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Scattering of a corrugated plane wave (cpw) by a sphere is formulated by a pair-of-waves (pow) approach, whereby the incident wavefront is considered as a continuum of sinusoidal wavefronts and any such constituent is considered as a pair of equal-amplitude, plane, electromagnetic (em) waves which may be in-or out-of-phase and may assume either of two orthogonal polarisations. All sinusoidal constituents are propagated in the direction of the normal to the reference plane of the cpw. We determine the constituent spectra of a cpw by use of the Fourier transform and ultimately the Lorenz-Mie coefficients that apply to cpw scattering by a sphere. We apply our approach to pow scattering by a sphere and Gaussian-beam scattering by an off-axis sphere. We present numerical results for a μmsized, spherical, glycerol droplet which is coupled to an incident, infrared cpw and we show how to tune an incident pow to that droplet in order to enhance backscattering.

Introduction

The Lorenz-Mie theory of plane-wave scattering and refraction by a sphere [START_REF] Lorenz | Lysbevaegelsen i og uden for en af plane Lysbolger belyst Kugle[END_REF][START_REF] Lorenz | Sur la lumière réfléchie et réfractée par une sphere transparente[END_REF][START_REF] Mie | Beiträge zur Optik trüber Medien, speziell kolloidaler Metallösungen[END_REF] has been formulated more than a century ago and it has been extended or reformulated ever since [START_REF] Ishimaru | Wave Propagation and Scattering in Random Media[END_REF][START_REF] Bohren | Absorption and Scattering of Light by Small Particles[END_REF][START_REF] Barber | Light Scattering by Particles: Computational Methods[END_REF][START_REF]The Mie Theory[END_REF][START_REF] Kahnert | Numerical solutions of the macroscopic Maxwell equations for scattering by non-spherical particles: A tutorial review[END_REF]. The cardinal feature of that theory is the formulation of the em field -incident, scattered, and refracted -as a weighted sum of spherical eigenvectors [START_REF] Morse | Methods of Theoretical Physics[END_REF], the weights usually called "Lorenz-

Mie coefficients."

Extensions of the fundamental theory made over the years have had to do with the consideration of (a) more complicated geometry for the scatterer, always within the framework of applicability of vector spherical eigenvectors (e.g., an eccentrically layered sphere [START_REF] Skaropoulos | Indirect modematching solution to scattering from a dielectric sphere with an eccentric inclusion[END_REF], an aggregate of spheres [START_REF] Ioannidou | Study of interactive scattering by clusters of spheres[END_REF], etc.), or (b) more realistic excitation of a sphere (e.g., dipole radiation near [START_REF] Skaropoulos | Induced EM field in a layered eccentric spheres model of the head: plane-wave and localized source exposure[END_REF][START_REF] Chrissoulidis | Dyadic Green's function of a nonspherical model of the human torso[END_REF], or from within [START_REF] Chrissoulidis | Radiation From an Encapsulated Hertz Dipole Implanted in a Human Torso Model[END_REF], a sphere, beam coupling to a nearby sphere [START_REF] Khaled | Scattered and internal intensity of a sphere illuminated with a Gaussian beam[END_REF][START_REF] Gouesbet | On the electromagnetic scattering of arbitrary shaped beams by arbitrary shaped paticles: A review[END_REF][START_REF] Chrissoulidis | Wave-amplitude synthesis applied to Gaussian-beam scattering by an off-axis sphere[END_REF], etc.). Refinements of the theory itself have been made by use of the T-matrix [START_REF]Light Scattering by Nonspherical Particles[END_REF] or the dyadic Green's function [START_REF] Moneda | Dyadic Green's function of a sphere with an eccentric spherical inclusion[END_REF][START_REF] Moneda | Dyadic Green's function of a cluster of spheres[END_REF].

The cardinal part of an extended Lorenz-Mie solution to a radiation problem is the determination of the Lorenz-Mie coefficients, which we prefer to call "wave amplitudes," as the spherical eigenvectors actually represent the "waves" that carry the energy radiated by the source to every point in space. We formulate in this paper an extended Lorenz-Mie solution to scattering of a cpw from a sphere and, by focussing on the excitation, we actually follow path (b) of the previous paragraph.

The motivation to consider a cpw as excitation of a sphere emerges from an old idea that is pertinent to adaptive, remote-sensing radar: "tailor the illuminating waveform to obtain maximum information about the object of interest" [START_REF] Gjessing | Adaptive Radar in Remote Sensing[END_REF]. It is well-known that a rough surface can be constructed by adding sinusoidal corrugations of any orientation, amplitude (i.e., height), and period [START_REF] Kinsman | Wind Waves[END_REF].

