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Abstract

In unicellular organisms such as bacteria and in most viruses, mutations mainly
occur during reproduction. Thus, genotypes with a high birth rate should have a
higher mutation rate. However, standard models of asexual adaptation such as the
‘replicator-mutator equation’ often neglect this generation-time effect. In this study,
we investigate the emergence of a positive dependence between the birth rate and
the mutation rate in models of asexual adaptation and the consequences of this de-
pendence. We show that it emerges naturally at the population scale, based on a
large population limit of a stochastic time-continuous individual-based model with
elementary assumptions. We derive a reaction-diffusion framework that describes the
evolutionary trajectories and steady states in the presence of this dependence. When
this model is coupled with a phenotype to fitness landscape with two optima, one for
birth, the other one for survival, a new trade-off arises in the population. Compared
to the standard approach with a constant mutation rate, the symmetry between birth
and survival is broken. Our analytical results and numerical simulations show that
the trajectories of mean phenotype, mean fitness and the stationary phenotype distri-
bution are in sharp contrast with those displayed for the standard model. The reason
for this is that the usual weak selection limit does not hold in a complex landscape
with several optima associated with different values of the birth rate. Here, we obtain
trajectories of adaptation where the mean phenotype of the population is initially
attracted by the birth optimum, but eventually converges to the survival optimum,
following a hook-shaped curve which illustrates the antagonistic effects of mutation
on adaptation.

Keywords : Generation-time effect; PDE models; Stochastic models; Evolutionary trade-off;
Fertility; Survival

1 Introduction

The effect of the mutation rate on the dynamics of adaptation is well-documented, both
experimentally [e.g., Giraud et al., 2001, Anderson et al., 2004] and theoretically. Regarding
theoretical work, since the first studies on the accumulation of mutation load [Haldane,
1937, Kimura and Maruyama, 1966], several modelling approaches have investigated the
effect of the mutation rate on various aspects of the adaptation of asexuals. This includes
lethal mutagenesis theory [Bull et al., 2007, Bull and Wilke, 2008], where too high mutation
rates may lead to extinction, evolutionary rescue [Anciaux et al., 2019] or the invasion of

1



a sink [Lavigne et al., 2020]. The evolution of the mutation rate per se is also the subject
of several models [André and Godelle, 2006, Lynch, 2010].

The fact that mutation rates per unit time should be higher in species with a shorter
generation, given a fixed mutation rate per generation, is called the generation-time ef-
fect, and has been discussed by Gillespie [1991]. The within-species consequences of the
generation-time effect have attracted less attention. For unicellular organisms such as bac-
teria mutations occur during reproduction, by means of binary fission [Van Harten, 1998,
Trun and Trempy, 2009], meaning that individuals with a high birth rate should have
a higher mutation rate (they produce more mutant offspring per unit of time). This is
also true for viruses, as mutations mostly arise during replication [Sanjuán and Domingo-
Calap, 2016]. The probability of mutation during the replication is even greater in RNA
viruses as their polymerase lacks the proofreading activity found in the polymerase of DNA
viruses [Lauring et al., 2013]. As some cancer studies emphasize, with the observation of
dose-dependent mutation rates [Liu et al., 2015], the mutation rate of cancer cells at the
population scale can also be correlated with the reproductive success, through the individ-
ual birth rate. On the other hand, most models that describe the dynamics of adaptation
of asexual phenotypically structured populations assume a constant mutation rate across
phenotypes [e.g., Gerrish et al., 2007, Sniegowski and Gerrish, 2010, Desai and Fisher, 2011,
Alfaro and Carles, 2014, Gandon and Mirrahimi, 2017, Gil et al., 2019]. Variations in the
individual mutation rate per generation can be caused by genotypic variability [Sharp and
Agrawal, 2012], environmental factors [Hoffmann and Hercus, 2000] or more generally ‘G
x E’ interactions. The above-mentioned modelling approaches ignore these processes but
do take into account a certain variability in the reproductive success. The main goals of
the current study is to determine in which context the generation-time effect should be
taken into account in these models and to understand the consequences of such birth rate
- mutation rate dependence on the evolutionary trajectory of the population.

These consequences are not easy to anticipate as the birth rate is also involved in trade-
offs with other life-history traits. Such trade-offs play a crucial role in shaping evolution
[Stearns, 1989]. They create evolutionary compromises, for instance between dispersal and
reproduction [Nathan, 2001, Smith et al., 2014, Helms and Kaspari, 2015, Xiao et al., 2015]
or between the traits related to survival and those related to birth [Taylor, 1991]. In this
last case, we expect that the consequences of the trade-off on the dynamics of adaptation
strongly depend on the existence of a positive correlation between the birth rate and the
mutation rate. High mutation rates tend to promote adaptation when the population is
far from equilibrium [Sniegowski et al., 2000] but eventually have a detrimental effect due
to a higher mutation load [Anciaux et al., 2019] when it approaches a mutation-selection
equilibrium. This ambivalent effect of mutation may therefore lead to complex trajectories
of adaptation when the birth and mutation rates are correlated.

In the classical models describing the dynamics of adaptation of a phenotypically
structured population, the breeding values at a set of n traits are described by a vec-
tor x ∈ Ω ⊂ Rn. The breeding value for a phenotypic trait is usually defined as the total
additive effect of its genes on that trait, see [Falconer and Mackay, 1996, Kruuk, 2004] and
is independent of the environmental conditions, given the genotype. For simplicity and
consistency with other modeling studies, we will call x the ‘phenotype’ in the following,
although it still represents breeding values. The effect of mutations on the phenotype dis-
tribution is described through a linear operatorM which does not depend on the parent
phenotype x. The operator M can be described with a convolution product involving a
mutation kernel [Champagnat et al., 2006, Gil et al., 2017] or with a Laplace operator
[Kimura, 1964, Lande, 1975, Alfaro and Carles, 2014, Hamel et al., 2020], corresponding
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to a diffusion approximation of the mutation effects. Under the diffusion approximation,
M(·) = D∆(·) with D > 0 a constant coefficient which is proportional to the muta-
tion rate and to the mutational variance at each trait. The Malthusian fitness m(x), i.e.
the Malthusian growth rate of individuals with phenotype x, is defined as the difference
between the birth rate b(x) and death rate d(x) of this class of individuals:

m(x) = b(x)− d(x). (1)

The following generic equation then describes the combined effects of mutation and selec-
tion on the dynamics of the phenotype density f(t,x) under a diffusive approximation of
the mutation effects:

∂tf(t,x) = D∆f(t,x) + f(t,x)m(x), (2)

in the absence of density-dependent competition, or

∂tf(t,x) = D∆f(t,x) + f(t,x)

(
m(x)−

∫
Ω
f(t,y) dy

)
, (3)

if density-dependent competition is taken into account. In both cases, the equation satisfied
by the frequency q(t,x) = f(t,x)/N(t) (with N(t) =

∫
Ω f(t,x)dx the total population size)

is
∂tq(t,x) = D∆q(t,x) + q(t,x)(m(x)−m(t)), (Qstand)

with m(t) the mean fitness in the population:

m(t) =

∫
Ω
m(x) q(t,x) dx. (4)

These models allowed a broad range of results in various biological contexts: concentration
around specific traits [Diekmann et al., 2005, Lorz et al., 2011, Martin and Roques, 2016];
explicit solutions [Alfaro and Carles, 2014, Biktashev, 2014, Alfaro and Carles, 2017];
moving and/or fluctuating optimum [Figueroa Iglesias and Mirrahimi, 2019, Roques et al.,
2020]; anisotropic mutation effects [Hamel et al., 2020]. Then can aslo be extended in order
to take migration events into account [Débarre et al., 2013, Lavigne et al., 2020].

With these models, the dynamics of adaptation and the equilibria only depend on the
birth and death rates through their difference m(x) = b(x) − d(x). Thus, these models
do not discriminate between phenotypes for which both birth and death rates are high
compared to those for which they are both low, given that the difference is constant.
However, as explained above, the mutation rate may be positively correlated with the
birth rate which could generate an imbalance in favour of one of the two strategies: having
a high birth rate vs. having a high survival rate. To acknowledge the role of phenotype-
dependent birth rate and the resulting asymmetric effects of fertility and survival in a
deterministic setting, a new paradigm is necessary.

In this work, we consider the case of mutations that occur during the reproduction
of asexual organisms. We assume that the probability of mutation per birth event U
does not depend on the phenotype of the parent. On the other hand, following classical
adaptive landscape approaches [Tenaillon, 2014], the birth and death rates do depend on
the phenotype. Using these basic assumptions, we consider in Section 2 standard stochastic
individual-based models of adaptation with mutation and selection. We present how the
standard model (Qstand) appears naturally as a large population limit of both a discrete-
time model and a continuous-time model when the variance of mutation effects is small
and when selection is weak (i.e. when the variations of the birth and death rates across the
phenotype space are very small). In this work, however, we are interested in a particular
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setting where this assumption is not satisfied. In this case, using results from Fournier
and Méléard [2004] for the continuous-time model, we argue that, when the mutation
variance is small, a more accurate approximation of the mutation operator is given by
M(q) = D∆(b(·) q), leading to a new equation of the form

∂tq(t,x) = D∆(b q)(t,x) + q(t,x)(m(x)−m(t)). (Qb)

Here, the mutation operator D∆(b(x) q)(t,x) depends on the phenotype x through the
birth rate b(x), translating the fact that new mutants appear at a higher rate when the
birth rate increases. Models comparable to (Qb) (but with a discrete phenotype space)
appear in the literature, and lead in some cases to quite similar results as the standard
model (Qstand) [Hofbauer, 1985, Baake and Gabriel, 2000]. However, not always, as shown
in this contribution.

In Section 3, we use (Qb) to study the evolution of the phenotype distribution when the
population is subjected to a trade-off between a birth optimum and a survival optimum, and
we highlight the main differences with the standard approach (Qstand). More specifically,
we study the evolution of the phenotype distribution in the presence of a fitness optimum
where b and d are both large (the birth or reproduction optimum), and a survival optimum,
where b and d are both small, but such that the difference b− d is symmetrical.

