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Most currently used approximations for the one-particle Green’s function G in the framework of many-body
perturbation theory, such as Hedin’s GW approximation or the cumulant GW+C approach, are based on a
linear-response approximation for the screened interaction W . The extent to which such a hypothesis is valid
and ways to go beyond have been explored only very little. Here we show how to derive a cumulant Green’s
function beyond linear response from the equation of motion of the Green’s function in a functional derivative
formulation. The results can be written in a compact form, which opens the possibility to calculate the corrections
in a first-principles framework using time-dependent density functional theory. In order to illustrate the potential
importance of the corrections, numerical results are presented for a model system with a core level and two
valence orbitals.
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I. INTRODUCTION

Core-level x-ray photoemission spectroscopy (XPS) is a
sensitive probe of correlation properties in condensed matter
[1]. At high photon energies, where extrinsic and interference
effects due to scattering of the outgoing photoelectron can
be neglected, the XPS photocurrent is directly related to
the spectral function associated with the core-hole Green’s
function. The importance of many-body effects for spectra
related to core excitations has long been recognized, and the
corresponding research has a rich history, going back at least
to the 1920s [2–4]. Of particular interest are edge singularities
and asymmetric line shapes. These could be explained by the
coupling between the core hole and the valence electrons us-
ing studies based on model Hamiltonians, e.g., in the seminal
works of Mahan, Nozières, and De Dominicis, and co-workers
[1,5–9]. Several exact and approximate results were obtained,
for example assuming the interaction potential is separable
[5]. Another commonly used assumption is the absence of
interaction between the valence electrons themselves, which
implies that their scattering from the core-hole potential leads
to the excitation of independent electron-hole pairs. In the
same framework, the core-hole problem was treated by solv-
ing two coupled Bethe-Salpeter equations for core and valence
electrons to lowest order in a parquet approximation [6], to
which self-consistency in self-energy and vertex were added
in Ref. [7]. In the subsequent paper of the same series [8],
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an effective one-body approach was proposed, based on the
calculation of the transient response to the sudden creation of
a core hole. This was complemented by Langreth [10] with a
more compact derivation, and in Ref. [11] by an alternative
approach based on a finite number of electrons in a box,
which validated the approximation of a separable potential
and added numerical illustrations.

The picture of excitations created by the sudden appear-
ance of the core hole is also naturally reflected in fermion-
boson coupling Hamiltonians, where the fermion refers to a
deep core orbital, and the bosons are electron-hole excitations,
plasmons [12,13], or phonons [14–17]. Remarkably, for a
single fermion with linear coupling to a dispersing boson, the
model can be solved exactly [18–20]. The fermionic spectral
function then consists of a quasiparticle peak followed by a
Poisson series of satellites. For increasing coupling strength
the quasiparticle loses increasing weight to the satellites, and
the envelope of the satellite spectrum becomes a Gaussian in
shape. For this model, this exact solution is equivalent to the
spectral function of the second-order (in the coupling con-
stant) cumulant Green’s function [1,15]. For more than one
fermion energy and/or for higher-order coupling to bosons,
the cumulant solution is not exact [15]. Nevertheless, since
it contains the essential physics of the system responding by
bosonic excitations to the creation of an additional electron or
hole, it is often a good approximation that is widely used, in
particular for the core-hole problem [21–27].

Of course the electron-boson picture is just another way
to look at the old problem of many-body effects in core
spectroscopy, but it highlights three questions that one might
ask, namely,

(i) How well does a Hamiltonian with linear electron-
boson coupling describe the real problem?

(ii) Which excitations should be contained in the bosons?
(iii) Is the second-order cumulant solution good enough

for real applications or, if not, how can one go beyond?
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Heretofore these questions have not found a definite an-
swer, not least because the domain of application of the cu-
mulant approach in condensed matter is very wide, including,
for example, coupling to phonons [16,28] and valence electron
spectroscopy [29–40].

Analogous questions arise in an at-first-sight, different
framework, which is the calculation of Green’s functions from
a Dyson equation, where interaction effects are contained in
the self-energy, the integral kernel of the equation [41]. This
is the framework now commonly adopted in first-principles
calculations. Currently the most widely used approximation
is Hedin’s GW approximation (GWA) [42], where the
self-energy is approximated as the product of the one-electron
Green’s function G and the screened Coulomb interaction W
to first order. Indeed, one can view the GW approximation as
an approximate solution of the electron-boson problem [1],
where the bosonic excitations are the excitations contained
in W . Also in this case, since the coupling is linear, the
bosons contain only a selection of excitations (spin-flip
excitations, for example, are neglected), and the problem is
solved only approximately. While the GWA has been very
successful for the calculation of quasiparticle energies, it
typically gives a poor description of satellite spectra [43].
This shortcoming can be traced to the third of the above
questions—the approximation used in the solution of the
Hamiltonian problem—since this approximation leads to
problems such as the appearance of a spurious plasmaron
solution. This can be seen in the GW solution of the
exactly solvable model [1]. Changing from the GWA to a
cumulant Green’s function leads to a significant improvement
without much additional effort, since the same boson appears
through W and the electron-boson problem is solved more
accurately. The GW plus cumulant (GW+C) approach for the
one-electron Green’s function [29,32] has recently become a
popular first-principles method to describe spectral functions,
including satellite series. Here, the satellites are mostly due
to plasmons [36], the dominant excitations in W .