Likewise, we may build a cpw by adding sinusoidal wavefronts, having any orientation (in the reference plane), amplitude, and period. A sinusoidal wavefront is the sum of two, equal-amplitude, plane, em waves -at the same frequency and of the same polarization -which are propagated in two directions, say î1 and î2 , within an unbounded homogeneous medium (wavenumber k 0 ). The pow wavefront is propagated in the direction î = 1 2 î1 + î2 and it is periodic in the transverse direction ∆k = k 1 -k 2 = k 0 î1 -î2 . The half-period of the pow wavefront is ∆λ = 2π/ |∆k|.

We manifest in this paper that, even though a sphere is excited by k 1 and k 2 , it is actually coupled to ∆k. Furthermore, we determine the pow spectrathere may be up to four of them -which define a cpw. Finally, we apply the aforesaid approach to a sinusoidal wavefront and a Gaussian beam decomposed into pow spectra. Our pow approach is a variation of the angular (or spatial) correlation method of remote sensing [START_REF] Gjessing | Adaptive Radar in Remote Sensing[END_REF][START_REF] Gjessing | Remote Surveillance by Electromagnetic Waves for Air -Water -Land[END_REF]: instead of illuminating the target of interest from a single direction and then correlating the waves scattered in two directions, we consider two directions of incidence, say î1 and î2 , on the target and we correlate (trivially) the scattered waves in a single direction. If the latter is -î, then we actually determine backscattering of a pow by the target, thus expecting to extract information about the structure of that object in the direction of ∆k, which is transverse to î.

We use two frames of reference, one attached to the center of the spherethe natural frame of the scatterer -and another one that may be convenient to represent the incident cpw. After these introductory notes (Section 1), we define the geometry of our radiation problem (Section 2) and, then, we determine (Section 3) the wave amplitudes of scattering/refraction by a sphere that is displaced from the phase-reference point. This is done for the trivial case of plane-wave excitation (Section 3.1), whereby one of the two frames is redundant, and for pow excitation (Section 3.2), which requires use of both frames. We then treat the case of an arbitrary cpw (Section 3.3), that being the main part of the theory, which is then applied to a Gaussian beam. The monostatic radar cross section of the sphere is determined in Section 4 for all excitations considered in Section 3. A numerical application follows in Section 5. The Fortran code that implements our theory was tested against ANSYS HFSS [START_REF]HFSS High Frequency Structure Simulator[END_REF]. The paper ends with the conclusions (Section 6).

Geometry and Conditions

The geometry of our radiation problem is shown by Fig. 1 The cpw is accommodated in free space (wavenumber k 0 = ω √ µ 0 0 ). The sphere is dielectric, the interior wavenumber is k 1 = nk 0 , and the refractive index n may be a complex number to account for eventual losses. Harmonic time dependence exp{-jωt} is implied and suppressed throughout the analysis.

Scattering by Offset Sphere

A cpw and a sphere constitute a radiation problem that can be solved by application of the boundary conditions on the surface of the sphere. The end-result is the scattered part of the exterior field and, succinctly, the refracted (i.e., interior) field.

Plane Wave

A unit-amplitude plane electromagnetic wave, propagated in the direction defined by the unit vector î and polarized along ê, is expressed in the reference frame (O, rθφ) as follows [START_REF] Moneda | Dyadic Green's function of a sphere with an eccentric spherical inclusion[END_REF][START_REF] Moneda | Dyadic Green's function of a cluster of spheres[END_REF][START_REF] Chrissoulidis | Wave-amplitude synthesis applied to Gaussian-beam scattering by an off-axis sphere[END_REF]:

E inc = êe jk0 î•r = ê • νµ,α (-1) ν jc µν f α,-µν (-î)F (1) α,µν (k 0 r) = νµ,α
Åα,µν î, ê F (1) α,µν (k 0 r).

The unit vectors ê and î are orthogonal (ê • î = 0). The symmetry indices ν and µ, known as angular-momentum and azimuthal quantum numbers, are assigned the integers 1, 2, . . . and -ν, -ν + 1, . . . , ν -1, ν, respectively; c µν = (-1) µ 2ν+1 ν(ν+1) = c -µν . The type index α acquires the names M, N. The surface harmonic f α,µν and the spherical eigenvector

F (ι)
α,µν are defined as follows:

f M,µν (r) = j ν-1 j θµτ (1) µν (θ) -φτ (2) µν (θ) e jµφ , f N,µν (r) = j ν θτ (2) µν (θ) + j φµτ (1) µν (θ) e jµφ ,

F (ι) M,µν (kr) = (-j) ν-1 z (ι) M,ν (kr)f M,µν (r), F (2) 
N,µν (kr) = r ν(ν + 1) kr z

(ι) M,ν (kr)P µ ν (cosθ)e jµφ +(-j) ν z (ι) N,ν (kr)f N,µν (r), (3) where z (ι) 
M,ν (kr) is a spherical Bessel (ι = 1) or Hankel (ι = 3) function of the 1st kind [START_REF] Abramowitz | Handbook of Mathematical Functions[END_REF], z 

µν (θ) = P µ ν (cosθ) sinθ , τ (2) 
µν (θ) = dP µ ν (cosθ) dθ
are the generalized Legendre functions.