Based on analytical results and numerical simulations, we compare the trajectories of
adaptation and the equilibrium phenotype distributions between these two approaches and
we check their consistency with the underlying individual-based models. We discuss these
results in Section 4.

2 Emergence of a birth-dependent mutation rate in an individual-
based setting

In this section, we present how the standard equation (Qstand) and the new model (Qb)
with birth-dependent mutation rate are obtained from large population limits of stochastic
individual-based models. We first state a convergence result due to Fournier and Méléard
[2004] which provides the convergence of the phenotype distribution of the population
to the solution of an integro-differential equation, when the size of the population tends
to infinity. We then show that, when the variance of the mutation effects is small, this
equation yields the new model (Qb). This shows how a dependence between the birth
rate and the rate at which new mutant appear in the population arises, even though the
probability of mutation per birth event U does not depend on the phenotype of the parent.
We then treat the case of weak selection, and show how the model (Qstand) is obtained as
a large population limit of the phenotype distribution with a specific time scaling, using
results in Champagnat et al. [2008]. We also state an analogous result for the discrete-time
model, where in the same regime of weak selection and small mutation effects, we show
the convergence to the solution of (Qstand) as the population size tends to infinity, on the
same timescale as the other model.

In this individual-based setting, we consider a finite population of size Nt where each
individual carries a phenotype in a bounded open set Ω ⊂ Rn. If the individuals at time t
have phenotypes {x1, . . . ,xNt}, we record the state of the population through the empirical
measure

νKt =
1

K

Nt∑
i=1

δxi , t ≥ 0,
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where δx is the Dirac measure at the point x ∈ Ω. Note that the number of individuals
Nt in this stochastic individual-based setting does not correspond to the quantity N(t)
defined in the introduction. In fact, these two quantities will be related via the scaling
parameter K > 0: N(t) = limK→∞Nt/K (or N(t) = limK→∞Nt/εK/K if time is rescaled,
see the definition of εK below).

LetMF (Ω) denote the space of finite measures on Ω, endowed with the topology of weak
convergence. For any ν ∈ MF (Ω) and any measurable and bounded function φ : Ω → R,
we shall write

〈ν, φ〉 =

∫
Ω
φ(x)ν(dx).

2.1 Derivation of the model (Qb) with birth-dependent mutation rate

We first consider a continuous-time stochastic individual-based model where individuals die
and reproduce at random times depending on their phenotype and the current population
size. We let b : Ω → R+ and d : Ω → R+ be two bounded and measurable functions,
and we assume that an individual with phenotype x ∈ Ω reproduces at rate b(x) and
dies at rate d(x) + cKNt for some cK > 0. This parameter cK measures the intensity of
competition between the individuals in the population, and prevents the population size
from growing indefinitely. Each newborn individual either carries the phenotype of its
parent, with probability 1 − U , or, with probability U , carries a phenotype y chosen at
random from some distribution ρ(x,y)dy, where x is the phenotype of its parent.

We can now describe the limiting behaviour of this model when the parameter K tends
to infinity. The following convergence result can be found for example in Fournier and
Méléard [2004, Theorem 5.3] and Champagnat et al. [2008, Theorem 4.2]. LetD([0, T ],MF (Ω))
denote the Skorokhod space of càdlàg functions taking values in MF (Ω).

Proposition 2.1. Assume that νK0 converges weakly to a deterministic f0 ∈ MF (Ω) as
K → +∞ and that cK = c/K for some c > 0. Also assume that supK E[〈νK0 , 1〉3] < +∞.
Then, for any fixed T > 0, as K → +∞,(

νKt , t ∈ [0, T ]
)
−→ (ft, t ∈ [0, T ]) ,

in distribution in D([0, T ],MF (Ω)), where (ft, t ∈ [0, T ]) is such that, for any bounded and
measurable φ : Ω→ R,

〈ft, φ〉 = 〈f0, φ〉+

∫ t

0
〈fs, bM∗φ+ (b− d− c〈fs, 1〉)φ〉ds, (5)

where
M∗φ(x) = U

∫
Ω

(φ(y)− φ(x))ρ(x,y)dy.

We note that, if f0 admits a density with respect to the Lebesgue measure, ft admits
a density (denoted by f(t, ·)) for all t ≥ 0. In this case, setting m(x) = b(x)− d(x) and

q(t,x) =
f(t,x)

〈ft, 1〉
, m(t) =

∫
Ω
q(t,x)m(x)dx,

we see that the phenotype distribution q solves the following

∂tq(t,x) =M(b q)(t,x) + (m(x)−m(t)) q(t,x), (6)
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where
M(f)(x) = U

(∫
Ω
f(y)ρ(y,x)dy − f(x)

)
.

In the model (6), due to the coefficient b inM(b q), mutant individuals appear at a higher
rate in regions where b is higher. As we shall expose below, this has wide ranging con-
sequences on the qualitative behaviour of the phenotype distribution, which the standard
model (Qstand) does not capture. However, the analysis of the integro-differential equation
(6) is very intricate. If the variance of mutation effects is sufficiently small, we can instead
study a diffusive approximation of equation (6). Assume that the effects of mutation on
phenotype can be described by a mutation kernel J , such that ρ(y,x) = J(x−y). Namely,

M(b f)(x) = U

(∫
Ω

(b f)(x− y) J(y) dy − (b f)(x)

)
.

Formally, we write a Taylor expansion of (b q)(t,x− y) at x ∈ Ω:

(b q)(t,x− y) =

∞∑
k1,...,kn=0

(−1)k1+···+kn y
k1
1 · · · yknn
k1! · · · kn!

∂k1+···+kn(b q)

∂xk11 · · · ∂x
kn
n

(t,x).

We define the central moments of the distribution:

ωk1,...,kn =

∫
Rn

yk11 · · · y
kn
n J(y1, . . . , yn) dy1 . . . dyn.

We make a symmetry assumption on the kernel J which implies that ωk1,...,kn = 0 if at
least one of the ki’s is odd. Moreover, we assume the same variance λ at each trait:
ω0,...,0,ki=2,0,...,0 = λ, and that the moments of order k1 + · · ·+ kn ≥ 4 are of order O(λ2).
These assumptions are satisfied with the classic isotropic Gaussian distribution of mutation
effects on phenotype. For λ� 1, we obtain:

U

(∫
Ω

(b q)(t,x− y) J(y) dy − (b q)(t,x)

)
≈ λU

2
∆(b q)(t,x) +O(λ2).

Thus, when the variance λ of the (symmetric) mutation kernel J is small, we expect that
the solution to (6) behaves as the solution to (Qb):

∂tq(t,x) = D∆(b q)(t,x) + (m(x)−m(t)) q(t,x),

where D = λU/2.

Remark 2.2. We recall that the assumption here is that mutations occur during reproduc-
tion (e.g. in unicellular organisms or viruses). If we had assumed that mutations take place
at a constant rate during each individual’s lifetime, instead of linking them to reproduction
events, we would have obtained a different equation in (5) leading to the standard model
(Qstand) instead of (Qb).

2.2 Derivations of the standard model (Qstand)

The standard model (Qstand) is classically derived by letting the variance of the mutation
kernel tend to zero and by rescaling time to compensate for the fact that mutations have
very small effects. In order to obtain the convergence of the process (νKt , t ≥ 0) in this
regime, one also has to assume that the intensity of selection (measured by b− d) is of the
same order of magnitude as the variance of the mutation kernel. This corresponds to a
weak selection regime, where b and d are almost constant on Ω.
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Large population limit of the continuous-time model in rescaled timescale We
consider the same stochastic individual-based model as above, but we allow b, d and ρ
to depend on K. We thus let bK(x) denote the birth rate of individuals with phenotype
x, dK their death rate, and ρK will be the mutation kernel. We then make the following
assumption.

Assumption (SE) (frequent mutations with small effects). Let εK = K−η for
some 0 < η < 1 and assume that ρK is a symmetric kernel such that, for all 1 ≤ i ≤ n,∫

Ω
(yi − xi)2ρK(x,y)dy = εK λ+ o(εK),

∫
Ω

(yi − xi)2+δρ(x,y)dy = o(εK),

for all in x ∈ Ω, some λ > 0 and δ ∈]0, 2].

This assumption is what justifies the so-called diffusive approximation, where the effect
of mutations on the phenotype density is modelled by a Laplacian in continuous-time.

Assumption (WS) (weak selection). Assume that

bK(x) = 1 + εK b(x), dK(x) = 1 + εK d(x), cK =
εK
K
c,

for some bounded functions b : Ω→ R, d : Ω→ R and some positive c.

The following result then corresponds to Theorem 4.3 in Champagnat et al. [2008].
Recall that Ω is assumed to be a bounded open set, and further assume that it has a
smooth boundary ∂Ω. Let C2

0 (Ω) be the set of twice continuously differentiable functions
φ : Ω̄→ R such that

∇φ(x) · ~ν(x) = 0, ∀x ∈ ∂Ω,

where ~ν(x) is the outward unit normal to ∂Ω.

Proposition 2.3. Let Assumptions (SE) and (WS) be satisfied. Also assume that νK0
converges weakly to a deterministic f0 ∈MF (Ω) as K →∞ and that

sup
K

E[〈νK0 , 1〉3] < +∞.

Then, for any fixed T > 0, as K → +∞,(
νKt/εK , t ∈ [0, T ]

)
−→ (ft, t ∈ [0, T ]) ,

in distribution in D([0, T ],MF (Ω)), where (ft, t ∈ [0, T ]) is such that, for any φ ∈ C2
0 (Ω),

〈ft, φ〉 = 〈f0, φ〉+

∫ t

0
〈fs, D∆φ+ (b− d− c〈fs, 1〉)φ〉ds,

with D = λU/2.

For all t > 0, if f0 admits a density with respect to the Lebesgue measure, ft admits
a density f(t, ·) ∈ L1(Ω) and the phenotype distribution q(t,x) = f(t,x)/〈ft, 1〉 solves
(Qstand):

∂tq(t,x) = D∆q(t,x) + (m(x)−m(t)) q(t,x).