The success of the GW and GW+C approximations may
seem surprising in view of the relative simplicity of these
approximations being linear in G and W . While it is phys-
ically reasonable, e.g., in many simple semiconductors, that
plasmonic excitations should represent the dominant boson, it
is less obvious that the physics is sufficiently described by
linear response. This is especially evident in systems with
few electrons, or when the removal or addition orbital is very
localized, where one might expect that response terms of
higher order should play a role. These terms are not contained
in the electron-boson model with linear coupling, because the
boson itself is fixed and does not respond to the excitation;
analogously, they are contained in neither GW nor GW+C
because W is calculated in the ground state, in the presence of
the original N electrons. Although nonlinear corrections are
implicit in the diagrammatic expression of Langreth [18], a
more detailed study of vertex corrections suggested that their
effect on plasmon excitations is small [22,44]. The fact that
nonlinear screening should be present and should show up
in a cumulant solution was also pointed out by Mahan [5],
who calculated the leading correction to the standard second-
order (in the coupling constant) linear-response cumulant. In
that work the valence electrons that respond to a core-hole

excitation are described by an independent-electron picture,
and even so, going to yet higher orders turned out to be too
complicated. While these pioneering works, as well as the
seminal solution of Nozières and De Dominicis [8], trace
a way to go towards the inclusion of nonlinear screening
effects, these model approaches are not directly transferable
to first-principles calculations for several reasons: (i) because
of the approximations involved from the very beginning on
the interaction potential; (ii) because of the absence of in-
teraction between valence electrons, which would lead to a
poor description of screening in the absence of plasmons; and
(iii) because it is not clear how an expansion that is order-by-
order concerning the response functions (i.e., linear response,
second-order response, etc.) would converge. Progress in sev-
eral directions has been made, such as a better description
of screening [45,46], higher-order cumulant solutions of the
electron-boson model, such as in Refs. [15,47,48], the deriva-
tion of higher-order correlation functions from the Mahan-
Nozières–De Dominicis (MND) or electron-boson Hamilto-
nians [49], or more recently with the description of nonlinear
electron-boson couplings in Ref. [50], and in the equation-
of-motion, coupled-cluster method [51,52]. However, there is
still a gap to be filled concerning the ab initio calculation of
spectral functions.

The present work aims at developing a robust, first-
principles derivation of nonlinear screening effects in a cu-
mulant Green’s function. While we do not claim to invent
new physics here, our derivation has the advantage of being
compact, and situated within the framework now commonly
used in the ab initio community. Our approach does not
depend on a contact or on separability approximations for
the interaction potential. Moreover, the approach highlights
the underlying physics, which is crucial if one wishes to
understand when nonlinear effects are important, and where
should be the limits of their applicability. Finally, it allows
us to propose a way to put the equations into practice, by
combining the many-body perturbation formalism with time-
dependent density functional theory (TDDFT) [53]. In this
way, an order-by-order expansion of the response is avoided,
and the problem of calculating the effects of screening on
the Green’s function is separated from that of the calcula-
tion of the screening itself. Contrary to numerous previous
works on core spectroscopy, we are not so much interested
in asymmetry of line shapes but rather in the satellites, for
which the standard second-order linear response cumulant
approach is now a well-established first-principles approach
and convenient starting point.

The paper is organized as follows: The background con-
cerning the formalism and the GW approximation is contained
in Sec. II. Next, we derive the core-hole cumulant Green’s
function in its various approximations in Sec. III, and we ana-
lyze the results in Sec. IV. Numerical results for an illustrative
model are given in Sec. V, and a short conclusion is given in
Sec. VI.

II. BACKGROUND

Beginning with its equation of motion following the ap-
proach of Martin and Schwinger [54], the one-body Green’s
function can be described by a functional differential equation
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which is often referred to as the Kadanoff-Baym equation
[55]. The equation was initially derived for temperature-
dependent, nonequilibrium quantum systems. However, it can
also be used to create the diagrams describing equilibrium
and/or zero-temperature physics [43], as we do here. In this
formalism, the fully interacting propagator G is given by

G(12) = G0(12) − iG0(11̄)v(1̄3̄)G(3̄3̄+)G(1̄2)

+ iG0(11̄)v(1̄3̄)
δG(1̄2)