The last member of ( 1) is a sum of waves (i.e., a sum of spherical eigenvectors

F (1)
α,µν (k 0 r) which are regular at the origin of coordinates), each multiplied by the wave amplitude Åα,µν î, ê = (-1) ν jc µν ê • f α,-µν (-î).

We may formulate E inc in (O 1 , r 1 θ 1 φ 1 ) -the natural frame of the scatterer -as a sum of locally defined waves:

E inc = νµ,α A α,µν î, ê, d F (1) α,µν (k 0 r 1 ) , (4) 
by use of the local wave amplitude A α,µν î, ê, d = e jk0 î•d Åα,µν î, ê which is trivially dependent on the displacement vector d.

The electric-field intensity on either side of the spherical interface S can be formulated as a sum of waves defined in (O 1 , r 1 θ 1 φ 1 ):

E 0 = E inc + E sca = νµ,α A α,µν F (1) α,µν (k 0 r 1 ) + νµ,α B α,µν F (3) α,µν (k 0 r 1 ) , E 1 = νµ,α C α,µν F (1) α,µν (k 1 r 1 ) , (5) 
and each one of the wave amplitudes

B α,µν = b α,ν A α,µν , C α,µν = c α,ν A α,µν
is the incident wave amplitude A α,µν multiplied severally by the Lorenz-Mie coefficient: [START_REF] Ishimaru | Wave Propagation and Scattering in Random Media[END_REF][START_REF] Bohren | Absorption and Scattering of Light by Small Particles[END_REF][START_REF]Light Scattering by Nonspherical Particles[END_REF]:

b α,ν = - x 1 z (1) α,ν (x 0 )z (1) β,ν (x 1 ) -x 0 z (1) β,ν (x 0 )z (1) α,ν (x 1 ) x 1 z (3) α,ν (x 0 )z (1) β,ν (x 1 ) -x 0 z (3) β,ν (x 0 )z (1) α,ν (x 1 ) , c α,ν = x 0 z (3) α,ν (x 0 )z (1) β,ν (x 0 ) -x 0 z (3) β,ν (x 0 )z (1) α,ν (x 0 ) x 1 z (3) α,ν (x 0 )z (1) β,ν (x 1 ) -x 0 z (3) β,ν (x 0 )z (1) α,ν (x 1 ) . ( 6 
)
The abbreviations x 0 = k 0 a, x 1 = k 1 a are used in [START_REF] Barber | Light Scattering by Particles: Computational Methods[END_REF].

Thus, we arrive at the following formulation for the electric-field intensity in every part of space:

E 0 = νµ,α A α,µν F (1) α,µν (k 0 r 1 ) + b α,ν F (3) α,µν (k 0 r 1 ) , E 1 = νµ,α A α,µν c α,ν F (1) α,µν (k 1 r 1 ) . (7) 

Pair of Waves

A pow consists of two, equal-amplitude, plane, electromagnetic waves, propagated symmetrically with respect to the z axis as shown in Fig. 2. The propagation vectors îL = x sin γ sin δ -ŷ cos γ sin δ + ẑ cos δ, îR = -x sin γ sin δ + ŷ cos γ sin δ + ẑ cos δ (the index denotes the left-or right-hand side member of the pow) are in a meridian plane Γ. Let γ = x cos γ + ŷ sin γ be the unit normal to Γ. Thus, a pow that is propagated into the half space z ≥ 0 is defined by the azimuth angle γ ∈ [0, π] and the declination angle δ ∈ 0, π 2 . The plane-wave constituents, being at the same frequency, are associated with the wavenumber

vectors k L = k 0 îL , k R = k 0 îR which are both in Γ.
The pow is an elementary cpw that is propagated along the z axis. Let E inc (x, y, z) be the electric-field intensity that corresponds to the sum of leftand right-hand side constituents. The pow wavefront -the equal-amplitude sur-

face z = ζ (x, y) defined by |E inc (x, y, z = ζ)| = const.
-is a sinusoid oriented as the tranverse wavenumber vector ∆k = k R -k L = 2k 0 (-x sin γ + ŷ cos γ) sinδ.

We assume that the constituents of a pow can be in-or out-of-phase. Thus, a pow manifests severally even or odd symmetry with respect to the meridian plane defined by (ẑ, γ). Furthermore, we assume that both members of a pow are polarized either perpendicular or parallel to Γ. Their polarization vectors are thus êL = êR = γ (perpendicular polarization) or êL = γ × îL , êR = γ × îR (parallel polarization). A pow comprising perpendicular-polarized plane waves is an H-wave, i.e., a wave that is guided by the non-zero component of the overall magnetic-field intensity along the z axis. If composed of parallel-polarized plane The electric-field intensity corresponding to such excitation is given by the 140 following expansion in (O, rθφ):

O z x y γ L i ^î R k L k R Δk γ δ δ Γ
E inc = êR,p e jk0 îR•r + (-1) δso êL,p e jk0 îL•r = νµ,α
Åα,µν ( îR , êR,p ) + (-1) δso Åα,µν ( îL , êL,p )

F (1) α,µν (k 0 r), (8) 
where êh,E = γ × îh and êh,H = γ. We may formulate E inc in (O 1 , r 1 θ 1 φ 1 ):

E inc = νµ,α A α,µν F (1) α,µν (k 0 r 1 ) (9) 
by use of the local wave amplitude:

A α,µν = h (-1) δ hL δso e jk0 îh •d Åα,µν ( îh , êh,p ) (10) 
that carries all features of the pow.