As we can see, we have lost the factor b in the mutation term by taking this limit. This
comes from Assumption (WS) which states that bK(x) = 1 + O(εK). As a result this
equation does not distinguish the birth optimum from the survival optimum (see Section 3).
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Large population limit of an individual-based model with non-overlapping gen-
erations We now consider a model where generations are non-overlapping, meaning that,
between two generations (denoted t and t+ 1), all the individuals alive at time t first pro-
duce a random number of offspring and then die. The population at time t+ 1 is thus only
comprised of the offspring of the individuals alive at time t.

Let wK : Ω→ R+ be a measurable and bounded function and assume that an individual
with phenotype x ∈ Ω produces a random number of offspring which follows a Poisson
distribution with parameter wK(x). In order to include competition, we assume that each
of these offspring survives with probability e−cKNt for some cK > 0, where Nt is the number
of individuals in generation t. Each newborn individual either carries the phenotype of its
parent, with probability 1 − U , or, with probability U , carries a phenotype y chosen at
random from some distribution ρK(x,y)dy, where x is the phenotype of its parent.

We now make several assumptions in order to obtain an approximation of the process as
the population size tends to infinity. For the limiting process to be continuous in time, we
need to assume that the change in the composition of the population from one generation
to the next is very small, and then rescale time by the appropriate factor. This ties our
hands somewhat, and we need to assume that wK is very close to one everywhere in Ω.
More precisely, we make the following assumption.

Assumption (WS’). Let εK = K−η for some 0 < η < 1 and assume that

wK(x) = exp (εK m(x)) , cK =
εK
K
c,

for some bounded function m : Ω→ R and some positive c.

Here, wK(x) corresponds to the Darwinian fitness (the average number of offspring of
an individual with phenotype x), while m(x) corresponds to the Malthusian fitness (i.e.
the growth rate of the population of individuals with phenotype x). We further assume
that ρK satisfies Assumption (SE) above.

The large population limit of this process is then given by the following result, which is
analogous to similar results in continuous-time (for example in Champagnat et al. [2008]).
For the sake of completeness, we give its proof in Appendix A.1.

Proposition 2.4. Assume that Assumption (WS’) is satisfied, along with (SE). Also as-
sume that, νK0 converges weakly to a deterministic f0 ∈MF (Ω). Then, for any fixed T > 0,
as K → +∞, (

νKbt/εKc, t ∈ [0, T ]
)
−→ (ft, t ∈ [0, T ]) ,

in distribution in D([0, T ],MF (Ω)), where (ft, t ∈ [0, T ]) is such that, for any φ ∈ C2
0 (Ω),

〈ft, φ〉 = 〈f0, φ〉+

∫ t

0
〈fs,M∗φ+ (m− c 〈fs, 1〉)φ〉 ds, (7)

where
M∗φ(x) =

λU

2
∆φ(x).

For all t > 0, if f0 admits a density with respect to the Lebesgue measure, ft admits a
density f(t, ·) ∈ L1(Ω). Then f(t, ·) solves the equation

∂tf(t,x) = (Mf)(t,x) +

(
m(x)− c

∫
Ω
f(t,y)dy

)
f(t,x).
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We also note that the phenotype distribution q(t,x) = f(t,x)/〈ft, 1〉 solves (Qstand).
Propositions 2.3 and 2.4 show how the standard model (Qstand) arises as a large

population limit of individual-based models in the weak selection regime with small mu-
tation effects. However, as Proposition 2.1 shows, the fact that the birth rate does not
appear in the mutation term is a consequence of the weak selection assumption. In the
next section, we will focus on a situation corresponding to a strong trade-off between birth
and survival. In this case, the weak selection assumption is not satisfied. Thus, the new
model (Qb) should be more appropriate to study the dynamics of adaptation, at least when
generations are overlapping.

In the model with non-overlapping generations, we expect that the model (Qstand)
emerges even when the weak selection assumption is not satisfied. From an intuitive
perspective, with this model, the expected number of mutants per generation is U N(t).
Thus, if N(t) is close to the carrying capacity, the overall number of mutants should not
depend on the phenotype distribution in the population. However, if one tries to take a
large population limit of the discrete-time model in the same regime as in Proposition 2.1
(keeping w and ρ fixed and letting the population size tend to infinity), then the phenotype
distribution converges to the solution to a deterministic recurrence equation of the form

〈qt+1, φ〉 =
〈
qt,

w
w(t)M

∗φ+ w
w(t)φ

〉
,

where M∗ is as in (5). We do not study this equation here, but it is interesting to note
that the fitness has an effect on the mutations, albeit quite different from that in (5).

In the following section, we use (Qb) to study the consequences of a birth-dependent
mutation rate on the trade-off between birth and survival, and we compare our results to
the standard approach of (Qstand) and to individual-based simulations.

3 Consequences of a birth-dependent mutation rate on the
trade-off between birth and death

We focus here on the trajectories of adaptation and the large time dynamics given by the
model (Qb), with a special attention on the differences with the standard approach (Qstand)
which neglects the dependency of mutation rate on birth rate.

In most related studies, the relationships between the phenotype x and the fitness
m(x) is described with the standard Fisher’s Geometrical Model (FGM) where m(x) =
rmax−‖x‖2 /2. This phenotype to fitness landscape model is widely used, see e.g. Tenaillon
[2014], Martin and Lenormand [2015]. It has shown robust accuracy to predict distributions
of pathogens [Martin and Lenormand, 2006, Martin et al., 2007], and to fit biological data
[Perefarres et al., 2014, Schoustra et al., 2016]. Here, however, in order to study the trade-
off between birth and survival, we shall assume that the death rate d takes the form:
d(x) = r − s(x) for some r > 0, such that

m(x) = b(x)︸︷︷︸
birth

+ s(x)︸︷︷︸
survival

−r, (8)

for some function s : Ω→ [0, r] such that b and s are symmetric about the axis x1 = 0, in
the sense of (9), and we assume that b has a global maximum that is not on this axis. As
a result s also has a global maximum, which is the symmetric of that of b. The positive
constant r has no impact on the dynamics of the phenotype distribution q(t,x) in model
(Qb), as it vanishes in the term m(x)−m(t). To keep the model relevant, the constant r
must therefore be chosen such that d(x) > 0 for all x ∈ Ω.
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Figure 1: Schematic representation of the fitness function m(x) along the phe-
notype dimension x1. In both cases the black dashed lines correspond to the survival
optimum Os = (−β, . . . , 0) (on the left) and the birth optimum Ob = (β, 0, . . . , 0) (on the
right). In panel (a) those optima are almost superposed with those of m, which is very
different from panel (b). In red we pictured the functions b− r/2 and s− r/2.

We assume that b(x) reaches its maximum at Ob ∈ Ω and s(x) reaches its maximum
at Os ∈ Ω. If one of the optima leads to a higher fitness value, we expect that the
corresponding strategy (high birth vs. high survival) will be selected. To avoid such ‘trivial’
effects, and to analyse the result of the trade-off between birth and survival independently
of any fitness bias towards one or the other, we make the following assumptions. The
domain Ω is symmetric about the hyperplane {x1 = 0}. Next, b and s are positive,
continuous over Ω and symmetric in the following sense:

b(x) = s(ι(x)), with ι(x) = ι(x1, x2, ..., xn) = (−x1, x2, ..., xn). (9)

The optima are then also symmetric about the axis x1 = 0:

Ob = (β, 0, . . . , 0) and Os = (−β, 0, . . . , 0),

for some β > 0, so that the birth optimum is situated to the right of x1 = 0 and the
survival optimum is situated to the left of x1 = 0. A schematic representation of the birth
and survival terms and corresponding fitness function, along the first dimension x1 is given
in Figure 1.

Finally, we assume that the birth rate is larger than the survival rate in the whole
half-space around Ob (Ω ∩ {x1 > 0}), and conversely, from (9), the survival rate is higher
in the other half-space. In other terms:

b(x1, . . . , xn) > s(x1, . . . , xn), for all x ∈ Ω ∩ {x1 > 0},
s(x1, . . . , xn) > b(x1, . . . , xn), for all x ∈ Ω ∩ {x1 < 0}. (10)

From the symmetry assumption (9), we know that the hyperplane {x1 = 0} is a critical
point for b+ s in the direction x1, that is ∂x1b(0, x2, . . . , xn) = −∂x1s(0, x2, . . . , xn).

For the well-posedness of the model (Qb), and as the integral of q(t,x) over Ω must
remain equal to 1 (recall that q(t, ·) is a probability distribution), we assume reflective
(Neumann) boundary conditions:

b(x)(∇q(t,x) · ~ν(x)) + (∇b(x) · ~ν(x)) q(t,x) = 0,x ∈ ∂Ω,

with ~ν(x) the outward unit normal to ∂Ω, the boundary of Ω. We also assume a compactly
supported initial condition q0(x) = q(0,x), with integral 1 over Ω.
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3.1 Trajectories of adaptation

The methods developed in Hamel et al. [2020] provide analytic formulas describing the full
dynamics of adaptation, and in particular the dynamics of the mean fitnessm(t), for models
of the form (Qstand), i.e., with a constant mutation rate. As far as model (Qb) is concerned,
due to the birth-dependent term in the mutation operator D∆(b q), the derivation of
comparable explicit formulas seems out of reach. To circumvent this issue, we use numerical
simulations to exhibit some qualitative properties of the adaptation dynamics, that we
demonstrate next. We focus on the dynamics of the mean phenotype x(t) and of the
mean fitness m(t), to be compared to the ‘standard’ case, where the mutation rate does
not depend on the phenotype, and to individual-based stochastic simulations with the
assumptions of Section 2. In the PDE setting, the mean phenotype x(t) ∈ Ω and mean
fitness m(t) ∈ R are defined by:

x(t) :=

∫
Ω
x q(t,x) dx, m(t) :=

∫
Ω
m(x) q(t,x) dx.

