right Ia (F(3,21)=
2.195; p= 0.119).

Ia, particularly left Ia (because of the extensive region in which
strong R-trace and outcome effects overlapped), seemed to be the
most likely brain region to integrate past and current rewards in a
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manner predicted by the computational model. In order to best
understand neural activity in relation to behavioral and RL
analyses, we regressed all effects of no interest out of the BOLD
signal (i.e. all except R-trace and outcome effects) and then
examined the residual BOLD signal (i.e. the variation in BOLD
not explained by these regressors which we extracted from
Matlab’s stats.resid object). We found a striking temporal pattern
of activity in left Ia when examining the residual BOLD time
course in Ia as a function of both R-trace and outcome time-
locked to the feedback onset (Fig. 7a–e). To this end, we binned it
by R-trace (median split; low/high) and outcome (rewarded and
unrewarded; R and no R) (compare with Fig. 3c). Initially,

residual BOLD activity clustered positively and negatively as a
function of R-trace. However, 4–7 s after feedback onset (and
thus at quite a late timepoint given that the monkey
hemodynamic response function typically peaks after 3–4 s) Ia
activity reflect the current outcome (reward or no reward;
Fig. 7d). This became very clear by entering residual BOLD
signals at every time point in a 2 × 2 ANOVA with the factors R-
trace and outcome and examining the time course as a function of
main effects and interaction. Highly consistent with our model
predictions, we observed no interaction of R-trace and outcome at
any point in the time course (Fig. 7e). We repeated the analysis
for the right Ia and observed the same temporal pattern (Fig. 7f).
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Note that we also found a significant effect of outcome when
examining the right Ia time course at the time of the contralateral
peak of this effect (time= 6.15 seconds; F(1,24)= 7.2; p= 0.013).

Complementary to our initial analysis, we repeated our GLM
on the whole-brain level so that it was possible to identify areas

that only represented R-trace when a trial was rewarded or when
it was unrewarded. In the latter case we found a single cluster of
activity outside Ia. The cluster was located in the brainstem with a
clear peak in a location consistent with the DRN (Fig. 8a). Just as
in Ia, overlapping within the same DRN region we also found
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strong positive coding of current outcomes (region of interest
(ROI) analysis: t24= 3.49; p= 0.002). However, unlike Ia, DRN
activity only reflected R-trace on non-reward outcome trials
(t24=−3.028; p= 0.006), but not on rewarded trials (t24= 0.51;
p= 0.62). There was a significant difference between conditions
(t24= 2.96; p= 0.007; Fig. 8b; using a leave-one-out DRN ROI to
avoid bias). These effects of R-trace during unrewarded trials did
not differ across monkeys: F(3,21)= 2.403; p= 0.096). We found
some evidence for the opposite pattern as well as coding of
current outcomes in dorsal anterior cingulate cortex (dACC;
Supplementary Fig. 5). This is consistent with neurophysiological
recordings demonstrating reward coding with multiple time
scales in anterior cingulate cortex33–36.

As expected from the whole-brain analyses, the time courses of
effects in DRN and dACC looked strikingly different to Ia and
there were outcome x R-trace interaction effects at some points
(Fig. 8c, d; Supplementary Fig. 5a–e). Both DRN and dACC
showed significantly earlier outcome encoding compared to left
and right Ia (Supplementary Fig. 5f). Therefore, while DRN and
dACC represent outcomes at the time of feedback, Ia’s neural
activity is better described as reflecting ongoing integration of
new rewards into a longer-term representation of the choice-
unlinked value of each animal’s global state.

Coding of value and choice history in prefrontal cortex. In the
above sections we reported activity reflecting GRS and outcome
signals during learning. In this final section, we examine activity
reflecting the decision variable that resulted from this learning
process and that combines choice values (informed by both the
GRS and choice contingent reward learning) and reward-
unlinked history of past choices. We tested whether any brain
region integrated choice evidence in the same comprehensive
manner as was apparent in behavior. We regressed the BOLD

signal against the DV (coded as chosen – unchosen; DVtotal of the
full model RL+ cl+ cs+ rt) at the time of decision (GLM3). We
found a large cluster of activity focused in vmPFC/mOFC but
spreading into adjacent parts of prefrontal cortex (Fig. 9a). As in
previous reports, these effects were negatively signed (i.e. negative
relationship between higher relative choice evidence and BOLD
signal)20,37.

One possibility is that this activity is solely driven by the
relative reward expectation associated with the chosen option
because this is part of DVtotal. Alternatively, prefrontal activity
might reflect this but in addition integrate the weight that the
previous history of choices has on the subsequent decision. To
address this question, we set up a new GLM (GLM4) that broke
DVtotal apart into its two component parts, DVvalue and DVchoice.
DVvalue is the difference in Q-value between chosen and
unchosen options and DVchoice is the remaining part of DVtotal

and comprises the weighted choice-location and choice stimulus
traces (CL-trace and CS-trace, Fig. 2d). Note that DVchoice is a
measure of choice persistence; positive values of this variable
indicate that the chosen option was recently more often picked
than the unchosen one, and negative values indicate the opposite.
For DVvalue, we again found a cluster of activity in vmPFC/mOFC
that overlapped with DVtotal (Fig. 9b). However, the effects were
considerably smaller than for the full decision variable. To test
this difference formally, we performed a neural model compar-
ison in vmPFC20 using a leave-one-out procedure to avoid bias
(see Methods section). We regressed vmPFC BOLD against two
identical GLMs with the only difference that one of them
included DVtotal and the other one DVvalue instead. We found
that that the exceedance probability favored the DVtotal model by
an extensive margin (exceedance probability= 0.999; Fig. 9c).
This suggests that vmPFC/mOFC integrates different types of
evidence such as reward expectation and choice history into a

b c

a
x = –18 y = 3.5

z = –1

x = –18

dLeft Ia

R No R
Outcome

R No R
Outcome

R
-t

ra
ce

 e
ffe

ct
 s

iz
e 

(s
qr

t-
C

O
P

E
)

Right Ia

–50

0

50

–50

0

50

* *

n.s.

* *

n.s.

