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The persistence exponent θ, which characterises the long time decay of the survival probability
of stochastic processes in the presence of an absorbing target, plays a key role in quantifying the
dynamics of fluctuating systems. So far, anomalous values of the persistence exponent (θ 6= 1/2) were
obtained, but only for anomalous processes (i.e. with Hurst exponent H 6= 1/2). Here, we exhibit
examples of aging processes which, even if they display asymptotically a normal diffusive scaling
(H = 1/2), are characterised by anomalous persistent exponents that we determine analytically.
Based on this analysis, we propose the following general criterion: the persistence exponent of
asymptotically diffusive processes is anomalous if the increments display aging and depend on the
observation time T at all time scales.

The survival probability S(t) of a 1-dimensional un-
bounded stochastic process x(t) is defined as the prob-
ability that x(t) has not reached a threshold value up
to time t. This observable has proved to be very useful
to quantify the dynamics of a broad range of complex
systems in contexts as varied as diffusion controlled re-
actions, finance, search processes, or biophysics [1–5]. In
many examples of symmetric stochastic processes, the
large time behaviour of the survival probability is char-
acterised by a power law decay S(t) ∝ t−θ that defines
the persistence exponent θ.

Because of its importance to characterise the dynamics
of various systems, the determination of θ has been the
focus of a vast amount of works in the fields of stochastic
processes and non equilibrium statistical mechanics, and
general results have been obtained in particular for pro-
cesses without memory, i.e. Markovian processes [3, 4].
More precisely, in the case of 1-dimensional, transla-
tion invariant symmetric Markovian jump processes, the
Sparre Andersen theorem yields a robust universal result
θ = 1/2, independently of the value of the Hurst expo-
nent H that characterises the large time behaviour of the
mean square displacement 〈x2(t)〉 ∝ t2H [6]. In the case
of processes with memory, i.e. non-Markovian processes,
θ has been determined exactly only for specific examples
of processes such as Fractional Brownian Motion [7, 8] or
the random acceleration process [9], and perturbatively
for weakly non Markovian Gaussian processes [10–12].
In all the examples studied so far, anomalous values of
the persistence exponent (i–e θ 6= 1/2) were obtained,
but only for anomalous processes (i.e. H 6= 1/2). In
fact, all available examples of processes that are diffu-
sive (H = 1/2), even if only asymptotically for t → ∞,
display the universal exponent θ = 1/2. This is illus-
trated by the example where x(t) is the position of a given
monomer of a finite 1-dimensional ideal Rouse chain of
N monomers ; this non Markovian process is diffusive
at times larger than the Rouse time (that is the slowest
relaxation time of the internal degrees of freedom of the

chain) and is shown to be characterised by θ = 1/2 [5];
note that in this example the increments x(t+T )−x(T )
are stationary at long times, i.e. have statistics indepen-
dent of the observation time T , for T larger than the
Rouse time. Other examples include persistent random
walks and Levy walks and are discussed in [35]).

In this letter, we demonstrate that, in fact, anomalous
persistence exponents can be obtained even for asymp-
totically normal diffusive processes. We argue that this
results from the ageing properties of the process and pro-
pose the following general criterion: the persistence ex-
ponent of asymptotically diffusive processes is anomalous
if the increments are non stationary and have statistics
that depend explicitly on the observation time T at all
time scales. Our claim is based on the analysis of a range
of examples of strongly non Markovian processes, and in
particular of the so called Self Attracting Walk (SATW)
[14] and the Elephant Random Walk (ERW) [15]. These
have been studied in the context of random search pro-
cesses as prototypical examples of processes with long
range memory, and have important potential applications
in the theoretical description of the trajectories of living
organisms such as cells, insects or larger animals [16–
18]. For both processes, we derive analytically the per-
sistence exponent and show that it is anomalous, while
we demonstrate that the processes are asymptotically dif-
fusive, with however aging increments at all time scales.
Our general criterion is confirmed by the analysis of fur-
ther examples such as the persistent self attracting walk
and the polynomial self repelling walk.

We consider first the so called Self Attracting Walk
(SATW), or one-step reinforced walk, which was intro-
duced as a natural example of random walk that interacts
fully (either attractively or repulsively) with its own path
[14, 19–25] . This model can therefore be related to the
class of self-avoiding random walks, which have played a
crucial role in physics [26], and have applications in the
modelling of trajectories of living systems [27–29] ; in
essence, such models consider a random walker that de-
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posits a signal at each visited site, which alters the future
dynamics of the walker upon its next visits. Due to the
long range memory effect of this class of processes, their
properties, and in particular their persistence exponents,
are notoriously difficult to characterise analytically. More
precisely, the SATW is defined here on the 1d lattice as
a jump process in discrete time t where the probability
that the random walker jumps to a neighbouring site i is
proportional to exp(−uni), where ni = 0 if the site i has
never been visited up to time t, and ni = 1 otherwise.
For u > 0 the random walker is thus repelled by its own
path, while it is attracted for u < 0.