Numerical simulations Our numerical computations are carried out in dimension n =
2, starting with an initial phenotype concentrated at some point x0 in Ω. We solved
the PDEs with a method of lines (the Matlab codes are available in the Open Science
Framework repository: https://osf.io/g6jub/). The trajectories given by the PDE
(Qb) with a birth-dependent mutation rate are depicted in Fig. 2(a), together with 10
replicate simulations of a stochastic individual-based model with overlapping generations
(see Section 2). The mean phenotype is first attracted by the birth optimum Ob. In a
second time, it converges towards Os. This pattern leads to a trajectory of mean fitness
which exhibits a small ‘plateau’: the mean fitness seems to stabilize at some value smaller
than the ultimate value m∞ during some period of time, before growing again at larger
times. The trajectories given by individual-based simulations exhibit the same behaviour.

On the other hand, simulation of the standard equation (Qstand) without dependence
of the mutation rate with respect to the phenotype (with Neumann boundary conditions),
leads to standard saturating trajectories of adaptation, see Fig. 2(b) [already observed
in Martin and Roques, 2016, with this model]. This time, the trajectories given by the
model (Qstand) are in good agreement with those given by an individual-based model with
non-overlapping generations (see section 2).

If the initial population density q0 is symmetric about the hyperplane {x1 = 0}, then
so does q(t,x) at all positive times in this case. This is a consequence of the unique-
ness of the solution of (Qstand) [which follows from Hamel et al., 2020]: we observe that
if q(t,x) is a solution of (Qstand) with initial condition q0, then so does q(t, ι(x)). By
uniqueness, q(t,x) = q(t, ι(x)) at all times. This in turns implies that the mean phenotype
x(t) remains on the hyperplane {x1 = 0}, i.e., at the same distance of the two optima
Ob and Os. Besides, even if q0 was not symmetric about {x1 = 0}, i.e., if the initial
phenotype distribution was biased towards one of the two optima, the trajectory of x(t)
would ultimately still converge to the axis {x1 = 0}. Again, this is a consequence of the
uniqueness of the positive stationary state of (Qstand) (with integral 1), which is itself
a consequence of the uniqueness of the principal eigenfunction (up to multiplication) of
the operator φ 7→ D∆φ + m(x)φ [this uniqueness result is classical, see e.g. Alfaro and
Veruete, 2018].

Initial bias towards the birth optimum, a multidimensional feature One of the
qualitative properties observed in the simulations (Figure 2(a)) is an initial tendency of
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(a) Model (Qb)

(b) Model (Qstand)

Figure 2: Trajectory of adaptation and stationary distribution: model (Qb) with
birth-dependent mutation rate vs standard model (Qstand). The red circles in
the left panels correspond to the position of the mean phenotype x(t) with initial condi-
tion concentrated at x0 = (0,−0.3), at successive times t = 0, 5, . . . , 500 (upper panel)
and t = 0, 2, . . . , 200 (lower panel). The central panels describes the dynamics of the
mean fitness (relative to its value at T ), m(t) −m(T ), in a logarithmic scale. The black
curves in these panels correspond to 10 replicate simulations of the individual-based mod-
els of Section 2, with either overlapping generations (upper panels) or non-overlapping
generations (lower panels). The right panels correspond to the phenotype distribution at
t = T. We assumed here that the dimension is n = 2, Ob = (1/2, 0), Os = (−1/2, 0)
(i.e., β = 1/2), b(x) = b(x1, x2) = b0 + exp

[
−(x1 − β)2/(2σ2

x1)− x2
2/(2σ

2
x2)
]
, s(x) =

s0 + exp
[
−(x1 + β)2/(2σ2

x1)− x2
2/(2σ

2
x2)
]
, σ2

x1 = σ2
x2 = 1/10, b0 = s0 = 0.7, r = 1 + s0

and D = 2.4 · 10−4. In the individual-based settings, we assumed a Gaussian mutation
kernel with variance λ = 6 · 10−4 and a mutation rate U = 0.8 so that D = λU/2.
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the trajectory of the mean phenotype x(t) to go towards the birth optimum Ob. We
show here that this is a general feature, conditioned by the shape of selection along other
dimensions. For simplicity, we denote by x1(t) the mean value of the first trait, that is,
the first coordinate of x(t). We consider initial conditions q0 that are symmetric about
the hyperplane {x1 = 0}, and that are localized around a phenotype x0 ∈ {x1 = 0}. By
localized, we mean that q0 vanishes outside some compact set that contains x0. We denote
by K0 the support of q0, and define K+

0 := K0 ∩{x1 > 0} the ‘right part of K0’. We prove
the following result (the proof is detailed in Appendix A.2).

Proposition 3.1. Let q be the solution of (Qb), with an initial condition q0 which satisfies
the above assumptions. Then the following holds.

• If ∆(x1m) ≥ 0 (and 6≡ 0) on K+
0 , then the solution is initially biased towards the

birth optimum, that is

x′1(t = 0) = 0 and x′′1(t = 0) > 0. (11)

• If ∆(x1m) ≤ 0 (and 6≡ 0) on K+
0 , then the solution is initially biased towards the

survival optimum, that is

x′1(t = 0) = 0 and x′′1(t = 0) < 0. (12)

A surprising feature of this proposition is the discussion around the sign of the quantity
∆(x1m). It shows that the local convexity (or concavity) ofm around the initial phenotype
is important. It stems from the overall shape and symmetry of m. We first illustrate this
in dimension 1. In that case, the Laplace operator simply becomes

∆(xm) = xm′′(x) + 2m′(x) =: g(x),

By the symmetry assumption (9), we know that m′(0) = 0 and thus g(0) = 0. Therefore,
in this one dimensional case, the discussion of Proposition 3.1 about the sign of ∆(xm) is
linked to the sign of g′(0) = 3m′′(0), that is the local convexity ofm around 0. Equivalently,
it is also dictated by a discussion about the shape of m: if m presents a profile with two
symmetric optima (camel shape, Fig. 1a) or a single one located at 0 (dromedary shape,
Fig. 1b), the outcome of the initial bias is different. Ifm has a camel shape, then necessarily
m admits a local minimum around 0. Therefore, as a consequence of Proposition 3.1, there
is an initial bias towards the birth optimum. If m has a dromedary shape, the critical point
0 is also a global maximum of m. From Proposition 3.1, it means that, reversing it, there
is an initial bias towards survival.

This can be explained as follows. In the case where m has two optima, the population
is initially around a minimum of fitness. By symmetry of m there is no fitness benefice of
choosing either optimum. However, individuals on the right have a higher mutation rate,
which generates variance to fuel and speed-up adaptation, which explains the initial bias
towards right. On the other hand, if 0 is the unique optimum of the fitness function, the
initial population is already at the optimum. Thus, generating more variance does not
speed-up adaptation, but on the contrary generates more mutation load, which explains
the initial bias towards left.

In a multidimensional setting, we can follow the same explanations, even if another
phenomenon can arise. The reason lies in the following formula:

∆(x1m) = ∂x1x1(x1m) + x1

∑
j≥2

∂xjxjm. (13)
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(a) Shape 1: ∆(x1m(x1, x2)) > 0 on the axis {x1 = 0}

fig

(b) Shape 2: ∆(x1m(x1, x2)) changes sign on the axis {x1 = 0}

Figure 3: Trajectory of adaptation with different shapes of the fitness func-
tion. The left panels depict the fitness function. The central panels describe the sign of
∆(x1m(x1, x2)) in the region {x1 > 0}: this quantity is negative in the blue region and
positive otherwise. The right panels depict the corresponding trajectories of the mean
phenotype x(t) obtained with the model (Qb), at successive times t = 0, 1, . . . , 100. In
both cases, the initial condition is concentrated at x0 = (0,−0.1), leading to a positive
sign of ∆(x1m(x1, x2)) at (x1, x2) = x0 in the upper panels and a negative sign in the lower
panels. The parameter values are the same as in Fig. 2, except for the fitness function of
the lower panel, where σ2

x1 = 1/18 and σ2
x2 = 1/10.

Suppose that, as in Fig. 1(a), there is a local minimum around x0, in the first dimension.
Then, the first term of (13) is positive in a neighborhood of x0 as soon as x1 > 0, as
we explained previously. In dimension n ≥ 2, if the sum of the second derivatives with
respect to the other directions is negative, the overall sign of ∆(x1m) may be changed.
Such a situation can arise in dimension 2 if x0 is a saddle point. This phenomenon can
be observed on Fig. 3. In both Fig. 3(a) and Fig. 3(b), the fitness function m is camel
like along the first dimension, as pictured in Fig. 1(a). However, as a consequence of the
second dimension, we observe, or not, an initial bias towards the birth optimum. Similarly
to the one-dimensional case, one can observe that if the mutational load is too important,
here on the second dimension, we do not observe this initial bias. This of course cannot
be if x0 is a local minimum of m in Rn.

Large time behaviour We now analyze whether the convergence towards the survival
optimum at large times observed in Fig. 2(a) is a generic behavior. In that respect, we focus
on the stationary distribution q∞ associated with the model (Qb). It satisfies equation

D∆(b q∞)(x) +m(x) q∞(x) = m∞ q∞(x), x ∈ Ω, (14)

for some m∞ ∈ R. Setting
v(x) := b(x) q∞(x),
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this reduces to a more standard eigenvalue problem, namely

D∆v(x) +
m(x)

b(x)
v(x) = m∞

1

b(x)
v(x), x ∈ Ω, (15)

supplemented with Neumann boundaries conditions:

∇v(x) · ~ν(x) = 0, x ∈ ∂Ω. (16)

As the factor 1/b(x) multiplying m∞ is strictly positive, we can indeed apply the stan-
dard spectral theory of Courant and Hilbert [2008] [see also Cantrell and Cosner, 2003].
Precisely, there is a unique couple (v(x),m∞) satisfying (15)—(16) (with the normaliza-
tion condition

∫
Ω v(x)dx = 1) such that v(x) > 0 in Ω. The ‘principal eigenvalue’ m∞ is

provided by the variational formula

m∞ = max
ψ∈W 1,2(Ω)

Q[ψ], (17)

where W 1,2(Ω) is the standard Sobolev space and

Q[ψ] :=
−D

∫
Ω ‖∇(ψ

√
b)‖2(x)dx +

∫
Ωm(x)ψ2(x)dx∫

Ω ψ
2(x)dx

.

