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ABSTRACT 

Computer Generated Holograms (CGHs) are powerful optical elements used in many fields, such as wavefront shaping, 
quality testing of complex optics and anti-counterfeiting devices. Lee algorithm is the most used to generate binary 
amplitude Fourier holograms. Grayscale CGHs are known to give a higher reconstruction quality than binary holograms, 
but they usually require a cumbersome production process. A very simple and straightforward method of manufacturing 
rewritable grayscale CGHs is here proposed by taking advantage of two key components: a Digital Micro-mirror Device 
(DMDs) and a photochromic plate. An innovative algorithm, named Island algorithm, able to generate grayscale 
amplitude Fourier CGHs, is reported and compared with the standard Lee approach, based on 9 levels. A crucial 
advantage lies on the fact that the increase or decrease of the quantification does not affect the spatial resolution. In other 
words, the new coding leads to a higher spatial resolution (for a given CGH size) and a reconstructed image with an 
order of magnitude higher contrast with respect to the classical Lee-coded hologram. In order to show the large potential 
of our approach, a 201 levels Island hologram is designed, produced and reconstructed, pushing the contrast to values 
higher than 10^4. These results reveal the high potential of our process as well as our algorithm for generating 
programmable grayscale CGHs. Grayscale objects are also studied in order to be produced with our new coding scheme: 
simulations show a much better reconstruction (resolution, fidelity, contrast) thanks to the quantification of the 
transparency than the Lee algorithm commonly used. 
 

Key words: Computer Generated Hologram, CGH, Fourier coding, programmable CGH, photochromic 
material, optical testing, wavefront shaping, DMD. 

 
1. INTRODUCTION 

Wavefront shaping, complex optics testing, including aspherical and free-form optics or optical instrument alignment 
techniques will greatly benefit from Computer Generated Holograms (CGHs) [1]. They are classified in two groups:  

1- phase holograms, which are obtained by recording a phase variation in a material having a modulated refractive 
index or thickness;  

2- amplitude holograms, where an intensity pattern is recorded in a material whose transparency can be locally 
controlled. Phase and amplitude holograms provide the same performances in terms of image reconstruction 
quality, but different diffraction efficiency. For instance, binary phase holograms, show 40% diffraction 
efficiency in the first order, whereas efficiency is limited to 10% for binary amplitude holograms [2]. Therefore, 
amplitude holograms are usually applied in interferometry, which is not intensity limited. 

Grayscale amplitude and grayscale phase holograms are known to give a higher reconstruction quality than binary 
holograms [2], but they require a more complex production process. Specifically, the production of phase grayscale 
CGHs is complex since a series of masks has to be consecutively aligned very precisely, and a developing step is 
required after each exposure step to obtain the final hologram. 

To our best knowledge, only grayscale phase CGHs have been obtained so far by micro-lithography [3], the uniformity 
of the material thickness being the main limiting parameter for these components [4]. Concerning amplitude CGHs, they 
are nowadays produced in chrome on glass by means of lithographic techniques, either mask or maskless (by direct 



writing) lithography. Due to the binary nature of the chrome developing process, these techniques allow for easily 
writing binary CGHs, but they cannot provide grayscale CGHs.  

We previously demonstrated an original recording technique, which makes use of a programmable mask and a non-
threshold photosensitive material, to produce ready to use grayscale CGHs in a one exposure process without requiring 
any developing step [5,6]. Indeed, a set-up based on a Digital Micro-mirror Device (DMD), which has been originally 
developed to generate programmable slit masks in multi-object spectrographs [7], is considered. DMDs are 
programmable devices, composed of millions of micro-mirrors reconfigurable in real time. Actually, DMDs have been 
extensively used to generate dynamic binary or grayscale holograms [8], by exploiting the fast switching of the mirrors at 
frequencies higher than the human vision frame rate. The grayscale originates as a dynamic effect and not as a steady 
state effect. However, the discrete structure of the device induces a high scattering and background noise from the 
mirrors edges when illuminated with laser light [9], making such holograms useless for interferometry and metrology. 
Nevertheless, DMDs perfectly reproduce binary masks to be projected with incoherent light on photosensitive plates, 
thus producing amplitude CGHs. In this work, such plate consists in a photochromic film that can be reversibly 
converted from an opaque and colored form to a transparent form upon exposure with light of suitable wavelengths [10].  

Actually, reversible holograms have been already obtained with photochromic materials [11, 12] and real-time 
photochromic holograms were shown, by exploiting the fast transition of imidazole dimers [13, 14]. Moreover, 
photochromic binary CGHs for optical testing have been recently demonstrated [15]. In photochromic materials, a ready 
to use hologram is generated just after the light exposure, and the reversibility of the photoconversion makes devices 
rewritable. Even more interesting, the transparency of a photochromic layer can be tuned by the dose of light absorbed, 
which opens to the development of grayscale patterns [16]. In fact, the DMD set-up allows for easily recording grayscale 
CGHs in a single exposure process. The lower diffraction efficiency of grayscale amplitude holograms with respect to 
binary amplitude holograms (6% vs. 10% [2]) is here compensated by a better image reconstruction quality, an easy 
exposure process and no developing steps, which are the limiting factors in the production of grayscale phase holograms.  

Previously, we have successfully recorded the very first amplitude grayscale CGH, in equally spaced levels, so called 
stepped CGH. We recorded up to 1000x1000 pixels CGHs with a contrast greater than 50, using Fresnel coding scheme. 
Fresnel’s CGH are obtained by calculating the inverse Fresnel transform of the original image at a given focus, ranging 
from 50cm to 2m. The reconstruction of the recorded images with a 632.8nm He-Ne laser beam leads to images with a 
high fidelity in shape, intensity, size and location. These results reveal the high potential of this method for generating 
programmable/rewritable grayscale CGHs, which combine DMDs and photochromic substrates. [5,17] 

In this paper, we report innovative results for Fourier holograms: a new family of Fourier holograms named Island 
CGHs, including an original coding algorithm, leading to higher spatial resolution and a reconstructed image with a 
much higher resolution, a better compacity and an increased throughput, in comparison with the classical Lee-coded 
holograms. Grayscale objects are also studied in order to be produced with our new coding scheme. 

 
2. RECORDING AND RECONSTRUCTION OF A CGH 

Two set-ups have been developed for the recording of the calculated CGH and for the reconstruction of the original 
encoded images. 

2.1 Recording set-up 

Figure 1 shows our recording set-up, dedicated to the CGH recording on the photosensitive plate. The DMD, controlled 
by the formatter board [18] is illuminated by a collimated beam from a white source, and redirects the light toward the 
plate. The beam is illuminating the entire DMD and the light power is homogeneous on the plate. The pattern reproduced 
by the DMD has to be projected onto the plate as precisely as possible, so the plate is illuminated through an Offner relay 
with a magnification of 1:1. This relay provides a nearly aberration free beam and has the advantage of being compact. 
The unit magnification means that the maximum size of CGH is directly limited by the size of the DMD; the micro-
mirrors of the DMD therefore correspond to the “pixels” of the CGH. Finally, a post-CGH imaging system located right 
after the CGH plate consists of two lenses, a filter around 600 nm and a CCD camera. This system in an afocal assembly 
allows imaging of the CGH during writing, in situ and in real time. Magnification is tuned by changing properly the pair 
of lenses, from a value of 1 up to 4.  
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