Corrugated Plane Wave

A cpw may be built by superposition of all four pow types -ps ∈ {Ee, Eo, He, Ho} -and integration over (γ, δ) ∈ [0, π] × 0, π 2 . Each constituent pow may have its own (complex) amplitude A ps (γ, δ) and, thus,

E inc = sp,h (-1) δsoδ hL π 0 π 2 0 A ps (γ, δ) êh,p e jk0 îh •r dδdγ = νµ,α A α,µν F (1)
α,µν (k 0 r 1 ) .

By comparison of the last two members of ( 11) we arrive at the local wave amplitude:

A α,µν = sp,h (-1) δ hL δso π 0 π 2 0 A ps (γ, δ)e jk0 îh •d Åα,µν ( îh , êh,p )dδdγ. ( 12 
)
The amplitudes A Ee , A Eo , A He , A Ho can be determined from the incident-field distribution on the coordinate plane xOy.

Henceforth, we assume that E inc (x, y, z = 0) is known. If E (k x , k y ) is the Fourier spectrum of E inc (x, y, z = 0), then:

E inc (x, y, z = 0) = 1 4π 2 E (k x , k y ) e -j(kxx+kyy) dk x dk y , E (k x , k y ) = E inc (x, y, z = 0) e j(kxx+kyy) dxdy. ( 13 
)
As the cpw is propagated in the direction of ẑ, the electric-field intensity above the coordinate plane xOy can be formulated likewise:

E inc (x, y, z ≥ 0) = 1 4π 2 E (k x , k y ) e -j(kxx+kyy+kzz) dk x dk y , (14) 
wherein

k z = -k 2 0 -k 2 x -k 2 y . If integration is limited within the circle k 2 x + k 2 y ≤ k 2 0 , then -k 0 ≤ k z ≤
0 and the result is a superposition of homogeneous plane waves that are propagated toward z ≥ 0:

E inc (x, y, z ≥ 0) = 1 4π 2 k 2 x +k 2 y ≤k 2 0 E ê e jk0 î•r dk x dk y . (15) 
Each plane-wave component of E inc has amplitude E = |E|, polarization vector ê = E/E, and direction of propagation î = -k/k 0 , all dependent on k x , k y .

It can be proven, starting from [START_REF] Khaled | Scattered and internal intensity of a sphere illuminated with a Gaussian beam[END_REF], that the following formula is valid:

E inc (x, y, z ≥ 0) = 1 4π 2 k 2 x +k 2 y ≤k 2 0 ,kx≤0 E (k x , k y ) ê (k x , k y ) e jk0 îR•r +E (-k x , -k y ) ê (-k x , -k y ) e jk0 îL•r dk x dk y , (16) 
for î (k x , k y ) = îR and î (-k x , -k y ) = îL as long as

k 2 x + k 2 y ≤ k 2 0 , k x ≤ 0. Let ê (k x , k y ) = p C p (k x , k y ) êR,p and ê (-k x , -k y ) = p C p (-k x , -k y ) êL,p , the direction cosines C E , C H conforming to the condition |C E | 2 + |C H | 2 = 1. Thus,
we arrive at a pow-decomposition for the electric-field intensity:

E inc (x, y, z ≥ 0)= 1 4π 2 p,h k 2 x +k 2 y ≤k 2 0 ,kx≤0 E h,p êh,p e jk0 îh •r dk x dk y , ( 17 
) whereby E R,p = E (k x , k y ) C p (k x , k y ) and E L,p = E (-k x , -k y ) C p (-k x , -k y )
are introduced severally as right-and left-hand spectral amplitude of any pow.

Considering even-and odd-symmetry parts in E R,p and E L,p , we obtain the symmetry-dependent spectra:

E ps =E R,p +(-1) δso E L,p =E(k x , k y )C p (k x , k y )+(-1) δso E(-k x , -k y )C p (-k x , -k y ) (18) 
and we readily verify the symmetry properties

E pe (k x , k y ) = E pe (-k x , -k y ), E po (k x , k y ) = -E po (-k x , -k y ).
The end-result is a decomposition of E inc in all four pow types:

E inc (x, y, z ≥ 0) = 1 4π 2 sp,h (-1) δsoδ hL k 2 x +k 2 y ≤k 2 0 ,kx≤0 E ps êh,p e jk0 îh •r dk x dk y , (19) 
which may easily be reformulated as follows:

E inc = sp,h (-1) δsoδ hL π 0 π 2 0 k 0 2π 2 E ps (γ, δ)
êh,p e jk0 îh •r sin δ cos δdδdγ.