δu(3̄+)
, (1)

where G0 is the noninteracting propagator, v(12) = δ(t1 −
t2)/|r1 − r2| is the Coulomb interaction, and u(3) is a local,
time-dependent external potential that simulates interaction
effects due to the propagation of particles and will be taken to
zero at the end of the calculation. Here and below we employ
the usual notation of an integer for a set of space, spin, and
time variables [1 → (r1, σ1, t1)], and bars for variables that
are integrated over: f (1̄)g(1̄) ≡ ∫

d1 f (1)g(1). All quantities
that can be derived from G or G0 are therefore functionals
of u. For simplicity the variational parameter u(r, t ) will
be regarded as nonzero and implicit in the Green’s function
and related quantities, unless otherwise stated. The classical
Hartree term (the second term on the right) depends on the
interacting density as given by the diagonal part of the prop-
agator n(1) = −iG(11+), where 1+ ≡ limη→0(r1, σ1, t1 + η),
η > 0. The last term contains the functional derivative of G,
which accounts for exchange and correlation effects. This
term turns Eq. (1) into a first-order nonlinear functional differ-
ential equation with respect to u. Introducing the total classical
potential uH , one obtains a set of coupled equations for uH and
G:

uH (1) = u(1) + v(13̄)n(3̄), (2)

GH (12) = G0(12) + G0(14̄)uH (4̄)GH (4̄, 2), (3)

G(12) = GH (12) + GH (11̄)v(1̄3̄)
δG(1̄2)

δu(3̄+)
. (4)

In extended systems, screening plays an important role. For
this reason, is is convenient to rewrite the functional derivative
using the chain rule with respect to the classical potential,

G(12) = GH (12) + iGH (11̄)W (1̄4̄; u)
δG(1̄2)

δuH (4̄+)
, (5)

where

W (14; u) ≡ v(13̄)
δuH (4)

δu(3̄)
. (6)

Here the screened potential W is a functional of the external
potential, such that the equation remains exact.

Often, the dependence of W on u is neglected. The solution
of this linear-response version of Eq. (5) in a simple model has
been discussed in Ref. [56]. In general, however, even in the
linear-response approximation, the equation cannot be solved
exactly. Therefore, the functional derivative on the right-
hand side is usually approximated such that the limit u → 0
can be taken directly. For example, one of the most widely
used approximations for the Green’s function is Hedin’s
GW approach [42], which is obtained by approximating the

functional derivative as
δG(12)

δuH (4)
≈ G(14)G(42). (7)

Then the u → 0 limit can be taken, and one has a Dyson
equation for G,

G(12) = GH (12) + GH (13̄)�GW
xc (3̄4̄)G(4̄2), (8)

with

�GW
xc (14) ≡ iG(14)W (14; u → 0). (9)

The GWA has been very successful for the calculation of
quasiparticle energies. However, a major shortcoming is its
poor treatment of the satellite part of electron addition or
removal spectra [29,32,36,43]. Calculations based on a cu-
mulant Green’s function, which yields a much much better
satellite spectrum, have been found to be an advantageous
alternative. The cumulant approach, which avoids the approxi-
mation in Eq. (7) that leads to the GW self-energy, is discussed
in the following section.

III. CORE-HOLE CUMULANT

In order to describe the photoemission spectra from core
levels, we need the projection of the Green’s function on the
core orbital, Gcc. Its associated spectral function simulates
the core photoemission spectrum, especially at high photon
energies, where the photoelectron and associated effects of
extrinsic losses can be ignored. We start by expressing Eq. (4)
for G in a basis of single-particle orbitals,

Gi j (t1t2) = GH
i j (t1t2) + GH

im(t1t1̄ )vmnkl
δGn j (t1̄t2)

δukl (t+
1̄

)
, (10)

where here and throughout this paper repeated indices are
summed over. We used for this basis transformation the chain
rule

δGn j (t1t2)

δu(r3, t+
1 )

= δGn j (t1t2)

δukl (t+
1 )

δukl (t+
1 )

δu(r3, t+
1 )

= δGn j (t1t2)

δukl (t+
1 )

φ∗
k (r3)φl (r3), (11)

with ukl (t1+ ) ≡ ∫
dr3 u(r3)φ∗

k (r3)φl (r3), spin is understood
to be treated analogous to space, and matrix elements
of the bare Coulomb interaction are defined as vmnkl =∫

drdr′ φ�
m(r)φn(r)φ�

k (r′)φl (r′)/|r − r′|. We now make the
approximation that the core hole is decoupled from all other
orbitals, except for the screening of the interaction, which is
due to the valence electrons. This decoupling approximation is
physically reasonable for the case of localized electrons, such
as a deep-core state, which has little overlap with the valence
electrons. Moreover, we limit our discussion to the case of
an s state (K shell), where spin-degeneracy and spin-orbit
effects are not relevant. For this case, we may suppose that
the interacting and the Hartree Green’s functions G and GH

do not have matrix elements linking the core state to another
core or valence state, so Gci = δciGcc and GH

ci = δciGH
cc, and

Eq. (11) becomes

Gcc(t1t2) = GH
cc(t1t2) + iGH

cc(t1t̄3)vcckl
δGcc(t̄3t2)

δukl (t̄+
3 )