MK1
MK2
MK3
MK4

Fig. 6 Bilateral Ia represents global reward state and current reward. a Positive effects of R-trace bilaterally in Ia. b Both regions also showed concurrent
overlapping or closely adjacent positive activation related to the current outcome (reward – no reward). c, d In accordance with our RL model, in both
regions, R-trace exerted a positive effect during rewarded as well as unrewarded trials. These effects were revealed by two-sided one-sample t-tests
against zero (p-values for left Ia are: p(R)= 0.049, p(no R)= 0.01; p-values for right Ia are: p(R)= 0.002, p(no R)= 0.001) and two-sided paired t-tests
(difference in left Ia: p= 0.23 and right Ia: p= 0.47). ROIs were selected using a leave-one-out procedure. (Crosshairs highlight peak coordinates for
subsequent ROI analysis; data are presented as mean values ±SEM across sessions; n= 25; dot color in c, d indicate monkey identity; all MRI results
cluster-corrected at Z > 2.6, p= 0.05; asterisks indicate p < 0.05; n.s. indicates not significant). Source data are provided as Source Data file. Symbols
indicate monkey identity in panels c, d; MK abbreviates monkey.

ARTICLE NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-020-17343-w

8 NATURE COMMUNICATIONS |         (2020) 11:3771 | https://doi.org/10.1038/s41467-020-17343-w |www.nature.com/naturecommunications

www.nature.com/naturecommunications


–0.4

–0.2

0

0.2

R
es

id
ua

l B
O

LD

Time in s

Time in s

R-trace

Outcome

Outcome
× R-trace

R
es

id
ua

l B
O

LD

A
N

O
V

A
 e

ffe
ct

e

d

0 1 2 3 4 5 6 7

0 1 2 3 4 5 6 7

0 1 2 3 4 5 6 7
Time in s

R-trace

Outcome

Outcome
× R-trace

A
N

O
V

A
 e

ffe
ct

Right Iaf

Low  High
R

No R

R-trace

p > 0.05
p < 0.05

o R
–0.5

0

0.5

o R
–0.5

0

0.5

R N R N R No R
–0.5

0

0.5

Left Ia

cba

Fig. 7 Timecourse of bilateral Ia activity. a–c Residual BOLD effects in left Ia binned by R-trace (low/high; median split) and outcome (reward/no reward:
R and no R) at three time points after feedback delivery (indicated as gray bars in panel d; feedback occurs at time 0 s and the approximate peak of the
macaque hemodynamic response function is 3–4 s later). d Time course of the four effects shown in panels a–c. Note that the BOLD signal clusters initially
as a function of R-trace (low/high) and then regroups as a function of outcome (no reward/reward). Zero is time of feedback onset. e F-statistic for 2 × 2
(R-trace x outcome) ANOVA applied at each time step to the data shown in panel d. Rows indicate main effects and interaction effect. Circles are scaled F-
values. Larger circles indicate higher F-values. Yellow indicate p-values of effects are bigger than 0.05. Green circles indicate effects for a given row and
time point where p < 0.05. f Same analysis as in panel e applied to the right Ia replicate pattern of effects found in left Ia. Note that panels e, f (and
subsequent analogous panels) are for illustration as this analysis does not control for autocorrelations in the BOLD signals and multiple comparisons. (Data
are presented as mean values ±SEM across sessions; n= 25). Symbols indicate monkey identity in panels a–c.

NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-020-17343-w ARTICLE

NATURE COMMUNICATIONS |         (2020) 11:3771 | https://doi.org/10.1038/s41467-020-17343-w |www.nature.com/naturecommunications 9

www.nature.com/naturecommunications
www.nature.com/naturecommunications


compound decision variable rather than comparing reward
associations alone (Supplementary Fig. 6).

Lastly, we compared the signatures of reward processing across
our three ROIs: Ia (bilaterally), DRN and vmPFC. While non-
contingent GRS signals were confined to Ia and DRN, value
comparison signals were vice versa specific to vmPFC (Fig. 10,
Supplementary Fig. 7).

Discussion
Animals’ choices are driven by past choice-reward conjunctions.
Here, we find that they are also heavily influenced by the global
reward state (GRS) as well as by the history of past choices per se.
Our analysis of the macaque BOLD suggests critical roles for Ia,
DRN, and vmPFC in this process.

Our behavioral analyses conceptualize the macaque’s choices as
a stay/leave-type of decision21–23 and show that animals have a
strong tendency to repeat rewarded choices, but also, more gen-
erally, simply to repeat previous choices regardless of reward. In
addition, the GRS had a very specific effect on behavior:
regardless of a choice’s specific history of reward association,
animals tended to stay with choices made when GRS was high but
increasingly explored alternative options when GRS was low
(Fig. 1).

Our winning RL model formalized learning mechanisms
underlying these effects and thereby supported and extended our
behavioral findings (Figs. 2–4). The model is inspired by previous
models considering the average reward rate15,17,18,28. It uses an
estimate of the GRS (i.e. R-trace) to bias PE calculation and

facilitate positive value updates in high GRS but relatively depress
them in low GRS. A key feature of the model is that the direction
of influence of the GRS on learning is determined empirically by
fitting wR; it can be positive or negative (or absent). The positive
effects of GRS observed in our study are in line with previous
reports of spread of effect8,11–13 and therefore suggest a
mechanism by which the (mis-) assignment of previous rewards
to subsequent choices can emerge within an RL framework. The
GRS may act a as a proxy for how good the current and expected
states of the animal are and this might bias the evaluation of
newly encountered options. Consistent with this interpretation,
GRS not only influenced learning but was also tightly linked to
the overall readiness of the animal to engage in the task as
measured by the response times (Fig. 5). In this view GRS is
reminiscent of future reward expectations used in multi-state
applications of temporal difference algorithms4,38. While such
learning mechanisms may be ineffective in laboratory bandit-
tasks, they may well be adaptive in the natural environments in
which animals and humans have evolved, where choices often
have serial dependencies18,21,39. Negative wR, on the other hand,
implements a temporal contrast effect whereby the value of new
outcomes is de-weighted in a high GRS, because they are refer-
enced to the already high value of the environment. Such contrast
effects have been reported in other contexts17,18,28,40. Therefore,
our model suggests a common algorithmic implementation of a
variety of GRS related effects. The model, moreover, captures
modulations of the speed of learning by the GRS. While the GRS
influences learning via a modulation of learning rates in other
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models41, it affects value updates directly in our model. This
means that it can reproduce dynamic changes in value update
rates and asymmetries in value updates without explicitly
adjusting learning rates. Our model also accords well with opti-
mism biases observed in human learning42,43. Assuming opti-
mism is reflected in the belief of a general high GRS, our model
predicts that optimists weight positive outcomes more strongly
than negative ones and can even ignore negative feedback.