Figure 1. Definition of the SATW. The process is a simple
nearest neighbor random walk in the bulk of the visited ter-
ritory Dt, and is modified only at the edges of Dt ; we show
that increments 〈[x(t+T )−x(T )]2〉 are diffusive at short and
long time scales and display aging.

This process is strongly non-Markovian since the def-
inition of its evolution at time t requires the knowledge
of the full territory Dt visited by the random walker
up to time t (see Fig1). However, in 1d, the knowl-
edge of the two extrema x− = inf0≤t′≤t x(t′) and x+ =
sup0≤t′≤t x(t′) of the trajectory at t is sufficient to fully
determine the visited territory Dt = [x−, x+] and thus
the evolution of the process. When in the bulk of the
visited territory (x− < x(t) < x+), the random walker
performs a classical symmetric nearest neighbor random
walk. The dynamics is modified only for x = x−, x+,
and is then conveniently encoded locally by the prob-
ability β = 1/(1 + exp(−u)) to visit the yet unvisited
neighboring site (/∈ Dt) rather than the previously vis-
ited one (∈ Dt). Only a few results are available to de-
scribe this non - Markovian process [14, 30–33], which
has been shown in particular to be asymptotically dif-
fusive at large times 〈x2(t)〉 ∝ t, with however a large
time diffusion coefficient that has not been determined
analytically.

In view of determining the persistence exponent of this
process, it is convenient to parametrise the dynamics in
terms of the number N = x+ − x− + 1 of distinct sites
visited up to time t. We define by S(N) the correspond-
ing survival probability that the target, located at x = 0,
has not been reached when N sites have been visited ; in
addition we denote by x0 > 0 the initial position of the
random walker. We first show below that S(N) satisfies
the following scaling in the large N limit :

S(N) ∝ N−
1−β
β , (1)

by providing lower and upper bounds for S(N).

To this end, we note that a lower bound for S(N) is
straightforwardly given by the probability Ps(N) that
Dt = [x0, x0 +N − 1], i–e the probability that all of the
N visited sites have been discovered from the x+ edge of
Dt. Adapting classical results for splitting probabilities
of 1D random walks [1, 34] (see Supplementary Material
for details [35]), an exact recurrence relation for Ps(N)
can be obtained and reads :

Ps(N + 1) = (1− 1− β
2 + β(N − 3)

)Ps(N). (2)

Taking the log of Eq.2 then yields in the large N limit
the following scaling of the lower bound :

S(N) > Ps(N) ∝ N−
1−β
β . (3)

We now turn to the determination of an upper bound
to S(N). We define a side change as the visit of a new
site on the side opposite to the last newly visited site.
With this definition, it is easy to see that all trajectories
involving more than 2x0 side changes cross the target at
x = 0. As a consequence, by defining P (N, k) as the
probability that exactly k side changes occurred until N
sites have been visited in the presence of the target at

x = 0, one can write S(N) =
2x0∑
k=0

P (N, k). In order to

determine the scaling of P (N, k), we introduce k random
variables {a1, ...ak}, where ai is the total number of dis-
tinct visited sites when the ith side change occurs. Hence,
between side changes i and i+ 1, the random walker vis-
its ai+1 − ai new sites on the same side of the visited
territory D. Correspondingly, we denote by Ps(ai, a) the
probability that a−ai− 1 new sites have been visited on
the same side of D after side change i. Note in particu-
lar that Ps(1, N) = 2Ps(N) introduced above. We also
introduce Pt(a) as the probability that a side change oc-
curs when the number of distinct visited sites is a; it is
the probability that the random walker, starting from
one edge of D discovers the next new site on the opposite
edge.

The joint probability of the event {a1, ...ak} can then
be written

P ({a1, ...ak}) = 2−1Ps(1, a1)Pt(a1)

×

(
k∏
i=2

Ps(ai−1, ai)Pt(ai)

)
× Ps(ak, N).

(4)

Both Ps and Pt can be straightforwardly expressed in
terms of splitting probabilities introduced above to de-
termine Ps(N), and exact recurrence relations similar to
Eq. (2) can be obtained (see SM [35]). This yields in
particular the following asymptotics (i > 1):

Ps(ai, ai+1) ∼
ai→∞

a
1−β
β

i

a
1−β
β

i+1

; Pt(ai) ∼
ai→∞

1− β
β

1

ai
, (5)

which will be useful below. In order to express P (N, k),
we must condition on the first step, and distinguish odd
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and even values of k. Assuming without loss of generality
that the first step is made in the + direction, and that
k = 2p is even, we obtain in the large N limit where sums
can be approximated by integrals:

P (N, 2p) ≤
∫ N

1

∫ min(x0+a1,N)

a1

∫ N

a2

∫ min(x0+a3,N)

a3

..∫ N

a2p−2

∫ min(x0+a2p−1,N)

a2p−1

P ({a1, ...ak})da1..da2p.