. (12)
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In principle, before the equation is solved and the time-
dependent external potential is set to zero, the system is
out of equilibrium and cannot be described by equilibrium
Green’s functions. The physical solution for all (vanishing
or nonvanishing) u may be obtained, e.g., using Green’s
functions on the Keldysh contour [57]. However, when, as
is the case here, only the final solution for vanishing u is of
interest, other constructions are possible, such as for example,
the auxiliary Green’s function introduced by Hedin [42]. The
situation simplifies when the mixing of forward and backward
propagation in time is neglected. In the present work, we
make this approximation, so for a core level we only retain
the contributions that correspond to the propagation of a hole,
i.e., t2 > t̄3 > t1. This allows us to make the ansatz that the
interacting propagator is proportional to GH , i.e.,

Gcc(t1t2) = GH
cc(t1t2)F (t1t2). (13)

With the identity δG
δU = δGH

δU F + GH δF
δU , we obtain

F (t1t2) = 1 + i
GH

cc(t1t̄1)

GH
cc(t1t2)

× vcckl

[
δGH

cc(t̄1t2)

δukl (t̄+
1 )

F (t̄1t2) + GH
cc(t̄1t2)

δF (t̄1t2)

δukl (t̄+
1 )

]
.

(14)

As in the derivation of the GWA, we can now use the chain
rule with the total classical potential. Moreover, as for G we
suppose that GH has no off-diagonal elements linking core
and valence single-particle states, even when u �= 0, which is
exact when the wavefunctions do not overlap. This leads to

F (t1t2) = 1 + i
GH

cc(t1t̄1)

GH
cc(t1t2)

×
[
Wc(t̄+

1 t̄4; u)GH
cc(t̄1t̄4)GH

cc(t̄4t2)F (t̄1t2)

+vccklG
H
cc(t̄1, t2)

δF (t̄1t2)

δukl (t̄+
1 )

]
, (15)

with the screened interaction Wc ≡ Wcccc, where

Wc(t+
1 t4) ≡ Wcccc(t+

1 t4) = vccccδ(t4t+
1 )

+ vccklvcck′l ′
δnkl (t4)

δuk′l ′ (t+
1 )

. (16)

At this stage Wc(t1t4; u) still depends on the potential u, which
has not yet been set to zero. Also note that Eq. (16) suggests a
response of the density; however, one has to keep in mind that
here we are not in a retarded framework, but only keep parts
corresponding to the time ordering defined above.

Within our approximations, where we keep only one
of the time orderings and neglect core-valence overlap,
the Hartree core Green’s function becomes GH

cc(t1t2) =
i exp(−iε0

c (t1 − t2) + i
∫ t2

t1
dτuH

cc(τ ))θ (t2 − t1). Therefore, in-
tegrals of Green’s functions simplify, so

∫ +∞

−∞
dt̄4GH

cc(t̄1t̄4)GH
cc(t̄4t2) = iGH

cc(t̄1t2)
∫ t2

t̄1

dt̄4 (17)

and ∫ +∞

−∞
dt̄1GH

cc(t1t̄1)GH
cc(t̄1t2) = iGH

cc(t1t2)
∫ t2

t1

dt̄1. (18)

Consequently GH
cc(t1t2) factorizes and the factors cancel, so

that

F (t1t2) = 1 − i
∫ t2

t1

dt̄1

∫ t2

t̄1

dτ Wc(t̄+
1 τ ; u)F (t̄1t2)

− vcckl

∫ t2

t1

dt̄1
δF (t̄1t2)

δukl (t̄+
1 )

. (19)

Next, we define F in cumulant form,

F (t1t2) ≡ eC(t1t2 ), (20)

and take the derivative of Eq. (19) with respect to t1. This
yields a differential equation for the cumulant function C(tt ′):

∂t1C(t1t2) = i
∫ t2

t1

dτWc(t+
1 τ ; u) + vcckl

δC(t1t2)

δukl (t+
1 )

. (21)

With the boundary condition C(t2t2) = 0, which preserves
normalization of the spectral function, the integral equation
for C is given by

C(t1t2) = −i
∫ t2

t1

dτ ′
∫ t2

τ ′
dτ Wc(τ ′+τ ; u)

−vcckl

∫ t2

t1

dτ ′ δC(τ ′t2)

δukl (τ ′+)
. (22)

The last term of this expression is commonly neglected, so one
can directly set the external potential u to zero. That approxi-
mation yields the widely used expression for the cumulant in
the linear-response approximation [36],

C0(t1t2) = −i
∫ t2

t1

dτ ′
∫ t2

τ ′
dτWc(τ ′+τ ; u)

= −i
∫ t2

t1

dτ

∫ τ

t1

dτ ′Wc(τ ′+τ ; u). (23)

For the core hole, together with Eq. (16) the expression can be
interpreted as the integral over the variation of the Coulomb
potential due the valence density at time τ , induced in linear
response of the system by the creation of a hole at time τ ′. The
response is causal with τ > τ ′, and the process is integrated
over the interval [t1, t2]. Implicit in the evaluation of the cumu-
lant C0 is that only the positive frequency components of the
Fourier transform Wc(ω) corresponding to lossy excitations
are present in the linear-response approximation [18].