Our neural results suggest a critical role for Ia31 in reward
learning (Figs. 6 and 7). Unlike for example dACC34–36,44, Ia is
rarely targeted in neurophysiological studies of reward-guided
learning or decision making. However, reward-related responses
have been observed in macaque Ia using fMRI45 and human
fMRI studies provide evidence of rewards being represented with
multiple time constants in Ia18,46. Extending these findings, we
found macaque Ia BOLD signals to carry information about both
current and past outcomes (i.e. the GRS) simultaneously and
these signals closely mimicked the way by which our model
combined the influence of reward context and specific reward
outcomes to guide value updates. Thes results suggest a way to
begin reconciling longstanding debates about the role of adjacent
OFC in mediating behavioral flexibility particularly during
reversal learning tasks. Choice-reward discrimination reversal
learning is impaired after excitotoxic lesions of OFC in rodents
and marmosets47–50 - but not in macaques51. One possibility that
might resolve this species discrepancy is that a critical region for
mediating behavioral flexibility is, or is homologous to, macaque
Ia. The idea that the GRS and outcome information carried by
macaque Ia might be critical for reversal learning is further
supported by the three observations. First, recently, links between
macaque Ia and rodent OFC52 and possibly marmoset OFC53

have been highlighted. Second, macaque Ia - and not adjacent
OFC - exhibits most extensive gray matter change during choice-
reward discrimination reversal learning32. Finally, aspiration
lesions of macaque OFC disrupt choice-reward discrimination
reversal learning51 and have a profound impact on Ia. Future
neurophysiological and lesion studies targeting Ia could help
clarify the contribution of reward computations in Ia to beha-
vioral flexibility.

The fact that serotonin depletion in marmoset orbitofrontal
cortex54,55 also disrupts reversal learning is also consistent with
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the present finding that both Ia and DRN – an origin of ser-
otoninergic innervation of cortex – possess complementary GRS
signals. DRN neurons in rodents encode positive and negative
PEs56 and manipulation of DRN activity can affect the learning
rate by which observed outcomes impact value updates57. Such
up- and down-regulation of the impact of newly observed out-
comes is apparent in the BOLD signal we observe during negative
outcomes in DRN. The negative response to reward omission
appears to be even more negative in states of high GRS. This
suggests new ways of thinking about the impact of serotonergic
treatments in the clinic. Rather than simply reflecting the like-
lihood of behavioral inhibition per se, activity in DRN reflect how
an adverse event will be interpreted in the light of the current
reward context and it is this combination of factors – the recent
outcome and the GRS – that determines whether change in
behavior will occur.

Finally, vmPFC/mOFC integrated stimulus-reward associa-
tions as well as choice history into a compound DV. Behaviorally,
the animals picked high-reward options but also repeated choices
regardless of reward delivery. The neural signals in vmPFC clo-
sely mirrored this choice pattern. BOLD signals were stronger
when animals opted for high value choices and also when they
opted for previously chosen choices regardless of reward. This
meant that vmPFC signaled the overall readiness of the animal to
engage in a particular choice, may this be caused by previous
experiences of reward or because the option was in the focus of
attention in the recent past58,59.

Methods
Subjects. Four male rhesus monkeys (Macaca mulatta) were involved in the
experiment. They weighed 10.4–11.9 kg and were 7 years of age. They were group
housed and kept on a 12-h light dark cycle, with access to water 12–16 h on testing
days and with free water access on non-testing days. All procedures were con-
ducted under licenses from the United Kingdom (UK) Home Office in accordance
with the UK The Animals (Scientific Procedures) Act 1986 and with the European
Union guidelines (EU Directive 2010/63/EU).

Behavioral training. Prior to the data acquisition, all animals were trained to work
in an MRI compatible chair in a sphinx position that was placed inside a custom
mock scanner simulating the MRI scanning environment. They were trained to use
custom-made infrared touch sensors to respond to abstract symbols presented on a
screen and learned the probabilistic nature of the task until reaching a learning
criterion. The animals underwent aseptic surgery to implant an MRI compatible
head post (Rogue Research, Mtl, CA). After a recovery period of at least 4 weeks,
the animals were trained to perform the task inside the actual MRI scanner under
head fixation. The imaging data acquisition started once they performed at >70%
accuracy (choosing the option with the highest expected value) for at least another
three consecutive sessions in the scanner.

Experimental task. Animals had to choose repeatedly between different stimuli
that were novel in each testing session (Fig. 1). Each session comprised 200 trials.
We used a probabilistic reward-based learning task. The task consisted of a series of
choices, on each trial, between two stimuli drawn out of a larger pool of three. The
position of the two available options on the left and right side of the screen were
pseudorandomized. Animals had to choose any symbols by touching one of two
infrared sensors placed in front of their two hands corresponding to the stimuli on
the screen. After making their decision, if the correct option was selected, the
unselected option disappeared, and the chosen option remained on the screen and
a juice reward was delivered. If an incorrect choice was made, no juice was
delivered. The outcome phase lasted 1.5 s. Each reward was composed of two 0.6 ml
drops of blackcurrant juice delivered by a spout placed near the animal’s mouth
during scanning. The experiment was controlled by Presentation software (Neu-
robehavioral Systems Inc., Albany, CA). We used an intertrial-interval of 5–7 s for
the MRI experiment, but there was no temporal jitter between decision and out-
come phase (except reaction time) to keep the animals engaged in the task.

The experimental task was the same in all three experiments as were the four
monkeys, but data collection for the experiments was separated by several months
and acquired over the course of a 2-year period. For the MRI experiment, each
animal performed five to seven sessions (25 sessions overall). For the two
behavioral experiments, each animal performed five sessions (20 sessions per
behavioral experiment).

Behavioral data analysis. We ran logistic general linear model (GLM) analyses,
implemented in Matlab 2018a version 9.4.0, on the behavioral choice data. To be able
to estimate complex GLMs with a large regressor set, we concatenated experimental
sessions per animal per experiment and applied the GLM to the concatenated sessions
(Fig. 1f, g; Supplementary Fig. 1b, c; Fig. 4 uses the same procedure with simulated
choice data). Note that Supplementary Fig. 1 describes all 22 regressors used in our
main behavioral GLM. As all four animals participated in all three experiments, this
procedure resulted in 12 beta weights (per regressor) overall, three per animal. We
tested these resulting beta weights for significance using analyses of variance
(ANOVA) and one-sample t-tests against zero, implemented in Matlab and Jasp
version 0.9.0.1. For GLMs with smaller regressor sets effect sizes were estimable on the
basis of single sessions. In such a case we applied the GLMs separately for each of the
65 sessions collapsed over experiments, for instance for the reaction time GLMs.
Reaction time analyses used a linear link function. Beta weights were tested for
significance using and one-sample t-tests against zero.