By comparison of ( 11) and ( 20), we conclude that:

175 A ps (γ, δ) = k 0 2π 2 E ps (γ, δ) sin δ cos δ. (21) 
The final step is to find E ps by use of [E inc ] z=0 , which is known. The latter of ( 13) provides the excitation spectra: kxx+kyy) dxdy,

E R = E (k x , k y ) = E inc (x, y, z = 0) e j(
E L = E (-k x , -k y ) = E inc (x, y, z = 0) e j(-kxx-kyy) dxdy, (22) 
in the spectral semi-circle defined by k 2 x + k 2 y ≤ k 2 0 and k x ≤ 0. As E h = E h,x x + E h,y ŷ + E h,z ẑ, we actually possess six known spectra:

E R,x = E (k x , k y ) • x, E R,y = E (k x , k y ) • ŷ, E R,z = E (k x , k y ) • ẑ, E L,x = E (-k x , -k y ) • x, E L,y = 180 E (-k x , -k y ) • ŷ, E L,z = E (-k x , -k y ) • ẑ.
Hence, we find E h,p = E h • êh,p and subsequently E ps from ( 18):

E Ee = [(E R,x + E L,x ) sin γ -(E R,y + E L,y ) cos γ] cos δ + (E R,z -E L,z ) sin δ, E Eo = [(E R,x -E L,x ) sin γ -(E R,y -E L,y ) cos γ] cos δ + (E R,z + E L,z ) sin δ, E He = (E R,x + E L,x ) cos γ + (E R,y + E L,y ) sin γ, E Ho = (E R,x -E L,x ) cos γ + (E R,y -E L,y ) sin γ. ( 23 
)
The analysis is thus complete, as A ps is given by ( 21) and A α,µν is available from [START_REF] Skaropoulos | Induced EM field in a layered eccentric spheres model of the head: plane-wave and localized source exposure[END_REF]. However, there is a detail that is still missing: not all six excitation spectra are needed to define an cpw. As ∇

• E inc = 0, the Cartesian components of E h must conform to the conditions E R,x k x + E R,y k y + E R,z k z = 0 and E L,x k x + E L,y k y -E L,z k z = 0, which allow for the elimination of E R,z , E L,z .
Hence, E R,x , E R,y and E L,x , E L,y are sufficient input for the definition of any cpw.

Application to Gaussian Beam. Subsequently, we apply the theory developed above to a Gaussian-beam wavefront. Following [START_REF] Chrissoulidis | Wave-amplitude synthesis applied to Gaussian-beam scattering by an off-axis sphere[END_REF], we assume that the electromagnetic field of the beam is associated with the magnetic vector potential A(r, t) = xA(r)e -jωt , thereby arriving at a plane-wave decomposition for the electric-field intensity that is continuous in two spectral dimensions:

E inc 1 4π 2 k 2 x +k 2 y ≤k 2 0 x 1 - k 2 x k 2 0 - ŷ k x k y k 2 0 - ẑ k x k z k 2 0 W (κ) e -j(kxx+kyy+kzz) dk x dk y . ( 24 
)
The spectrum

W (κ) = πw 2 0 1 + s 2 (w 0 κ) 2 1 -(w0κ) 2 16 + • • • e -(w 0 κ) 2 4
involves the smallness parameter s = 1 k0w0 of the perturbation series that pertains to the Davis [START_REF] Davis | Theory of electromagnetic beams[END_REF] formulation, the beam shape parameter w 0 , which is actually the beam-waist radius, and the transverse wavenumber κ = k 2 x + k 2 y = k 0 sin δ. By comparison of ( 24) to ( 14), we find the excitation spectra:

E R = E (k x , k y ) = x 1 - k 2 x k 2 0 - ŷ k x k y k 2 0 - ẑ k x k z k 2 0 W (κ) , E L = E (-k x , -k y ) = x 1 - k 2 x k 2 0 - ŷ k x k y k 2 0 + ẑ k x k z k 2 0 W (κ) , (25) 
and subsequently the type-dependent spectra E ps by use of ( 23):

E Ee = 2 sin γ cos δ W (k 0 sin δ) , E Eo = 0, E He = 2 cos γ W (k 0 sin δ) , E Ho = 0. ( 26 
)
We then prove the useful formulae:

200 Åα,µν ( îh , êh,p )=(-1) ν+(µ+1)δ hR j ν+1-δpm c µν e -jµγ

(-µ) δαMδpe+δαNδpm τ (2-δαMδpe-δαNδpm) -µν (π -δ), (27) 
h (-1) δ hL δso+(µ+1)δ hR e jk0 îh •d =2(-1) µ+1 e jx l [(δ se δ µ,2µ +1 +δ so δ µ,2µ )cos[x t sin(Φ -γ)]