To go beyond linear response, one can iterate Eq. (22).
The lowest-order corrections stem from the derivative of C0,
taking into account that δWc/δu �= 0. This causes a second-
order response function to appear in a contribution C1 given
by

C1(t1t2) = ivcckl

∫ t2

t1

dτ

∫ τ

t1

dτ ′
∫ τ ′

t1

dτ ′′ δWc(τ ′τ ; u)

δukl (τ ′′+)
. (24)

This term contains the variation of the response of the va-
lence density due to the density change caused by the linear
response to the creation of the core hole.
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Higher-order corrections involve higher-order derivatives
of Wc, and therefore higher-order nonlinear response func-
tions. They should be evaluated from the density-density cor-
relation functions in the ground state, i.e., before the removal
of the core electron. The general form of the solution is thus
given by

C(t1t2) =
∑
m=0

Cm(t1t2; u = 0), (25)

where the mth contribution Cm is obtained recursively using
the relation

Cm+1(t1t2; u = 0) = −vcckl

∫ t2

t1

dτ
δCm(τ t2; u)

δukl (τ+)

∣∣∣∣
u=0

, (26)

with C0 given by Eq. (23) in terms of Wc. This recursive for-
mulation suggests that the series might in practice be truncated
at a given order n. Once all orders of the correction have
been found, the limit of u → 0 is applied. The full recursive
solution implied by Eq. (26) is the first main result of this
paper. It may be seen as an extension of Mahan’s approach in
Ref. [5], which contains the first nonlinear response contribu-
tion. The key differences are a more general formulation such
that (i) a separable potential is not needed for the derivation;
(ii) the result is valid to infinite order in the response; and,
most importantly, (iii) the valence electrons are in principle
fully interacting. As we see below, the fact that the result is
formulated in general terms of response functions rather than
explicit sums over transitions allows us to benefit from the
use of TDDFT for an efficient approximation to the nonlinear
response.

IV. ANALYSIS

A. Effective interaction

The leading cumulant C0(tt ′) in Eq. (23) and similarly the
higher-order terms are double integrals of a two-time function
over time. We can therefore express the cumulant in terms of
a new function w(ττ ′) ≡ ∑

m=0 wm(ττ ′), where w0(ττ ′) =
Wc(τ ′τ ), and wm stands for the order-m correction in Wc. Each
cumulant term is related to w through the expression

Cm(t1t2) = −i
∫ t2

t1

dτ

∫ τ

t1

dτ ′wm(ττ ′). (27)

A recursive relation, similar to Eq. (26), holds between the
different orders of w,

wm+1(ττ ′) = −vcckl

∫ τ

τ ′
dτ ′′ δw

m(ττ ′′; u)

δukl (τ ′+)
, (28)

where τ > τ ′, and τ is the time that refers to the variations
of the density. The interaction −vcckl couples the core level
from one side to the variations of the external potential
taken with valence levels on the other side. The negative
sign can be understood in terms of the attractive core-hole
charge, and wm can also be viewed in terms of the orders of
an expansion to this core-hole potential. Therefore, the full
matrix w(ττ ′) = ∑n

m wm(ττ ′) plays the role of an effective
interaction, accounting for all orders of the density variations
due to the propagation of a core hole.

B. Induced density variations

In order to enable further interpretation and practical use,
it is convenient to expand Eq. (28) for m > 0:

wm(ττ ′) = (−1)mvcck1l1 · · · vcckmlm

∫ τ

τ ′
· · ·

∫ τ

τm−1

dτ1 · · ·

× dτm
δmw0(ττm; u)

δuk1l1 (τ ′+)δuk2l2 (τ+
1 ) · · · δukmlm (τ+

m−1)
.

(29)

With w0(ττ ′) = Wc(τ ′τ ), and keeping in mind that we are
working with time-ordered response functions, we can write
the cumulant as

C(t1t2) = −i
∫ t2

t1

dτ

∫ τ

t1

dτ ′ Wc(τ, τ ′)

+ i
∫ t2

t1

dτ

∞∑
m=1

vcck1l1 · · · vcckmlm

× (−1)(m+1)

(m + 1)!

∫ τ

t1

dτ ′ · · ·
∫ τ

t1

dτm

× δmWc(τ, τm)

δuk1l1 (τ ′)δuk2l2 (τ1) · · · δukmlm (τm−1)
, (30)

where the factor 1/(m + 1)! is due to the extension of the inte-
gration domain, and repeated indices are summed over. Here,
we have used the symmetry of the time-ordered screened in-
teraction Wc(τm, τ ) = Wc(τ, τm). In order to obtain a practical
formula, where higher orders are summed up, we have to
make a connection with the density response. To this aim, we
start by calculating a related cumulant function CCDR(t1t2),
which is obtained by replacing the time-ordered response
functions in the above equation for C with their retarded
counterparts according to causal density response (CDR). The
series can now be summed and produces two terms: The first
yields the exchange correction to the energy of the core level
while the rest of the sum is an expansion of the Coulomb
potential acting on the core hole, created by the change in
density n at time τ , which is in turn due to the potential
−vcc(r)θ (t − t1) created by the switching on of a core hole
at time t1. This potential is then integrated in τ over the time
of propagation of the core hole. The compact result can be
written as

CCDR(t1t2) = −ivcccc(t2 − t1) +
∫ t2

t1

dτ vcci jni j (τ−t1).