Basic RL architecture. All reinforcement learning (RL) models shared the same basic
architecture. Three value estimates (Q(A), Q(B), and Q(C)) tracked the rewards
received for choosing each of the three stimuli that were presented in each session.
Note that each session used new stimuli to avoid carry over effects. All Q-values were
initialized at 0.5 at the start of each session and the chosen stimulus was updated based
on the discrepancy between outcome (0 or 1 for reward and no reward, respectively)
and Q-value, scaled by a learning rate α. Unchosen Q-value estimates remained
unchanged. For example, if option A was chosen on trial t, then its prediction error
(PE) and value update would be calculated based on the reward r as follows:

PEt Að Þ ¼ rt � Qt Að Þ ð1Þ

Qtþ1 Að Þ ¼ Qt Að Þ þ αPEt Að Þ ð2Þ
For all models, the decision variable (DV) reflected the evidence for making a

rightward choice. Note that the identity of the left and right choice (whether they
were option A, B or C) was pseudorandom. For the simplest model, RLsimple,
which did not include any choice or reward memory traces, the DV for each trial
was simply calculated as the value of the stimulus presented on the right side minus
the value of the stimulus presented on the left side plus an additional additive
constant reflecting a side bias (SB).

DVRLsimple;t ¼ Qt rightð Þ � Qt leftð Þ � SB ð3Þ
Then, for any model m (here m= RLsimple), the decision variable was filtered

through a standard softmax function to calculate the probability of a rightward
choice.

pt rightð Þ ¼ 1

1þ e�β´DVm;t
ð4Þ

The probability of the observed choice on each trial was calculated as:

pt choiceð Þ ¼ pt rightð Þ; if right option is chosen
1� pt rightð Þ; otherwise

�
ð5Þ

The simplest model, RLsimple, comprised three free parameters: the learning
rate α (bound between 0 and 1), the inverse temperature parameter β (bound
between 0 and positive infinity) and the side bias SB (bound between −1 and 1).
Subsequent models shared the basic architecture of model RLsimple and comprised
the same free parameters with the same bounds plus additional free parameters.
Models including choice traces modified the basic DV by adding terms related to
the history of past choice stimuli and choice locations. By contrast, models
including a reward trace modified the calculation of prediction errors.

Modeling of memory traces. All memory traces were initialized at zero at the start
of a session and updated in the following ways. The choice-location trace (CL-
trace) was updated on every trial based on the discrepancy between the actual
choice-location (L), coded as −1 or 1 (for right and left side, respectively), and the
CL-trace, scaled by a learning rate αCL.

CL-tracetþ1 ¼ CL-tracet þ αCL Lt � CL-tracetð Þ ð6Þ
The choice stimulus trace (CS-trace) decayed exponentially from one trial to the

next one with a given rate determined by a free parameter λCS4,27. However, the
CS-trace for the chosen option was set to 1 at the end of the trial. For example, the
decay of the CS-trace for a stimulus A on trial t was calculated as:

CS-tracet Að Þ ¼ λCSCS-tracet�1 Að Þ ð7Þ
The reward trace (R-trace) was updated on every trial based on the discrepancy

between R-trace and the observed outcome, scaled by a learning rate αR.

R-tracetþ1 ¼ R-tracet þ αR rt � R-tracetð Þ ð8Þ
Note that the R-trace calculation was independent of the specific choices taken

and hence only knowledge about the factual sequence of outcomes was required to
calculate R-trace. Similarly, CL-trace and CS-trace required only knowledge of the
choice location and choice stimulus, respectively, ignoring the sequence of
outcomes experienced over the course of a session. λCS, αCL, and αR were all bound
between 0 and 1.
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All three memory traces exerted their influence on learning and choice scaled by
weight parameters. In all cases, the weight parameters could be positive, zero, or
negative, meaning that the magnitude and direction of influence of the memory
traces were determined empirically during model fitting. CL-trace and CS-trace
were added to the DV. The CL-trace could be added directly, since it was already
coded in terms of spatial location similarly to the DV itself (although inverted). For
the CS-trace, the influence on choice was determined by the difference in CS-trace
between right and left stimulus. Note that the CS-trace difference was added to the
DV after the trial-wise decay but before the update of the chosen stimulus. Below
the DVs for models that contained only one of the two or both choice traces in the
DV in addition to the components from RLsimple.

CL-bonust ¼ �CL-tracet ð9Þ

CS-bonust ¼ CS-tracet rightð Þ � CS-tracet leftð Þ ð10Þ
Then for Models CL, CS, and CL+CS, we have respectively:

DVCL;t ¼ DVRLsimple;t þ wCLCL-bonust ð11Þ

DVCS;t ¼ DVRLsimple;t þ wCSCS-bonust ð12Þ

DVCLþCS;t ¼ DVRLsimple;t þ wCLCL-bonust þ wCSCS-bonust ð13Þ
Note that positive values of wCL indicate that the DV of the current trial would

be biased towards the same location as the direction of previous choices, and
positive values of wCS indicate that the DV would be swayed towards the stimulus
with the highest CS-trace. In other words, positive values of wCL and wCS reflect a
tendency to repeat predominant previous choice locations and predominant
previous choice stimuli, respectively.

In any model m that included R-trace, R-trace was inserted directly into the
calculation of the prediction error scaled by a weight parameter wR, which was
allowed to range between −1 and 1. For example, if option A was chosen on trial t,
the corresponding PE would be calculated as:

PEm;t Að Þ ¼ rt þ wRR-tracet � Qt Að Þ ð14Þ

Model fitting. All RL modeling was conducted in Matlab (version 2018a). We used
an iterative expectation-maximization (EM) algorithm to fit the models25. We
estimated models both over all experiments and for each experiment and monkey
separately. This ensured that our results were valid over all data sets but also within
each experiment and monkey. It also enabled us to use the experiment-appropriate
parameter estimates for the analysis of the MRI data. In all cases the fitting
comprised two levels: the lower level of the individual sessions and the higher-level
reflecting either all of the sessions together, all sessions from the same experiment,
or all sessions from the same monkey.