(6)

Upper bounds in the integrals take into account the ab-
sorbing target at x = 0. Next, using the definition of Eq.
(4) and the asymptotics of Eq. (5), one obtains in the
large ai limit

P ({a1, ...ak}) ∝
ai→∞

N−
1−β
β (a1a2 × ..× ak)−1. (7)

We then make use of the following estimate in the large
N limit derived in [35] :∫ N

1

∫ min(x0+a1,N)

a1

∫ N

a2

..

∫ N

a2p−2

∫ min(x0+a2p−1,N)

a2p−1

(a1a2 × ..× ak)−1da1..da2p = O(1), (8)

to finally obtain

P+(N, 2p) = O(N−
1−β
β ). (9)

The same O(N−
1−β
β ) estimate is obtained for P±(N, k)

for all combinations of the first step direction ± and par-
ity of k as shown in SM [35]. This finally yields

S(N) =

2x0∑
k=0

P (N, k) = O(N−
1−β
β ), (10)

which, together with the lower bound of Eq.(3) proves
the scaling of Eq.(1). We finally conclude on the scal-
ing of the survival probability S(t) as a function of the
elapsed time t. To do so, we make use of the ansatz
that the conditional probability density ΦN (t) that the
target is found at time t knowing that N − 1 sites have
been visited is a scaling function of the variable t/N2:
ΦN (t) = f(t/N2)/N2 (see [35] for numerical check).
This, together with Eq.(1), yields the following analytical
determination of θ :

θ =
1− β

2β
. (11)

First, we underline that this result, which is expected
to be exact (see numerical simulations Fig.2) shows that
the SATW provides a simple model for which the per-
sistence exponent is determined analytically and can be
varied over a broad range of values by tuning a simple
microscopic parameter (β). Second, this reveals that,
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Figure 2. Persistence and aging of the SATW. a) Persistence
exponent : numerical simulation and analytical prediction of
Eq.(11). b) Survival probability as a function of time (log
scale) for different values of β. Numerical simulations (sym-
bols) and power law fit (plain line). c),d) Aging of the incre-
ments for the SATW (normalized by the expected diffusive
scaling at long times). Each curve corresponds to a fixed
value of T .

despite the fact that the process is asymptotically diffu-
sive 〈x2(t)〉 ∝ t at large times (H = 1/2) for all values
of β [14, 30], the persistence exponent θ is anomalous
(θ 6= 1/2) for β 6= 1/2.

Based on this example, we now aim at determining a
general criterion that allows to identify the asymptoti-
cally diffusive processes that lead to anomalous persis-
tence exponents. It has been proposed that for continu-
ous scale invariant processes with stationary increments
the universal relation θ = 1−H should hold [4, 13]; this
relation can in fact be extended to processes whose time
dependent increments 〈[x(t+T )−x(T )]2〉 are only asymp-
totically stationary after a finite characteristic timescale
[5]. We review in [35] examples of such processes, which
all lead to θ = 1/2. Our finding that θ 6= 1 −H for the
SATW indicates that its increments are not stationary
after a finite time scale ; this calls for a further anal-
ysis of the increments. These are known to be diffu-
sive and to satisfy 〈[x(t + T ) − x(T )]2〉 ∼ 2DL(β)t in
the large time limit t � T , where DL(β) has not been
determined analytically. In turn it is easily seen that
for T � t, one has 〈[x(t + T ) − x(T )]2〉 ∼ 2Dst with
Ds = 1/2, because the walker spends most of the time
away from the boundaries of the visited territory DT (see
Fig.1). Finally, because the process has no intrinsic time
scale but the unit time step, dimensional analysis shows
that in the limit t, T � 1 the increments can be writ-
ten 〈[x(t + T ) − x(T )]2〉 = 2D(t/T ) t . This behavior
was confirmed by numerical simulations (see Fig.2). Fi-
nally, the process is diffusive at both short and long time
scales, but displays aging at all observation time scales
T . We hypothesize that this behavior, which we call scale
free aging, leads to anomalous persistence exponents for
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asymptotically diffusive processes. Below, we provide ex-
plicit examples supporting this hypothesis.