(31)

However, CCDR �= C, and simply replacing C by CCDR, i.e.,
replacing time-ordered with causal response functions, leads
to negative spectral weight on the high-energy side of the
quasiparticle peak. This can be understood in the linear-
response limit, where Eq. (23) can be written as

C0(t1t2)=−ivcccc(t2−t1) +
∫

dω

2π
vcci jvcckl

χi jkl (ω)

ω2
f (ω, t2−t1)

= −i vcccc(t2 − t1)

−
∫ ∞

0

dω

π
vcci jvcckl

Im χi jkl (ω)

ω2
f (ω, t2 − t1),

(32)
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with f (ω, t ) ≡ (e−iωt + iωt − 1). Note that here χ is the time-
ordered linear-response function. This leads to the inclusion
of only positive frequencies in the last term in Eq. (32), while
the use of a causal-response function has no restriction on the
frequencies. Equation (32) can also be linked to the Fourier
transform of the linear-response-induced density n0

i j ,

Re n0
i j (ω) = − Im χi jkl (ω)

ω
vcckl , (33)

so that

C0(t1t2) = −ivcccc(t2 − t1)

+
∫ ∞

0

dω

π

vcci jRe n0
i j (ω)

ω
f (ω, t2 − t1). (34)

Together with Eq. (31), this suggests an approximation for
the full cumulant to all orders; namely, we substitute the full
induced density n in place of the linear response n0. This
finally yields the approximate cumulant

CTDR(t1t2) = −ivcccc(t2 − t1) +
∫ ∞

0

dω

π

vcci jRe[ni j (ω)]

ω

× [e−iω(t2−t1 ) + iω(t2 − t1) − 1], (35)

where TDR stands for time-ordered density response [58],
which only includes positive frequency components. This
result has a physical interpretation which moreover has a
significant practical advantage: since the core orbital is kept
fixed the perturbation is known and its effect can be calculated
directly. For example, the TDDFT in real space and time
can be used, as proposed in Ref. [59] for the case of linear
response. It is then not necessary to calculate the rather
complicated higher-order response functions, which thereby
overcomes the issues discussed in Ref. [5].

When the core hole is suddenly switched on, the system
may react violently. However, an interacting system will even-
tually reach a new equilibrium, given by the final state of the
system with a static core hole. In this limit ni j (τ ) becomes
independent of τ . The simplest approximation is therefore a
shift of the core level due to the fact that the valence density
should be calculated in the presence of the core hole. Since
this approximation completely neglects dynamical effects, it
cannot lead to satellites in the spectral function. In order to
do better, one could apply the same reasoning starting from
the next order, which means, in practice, to evaluate explicitly
the lowest-order cumulant with the valence density calculated
in the presence of the core hole. Such an intuitive approach
(which has been used successfully, e.g., in Refs. [60–62]) may
be justified by our derivation.

C. Self-energy

Let us now compare the above result with what one would
obtain in the context of a Dyson equation. For this case, we
start again from the exact expression in Eq. (5) and then,
using δG/δuH = −G(δG−1/δuH )G, the exact Dyson equation
becomes

G(12) = GH (12) − iGH (11̄)W (1̄4̄; u)

× G(1̄5̄)
δG−1(5̄6̄)

δuH (4̄+)
G(6̄2), (36)

which has a self-energy given by

�xc(16) = −iW (14̄; u)G(15̄)
δG−1(5̄6)

δuH (4̄+)

= iW (14̄; u)G(15̄)

×
[
δ(5̄6)δ(5̄4̄) + δ�xc(5̄6)

δuH (4̄+)

]
. (37)

Again we take the matrix element in the core orbital and make
the same approximations as throughout the above derivations.
For t6 > t1 this allows us to make the ansatz �xc(t1t6) ≡
iGcc(t1t6)weff (t1t6). If one neglects the variations of Gcc with
respect to u, we find

Gcc(t1t6)weff (t1t6)

= iWc(t1t̄6; u)Gcc(t1t̄6)

+ iWc(t1t̄4; u)Gcc(t1t̄5)Gcc(t̄5t6)
δweff (t̄5t6)

δuH (t̄+
4 )

. (38)

Then using the relation

∫ +∞

−∞
dt̄5Gcc(t1t̄5)Gcc(t̄5t6) = iGcc(t1t6)

∫ t6

t1

dt̄5, (39)

the core-level self-energy becomes

�xc(t1t6) = iGcc(t1t6)

[
Wc(t1t6; u)

+ iWc(t1t̄4; u)
∫ t6

t1

dt̄5
δweff (t̄5t6)

δuH (t̄+
4 )

]
. (40)

This self-energy has the same structure as the GWA, but
instead of a linear response W , one has an effective interaction

weff (t1t6; u) ≡ Wc(t1t6; u) + iWc(t1t̄4; u)