An immediate consequence of formula (17) is that m∞ is a decreasing function of the
mutational parameter D. This means that, as expected, the mutation load increases when
the mutational parameter is increased.

We expect the stationary state to ‘lean mainly on the left’, meaning that the survival
optimum is selected at large times, but deriving rigorously the precise shape of q∞ seems
highly involved. Still, formula (17) gives us some intuition. First, multiplying (15) by v
and integrating, we observe that Q[v/

√
b] = Q[

√
b q∞] = m∞. Thus, formula (17) shows

that the shape of q∞ should be such that ψ =
√
b q∞ maximizes the Rayleigh quotient Q.

We thus consider each term of Q separately. From Hardy-Littlewood-Pólya rearrange-
ment inequality, the term

∫
Ωm(x)ψ2(x)dx is larger when ψ is arranged like m, i.e., ψ takes

its largest values where m is large and its smallest values where m is small. Thus, this term
tends to promote shapes of ψ which look like m. The other term −D

∫
Ω ‖∇(ψ

√
b)‖2(x)dx

tends to promote functions ψ which are proportional to 1/
√
b. Finally, the stationary

distribution q∞ should therefore realize a compromise between 1/b and m/
√
b. As both

functions take their larger values when b is small, we expect q∞ to be larger close to the
survival optimum Os.

More rigorously, define q̃(x) = q(−x1, x2, . . . , xn) = q(ι(x)). As
√
b q∞ realises a maxi-

mum of Q, we have
Q[
√
b q∞] ≥ Q[

√
s q̃∞].

Recalling s(x) = b(ι(x)) and using the symmetry of m, this implies that∫
Ω
‖∇(q̃∞

√
b s)‖2 =

∫
Ω
‖∇(q∞

√
b s)‖2 ≥

∫
Ω
‖∇(q∞ b)‖2. (18)

Now, we illustrate that moralement this gradient inequality means that the stationary
distribution tends to be closer to Os than to Ob. In dimension n = 1, assume that
b(x) = exp(−(x−β)2) and s(x) = exp(−(x+β)2). Assume that the domain is large enough
so that the integrals over Ω can be accurately approached by integrals over (−∞,+∞).
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Among all functions of the form hγ(x) = exp(−(x − γ)2), a straightforward computation
reveals that(∫ +∞

−∞
[∂x(hγ

√
b s)]2(x) dx ≥

∫ +∞

−∞
[∂x(hγ b)]

2(x) dx

)
⇔ γ ≤ −β/2,

which means that the inequality (18) is satisfied by functions h whose maximum is reached
at a value x = γ closer to Os = −β than to Ob = β.

Large mutation effects This advantage of adaptation towards the survival optimum
becomes more obvious when the mutation effects are large. We observed above that mD

∞
(seen here as a function of D) is decreasing. Moreover, from (17), we have, for all D > 0,

mD
∞ ≥ Q[1/

√
b] =

(∫
Ω
mb−1

)(∫
Ω
b−1

)−1

Thus mD
∞ admits a limit m∞∞ as D → ∞. Moreover, the corresponding stationary states

satisfy ∆(b qD∞)(x) + qD∞(x) (m(x)−mD
∞)/D = 0. Standard elliptic estimates and Sobolev

injections imply that, up to the extraction of some subsequenceDk →∞, the functions qDk∞
converge, as k →∞, in C2(Ω) to a nonnegative solution (with mass 1) of ∆(b q∞∞)(x) = 0.
As such a solution is unique and given by:

q∞∞(x) = C/b(x) with C =

∫
Ω
b−1,

the whole sequence qD∞ converges to C/b(x) as D → ∞. Thus, in order to reduce the
mutation load, the phenotype distribution tends to get inversely proportional to b in the
large mutation regime.

An analytically tractable example Consider the following form for the birth rate, in
dimension n = 1:

b(x) =


2 for x ∈ (0, a),
1 for x ∈ (−a, 0),
−M for x 6∈ (−a, a).

(19)

With the assumptions (8) and (19), we get:

m(x) = 3− r, for x ∈ (−a, a),

andm(x) = −(r+2)M outside (−a, a). Then, we consider the corresponding 1D eigenvalue
problem (14) in an interval Ω containing (−a, a). Assuming that the phenotypes are
extremely deleterious outside (−a, a) (i.e.,M � 1), we make the approximation q∞(±a) =
0. In this case, we prove (see Appendix A.3) that∫ 0

−a q∞(x) dx∫ a
0 q∞(x) dx

>
1

2
√

2−
√

2− 2 +
√

2
> 1.

In other word, the stationary distribution has a larger mass to the left of 0 (where s is
larger) than to the right (where b is larger).
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4 Discussion

We found that a positive dependence between the birth rate and the mutation rate emerges
naturally at the population scale, from elementary assumptions at the individual scale.
Based on a large population limit of a stochastic individual-based model in a small mu-
tation variance regime we derived a reaction-diffusion framework (Qb) that describes the
evolutionary trajectories and steady states in the presence of this dependence. We com-
pared this approach with stochastic replicate simulations of finite size populations which
showed a good agreement with the behaviour of the reaction-diffusion model. These sim-
ulations, and our analytical results on (Qb) demonstrate that taking this dependence into
account, or conversely omitting it as in the standard model (Qstand), has far reaching
consequences on the description of the evolutionary dynamics. In light of our results, we
discuss below the causes and consequences of the positive dependence between the birth
rate and the mutation rate.

Birth-dependent mutation rate: causes Even though the probability of mutation
per birth event U does not depend on the phenotype of the parent, and therefore on its
fitness nor its birth rate, a higher birth rate implies more mutations per unit of time at
the population scale. This holds true when mutations mainly occur during reproduction,
which is the case for bacteria and viruses [Van Harten, 1998, Trun and Trempy, 2009].
The mathematical derivation of the standard model (Qstand), that does not account for
this dependence, generally relies on a weak selection assumption, which de facto implies
a very mild variation of the birth rate with the phenotype. More precisely, the mutation
variance and the difference between birth rates and death rates should both be small and
of comparable magnitude, uniformly over the phenotype space explored by the population
(see Assumptions SE and WS in Section 2). This is usually achieved by assuming that
the leading order in the birth rate does not depend on the phenotype. In such cases,
the mutation rate can safely be assumed to be phenotype-independent at the population
scale, even though it is positively correlated with the birth rate, as already observed in
[Hofbauer, 1985, Baake and Gabriel, 2000]. When there is a single optimum, this weak
selection regime is often relevant. In particular, a scaling of the phenotype space shows that
taking small mutation effects is equivalent to having a weak selection. Thus, in a regime
with small mutation variance, which is required for the diffusion approximation, and with
a single fitness optimum, the models (Qstand) and (Qb) should lead to very similar results.
However, in a much more complex phenotype to fitness landscape with several optima,
this approximation does not hold. In particular, if the birth rates at each optimum are
very different from one another, even with a small mutation variance, the mutation term
∆(b q) will be very different from one optimum to another. In such situations, our approach
reveals that the model (Qb) will be more relevant, and lead to more accurate predictions
of the behaviour of the individual-based model.

An exception corresponds to organisms with non-overlapping generations: the simula-
tions in Fig. 2(b) indicate that even with a fitness function that strongly depends on the
phenotype, the trajectories of adaptation are adequately described by the model (Qstand).
Species with non-overlapping generations include annual plants (but some overlap may ex-
ist due to seedbanks), many insect species [e.g. processionary moths, Roques, 2015, again
some overlap may exist due to prolonged diapause] and fish species [such as some killifishes
with annual life cycles, Turko and Wright, 2015].

In our study, the birth and survival functions have the same height and width, so
that the resulting fitness landscape m(x) is double peaked and symmetric. We chose
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this particular landscape in order to avoid trivial advantageous effect for one of the two
strategies, and to check if an asymmetrical behaviour can emerge from a symmetric fitness
landscape. Of course, if the birth optimum corresponds to a much higher fitness than the
survival optimum, we expect that at large times the mean phenotype will converge to the
birth optimum. However, our approach shows the tendency of the trajectory to be attracted
by the survival optimum, which clearly shows up in the symmetric case considered here,
and remains true in intermediate situations, as observed in Figure B.2. More precisely, in
an asymmetric double peaked fitness landscape where the two peaks have different height,
we observed that having a high survival rate remains more advantageous at equilibrium
than having a high birth rate as long as the difference between the fitness peaks remains
lower than the difference between the mutation loads generated at each optimum (see
Supplementary Information for more details).

Another feature of the model (Qb) is that the transient trajectory of mean fitness
displays plateaus, as observed for instance in Fig. 2. This phenomenon of several epochs in
adaptation is well documented thanks to the longest ever evolution experiment, the ‘Long
Term Evolution Experiment’ (LTEE). Experimenting on Eschereschia Coli bacteria, Wiser
et al. [2013] found out that even after more than 70, 000 generations, fitness had not reached
its maximum, apparently challenging the very existence of such a maximum, the essence of
Fisher’s Geometrical Model. It was then argued that the data could be explained by a two
epoch model [Good and Desai, 2015], with or without saturation. A similar pattern was
observed for a RNA virus [Novella et al., 1995]. Recently, Hamel et al. [2020] showed that
the FGM with a single optimum but anisotropic mutation effects also leads to plateaus,
and they obtained a good fit with the LTEE data. Our study shows that, when coupled
with a phenotype to fitness landscape with two optima, the model (Qb) is also a possible
candidate to explain these trajectories of adaptation.

The model (Qb) in the mathematical literature Some authors have already con-
sidered operator which are closely related to the mutation operator in (Qb). For in-
stance Lorz et al. [2011] considered non-homogeneous operators of the form B(q)(t,x) =
div(b(x)∇q(t,x)) within the framework of constrained Hamilton-Jacobi equations. How-
ever this operator does not emerge as the limit of a microscopic diffusion process or as an
approximation of an integral mutation operator. It is more adapted to the study of heat
conduction as it notably tends to homogenize the solution compared to the Fokker-Planck
operator ∆(b(x)q(t,x)), see Figure II.7 in Roques [2013]. Finally, the flexible framework
of Bürger [2000] allows for heterogeneous mutation rate. Due to the complicated nature of
the operator involved (compact or power compact kernel operator), the theoretical frame-
work is in turn very intricate. Quantitative results are in consequence either relatively
few, and typically consist in existence and uniqueness of solutions, upper or lower bounds
on the asymptotic mean fitness [Bürger, 1998, 2000], or concern simpler models (with a
discretization of the time or of the phenotypic space), see [Hermisson et al., 2002, Redner,
2004, Hofbauer, 1985].