+ j(δ se δ µ,2µ +δ so δ µ,2µ +1 )sin[x t sin(Φ -γ)]] , (28) 
where

x t = k 0 d sin δ sin Θ, x l = k 0 d cos δ cos Θ, and µ is an integer in [-ν, ν].
By substitution of ( 26) in [START_REF] Gjessing | Adaptive Radar in Remote Sensing[END_REF][START_REF] Skaropoulos | Induced EM field in a layered eccentric spheres model of the head: plane-wave and localized source exposure[END_REF] and after long algebra which requires use of (27, 28), we ultimately arrive at the following result:

A α,µν =-j ν+µ c µν 1 4s 2 1 0 µ δαM τ (2-δαM) -µν (u) 1 -u 2 G (1) µ +µ δαN τ (2-δαN) -µν (u)G (2) µ 1+u 2 - u 4 16s 2 + • • • e -u 2 4s 2 +jx l udu, (29) 
where G (ι) µ = J µ-1 (x t )e -j(µ-1)Φ +(-1) ι J µ+1 (x t )e -j(µ+1)Φ (ι = 1, 2), J ν (x) is the cylindrical Bessel function of order ν [START_REF] Abramowitz | Handbook of Mathematical Functions[END_REF], and u = sin δ. It can be proven that the expression of ( 29) is equivalent to that of [START_REF]HFSS High Frequency Structure Simulator[END_REF] in [START_REF] Chrissoulidis | Wave-amplitude synthesis applied to Gaussian-beam scattering by an off-axis sphere[END_REF], the latter multiplied by j for the phase of E inc to be equal to 0 at the origin of coordinates.

Backscattering

Following [START_REF] Chrissoulidis | Wave-amplitude synthesis applied to Gaussian-beam scattering by an off-axis sphere[END_REF] we formulate the scattered electric-field intensity in the far-field

(k 0 r 1 >> 1) as E sca e jk 0 r r f ( î, ŝ). The scattering amplitude [4] f ( î, ŝ) = e -jk0dcos(θ-Θ) 1 k0 νµ,α (-1) ν b α,ν A α,µν f α,µν (ŝ) 
is determined by suppression of the spreading factor e jk 0 r r . Setting ŝ = -î, we obtain the monostatic radar cross section:

σ mo = 4π f ( î, -î) 2 πa 2 = 4 x 2 0 νµ,α (-1) ν b α,ν (x 0 , x 1 ) A α,µν î, ê, d f α,µν (-î) 2 , (30) 
which inherits the dependence on the displacement vector d -i.e, on the phasereference position -from the local wave amplitude A α,µν .

Plane Wave

The trivial case of plane-wave excitation has already been treated in [START_REF] Chrissoulidis | Wave-amplitude synthesis applied to Gaussian-beam scattering by an off-axis sphere[END_REF] and the outcome is the familiar formula [START_REF] Ishimaru | Wave Propagation and Scattering in Random Media[END_REF] 

σ mo = 1 x 2 0 ν (-1) ν (2ν + 1) (b M,ν -b N,ν ) 2 .
The dependence on d has vanished, as expected, because the position of the sphere with respect to the incident planar wavefront has no effect whatsoever on scattering.

Pair of Waves

We consider the cpw that corresponds to an He-type pow with γ = 0 (Fig. 2).

The plane waves that constitute this pow are in-phase and polarized along the x axis, i.e., êL = êR = x. As î = ẑ and ŝ = -ẑ, we need τ

(1)

µν (π) = σ mo = 4 x 2 0 sp π 0 π 2 0 δ se cos ∆k•d 2 + jδ so sin ∆k•d 2 θS cos γ + π 2 δ pE + φS sin γ + π 2 δ pE ν c 1ν b M,ν τ (2-δpE) 1ν (π -δ)+b N,ν τ (2-δpH) 1ν (π -δ) A ps (γ, δ) e jx l dγdδ 2 , (34) 
where θS = θ θ=π, φ=0

, φS = φ θ=π, φ=0

. If A ps (γ, δ) = δ pp0 δ ss0 δ (γ -γ 0 ) δ (δ -δ 0 ),
the cpw degenerates into the p 0 s 0 -type pow defined by γ 0 , δ 0 , where p 0 ∈ {E, H},

s 0 ∈ {e, o}, γ 0 ∈ [0, π], δ 0 ∈ [0, π 2 ]
. Thus, (34) collapses to (33).