×
∫ t6

t1

dt̄5
δweff (t̄5t6)

δuH (t̄+
4 )

. (41)

This result is identical to the effective interaction that ap-
pears in the cumulant, weff = w, with w defined in Eq. (28).
The variation of Gcc with respect to u, which is neglected
in this result, does not contribute to first order in Wc, but
modifies weff starting from second order, where it adds a
contribution Gcc(t1t̄5)Wc(t1, t̄+

4 )Gcc(t̄5t̄+
4 )Gcc(t̄+

4 t6)Wc(t̄5t6) to
the self-energy. This is the reason why the GW self-energy and
the lowest-order cumulant have the same effective interaction,
namely, the linear-response screened Coulomb interaction W .
For the higher orders, it is instead important that the effective
interactions are different, since w has to be used in the cumu-
lant and weff in the Dyson equation, while both are in principle
exact within the approximations made here. For example, the
extra second-order term that appears in the self-energy for the
Dyson equation is not needed in weff since it is automatically
included in the cumulant Green’s function.
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Finally, the form �xc = iGweff is reminiscent of the T -
matrix formalism [43,63]. Such T -matrix approximations can
be derived by supposing that the self-energy consists of a
Green’s function and an effective interaction which, inserted
into Eq. (37), allow one to derive a Dyson equation for
the effective interaction. However, for our present core-hole
problem we have assumed that the core Green’s function
does not vary though derivatives of the interaction are taken
into account. Instead, to obtain the scattering diagrams in the
T -matrix approximations the Green’s function is varied and
the effective interaction is kept fixed [43,63]. This is more
important in a situation of low density (partial filling), which
is quite different from the core-hole problem.

V. MODEL CALCULATIONS

As a concrete illustration of the approach presented here,
we apply it to a simple three-state model, similar to that used
by Lee, Gunnarsson, and Hedin in Ref. [64]. This model
has also been used to treat charge-transfer satellites in x-ray
spectra [65], and similar models have been used in other
contexts [66–68]. This model system with two electrons, a
core electron and a valence electron propagating in two atomic
levels a, b, is described by the Hamiltonian

Ĥ = ε0ĉ†ĉ + ε0
a n̂a + ε0

b n̂b − Un̂hn̂a − t (ĉ†
aĉb + ĉ†

bĉa), (42)

where ε0 are atomic energies evaluated in the presence of
the core electron, and U is the potential from the core hole
n̂h = 1 − n̂c coupling only to one of the two levels, a. The
valence levels belong to different atoms and this justifies the
approximation of weak coupling to the level b. The hybridiza-
tion between levels a and b is represented by the interaction
parameter t . This model aids a physical understanding of core
photoemission in molecules with flat valence bands, where
charge transfer excitations between different atoms modify the
spectrum.

The initial state, where nh = 0, is described by the two-
particle state |ψ i

0〉 = sin φ|a〉|c〉 + cos φ|b〉|c〉 that mixes core
and valence levels, with tan 2φ = 2t/ε and ε = ε0

a − ε0
b .

The energy of the initial state is given by εi
1,0 = 1

2 (ε0
a +

ε0
b ) ± 1

2

√
ε2 + 4t2. The final states where nh = 1 have only

one particle and are given by the single-particle wave-
functions |� f

1 〉 = cos θ |a〉 − sin θ |b〉 and |� f
2 〉 = sin θ |a〉 +

cos θ |b〉, with tan 2θ = 2t/(ε − U ) and ε
f
1,2 = 1

2 (ε0
a + ε0

b −
U ) ± 1

2

√
(ε − U )2 + 4t2. In the model the core-hole potential

couples only to level a and therefore the interaction with the
time-dependent occupation of level a will appear.

In order to obtain the cumulant solution for this model, we
apply Eq. (30):

C(t1t2) = −iUn0
a(t2−t1) + iU 2

∫ t2

t1

dτ

∫ τ

t1

dτ ′χ (τ, τ ′; ua)

∣∣∣∣
ua=0

− i
U 3

2

∫ t2

t1

dτ

∫ τ

t1

dτ ′
∫ τ

t1

dτ1
δχ (τ, τ1)

δua(τ ′)

∣∣∣∣
ua=0

· · · ,

(43)

where n0
a is the occupation of state a in the ground state,

and the first term, linear in U , replaces the bare Coulomb
interaction seen in Eq. (35) for the model Hamiltonian, and
causes an overall quasiparticle shift.

Finally we apply Eq. (35) for the cumulant, which yields
the TDR approximation

CTDR(t1t2) = iUn0
a(t2 − t1) + U

∫ ∞

0

dω

π

Re[na(ω)]

ω

× [e−iω(t2−t1 ) + iω(t2 − t1) − 1], (44)

where the density is given in terms of the time-dependent
wavefunction, na(t ) = |〈a|ψ (t )〉|2, and |ψ (t )〉 is the state of
the system at time t after the appearance of the core hole, and
is initially equal to the ground-state valence wavefunction,
|ψ (0)〉 = |ψ i

0〉. We can now compare the results obtained
from the two lowest orders of Eq. (43), the CDR approxima-
tion Eq. (31), and the TDR approximation Eq. (44).