Sexual reproduction How to take into account a phenotype dependent birth rate with a
sexual mode of reproduction is an open question to the best of our knowledge. A classical
operator to model sexual genetic inheritance in the background adopted in this article
is the infinitesimal operator, introduced by Fisher [1918], see Slatkin [1970], Cotto and
Ronce [2014] or the review of Turelli [2017]. It describes a trait deviation of the offspring
around the mean of the phenotype of the parents, drawn from a Gaussian distribution.
Mathematically, few studies have tackled the operator, with the notable only exceptions of
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the derivation from a microscopic point of view of Barton et al. [2017], the small variance
and stability analysis of Calvez et al. [2019], Patout [2020], and finally in Mirrahimi and
Raoul [2013], Raoul [2017], with an additional spatial structure, the convergence of the
model towards the Kirkpatrick-Barton model when the reproduction rate is large. In all
those cases, the reproduction term is assumed to be constant. With the formalism of (2),
at the population scale, mating and birth should be positively correlated, which should lead
to considering the following variation on the infinitesimal operator, which acts upon the
phenotype x ∈ R (for simplicity, we take n = 1 here for the dimension of the phenotype):

S(f)(x) :=

1

σ
√
π

∫∫
R2

exp

[
− 1

σ2

(
x− x1 + x2

2

)2
]
b(x1)f(x1)

ω(x2)f(x2)∫
R ω(x′2)f(x′2) dx′2

dx1dx2. (20)

We try to explain this operator as follows. It describes how an offspring with trait x
appears in the population. First, an individual x1 rings a birth clock, at a rate given by
its trait and the distribution of birth events b, as in (1). Next, this individual mates with
a second parent x2, chosen according to the weight ω. Then, the trait of the offspring is
drawn from the normal law N

(
x1+x2

2 , σ2
)
.

As the birth rate of individuals seems a decisive factor in being chosen as a second
parent, a reasonable choice would be ω = b in the formula above. Again, to the best of
our knowledge, no mathematical tools have been developed to tackle the issues we raise in
this article with this new operator. We can mention the recent work Raoul [2021] about
similar operators.

A new trade-off, similar to the one discussed in this article, can also arise with the
operator (20). Indeed, coupled with a selection term, as in (1) for instance, a trade-off
between birth and survival can appear if b (or ω) and d have different optima. It would be
very interesting to follow the trajectories of fitness along time as in Fig. 2, to discover if
the effects highlighted in this paper for asexual reproduction are still present, and when,
with sexual reproduction. Of course, a third factor in the trade-off is also present, through
the weight of the choice of the second parent via the function ω. If an external factor
favors a second parent around a third optimum, then the effect it has on the population
should also be taken into account. The relevance of such a model in an individual based
setting, as in Section 2 is also an open question to this day for the operator (20). With
the assumption ω = b, the roles of first and second parents are symmetric in the operator
(20), and an investigation of the balance between birth and survival could be carried out
without additional assumptions.

A Appendices

A.1 Proof of Proposition 2.4

For φ : Ω→ R measurable and bounded, let

Pφ(x) = (1− U)φ(xi) + U

∫
Ω
φ(y)ρK(xi,y)dy.

Lemma A.1. For t ∈ N, for any φ : Ω→ R measurable and bounded,

〈νKt , φ〉 = 〈νK0 , φ〉+

t∑
s=1

〈νKs , wKe−cKK〈ν
K
s ,1〉Pφ− φ〉+MK

t (φ),
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where (MK
t (φ), t ≥ 0) is a local martingale with quadratic variation

t∑
s=1

(
1

K
〈νKs , wKP (φ2)〉e−cKK〈νKs ,1〉 + 〈νKs , wKe−cKK〈ν

K
s ,1〉Pφ− φ〉2

)
.

Proof. From the definition of the model, for any φ : Ω→ R measurable and bounded,

E
[
〈νKt+1, φ〉

∣∣ νKt ] =
1

K

Nt∑
i=1

wK(xi) e
−cKNt

{
(1− U)φ(xi) + U

∫
Ω
φ(y)ρK(xi, dy)

}
= 〈νKt , wKe−cKK〈ν

K
t ,1〉Pφ〉.

Hence
E
[
〈νKt+1, φ〉 − 〈νKt , φ〉

∣∣ νKt ] = 〈νKt , wKe−cKK〈ν
K
t ,1〉Pφ− φ〉. (21)

We now wish to compute

E
[(
〈νKt+1, φ〉 − 〈νKt , φ〉

)2∣∣∣ νKt ] .
To do this, let νKt = 1

K

∑N
i=1 δxi and let Ni be the number of offspring of individual i at

time t+ 1 and let (Yi,j , 1 ≤ j ≤ Ni) denote their types. From the definition of the model,
Ni is a Poisson random variable with parameter wK(xi)e

−cKN and the (Yi,j , j ≥ 1) are
i.i.d. with

E[φ(Yi,j) |xi] = Pφ(xi), V[φ(Yi,j) |xi] = P (φ2)(xi)− (Pφ(xi))
2.

Then we write

〈νKt+1, φ〉 − 〈νKt , φ〉 =
1

K

N∑
i=1

 Ni∑
j=1

(φ(Yi,j)− Pφ(xi))


+

1

K

N∑
i=1

(
Ni − wK(xi)e

−cKN
)
Pφ(xi) + 〈νNt , wKe−cKNPφ− φ〉.

Since the third term depends only on νNt and the first two terms are uncorrelated,

E
[(
〈νKt+1, φ〉 − 〈νKt , φ〉

)2∣∣∣ νKt ] =
1

K2

N∑
i=1

wK(xi)e
−cKN

(
P (φ2)(xi)− (Pφ(xi))

2
)

+
1

K2

N∑
i=1

wK(xi)e
−cKN (Pφ(xi))

2 + 〈νKt , wKe−cKNPφ− φ〉2.

Rearranging, we arrive at

E
[(
〈νKt+1, φ〉 − 〈νKt , φ〉

)2∣∣∣ νKt ]
=

1

K
〈νKt , wKP (φ2)〉e−cKK〈νKt ,1〉 + 〈νKt , wKe−cKK〈ν

K
t ,1〉Pφ− φ〉2. (22)

This concludes the proof of the lemma.
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Note that, setting

M∗Kφ(x) =
U

εK

∫
Ω

(φ(y)− φ(x))ρK(x,y)dy,

equation (21) can also be written

E
[
〈νKt+1, φ〉 − 〈νKt , φ〉

∣∣ νKt ]
= 〈νKt , wK e−cKK〈ν

K
t ,1〉 εKM∗Kφ+ (wK e

−cKK〈νKt ,1〉 − 1)φ〉.

Using Assumption (A1), we then have

E
[
〈νKt+1, φ〉 − 〈νKt , φ〉

∣∣ νKt ] = εK〈νKt ,M∗Kφ+ (m− c〈νKt , 1〉)φ〉+ o(εK〈νKt , 1〉).

We then note that, in the case of Assumption (FE), M∗Kφ = M∗φ, while in the case of
Assumption (SE), by a Talyor expansion, for any φ ∈ C2

0 (Ω),

M∗Kφ(x) =
λU

2
∆φ(x) + o(1),

uniformly in x ∈ Ω. Finally, note that the first term in (22) is of the order of 1/K while
the second term is of the order of ε2

K .
For N ≥ 1, define a stopping time τKN by

τKN = inf{t ≥ 0 : 〈νKt , 1〉 ≥ N〉.

Lemma A.2. For any fixed N ≥ 1 and T > 0, for any φ ∈ C2
0 (Ω),

sup
0≤t≤bT/εKc

|MK
t∧τKN

(φ)| −→ 0,

in probability as K →∞.

Proof. By Doob’s martingale inequality,

E

[
sup

0≤t≤bT/εKc
|MK

t∧τKN
(φ)|2

]
≤ 4E

[
|MK
bT/εKc∧τKN

(φ)|2
]

≤ 4E

bT/εKc∧τKN∑
s=1

{
1

K
〈νKs , wKPφ2〉+ 〈νKs , wKe−cεK〈ν

K
s ,1〉Pφ− φ〉2

} . (23)

Clearly, for 0 ≤ s ≤ bT/εKc ∧ τKN ,

|〈νKs , wKPφ2〉| ≤ C‖φ‖2∞N. (24)

We then note that there exists a function rK : R→ R such that, for all x ∈ R,

eεKx = 1 + εKx e
εKrK(x), and |rK(x)| ≤ |x|.

With this notation,

wK(x)e−cKK〈ν
K
s ,1〉 − 1 = εKm(x)eεKrK(m(x))−c εK〈νKs ,1〉 − c εK〈νKs , 1〉eεKrK(−c〈νKs ,1〉).
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Hence, using the fact that rK(x) has the same sign as x,

|〈νKs , (wKe−cεK〈ν
K
s ,1〉 − 1)Pφ〉| ≤ C‖φ‖∞ εK(N +N2). (25)

Finally, Pφ− φ = εKM∗Kφ, and, for φ ∈ C2
0 (Ω), under either Assumption (FE) or (SE),

sup
K>0
‖M∗Kφ‖∞ ≤ Cφ,

we thus have
|〈νKs , Pφ− φ〉| ≤ Cφ εKN. (26)

Plugging (24), (25) and (26) in (23), we obtain

E

[
sup

0≤t≤bT/εKc
|MK

t∧τKN
(φ)|2

]
≤ CT

(
N

εKK
+ ε2

K(N +N2)2

)
.

Since the right-hand-side tends to zero as K →∞, this concludes the proof of the lemma.

Lemma A.3. Fix T > 0, and let

XK = sup
0≤t≤bT/εKc

〈νKt , 1〉.