Application to Gaussian Beam. Use of (34) for the Gaussian beam considered 245 in 3.3 yields the following result:

σ mo = 4 x 2 0 ν,α (-1) ν c 1ν b α,ν θS P α,ν + φS Q α,ν 2 , (35) 
where:

P α,ν = 1 4s 2 1 0 [J 0 (x t )-J 2 (x t )cos 2Φ](-1) δαN τ (2-δαM) 1ν (u) 1-u 2 -[J 0 (x t ) + J 2 (x t ) cos 2Φ](-1) δαM τ (2-δαN) 1ν (u) 1+u 2 - u 4 16s 2 + • • • e jx l -u 2 4s 2 udu Q α,ν = 1 4s 2 1 0 J 2 (x t ) sin 2Φ (-1) δαN τ (2-δαM) 1ν (u) 1 -u 2 +(-1) δαM τ (2-δαN) 1ν (u) 1+u 2 - u 4 16s 2 + • • • e jx l -u 2 4s 2 udu. (36) 

Numerical Application

The theory developed above has been applied to a glycerol sphere (radius a = 1µm, refractive index n = 1.47) coupled to a cpw at the frequency f = The case of pow excitation is investigated first and by reference to Fig. 3.

The incident wavefront is sinusoidal. Crests (i.e., lines of maximal |E|) appear as bright, parallel strips, periodically arranged along the y axis. The droplet distorts locally the incident field, focuses the incident radiation into a "hot spot" slightly below the coordinate plane z = 0, and creates a strong "wake" on the side of incidence (z < 0). The hot spot and the wake split into two, symmetrical halves when the droplet is placed on a wavefront trough (i.e., line of minimal

|E|).

Subsequently, we map the field due to a Gaussian beam The incident field (Fig. 4) is horizontally confined around the origin of coordinates and displays clearly the presence of a focal region. The droplet, if present, is either at the focus (i.e., the origin of coordinates) or displaced along the y axis by d = a or d = 2a. It is obvious from the bottom row of Fig. 4 that the droplet gives rise to a wake on the side exposed to the beam (z < 0), a hot spot that occupies most of the interior, and a "halo" on the opposite side (z > 0). As the droplet is displaced laterally, the hot spot and halo gradually fade out, whereas the wake survives. Hence, an off-focus droplet might be detected by closely monitoring of the wake. A map from Fig. 4, the one at the top of the second column but in gray scale, is shown side by side with the corresponding result obtained by use of HFSS [START_REF]HFSS High Frequency Structure Simulator[END_REF] in Fig. 5. The two pictures look very much alike, which validates the pow theory. Still, it might be useful to note that the HFSS picture requires 290 considerably more computer time than the picture obtained by our Fortran code.

The comparison along the z axis (Fig. 6) allows for calculation of an average error, which is 1.8% in the range z ∈ [-5a, 5a].

Backscattering Calculations

If detection is pursued by the backscattering configuration, we must examine the effect of the droplet on the monostatic radar cross section. The plots of Fig. 7 provide this piece of information. As the droplet is laterally displaced, the plot that corresponds to plane-wave excitation (reference) is, as expected, a straight line, pow excitation gives rise to a sinusoidal plot, and beam excitation yields a Gaussian-shaped plot. It is impossible, evidently, to tell where the droplet is placed by use of planewave excitation. Excitation by a Gaussian beam, size-tuned to the droplet (w 0 = 2a), allows for the detection of the latter as long as the lateral displacement is less than a certain limit (e.g., setting the limit to the half-maximum level, we decide that the droplet is present if d ∈ [-1.3a, 1.3a]). A pow that is size-tuned to the droplet (∆λ = 2a) allows for detection at greater displacements. By use of the half-maximum level as detection limit, we may conclude that the droplet is present if d ∈ [m (∆λ) -0.5a, m (∆λ) + 0.5a], where m is any integer.

Estimation of the droplet size is possible by a closer look into pow backscattering. Let the droplet be at the origin of coordinates. An Ee pow incident on that body is backscattered as shown by Fig. 8. By allowing the angle subtended by the two constituent plane waves to vary, we find that strongest backscattering occurs with δ = 21 o , which corresponds to ∆λ 2a = 1.07. Hence, the droplet diameter may be read from the half-period of the pow wavefront that yields strongest backscattering, the error of such estimate being 7%. Better estimations could be made by investigation of the effect of the refractive index of the droplet on pow backscattering, but this step is beyond the scope of this paper.

Conclusion

The Lorenz-Mie theory of cpw scattering by a sphere is built by decomposition of the incident wavefront into pow constituents. The component plane waves of any pow are propagated symmetrically with respect to the normal to the reference plane of the wavefront, they are in-or out-of phase, and they assume either of two orthogonal polarisations. The cpw is represented by four pow spectra and the analysis yields the wave amplitudes of the excitation in the natural frame of the sphere. This method may be applied to any wavefront that can be decomposed into homogeneous plane waves and any scatterer that is defined by spherical interfaces, not necessarily concentric. The numerical application presented in this paper manifests how the field generated by a pow or a cpw -a Gaussian beam in this paper -is coupled to a spherical glycerol droplet that may not be at the phase origin. This numerical experiment demonstrates the potentials of the pow theory with regard to estimations of the position and size of a cpw-excited object.