Results for the core-level spectral function Ac(ω) =
−(1/π )Im G(ω) vs energy ω − εc are shown in Fig. 1. The
position of the peaks reflects the energy of the transition of
the valence electron from the initial (with the core electron)
to the final (with the core hole) state, while the height of
the peaks corresponds to the probability amplitude of the
transition. Only a non-negligible value of the parameter t
allows for the core potential to affect the transition energies
between the initial and the final states, since otherwise no
screening can happen. From top to bottom, the curves show
results for core-hole strength U = 1 (top), U = 7 (middle),
and U = 20 (bottom), corresponding to weak, intermediate,
and strong coupling, all with the parameters t = 3 and ε = 1.
The exact results, as well as those from the TDR approxima-
tion in Eq. (44), show the same general trends as previous
solutions of a similar model Hamiltonian which coupled an
adsorbate state to a partially occupied band [68], with growth
of the satellite splitting and amplitude as a function of the
core-hole strength U . The top set of curves represents the
weak-coupling limit, which can be seen by the lack of any
visible satellite, and by the agreement of all curves, which
should be nearly identical in the linear-response regime. At
intermediate coupling (U = 7, middle), the various approx-
imations now give appreciably different results. The linear
response approximation (green) underestimates the splitting
between the satellite and quasiparticle positions by nearly
a factor of 2, underestimates the size of the quasiparticle
peak, and produces a second satellite, indicating a bosonlike
progression, as expected. The lowest-order (U 3) corrected
result (purple) gives a small correction to the quasiparticle
weight and position, but does little to correct the splitting
between the quasiparticle and satellite. The issues with the
linear response and U 3 corrected approximations become
even more apparent in the strong-coupling regime (U = 20),
where the linear response greatly underestimates quasiparticle
weight and quasiparticle-satellite splitting, and produces a
long progression of satellites, initially with increasing weight,
and overestimates the quasiparticle energy by a large amount.
This is unphysical, since a single valence electron cannot
produce multiple excitations. Also the inclusion of the U 3
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FIG. 1. Spectral function A(ω) = (−1/π ) Im Gc(ω) vs energy
ω − εc for model parameters ε = 1 eV and t = 3 eV. The couplings
U = 1, 3, and 7 simulate weak, intermediate, and strong coupling
to the core hole, respectively. Results are shown for the exact
spectral function (black), the CDR approximation (blue), the TDR
approximation (red), the linear-response approximation (green), and
from including the first nonlinear (U 3) correction term (purple). In
the exact solution, the main peak and satellite positions are given by
the eigenvalues of the single-particle Hamiltonian in the presence
of the core hole, while in the linear cumulant, they are given by
an expansion of the same energies to linear order in U . Note that
the results from the CDR and TDR approximations are in good
agreement for the positions of the quasiparticle and satellite peaks
for U = 1 and U = 7, and even at U = 20 the excitation energy
(difference between quasiparticle and satellite) matches the exact
result. However, the CDR approximation produces small negative
satellites on the high-energy side of the quasiparticle peak. In con-
trast, the linear response and U 3 corrected approximations greatly
underestimate the satellite energy and give unphysical results such as
a large bosonlike satellite progression and negative spectral weight.

correction produces spurious negative spectral weight. In
contrast, the TDR approximation [Eq. (35)] produces results
in good agreement for the quasiparticle and satellite peak
positions for U = 7, and even reproduces the satellite splitting
at U = 20, although the satellite weight is underestimated in
both cases, while the CDR approximation produces negative
spectral weight above the quasiparticle peak. The intuitive
TDR approximation given by Eq. (35) corrects this unphysical
behavior by filtering out the negative frequency components
of the induced density. Results for the TDR approximation
(red) show little difference in comparison to those obtained
with the CDR, apart from the lack of any negative spectral
weight, demonstrating that this approximation should be a
reasonable method for obtaining physical results that include
nonlinear corrections.

VI. CONCLUSIONS

We have demonstrated that the Kadanoff-Baym functional
differential equation is a convenient starting point to derive
the form of the cumulant Green’s function beyond the linear-
response approximation. For a single level, such as a localized
deep core level that can be considered decoupled from the
rest of the system, the result can be approximated in a com-
pact way, which highlights the essential physics: the sudden
switching on of a core hole perturbs the valence density, and
the subsequent time integral of the change in density leads
to a quasiparticle correction and to satellites in the spectral
function. The approach, which we term the time-ordered den-
sity response or the TDR approximation, is tested on a simple
three-level model system similar to that of Lee, Gunnarsson,
and Hedin. The numerical results suggest that molecular sys-
tems with strong nonlinear core-hole effects can significantly
improve the calculated photoemission spectra and generally
need to be taken into account. We suggest that coupling this
nonlinear cumulant approach with real-time TDDFT can be
a promising way to include the nonlinear effects in ab initio
calculations of the core-level photoemission spectra for such
systems.
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