Then (XK ,K > 0) is tight in R+. Moreover, for any δ > 0, N can be chosen such that

lim sup
K→∞

P(τKN ≤ bT/εKc) ≤ δ.

Proof. Looking at the statement of Lemma A.1, we note thatM∗K1 = 0 and that

wK(x)e−cKK〈ν
K
s ,1〉 − 1 =

(
eεKm(x) − 1

)
e−cεK〈ν

K
s ,1〉 + e−cεK〈ν

K
s ,1〉 − 1

≤ CεK ,

for some constant C > 0, using the fact that m is bounded. As a consequence,

〈νK
t∧τKN

, 1〉 ≤ 〈νK0 , 1〉+

t∧τKN∑
s=1

εKC〈νKs , 1〉+MK
t∧τKN

(1)

≤ 〈νK0 , 1〉+
t∑

s=1

εKC〈νKs∧τKN , 1〉+MK
t∧τKN

(1).

By Gronwall’s inequality, we obtain

〈νK
t∧τKN

, 1〉 ≤
(
〈νK0 , 1〉+ sup

0≤s≤t
MK
s∧τKN

(1)

)
eCεKt.

Hence,

sup
0≤t≤bT/εKc

〈νK
t∧τKN

, 1〉 ≤

(
〈νK0 , 1〉+ sup

0≤t≤bT/εKc
MK
t∧τKN

(1)

)
eCT .
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As a result,

P(XK ≥ N) = P(τKN ≤ bT/εKc)

≤ P

([
〈νK0 , 1〉+ sup

0≤t≤bT/εKc
MK
t∧τKN

(1)

]
eCT ≥ N

)

≤ P
(
〈νK0 , 1〉 ≥

1

2
Ne−CT

)
+ P

(
sup

0≤t≤bT/εKc
MK
t∧τKN

(1) ≥ 1

2
Ne−CT

)
.

Since 〈νK0 , 1〉 is tight, for any δ > 0 we can choose N large enough such that

lim sup
K→∞

P
(
〈νK0 , 1〉 ≥

1

2
Ne−CT

)
≤ δ.

In addition, by Lemma A.2, for any N ≥ 1,

lim sup
K→∞

P

(
sup

0≤t≤bT/εKc
MK
t∧τKN

(1) ≥ 1

2
Ne−CT

)
= 0.

Hence we can choose N large enough such that

lim sup
K→∞

P(XK ≥ N) ≤ δ,

concluding the proof.

Lemma A.4. Let Ω denote the closure of Ω. Then, for any T > 0, the sequence of
processes (

νKbt/εKc, t ∈ [0, T ]
)
, K > 0,

is C-tight in D([0, T ],MF (Ω)).

Proof. Since Ω is compact, Lemma A.3 implies that the compact containment condition
of Theorem 3.9.1 in [Ethier and Kurtz, 1986] holds. It remains to show that, for a dense
subset H of the set of bounded and continuous functions on MK(Ω) (in the topology of
uniform convergence on compact sets), (h(νKt ), t ∈ [0, T ]) is C-tight for every h ∈ H. We
shall take

H = {ν 7→ f(〈ν, φ〉), φ ∈ C2
0 (Ω), f ∈ C2(R)}.

By Lemma A.3, it is sufficient to show that (f(〈νKbt/εKc∧τKN , φ〉), t ∈ [0, T ]) is tight for

any N large enough. Now, using (25) and (26), for 0 ≤ s ≤ bT/εKc ∧ τKN ,

|〈νKs , wKe−cKK〈ν
K
s ,1〉Pφ− φ〉| ≤ Cφ,N εK ,

for some constant Cφ,N > 0 depending only on φ and N . As a result, if wθ(g) denotes the
modulus of continuity of g : [0, T ]→ R, i.e.

wδ(g) = sup
|t−s|≤θ
0≤s≤t≤T

|g(t)− g(s)|,

we obtain

wθ

(
f(〈νKb·/εKc∧τKN , φ〉)

)
≤ sup
|x|≤N

|f ′(x)|

(
Cφ,N θ + 2 sup

0≤t≤bT/εKc
|MK

t∧τKN
(φ)|

)
.
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Hence, by Lemma A.2, for any δ > 0 and ε > 0, there exists θ > 0 such that

lim sup
K→∞

P
(
wθ

(
f(〈νKb·/εKc∧τKN , φ〉)

)
> δ
)
≤ ε.

Combined with Lemma A.3, this shows that (f(〈νKbt/εKc∧τKN , φ〉), t ∈ [0, T ]) is C-tight for

any φ ∈ C2
0 (Ω), f ∈ C2(R) and N > 0 (see for example [Jacod and Shiryaev, 2003,

Proposition VI.3.26]), and the result is proved.

We can now conclude the proof of the main result.

Proof of Proposition 2.4. Consider a converging subsequence, still denoted(
νKbt/εKc, t ∈ [0, T ]

)
and let (ft, t ∈ [0, T ]) be its limit. Since the sequence is C-tight, t 7→ ft is continuous and
the convergence holds uniformly on [0, T ].

The result will be proved if we show that ft solves (7). Let φ ∈ C2(Ω). By Lemma A.2,

sup
0≤t≤bT/εKc

∣∣∣∣∣∣〈νKt∧τKN , φ〉 − 〈νK0 , φ〉 −
t∧τKN∑
s=1

〈νKs , wKe−cKK〈ν
K
s ,1〉Pφ− φ〉

∣∣∣∣∣∣ −→ 0

in probability as K →∞. In addition,

wK(x)e−cKK〈ν
K
s ,1〉Pφ(x)− φ(x)− εK

(
M∗φ(x)− (m(x)− c〈νKs , 1〉)φ(x)

)
=
(
eεK(m(x)−c〈νKs ,1〉) − 1− εK(m(x)− c〈νKs , 1〉)

)
Pφ(x)

+ Pφ(x)− φ(x)− εKM∗φ(x)

+ εK(m(x)− c〈νKs , 1〉)(Pφ(x)− φ(x)).

Hence, for 0 ≤ s ≤ bT/εKc ∧ τKN and φ ∈ C2
0 (Ω),∣∣∣wK(x)e−cKK〈ν

K
s ,1〉Pφ(x)− φ(x)− εK

(
M∗φ(x)− (m(x)− c〈νKs , 1〉)φ(x)

)∣∣∣
≤ Cε2

K + εK (M∗Kφ(x)−M∗φ(x))

≤ C ′ε2
K .

As a result,

sup
0≤t≤bT/εKc

∣∣∣∣∣∣
t∧τKN∑
s=1

〈νKs , wKe−cKK〈ν
K
s ,1〉Pφ− φ〉

−
t∧τKN∑
s=1

εK〈νKs ,M∗φ+ (m− c〈νKs , 1〉)φ〉

∣∣∣∣∣∣ ≤ C ′TεK .
Hence, on the event {τKN > bT/εKc},

sup
0≤t≤T

∣∣∣∣〈ft, φ〉 − 〈f0, φ〉 −
∫ t

0
〈fs,M∗φ− (m− c〈fs, 1〉)φ〉ds

∣∣∣∣
≤ 2 sup

0≤t≤T
|〈νKbt/εKc, φ〉 − 〈ft, φ〉|+ C ′TεK + sup

0≤t≤bT/εKc

∣∣∣MK
t∧τKN

(φ)
∣∣∣

+ T sup
0≤s≤T

∣∣〈νKs ,M∗φ+ (m− c〈νKs , 1〉)φ〉 − 〈fs,M∗φ+ (m− c〈fs, 1〉)φ〉
∣∣ .
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Combined with Lemma A.3 and the (uniform) convergence of νKb·/εKc to f , this shows that,
for any ε > 0,

P

(
sup

0≤t≤T

∣∣∣∣〈ft, φ〉 − 〈f0, φ〉 −
∫ t

0
〈fs,M∗φ− (m− c〈fs, 1〉)φ〉ds

∣∣∣∣ > ε

)
= 0.

It follows that (ft, t ∈ [0, T ]) solves (7), hence (νNt , t ∈ [0, T ]) converges in distribution,
and in probability, to (ft, t ∈ [0, T ]) in D([0, T ],MF (Ω). Since in fact ft ∈MF (Ω) for any
t ≥ 0, this concludes the proof of the result.

A.2 Proof of Proposition 3.1

Multiplying equation (Qb) by x1, integrating over x ∈ Ω and evaluating at t = 0, we get

x′1(0) = ∂t

(∫
Ω
x1q(t,x)dx

)
(t = 0)

= D

∫
Ω
x1∆(bq0)(x)dx +

∫
Ω
x1q0(x)m(x)dx−m(0)

∫
Ω
x1q0(x)dx.

From Green formula we infer∫
Ω
x1∆(bq0)(x)dx =

∫
∂Ω
x1∇(bq0) · ~ν(x) ds−

∫
∂Ω

(bq0)(x) ~e1 · ~ν(x) ds,

= 0

since q0 is compactly supported in Ω. Moreover, since q0 and m both satisfy m(ι(x)) =
m(x), q0(ι(x)) = q(x), ∫

Ω
x1q0(x)m(x)dx =

∫
Ω
x1q0(x)dx = 0.

This shows that x′1(0) = 0.
We next turn to the second derivative x′′1(0). We differentiate equation (Qb) with

respect to time, multiply by x1, integrate over x ∈ Ω and evaluate at t = 0 to reach

x′′1(0) = ∂tt

(∫
Ω
x1q(t,x)dx

)
(t = 0) = D

∫
Ω
x1∆(b∂tq(0,x))dx +

∫
Ω
x1∂tq(0,x)m(x)dx

−m(0)

∫
Ω
x1∂tq(0,x)dx−m′(0)

∫
Ω
x1q0(x)dx.

From the above computation, this reduces to

x′′1(0) = D

∫
Ω
x1∆(b∂tq(0,x))dx +

∫
Ω
x1∂tq(0,x)m(x)dx.