We first verify our hypothesis on a generalization of
the SATW model to persistent random walks (see [35]
for details). While the random walker is within the vis-
ited territory, it is now assumed to perform a classical
persistent random walk of persistence probability (prob-
ability to reproduce the previous step) p = ek

ek+e−k
, where

k is a free real parameter. When the random walker is
at an edge x± of the visited domain, reinforcement and
persistence effects are coupled so that the probability to
discover a new site is given by β(k, u) = ek

e−k−u+ek
(note

that the SATW model is recovered by taking k = 0). It
is shown in [35] that the persistence exponent can still
be determined explicitly for this model ; it is found to be
independent of k:

θ =
1− β(k = 0, u)

2β(k = 0, u)
. (12)

As in the SATW case (k = 0), the persistence exponent
is thus anomalous for β(k = 0, u) 6= 1/2. The analysis of
the increments reveals that motion is ballistic below the
time scale e2k. In turn, for T, t � e2k, increments are
characterized by a time dependent diffusion coefficient
D(t/T ) that ranges from Ds = e2k/2 for T � t to an
undetermined (k dependent) value DL for t � T (see
[35]). The process therefore displays scale free aging, and
our hypothesis is verified. To further assess the generality
of our criterion, we analyse below two other examples of
aging asymptotically diffusive non Markovian processes
with anomalous persistence exponents.

First, the so-called elephant random walk (ERW) was
introduced in [15], and can be defined as follows on 1d
lattice : at each time step t a nearest neighbor jump σ̄
is drawn with uniform distribution from the full set of
jumps performed in the past {σi}i<t, where σi = ±1
(with a symmetric first jump). The random walker then
performs the jump σt = σ̄ with probability β, and the
jump σt = −σ̄ with probability 1 − β. The position
process is then defined by x(t) = σt+x(t−1). The process
is non Markovian by construction, and can be shown for
β < 3/4 to be characterized by scale free, diffusive, aging
increments 〈[x(t+ T )− x(T )]2〉 ∼ 2D(t/T ) t in the limit
T, t � 1, with an effective diffusion coefficient that we
show can be written (see [35])

D(t/T ) ∼ 1

6− 8β
− 1

3− 4β

[
T

t

((
1 +

t

T

)2β−1
− 1

)]
.

(13)
This behavior of the increments (see Fig.3) is similar to
the case of the SATW, with in particular finite limits of
the effective diffusion coefficient D(t/T ) in both regimes
t � T and t � T (see Fig.3). The limit diffusion coeffi-
cients can be expressed analytically from (13) and read
Ds = 1/2 and DL = 1/(6 − 8β) (in agreement with
[15, 36] for T = 0). Similarly to the SATW, the ERW
is therefore diffusive at both short and time scales, and

displays scale free aging. We now determine the persis-
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Figure 3. Persistence and aging of the ERW. a) Persistence
exponent : numerical simulations, analytical prediction of
Eq.(14) and prediction based on an effective Fick’s law [35]
. b) Survival probability as a function of time (log scale) for
different values of β. Numerical simulations (symbols) and
power law fit (plain line). c),d) Aging of the increments for
the ERW (normalized by the expected diffusive scaling at

long times) and analytical prediction of Eq.(13) (plain line).
Each curve corresponds to a fixed value of T .

tence exponent of the ERW. In the diffusive regime that
we consider here, it has been shown that in the large
t limit, the 1-point probability density function p(x, t)
is Gaussian [36] and satisfies a Fokker-Planck equation
with a time-dependent drift for β < 3/4; based on this
formalism, the first-passage time distribution to a tar-
get was computed in [37]. We used this result to derive
analytically the persistence exponent of the ERW:

θ = 3/2− 2β, (14)

which was confirmed by numerical simulations (see
Fig.3). Again, we find that the persistence exponent θ
is anomalous (θ 6= 1/2) for β 6= 1/2, and takes a broad
range of values when β is varied. The example of the
ERW therefore supports our conjecture that scale free
aging is responsible for the observed anomalous persis-
tent exponent θ 6= 1/2, even for asymptotically diffusive
processes (H = 1/2).

Last, we consider an example of self-repelling walk
where the probability that the random walker jumps to
a neighbouring site i is proportional to 1/(1 + τβi ), where
τi is defined as the cumulative time spent by the random
walker at the site i. This process has been shown to be
asymptotically diffusive at large times [38, 39] ; however
its increments and persistence properties remain unex-
plored. Our numerical analysis reveals that the persis-
tence exponent is anomalous θ ≈ 0.25 for all values of β
; in turn the increments are found to display scale free
aging (see [35]). Our hypothesis is therefore verified once
again.
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We now conclude this letter by summarizing our re-
sults. We have analysed the persistence exponents for
several examples of Non-Markovian random walks, which
have been studied in the context of random search pro-
cesses. These persistence exponents, some of which we
determined analytically, were found to be anomalous,

and to vary over a broad range of values even if all pro-
cesses remain asymptotically simply diffusive. Our anal-
ysis leads to the conjecture that the persistence exponent
of asymptotically diffusive processes is anomalous if the
increments are aging and depend on the observation time
T at all time scales.
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