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Abstract

In unicellular organisms such as bacteria and in most viruses, mutations
mainly occur during reproduction. Thus, genotypes with a high birth rate
should have a higher mutation rate. However, standard models of asexual
adaptation such as the ‘replicator-mutator equation’ often neglect this effect.
In this study, we investigate the emergence of a positive dependence between
the birth rate and the mutation rate in models of asexual adaptation and
the consequences of this dependence. We show that it emerges naturally at
the population scale, based on a large population limit of a stochastic time-
continuous individual-based model with elementary assumptions. We derive a
reaction-diffusion framework that describes the evolutionary trajectories and
steady states in the presence of this dependence. When this model is coupled
with a phenotype to fitness landscape with two optima, one for birth, the
other one for survival, a new trade-off arises in the population. Compared to
the standard approach with a constant mutation rate, the symmetry between
birth and survival is broken. Our analytical results and numerical simulations
show that the trajectories of mean phenotype, mean fitness and the station-
ary phenotype distribution are in sharp contrast with those displayed for the
standard model. Here, we obtain trajectories of adaptation where the mean
phenotype of the population is initially attracted by the birth optimum, but
eventually converges to the survival optimum, following a hook-shaped curve
which illustrates the antagonistic effects of mutation on adaptation.

1 Introduction
The effect of the mutation rate on the dynamics of adaptation is well-documented,
both experimentally (e.g, Giraud et al., 2001; Anderson et al., 2004) and theoret-
ically. Regarding theoretical work, since the first studies on the accumulation of
mutation load (Haldane, 1937; Kimura and Maruyama, 1966), several modelling ap-
proaches have investigated the effect of the mutation rate on various aspects of the
adaptation of asexuals. This includes lethal mutagenesis theory (Bull et al., 2007;
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Bull and Wilke, 2008), where too high mutation rates lead to extinction, evolution-
ary rescue (Anciaux et al., 2019) or the invasion of a sink (Lavigne et al., 2020). The
evolution of the mutation rate per se is also the subject of several models (André
and Godelle, 2006; Lynch, 2010).

Though it is now established that mutation rates are not always uniform among
individuals of the same species, most models that describe the dynamics of adap-
tation of phenotypically structured populations assume a constant mutation rate
across phenotypes (e.g., Desai and Fisher, 2011; Gerrish et al., 2007; Sniegowski
and Gerrish, 2010; Alfaro and Carles, 2014; Gandon and Mirrahimi, 2017; Gil et al.,
2019). Variations in the individual mutation rate per generation can be caused by
genotypic variability (Sharp and Agrawal, 2012), environmental factors (Hoffmann
and Hercus, 2000) or more generally ‘G x E’ interactions. In a spirit of parsimony,
the above-mentioned modelling approaches deliberately ignore these processes but
do take into account a certain variability in the reproductive success. As some can-
cer studies emphasize, with the observation of dose-dependent mutation rates (Liu
et al., 2015), the mutation rate at the population scale can be correlated with the
reproductive success, through the individual birth rate. The main goal of the cur-
rent study is to determine in which context the variability of the birth rate must
result in a variability in the rate at which new mutations arise in the population.
We also study the consequences of such birth rate - mutation rate dependence on
the evolutionary trajectory of the population.

In multicellular sexual organisms, this dependence does not emerge naturally.
Germline mutations, which can be transmitted to the offspring, appear during cel-
lular division, and therefore, are not a priori correlated to birth events. This means
that, for a given germline mutation rate, such organisms who live a long time would
accumulate as much mutations per units of time as one living for a shorter period
of time, but with more birth events. The picture is very different for unicellular
organisms such as bacteria. In that case, mutations occur during reproduction, by
means of binary fission (Van Harten, 1998; Trun and Trempy, 2009), meaning that
individuals with a high birth rate should have a higher mutation rate (they produce
more mutant offspring per unit of time). This is also true for viruses, as mutations
mostly arise during replication (Sanjuán and Domingo-Calap, 2016). The proba-
bility of mutation during the replication is even greater in RNA viruses as their
polymerase lacks the proofreading activity found in the polymerase of DNA viruses
(Lauring et al., 2013).

The consequences of the dependence between birth rate and mutation rate are
not easy to anticipate as birth rate is also involved in trade-offs with other life-
history traits. Such trade-offs play a crucial role in shaping evolution (Stearns,
1989). They create evolutionary compromises, for instance between dispersal and
reproduction (Nathan, 2001; Smith et al., 2014; Helms and Kaspari, 2015; Xiao et al.,
2015) or between the traits related to survival and those related to birth (Taylor,
1991). In this last case, we expect that the consequences of the trade-off on the
dynamics of adaptation strongly depend on the existence of a positive correlation
between the birth rate and the mutation rate. High mutation rates tend to promote
adaptation when the population is far from equilibrium (Sniegowski et al., 2000) but
eventually have a detrimental effect due to a higher mutation load (Anciaux et al.,
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2019) when it approaches a mutation-selection equilibrium. This ambivalent effect
of mutation may therefore lead to complex trajectories of adaptation when the birth
and mutation rates are correlated.