During the expectation step, we calculated the log-likelihood of the subject’s
series of choices given a model M and its parameter vector hi of each session i
(i 2 1::Nf g). To do so, we summed the conditional probability of each trial’s
choice given the model’s DV and parameters hi (here abbreviated log(p(choicet|
DV,hi)) over all trials of a session. We then computed the maximum posterior
probability (PPi) estimate obtained with this parameter vector hi, given the
observed choices and given the prior computed from group–level Gaussian
distributions over the parameters with a mean vector μ and standard deviation σ2.

PPi ¼ maxh
X
t

log pt choicet jDV; hið Þð Þð þ logðnormpdf ðhijμ; σÞÞ
" #

ð15Þ

hi ¼ argmaxh
X
t

log pt choicet jDV; hið Þð Þð þ logðnormpdfðhijμ; σÞÞ
" #

ð16Þ

We initialized the group–level Gaussians as uninformative priors with means of
0.1 (plus some added noise) and variance of 100. During the maximization step, we
recomputed μ and σ based on the estimated set of hi and their Hessian matrix Hi

(as calculated with Matlab’s fminunc) over all N sessions.

μ ¼ 1
N

X
i

hi ð17Þ

σ2 ¼ 1
N

X
i

½h2i þ diagðpinv Hið ÞÞ� � μ2 ð18Þ

where the diagonal terms of the inverted Hessian matrix (computed in Matlab with
diag(pinv(Hi))) give the second moment around hi, approximating the variance,
and thus the inverse of the uncertainty with which the parameter can be
estimated25.

We repeated expectation and maximization steps iteratively until convergence
of the posterior likelihood PPi summed over the group or a maximum of 800 steps.
Convergence was defined as a change in PPi < 0.001 from one iteration to the next.
Note that bounded free parameters (for example the learning rates) were
transformed from the Gaussian space into the native model space via appropriate
link functions (e.g. a sigmoid function in the case of the learning rates) to ensure
accurate parameter estimation near the bounds.

Model comparison. We compared fitted models by calculating their integrated
BIC (BICint)28. For this, we drew k= 2000 samples of parameter vector hi
per session i from the Gaussian population distributions using the final estimates of
μ and σ, and computed the negative log likelihood (NLLi,k) of each sample and
session using the equation (corresponding to the first part in Eq. (15))

NLLi;k ¼ �
X
t

log pt choicet jhi;k
� �� �

ð19Þ
Next, we integrated the NLLi,k over samples k and sessions i and calculated

BICint based on the integrated log-likelihood (iLog) in the following way:

iLog ¼
X
i

log
X2000
k¼1

e�NLLi;k=2000

 !
ð20Þ

BICint ¼ �2 ´ iLogþ Np ´ log
X
i

Nti

 !
ð21Þ

Np refers to the number of free parameters per model and Nti refers to the
number of trials per session i.

As a second index of model fit, we used the Laplace approximation to calculate
the log model evidence (LME) per session i based on the posterior probability PPi
(see Eq. (15)):

LMEi ¼ �PPi �
1
2
log det Hið Þð Þ þ Np

2
logð2πÞ ð22Þ

Note that the hessian matrix was calculated based on the posterior estimates
using the likelihood and the initial group–level prior estimates. We submitted the
LME scores to spm_BMS29 to compute the exceedance probability, the posterior
probability that one model is the most likely model used by the population among
a given set of models. In addition, we computed the session-wise difference in LME
between two candidate models to approximate log Bayes factors, i.e. the ratio of
posterior probability of the models given the data60,61.

Supplementary control models. In our main model comparison, which follows
on from our behavioral analyses, we formalize the effects of non-contingent choice
and reward memories on decision making in an RL framework. We consider
models with a choice-location trace (CL-trace), a choice stimulus trace (CS-trace),
and a reward trace (R-trace) that modulates PEs. We consider all possible per-
mutations of these mechanisms and find that a model including all three memory
traces (RL+ cl+ cs+ rt) fits the observed behavior best. We refer to this model
also as the full model. However, in a supplementary model comparison we also
consider two additional categories of control models.

The first category assumes, just as the full model, an effect of R-trace, but one
that is conveyed not via a modulation of PEs but instead via affecting non-value-
related mechanisms such as the CL-trace or CS-trace, or the β parameter of the
softmax function (Eq. (4)). Such a modulation of choice memories could in
principle generate behavior similar to the one we had observed – that animals
increasingly stay with rewarded choices in a high GRS, but preferably switch away
from options in low GRS environments. Similar effects are possible if R-trace
modulated the β parameter because it might increase or decrease random
exploration at times of low or high GRS. Such modes of action of R-trace are
possible, albeit somewhat unlikely in relation to the choice traces. This is because,
when reward trace exerts its impact via the PE calculation its effects remain within
the realm of value in the full model. However, the alternative account would imply
that non-contingent reward memories can only be pressed into action in
interaction with non-contingent choice memories. While this is not impossible, it
would require us to always first assume that decision making is influenced by non-
contingent choice memories and that additional effects of non-contingent reward
traces are always secondary to and mediated by these choice memories.
Nevertheless, we tested a comprehensive set of alternative models that incorporated
such R-trace mechanisms. These alternative models mimicked the full model but
eliminated the effect of R-trace from the PE calculation (Eq. (14)) and thereby also
removed the free parameter wR that determined the weight of R-trace on the PE.
Instead, in the alternative models, R-trace modulated the weights of CL-trace, CS-
trace or both. We denote the new models by the interaction type of R-trace with the
respective choice trace, e.g. RT × CL, RT × CS or RT × CL&CS. We implemented
the new models by changing Eq. (13) in the following ways (note that we explicitly
write down the multiplication symbol as × for clarity):

DVRT ´CL;t ¼ DVRLsimple;t þ wCL ´R-tracet ´CL-bonust þ wCSCS-bonust ð23Þ

DVRT ´CS;t ¼ DVRLsimple;t þ wCLCL-bonust þ wCS ´R-tracet ´CS-bonust ð24Þ

DVRT ´CL&CS;t ¼ DVRLsimple;t þ wCL ´R-tracet ´CL-bonust
þ wCS ´R-tracet ´CS-bonust

ð25Þ

These models mediate the impact of R-trace on the decision variable via the
choice memory traces. These models do in fact have the advantage compared to the
full model that they use one less free parameter (wR). However, note also that in
these models, the impact of choice memory traces is entirely dominated by R-trace,
meaning that if R-trace is zero, any tendency to repeat choices is abolished. This
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might not reflect the way in which R-trace modulates choice traces; instead, it
might be more plausible to assume a constant effect of choice repetition which is
then to some degree upscaled or downscaled by R-trace. For this reason, we
constructed additional similar control models that assume an additive effect of R-
trace on the choice memory trace weight via an additional free parameter. We
denote these models with RT × CL 2, RT × CS 2 or RT × CL&CS 2:

DVRT ´CL 2;t ¼ DVRLsimple;t þ ðwCL þ wRT ´CL ´R-tracetÞ ´CL-bonust
þ wCSCS-bonust

ð26Þ

DVRT ´CS 2;t ¼ DVRLsimple;t þ wCLCL-bonust þ ðwCS þ wRT ´CS ´R-tracetÞ
´CS-bonust

ð27Þ

DVRT ´CL&CS 2;t ¼ DVRLsimple;t þ ðwCL þ wRT ´CL ´R-tracetÞ ´CL-bonust
þ ðwCS þ wRT ´CS ´R-tracetÞ´CS-bonust

ð28Þ

In close analogy to these control models assessing a mediation of R-trace effects
via choice memory traces in a multiplicative or additive fashion, we also considered
whether R-trace acts by modulating the inverse temperature parameter from the
softmax function (Eq. (4)). We constructed two new models, again without an
influence of R-trace on the PE calculation. Instead, R-trace modulated the β
parameter of these models. The new β parameters for these models were
constructed as:

βRT ´ β;t ¼ β ´R-tracet ð29Þ

βRT ´ β 2;t ¼ βþ wRT ´ β ´R-tracet ð30Þ
All of the above models belong to the first category of supplementary control

models we examined. They all have in common that they assume an effect of R-
trace on choice. However, they all assume that this effect is mediated via different
routes compared to the one we use in the full model, i.e. instead of influencing
value update in the PE, they assume that R-trace acts on non-value-related
mechanisms of the model.

By contrast, the second category of control models that we examined does not
require a reward trace at all. As explained in the main text, the full model effectively
implements asymmetric (i.e. different for positive and negative outcomes) and
dynamic (depending on whether R-trace is low or high) value updates. The first
control model from this category therefore examines whether a model with no
reward trace, but instead asymmetric learning rates41 fits the data better than the
full model. This model (AsyAlpha) makes use of the architecture of the full model
without R-trace. This also removed the weight parameter, wR, of R-trace, as well as
the R-trace specific learning rate αR. Instead, the AsyAlpha model uses separate
learning rates for rewarded and for unrewarded trials. The final control model is
also similarly based on the architecture of the full model without R-trace but
assumes a dynamic learning rate (DynAlpha). It is based on the widely held idea
that learning rates should increase when surprising outcomes are encountered,
whereas it should decrease if outcomes conform to expectations. One RL
implementation of this idea tracks the slope of absolute prediction errors to
upregulate or downregulate the learning rate26,62. Note that this model is not, as
the others, nested within more basic models. It uses the free parameter αR as the
initial learning rate on the first trial, but also to control the smoothing when
tracking the absolute prediction errors (PEmag):

PEmagt ¼ ð1� αRÞPEmagt�1 þ αR PEtj j ð31Þ
From this, the normalized slope of absolute prediction errors (m) is calculated:

mt ¼
PEmagt � PEmagt�1

ðPEmagt þ PEmagt�1Þ=2
ð32Þ

The slope is then used to generate a link function using a free parameter γ:

fmt ¼ signðmtÞ 1� e�
mt
γ

� �2� �
ð33Þ

And this link function is then used to calculate the learning rate (LR) for the
current trial:

LRt ¼
LRt�1 þ fmt ´ ð1� LRt�1Þ if mt ≥ 0

LRt�1 þ fmt ´ LRt�1 if mt< 0

�
ð34Þ

Effective learning rate calculation. As noted in the main text, the effect of R-trace
in the full model RL+ cl+ cs+ rt is that it impacts the PE calculation. This means
that it increases or decreases the PE based on the current GRS, which will increase
or decrease the change in Q-value. Such a mechanism can produce asymmetric and
dynamic changes in value updates without explicitly changing the learning rate.
Our model predicts that value updates from the same outcome event are higher for
rewarded trials when R-trace is high compared to low and vice versa for unre-
warded trials. We specifically tested this hypothesis by calculating the effective
learning rates from our full model. We did this by running an additional model
analysis. For this analysis, we fitted a new model that did not contain an explicit R-
trace. In addition, we fixed the free parameters for each session to the session-
specific parameter values from the full model. The model comprised four free

parameters, all of which were learning rates, but different ones for rewarded and
unrewarded trials, and ones with a high (i.e. ≥0.5) or low (i.e. <0.5) R-trace. Note
that the R-trace information was session-specific and imported from the full model;
it was not calculated or fitted in effAlpha itself. In other words, what this model did
was to assume that different effective learning rates were used for positive and
negative outcomes depending on high or low R-trace. It keeps all other features
identical to the full model by fixing the remaining parameters to the ones from the
full model. But instead of using R-trace in the PE calculation, it examines whether
the effective learning rates indeed differ in the manner expected by our full model.
Note that in order to test the learning rates from effAlpha for significant differ-
ences, we fitted the model session-wise via maximum likelihood estimation,
because the hierarchical fit decreases the variance of individual parameters which
possibly biases comparisons of free parameters.

Model simulations. We ran model simulations to illustrate how an RL model
including reward traces can effectively lead to the assignment of rewards to choices
that occur after (rather than before) that reward was obtained. We simulated
sequences of choices for every session of our three experiments using the true
underlying reward schedule. Then, we concatenated sessions from the same
monkey within each experiment (just as had been done in the behavioral analysis
in Fig. 1) and applied a behavioral GLM to the simulated choices. This behavioral
GLM is explained below and is different from the behavioral GLM in Fig. 1. The
resulting 12 (3 experiments with 4 monkeys) beta weights per regressor were
averaged and are shown in Fig. 4.

To isolate the effects of R-trace on decision making in our simulations, we removed
effects related to choice repetition and side bias by setting λCS, wCS, αCL, wCL and SB to
zero. Moreover, we set the remaining model parameters to standard values (α= 0.35,
β= 1, αR= 0.5) and systematically varied the effect of R-trace in the prediction error
calculation (see Eq. (14)). For this, in separate iterations of the simulation, we set wR to
−1, 0, 1, and 2. This determines whether R-trace has a negative effect, no effect, or a
positive effect in the prediction error calculation. We derived choice probabilities from
the simulated Q-values by using the softmax equation above (Eq. (4)) and used these
choice probabilities to generate simulated choices.