Moreover, since ∂tq(0,x) is also compactly supported (this follows from equation (Qb)),
Green formula yields ∫

Ω
x1∆(b∂tq(0,x))dx = 0,

and we are left with
x′′1(0) =

∫
Ω
x1∂tq(0,x)m(x)dx. (27)
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We multiply equation (Qb) by x1m(x), integrate over x ∈ Ω and evaluate at t = 0 to
obtain ∫

Ω
x1∂tq(0,x)m(x)dx = D

∫
Ω

∆(bq0)(x)x1m(x)dx +

∫
Ω
x1q0(x)m(x)2dx

−m(0)

∫
Ω
x1q0(x)m(x)dx.

By symmetry, the last two terms vanish, and another Green formula leads to∫
Ω
x1∂tq(0,x)m(x)dx = D

∫
Ω

(bq0)(x)∆(x1m(x))dx. (28)

Then, we observe that∫
Ω∩{x1<0}

b(x) q0(x)∆(x1m(x))dx = −
∫

Ω∩{x1>0}
s(x)q0(x)∆(x1m(x))dx,

as q0 and m are symmetric about {x1 = 0}, and from (9). Thus,∫
Ω

(bq0)(x)∆(x1m(x))dx =

∫
Ω∩{x1<0}

(bq0)(x)∆(x1m(x))dx

+

∫
Ω∩{x1>0}

(bq0)(x)∆(x1m(x))dx,

=

∫
Ω∩{x1>0}∩K0

(b− s)(x) q0(x) ∆(x1m(x))dx,

with K0 the support of q0 (containing x0). From this, (27) and (28), we end up with

x′′1(0) = D

∫
Ω∩{x1>0}∩K0

(b− s)(x) q0(x) ∆(x1m(x))dx.

We know from (10) that (b − s)(x) > 0 in Ω ∩ {x1 > 0}. As a result, if ∆(x1m(x))
is nontrivial and nonnegative (nonpositive) on K+

0 = K0 ∩ {x1 > 0} then x′′1(0) > 0
(x′′1(0) < 0 respectively). This concludes the proof of Proposition 3.1.

A.3 An explicit solution of the eigenvalue problem

We assume that the dimension is n = 1 and

b(x) =

{
2 for x ∈ (0, a),
1 for x ∈ (−a, 0),

and we consider the eigenvalue problem (14) with Dirichlet boundary conditions. As b is
discontinuous, the eigenvalue problem must be understood in the weak sense. In particular,
we have to solve {

D q′′1,∞(x) = (m∞ − r − 3) q1,∞(x), x ∈ (−a, 0),

2D q′′2,∞(x) = (m∞ − r − 3) q2,∞(x), x ∈ (0, a),
(29)

with the boundary, continuity and flux conditions:{
q1,∞(−a) = q2,∞(a) = 0,

q1,∞(0) = q2,∞(0), q′1,∞(0) = 2 q′2,∞(0),
(30)
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the positivity conditions q1,∞, q2,∞ > 0 and m∞ − r − 3 < 0.
Set µ =

√
2D and B :=

√
−m∞ + r + 3/µ. We have

q1,∞(x) = −
√

2

B
cos
(
xB
√

2
)(

tan(xB
√

2) + tan(aB
√

2)
)
, x ∈ (−a, 0),

q2,∞(x) =
1

B
cos (xB ) (tan(aB)− tan(xB)) , x ∈ (0, a).

(31)

The equality q1,∞(0) = q2,∞(0) thus implies:
√

2 tan(aB
√

2) = − tan(aB). (32)

The positivity of q1,∞, q2,∞ implies that 0 < aB < π/2. The equation (32) thus admits a
unique solution aB ∈ (π/(2

√
2), π/2) (aB ≈ 1.338761890). Additionally, we have:∫ 0

−a q1,∞(x) dx∫ a
0 q2,∞(x) dx

= −(1− cos(aB
√

2)) cos(aB)

(1− cos(aB)) cos(aB
√

2)
,

and using (32), ∫ 0
−a q1,∞(x) dx∫ a
0 q2,∞(x) dx

=
1√
2

(1− cos(aB
√

2)) sin(aB)

(1− cos(aB)) sin(aB
√

2)

=
1√
2

j(aB
√

2)

j(aB)
.

with j(x) := (1 − cos(x))/ sin(x). As j(x
√

2)/j(x) is increasing on (π/(2
√

2), π/2), we
get:

1√
2

j(aB
√

2)

j(aB)
≥ 1√

2

j(π/2)

j(π/(2
√

2))
=

1√
2

1

j(π/(2
√

2))
.

As 1/(2
√

2) < 3/8 and since j is increasing on (π/(2
√

2), π/2),

j(π/(2
√

2)) < j(3π/8) = 1−
√

2 +

√
4− 2

√
2.

Finally,∫ 0
−a q1,∞(x) dx∫ a
0 q2,∞(x) dx

=
1√
2

j(aB
√

2)

j(aB)
>

1√
2 j(3π/8)

=
1

2
√

2−
√

2− 2 +
√

2
> 1.

B Supplementary Information

In the main text, the birth and survival functions have the same height and width, so that
the resulting fitness landscape m(x) is symmetric, double peaked, and both peaks have
equal height. We consider here an asymmetric case, where the two peaks have different
height. Namely, we consider the case:{

b(x) = b0 + γ b1(x),
s(x) = b0 + b1(ι(x)),

(33)

for γ 6= 1 (the case γ = 1 is treated in the main text), and with a function b1 with a single
optimum at x = Ob, with b1(Ob) = bmax, and which decays to 0 away from Ob. We recall
that ι(x) = ι(x1, x2, ..., xn) = (−x1, x2, ..., xn).
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−β 0 β
2b0

2 b0 + bmax + γε− r

2 b0 + γ bmax + ε− r

x1

Figure B.1: Schematic representation of the asymmetric fitness function m(x)
considered here, along the phenotype dimension x1. Compare with Fig. 1 in the
main text. In red we pictured the functions b + b0 − r/2 and s + b0 − r/2. Observe that
the difference of fitness between the two peaks is (γ − 1)(bmax − ε) and thus γ tunes the
asymmetry of the phenotypic landscape.

In this framework the fitness of the birth optimum is m(Ob) = 2 b0 + γ bmax + ε − r
and the fitness of the survival optimum is m(Os) = 2 b0 + bmax + γ ε − r. In both cases,
ε := b1(Os). We assume here that ε� 1, meaning that the phenotype Os has a birth rate
very close to the baseline value b0. Similarly, the phenotype Ob has a survival rate b0 + γ ε
close to the baseline survival rate s0 = b0, see the scheme on Figure B.1.

In the main text, with γ = 1, we have shown that the trajectories are attracted by
the survival optimum. We check here whether this remains true for asymmetric fitness
functions (γ 6= 1). In Figure B.2, we depict the position of the mean phenotype x(t) (first
coordinate) depending on the value of γ, at small times (t = 40), larges times (t = 500) and
infinite time (in this case, we directly solve the eigenvalue problem (15) (main text) with
Comsol Multiphysics eigenvalue solver). We observe that, at small times, the trajectories
are attracted by the birth optimum, whatever the value of γ, and reach positions closer to
β (the first component of Ob) as γ is increased. At larger times, we observe a bifurcation
threshold γ∗ > 1 such that the trajectories are still attracted by the survival optimum
when γ < γ∗, while they are attracted by the birth optimum for γ > γ∗.

We claim here that the trajectories are attracted by the survival optimum as long as
the difference between the fitness peaks m(Ob)−m(Os) is smaller than difference between
the mutation loads that would be associated with an equilibrium distribution around Ob
vs around Os. To check this conjecture, we consider as in the figures of the main text,
a function b1(x) = exp

[
−(x−Ob)2/(2σ2)

]
, and we assume a single-peak landscape with

a unique optimum at Ob. The corresponding fitness is mb(x) = 2 b0 + γ b1(x) − r. We
make the weak selection approximation ∆(b q) ≈ b(Ob) ∆q = (b0 + 1) ∆q in the model
(Qb) and mb(x) ≈ 2 b0 + γ (1−‖x−Ob‖2/(2σ2))− r. The results in [Martin and Roques,
2016, Hamel et al., 2020] imply that the equilibrium mean fitness is mb

∞ = 2 b0 + γ − r −
n
√

2D (b0 + 1) γ/(2σ). The mutation load is: n
√

2D (b0 + 1) γ/(2σ).
Now, consider a single-peak landscape with a unique optimum at Os, with a fitness

function ms(x) = 2 b0 + b1(ι(x)) − r and make a weak selection approximation ∆(b q) ≈
b0 ∆q in the model (Qb) and ms(x) ≈ 2 b0 + (1 − ‖x − Os‖2/(2σ2)) − r. This time, we
get ms

∞ = 2 b0 + 1− r−n
√

2D b0/(2σ), and the mutation load is n
√

2D b0/(2σ). Finally,
the difference between the fitness peaks m(Ob) −m(Os) = (γ − 1)(bmax − ε) ≈ γ − 1 is
smaller than difference between the corresponding mutation loads if

γ − 1 <
n
√

2D

2σ
(
√
γ(b0 + 1)−

√
b0). (34)
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With the parameter values in Figure B.2, this leads to γ∗ = 1.03 which is fully consistent
with the numerical results. More generally, the above formula shows that γ∗ is an increasing
function of n D and 1/σ.

Figure B.2: First component x1(t) of the mean phenotype depending on the
asymmetry coefficient γ: model (Qb). As in the figures of the main text, we
assumed here that the dimension is n = 2, Ob = (β, 0), Os = (−β, 0) with β =
1/2. The functions b(x) and s(x) are defined by (33), with b1(x) = b1(x1, x2) =
exp

[
−(x1 − β)2/(2σ2

x1)− x2
2/(2σ

2
x2)
]
, σ2

x1 = σ2
x2 = 1/10, b0 = 0.7 and D = 1/4000.

The vertical dotted line represents the threshold γ∗ obtained by solving (34). We obtained
the numerical value of x1(t) at finite times by solving the PDE (Qb) with a method of lines,
as in the figures of the main text, with an initial condition concentrated at x0 = (0,−0.3).
To compute the limit value of x1(t) at t = +∞, we solved the eigenvalue problem (15)
(main text) with Comsol Multiphysics eigenvalue solver.
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