In the classical models describing the dynamics of adaptation of a phenotypically
structured population, the breeding values at a set of n traits are described by a
vector x ∈ Ω ⊂ Rn, that we call here ‘phenotype’ for simplicity. The effect of
mutations on the phenotype distribution is described through a linear operatorM
which does not depend on the parent phenotype x. The operatorM can be described
with a convolution product involving a mutation kernel (Champagnat et al., 2006;
Gil et al., 2017) or with a Laplace operator (Kimura, 1964; Lande, 1975; Alfaro and
Carles, 2014; Hamel et al., 2020), corresponding to a diffusion approximation of the
mutation effects. Under the diffusion approximation,M(·) = D∆(·) with D > 0 a
constant coefficient which is proportional to the mutation rate and to the mutational
variance at each trait. The Malthusian fitness m(x), i.e. the Malthusian growth
rate of individuals with phenotype x, is defined as the difference between the birth
rate b(x) and death rate d(x) of this class of individuals:

m(x) = b(x)− d(x). (1)

The following generic equation then describes the combined effects of mutation and
selection on the dynamics of the phenotype density f(t,x) under a diffusive approx-
imation of the mutation effects:

∂tf(t,x) = D∆(f)(t,x) + f(t,x)m(x), (2)

in the absence of density-dependent competition, or

∂tf(t,x) = D∆(f)(t,x) + f(t,x)

(
m(x)−

∫
Ω

f(t,y) dy

)
, (3)

if density-dependent competition is taken into account. In both cases, the equation
satisfied by the frequency q(t,x) = f(t,x)/N(t) (with N(t) =

∫
Ω
f(t,x)dx the total

population size) is

∂tq(t,x) = D∆(q)(t,x) + q(t,x)(m(x)−m(t)), (Qstand)

with m(t) the mean fitness in the population:

m(t) =

∫
Ω

m(x) q(t,x) dx. (4)

These models allowed a broad range of results in various biological contexts: con-
centration around specific traits (Diekmann et al., 2005; Lorz et al., 2011; Martin
and Roques, 2016); explicit solutions (Alfaro and Carles, 2014; Biktashev, 2014; Al-
faro and Carles, 2017); moving and/or fluctuating optimum (Figueroa Iglesias and
Mirrahimi, 2019; Roques et al., 2020); anisotropic mutation effects (Hamel et al.,
2020). Then can aslo be extended in order to take migration events into account
(Bouin and Mirrahimi, 2013; Débarre et al., 2013; Lavigne et al., 2020).

With these models, the dynamics of adaptation and the equilibria only depend
on the birth and death rates through their difference m(x) = b(x) − d(x). Thus,
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these models do not discriminate between phenotypes for which both birth and
death rates are high compared to those for which they are both low, given that the
difference is constant. However, as explained above for unicellular organisms, the
mutation rate may be positively correlated with the birth rate which could generate
an imbalance in favour of one of the two strategies: having a high birth rate vs.
having a high survival rate. To acknowledge the role of phenotype-dependent birth
rate and the resulting asymmetric effects of fertility and survival in a deterministic
setting, a new paradigm is necessary.

In this work, we consider the case of mutations that occur during the reproduc-
tion of asexual organisms. We assume that the probability of mutation per birth
event U does not depend on the phenotype of the parent. On the other hand, follow-
ing classical adaptive landscape approaches (Tenaillon, 2014), the birth and death
rates do depend on the phenotype. Using these basic assumptions, we consider
in Section 2 standard stochastic individual-based models of adaptation with muta-
tion and selection. We present how the standard model (Qstand) appears naturally
as a large population limit of both a discrete time model and a continuous time
model when the variance of mutation effects is small and when selection is weak
(i.e. when the variations of the birth and death rates across the phenotype space
are very small). In this work, however, we are interested in a particular setting
where this assumption is not satisfied. In this case, using results from Fournier and
Méléard (2004) for the continuous-time model, we argue that, when the mutation
variance is small, a more accurate approximation of the mutation operator is given
byM(q) = D∆(b(·) q), leading to a new equation of the form

∂tq(t,x) = D∆(b q)(t,x) + q(t,x)(m(x)−m(t)). (Qb)

Here, the mutation operator D∆(b(x) q)(t,x) depends on the phenotype x through
the birth rate b(x), translating the fact that new mutants appear at a higher rate
when the birth rate increases.

In Section 3, we use (Qb) to study the evolution of the phenotype distribution
when the population is subjected to a trade-off between a birth optimum and a
survival optimum, and we highlight the main differences with the standard approach
(Qstand). More specifically, we study the evolution of the phenotype distribution
in the presence of a fitness optimum where b and d are both large (the birth or
reproduction optimum), and a survival optimum, where b and d are both small, but
such that the difference b− d is symmetrical.