  : a cpw, propagated along the z axis, is incident on a dielectric sphere of radius a. The main origin of coordinates is O, a convenient reference for the cpw. The sphere is centered at the secondary origin O 1 , defined by the displacement vector d. We use the systems of spherical coordinates (O, rθφ) or (O 1 , r 1 θ 1 φ 1 ), attached severally to O or O 1 ; declination θ is measured from the z axis clockwise in any meridian plane, whereas azimuth φ is measured from the x axis counterclockwise in the horizontal coordinate plane xOy; θ 1 and φ 1 are defined accordingly. The coordinates of O 1 in (O, rθφ) are r = d, θ = Θ, and φ = Φ. Position vectors r or r 1 are used to define any field point; their origin is, as the notation implies, O or O 1 , respectively.

Figure 1 :

 1 Figure 1: Corrugated wavefront on sphere

  (kr) is the corresponding Riccati function, P µ ν (cosθ) is an associated Legendre function of the 1st kind[START_REF] Abramowitz | Handbook of Mathematical Functions[END_REF], and τ[START_REF] Lorenz | Lysbevaegelsen i og uden for en af plane Lysbolger belyst Kugle[END_REF] 

Figure 2 :

 2 Figure 2: Pair of plane waves in meridian plane Γ, normal to γ

250 195 .

 195 5THz (free-space wavelength λ = 1.5345µm). As cpw we consider a pow or a Gaussian beam.The droplet rests on the coordinate plane xOy and it may be displaced from the origin O along the y axis. Thus, Θ = 90 o , Φ = 90 o , and d = 0, a, 2a. The truncation number is ν max = 30, 40, 50 severally for d = 0, a, 2a.The pow is of the Ee type and oriented as γ = x. The wavefront is propagated along the z axis and it is periodic along the y axis. The pow is "tuned" to the droplet by setting δ = 22.5 o . As |∆k| = 2k 0 sin δ = 2π ∆λ , we end up with ∆λ = 2.005µm 2a. Yet, the pow half-period ∆λ is a full period of the distribution of |E inc | -a rectified sinusoid -on any plane normal to the z axis and, thus, the droplet fits exactly between two adjacent crests of |E inc | (i.e., lines of maximal |E inc |). The Gaussian beam, oriented along the z axis, is size-tuned to the droplet by setting w 0 = 2µm = 2a.5.1. Electric-Field Intensity CalculationsWe calculate, by use of our Fortran code, the electric-field intensity as formulated by the pow theory developed above. Field maps manifest the distribution of |E| in the coordinate planes xOy or yOz. Each map comprises 300 × 300 pixels and spans 10a = 10µm in both dimensions.

Figure 3 :

 3 Figure 3: Field generated by Ee pow on coordinate plane xOy (top) or yOz (bottom). Droplet on y axis. Palette span [0, 1.5] V/m.

Figure 4 :

 4 Figure 4: Field generated by Gaussian beam on coordinate plane xOy (top) or yOz (bottom) in the absence (left-hand column) or presence of droplet. The droplet, when present, is displaced along the y axis. Palette span [0, 1] V/m.

Figure 5 :Figure 6 :

 56 Figure 5: Gaussian beam and droplet at focus: gray-scale map of the electric-field intensity (magnitude) on xOy as calculated by our Fortran code (left) and HFSS (right). Palette span [0, 1] V/m.

Figure 7 :

 7 Figure 7: Normalized, monostatic, radar cross section versus sphere displacement along y axis. Excitation by plane wave (reference), Ee pow (γ = 0 o , ∆λ = 2a), and Gaussian beam (w 0 = 2a).

Figure 8 :

 8 Figure 8: Backscattering of Ee pow (γ = 0 o ) by droplet placed at the origin of coordinates versus declination angle δ. The dashed line indicates the half-period of the incident, sinusoidal wavefront. Backscattering is strongest at ∆λ 2a.
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(2) µν (π) = 1 2 (-1) ν [-δ µ,-1 + ν(ν + 1)δ µ1 ] to calculate f α,µν (-ẑ), which limits the summation over µ in (30) to {-1, 1}. We may then prove, after some algebra, the properties:

and, by substitution in [START_REF] Skaropoulos | Indirect modematching solution to scattering from a dielectric sphere with an eccentric inclusion[END_REF]30), we arrive at the following result:

The dependence of σ mo on d arises from 1 2 ∆k • d = x t sin(Φ -γ) which involves the transverse wavenumber vector ∆k. Thus, backscattering is most sensitive to displacements of the sphere in the direction of ∆k -along the y axis in this case -which is also the direction of strongest variation of the incident wavefront.

By the same resoning, backscattering is insensitive to any displacement that is normal to ∆k. Evidently, (32) collapses to plane-wave result, if δ = 0, because

1ν (π) = 1 2 (-1) ν ν(ν + 1). After some more algebra we arrive at the following general formula that applies to a pow of arbitrary type or orientation:

If p = H, s = e, then (33) collapses to (32).

Corrugated Plane Wave

The result for a cpw is as follows:
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