The logistic GLM we applied to the simulated choices was similar to previous
studies11,13. The GLM considered the last 5 choices and the last 5 outcomes. For each
of the three choice stimuli, we applied a separate GLM and combined their beta
weights to a covariance-weighted mean. We used 25 regressors in the GLM; one for
each choice-outcome conjunction. The conjunctions were coded as 1, −1 or 0
depending on whether the choice of interest was made and rewarded, another choice
was made and rewarded or no reward occurred, respectively. As in previous reports,
regressors relating to the last time points of choices or rewards (e.g. Choice(t-5) and
reward(t-1)) were confound regressors and are therefore not shown in Fig. 4.

Imaging data acquisition. Awake-animals were head-fixed in a sphinx position in
an MRI-compatible chair. We collected fMRI using a 3T MRI scanner and a four-
channel phased array receive coil in conjunction with a radial transmission coil
(Windmiller Kolster Scientific Fresno, CA). FMRI data were acquired using a
gradient-echo T2* echo planar imaging (EPI) sequence with 1.5 × 1.5 × 1.5 mm3

resolution, repetition time (TR)= 2.28 s, Echo Time (TE)= 30 ms, flip angle= 90,
and reference images for artifact corrections were also collected. Proton-density-
weighted images using a gradient-refocused echo (GRE) sequence (TR= 10 ms,
TE= 2.52 ms, flip angle= 25) were acquired as reference for body motion artifact
correction. T1-weighted MP-RAGE images (0.5 × 0.5 × 0.5 mm3 resolution, TR=
2,5 ms, TE= 4.01 ms) were acquired in separate anesthetized scanning sessions.

fMRI data preprocessing. FMRI data were corrected for body motion artifacts by
an offline-SENSE reconstruction method63 (Offline_SENSE GUI, Windmiller
Kolster Scientific, Fresno, CA). The images were aligned to an EPI reference image
slice-by-slice to account for body motion and then aligned to each animal’s
structural volume to account for static field distortion64 (Align_EPI GUI and
Align_Anatomy GUI, Windmiller Kolster Scientific, Fresno, CA). The aligned data
were processed with high-pass temporal filtering (3-dB cutoff of 100 s) and
Gaussian spatial smoothing (full-width half maximum of 3 mm). The data that
were already registered to each subject’s structural space were then registered to the
CARET macaque F99 template65 using affine transformation.

fMRI whole-brain analysis. We employed a univariate approach within the
general linear model (GLM) framework to perform whole-brain statistical analyses
of functional data as implemented in the FMRIB Software Library version 5.0.1166

where each of the psychological regressors was convolved with a hemodynamic
response function (HRF) specific for monkey brains67,68. Using this framework we
initially performed a first-level fixed effects analysis to process each individual
experimental run. These were then combined in a second-level mixed-effects
analysis (FLAME 1) treating session as a random effect (we also had a similar
number of sessions across subjects) and using family-wise error cluster correction
(z > 2.6 and p= 0.05). One reason for omitting an intermediate level of MRI
analysis was that the subject number in our study, as in the majority of studies of
macaque neural activity, was below the one required for random effects analyses
across individual monkeys69.
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Our first-level GLMs had several features in common. When using regressors
derived from the modeling, they were always taken from the full model RL+ cl+ cs
+ rt and were estimated session-wise based on the mean of the Gaussian parameter
distributions. All GLMs employed the same basic set of regressors to capture variance
in the data. A decision constant (DEC) was time-locked to the onset of the decision
screen and the duration was set to the reaction time for that trial. We used two
constant regressors time-locked to the time of feedback, one for rewarded outcomes
(FBrew) and one for unrewarded outcomes (FBnorew). Both had a default duration of
0.1 s. All subsequent regressors in all GLMs were set to this default duration unless
otherwise noted. In addition, to account for movement related scanning artifacts, we
used unconvolved regressors for leftwards and rightwards responses (Cleft_unc and
Cright_unc), time-locked to the respective responses, with the duration set to the TR
(2.28 s). Except for Cleft_unc and Cright_unc, all regressors in all GLMs were
convolved with the monkey-specific HRF (mean lag of 3 s, standard deviation of 1.5
s). Finally, we used a binary regressor to indicate choice location (1 for right, 2 for
left), time-locked to choice (Cloc). As all other subsequent binary or parametric
regressors, Cloc was z-scored before entering it in the GLM.

Our first GLM focused on the memory traces specific to our RL model (GLM1).
Time-locked to DEC, it contained the Q-value difference between the chosen and
the unchosen option. This quantity reflects the value driven part of the decision
variable and we refer to it as DVvalue(chosen-unchosen).

DVvalueðchosen� unchosenÞ ¼ Q chosenð Þ � QðunchosenÞ ð35Þ
In addition, the GLM contained the Q-value of the unpresented option (Q-unp),

the CL-trace (CL-trace), the CS-trace of the unpresented option (CS-unp), as well as
the CS-trace comparison between the chosen and the unchosen option (CS(chosen-
unchosen)). Moreover, we included the R-trace in the GLM (R-trace), which was
time-locked to the onset of the feedback screen, as in the model, the reward trace
affects the prediction error at the time of learning. These additional regressors were z-
scored and had a default duration of 0.1 s. Moreover, we calculated the contrast
between rewarded and unrewarded outcomes (FBrew-FBnorew) and refer to this
contrast as the outcome effect. For the second level analysis of the outcome contrast
specifically, we employed a restrictive whole-brain pre-threshold mask to exclude
movement artifacts related to the consumption of the juice rewards. However, the
reported effects remain significant even without this mask.

In our second GLM (GLM2), we used the same set of regressors as in GLM1
with one difference. We split up the R-trace regressor in rewarded and unrewarded
trials. This means we time-locked this effect to only rewarded and only unrewarded
trials (R-trace (R) and R-trace (no R)), respectively, and the parametric variation of
R-trace was z-scored within the respective trial set.

Our third GLM (GLM3) investigated decision related activity by regressing
the BOLD signal on the decision variable of the RL model in addition to the set of
basic regressors described above. No further regressors were included in the GLM.
We coded it in terms of chosen minus unchosen, i.e. as relative evidence for the
chosen option (DV(chosen-unchosen)). It was time-locked to DEC onset. For
brevity, DV(chosen-unchosen) is just referred to as DVtotal in the main text.

The final whole-brain GLM (GLM4) broke apart the decision variable in one
element related to value and one related to the previous choice history,
DVvalue(chosen-unchosen) (same as in GLM1 and GLM2) and DVchoice(chosen-
unchosen) (see Fig. 2d). These two regressors were the only ones added to the basic
set of regressors and they were coded in terms of chosen minus unchosen, similar
to the decision variable in GLM 1. Specifically, the two quantities were defined as:

DVchoice chosen� unchosenð Þ ¼ DVðchosen� unchosenÞ
�DVvalueðchosen� unchosenÞ ð36Þ

DVvalue(chosen-unchosen) and DVchoice(chosen-unchosen) were both time-
locked to DEC. For brevity, DVvalue(chosen-unchosen) and DVchoice(chosen-
unchosen) are just referred to as DVvalue and DVchoice in the main text.

Region of interest analyses. We analyzed ROI data using Matlab 2018a version
9.4.0, Jasp version 0.9.0.1, and SPM version 12. For all ROI analyses, we used
spherical ROIs with 2 mm radius centered on peak coordinates reported in Sup-
plementary Table 1. First, to examine R-trace related effects during trials in which
either reward was or was not delivered, we read out FSL’s contrast of parameter
estimate (COPE) maps in independently selected ROIs by warping our spherical
mask in session-specific space and averaging the parameter estimates over the
mask. To account for outlying data points, we square-root transformed the data. In
case of negative COPE values, we used the absolute value and added a minus after
the transformation. For ROI analyses of COPE effects where the ROI focused on a
similar effect to the defining whole-brain contrast, ROIs were selected via a leave-
one-out method to avoid selection bias. For this, we calculated the whole-brain
contrast of interest over all sessions but kept one session out at a time. ROI peak
coordinates for the contrast were then identified based on the (incomplete) group
average (that did not include the left-out session) and applied to the left-out
session. We repeated this procedure for all sessions and applied statistical tests to
the resulting independent ROIs.

We used the ROI timecourse analyses to examine the temporal evolution of neural
signals in our ROIs. To this end, we extracted the preprocessed BOLD time series and

up-sampled it by a factor of 10 (using spline intrapolation) and aligned the time series
trial-wise. On every time point, we applied a set of z-scored regressors to the data. The
time course GLM (tGLM1) performed the following calculations to each time point of
the upsampled data in a session by session manner. First, we used a regressor set
comprising DVvalue(chosen-unchosen), DVchoice(chosen-unchosen), Q-unp, CS-unp,
CL-trace, and Cloc. After applying this regressor set to the data time-locked to the
feedback phase onset with a linear GLM, we calculated the residuals of the BOLD
timecourse. Then, we binned the BOLD residuals by outcome (rewarded or
unrewarded) and by R-trace (high or low; median split). On the group level we
performed two statistical procedures with the binned BOLD residuals. First, we
applied a 2 × 2 analysis of variance (ANOVA) to it on every time point and calculated
main effects of outcome and R-trace as well as the interaction. Second, for each
session, we calculated the peak times of relevant ANOVA effects to be able to
compare when effects were strongest both within and across brain regions. As dACC
represented R-trace preferentially during rewarded trials and DRN preferentially
represented R-trace during no reward trials, we calculated separate measures of the R-
trace effect for rewarded and unrewarded trials for dACC, DRN, and Ia. For every
time step and session, we subtracted the residual BOLD time course of R-trace low
from R-trace high separately for rewarded and unrewarded trials, resulting in the
effects R-trace (R) and R-trace (no R), respectively. Moreover, we calculated the
overall difference of rewarded minus unrewarded bins to obtain the effect of outcome.
Within a plausible time window of two to six seconds (given the relatively fast
macaque hemodynamic response function19) from feedback onset, we determined the
session-specific time of the peak of the relevant effect. As we are not testing the size of
the peak effect but only the time for each session at which it occurs, restricting the
effects to a positive or negative direction does not bias the results. For each effect, we
constrained the analysis to identify the timing of effect peaks in the direction
concordant with the group effect. This means for dACC, we looked for the time of the
most negative R-trace effect during rewarded trials as well as the most negative
outcome effect. For Ia bilaterally, we looked for the time of the most positive peak for
each effect as both effects were positive. For the DRN, we took the time of the most
positive outcome effect and the time of the most negative R-trace effect during
unrewarded trials.

Neural model comparison. To assess whether vmPFC signaled a combined
decision variable rather than value difference alone, we performed a neural
model comparison17,20. Based on the DVtotal signal from GLM3, we used a leave-
one-out procedure to select session-specific vmPFC ROIs and avoid biased
selection. Then, we first regressed the vmPFC BOLD signal against GLM3.
Second, we did the same for GLM4, but crucially without the inclusion of
DVchoice. This means that both GLMs contained identical regressors, with the
exception that the first one contained DVtotal and the second one DVvalue

instead. We used Matlab’s fitglm function together with the convolved design
matrix and the BOLD timecourse for this regresssion and extracted the max-
imum log likelihood estimates from the resulting model. These log likelihood
estimates from the two GLMs were then fed into a Bayesian model selection
random-effects analysis (using the spm_BMS routine from SPM1229), which
computed the exceedance probability of each GLM. This analysis indicated
which GLM best explained the neural data.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
We have deposited all choice raw data in an OSF repository. All reinforcement learning
results in this paper are derived from these data alone. The accession code is: https://osf.
io/358cg/?view_only=0e6fda7925364d86930374cd4ae4a59f. Any remaining data that
support the findings of this study are available from the corresponding author upon
reasonable request. We have also deposited all group-level contrast images presented in
the manuscript on Neurovault. The accession code is: https://neurovault.org/collections/
KJVDIJYY/. The source data underlying Figs. 1f–g, 2e–i, 3c–g, 5, 6c, d, 8b, and 9c and
Supplementary Figs. 1b, c, 2i–l, 3a–r, 4a–k, 5c, f, and 7 are provided as a Source Data file.

Code availability
The above repository also comprises the full reinforcement modeling pipeline including
model comparisons implemented in Matlab. All variables used for the MRI analyses are
derived from this pipeline. In addition, code for the primary behavioral GLM is included
(Fig. 1f, g). Accession code to the repository is the following and a README inside the
repository explains the details of its use: https://osf.io/358cg/?view_only=0e6fda7925364
d86930374cd4ae4a59f. Any remaining code that support the findings of this study are
available from the corresponding author upon reasonable request.
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