Based on analytical results and numerical simulations, we compare the trajec-
tories of adaptation and the equilibrium phenotype distributions between these two
approaches and we check their consistency with the underlying individual-based
models. We discuss these results in Section 4. Mathematical proofs are postponed
to Appendix A.
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2 Emergence of a birth-dependent mutation rate in
an individual-based setting

In this section, we present how the standard equation (Qstand) and the new model
(Qb) with birth-dependent mutation rate are obtained from large population limits
of stochastic individual-based models. We first state a convergence result due to
Fournier and Méléard (2004) which provides the convergence of the phenotype dis-
tribution of the population to the solution of an integro-differential equation, when
the size of the population tends to infinity. We then show that, when the variance
of the mutation effects is small, this equation yields the new model equation (Qb).
This shows how a dependence between the birth rate and the rate at which new
mutant appear in the population arises, even though the probability of mutation
per birth event U does not depend on the phenotype of the parent. We then treat
the case of weak selection, and show how the model (Qstand) is obtained as a large
population limit of the phenotype distribution with a specific time scaling, using re-
sults in Champagnat et al. (2008). We also state an analogous result for the discrete
time model, where in the same regime of weak selection and small mutation effects,
we show the convergence to the solution of (Qstand) as the population size tends to
infinity, on the same timescale as the other model.

In this individual-based setting, we consider a finite population where each in-
dividual carries a phenotype in a bounded open set Ω ⊂ Rd. If the individuals at
time t have traits {x1, . . . ,xNt}, we record the state of the population through the
empirical measure

νKt =
1

K

Nt∑
i=1

δxi
, t ≥ 0,

where δx is the Dirac measure at the point x ∈ Ω and Nt is the current number
of individuals in the population. Note that the number of individuals Nt in this
stochastic individual-based setting does not correspond to the quantity N(t) defined
in the Introduction. In fact, these two quantities will be related via the scaling
parameter K > 0: N(t) = limK→∞Nt/K (or N(t) = limK→∞Nt/εK/K if time is
rescaled, see the definition of εK below).

Let MF (Ω) denote the space of finite measures on Ω, endowed with the topology
of weak convergence. For any ν ∈MF (Ω) and any measurable and bounded function
φ : Ω→ R, we shall write

〈ν, φ〉 =

∫
Ω

φ(x)ν(dx).

2.1 Derivation of the model (Qb) with birth-dependent mu-
tation rate

We first consider a continuous time stochastic individual-based model where indi-
viduals die and reproduce at random times depending on their phenotype and the
current population size. We let b : Ω → R+ and d : Ω → R+ be two bounded and
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measurable functions, and we assume that an individual with phenotype x ∈ Ω re-
produces at rate b(x) and dies at rate d(x) + cKNt for some cK > 0. This parameter
cK measures the intensity of competition between the individuals in the population,
and prevents the population size from growing indefinitely. Each newborn individual
either carries the phenotype of its parent, with probability 1 − U , or, with proba-
bility U , carries a phenotype y chosen at random from some distribution ρ(x,y)dy,
where x is the phenotype of its parent.

We can now describe the limiting behaviour of this model when the population
size K tends to infinity. The following convergence result can be found for example
in (Fournier and Méléard, 2004, Theorem 5.3) and (Champagnat et al., 2008, The-
orem 4.2). Let D([0, T ],MF (Ω)) denote the Skorokhod space of càdlàg functions
taking values in MF (Ω).

Proposition 2.1. Assume that νK0 converges weakly to a deterministic f0 ∈MF (Ω)
as K → +∞ and that cK = c/K for some c > 0. Also assume that supK E[〈νK0 , 1〉3] <
+∞. Then, for any fixed T > 0, as K → +∞,(

νKt , t ∈ [0, T ]
)
−→ (ft, t ∈ [0, T ]) ,

in distribution in D([0, T ],MF (Ω)), where (ft, t ∈ [0, T ]) is such that, for any
bounded and measurable φ : Ω→ R,

〈ft, φ〉 = 〈f0, φ〉+

∫ t

0

〈fs, bM∗φ+ (b− d− c〈fs, 1〉)φ〉ds, (5)

where

M∗φ(x) = U

∫
Ω

(φ(y)− φ(x))ρ(x,y)dy.

We note that, if f0 admits a density with respect to the Lebesgue measure, ft
admits a density (denoted by f(t, ·)) for all t ≥ 0. In this case, setting m(x) =
b(x)− d(x) and

q(t,x) =
f(t,x)

〈ft, 1〉
, m(t) =

∫
Ω

q(t,x)m(x)dx,

we see that the phenotype distribution q solves the following

∂tq(t,x) =M(b q)(t,x) + (m(x)−m(t)) q(t,x), (6)

where

M(f)(x) = U

(∫
Ω

f(y)ρ(y,x)dy − f(x)

)
.

In the model (6), due to the coefficient b in M(b q), mutant individuals appear at
a higher rate in regions where b is higher. As we shall expose below, this has wide
ranging consequences on the qualitative behaviour of the phenotype distribution,
which the standard model (Qstand) does not capture. As it turns out, however,
very little can be proved about the integro-differential equation (6). If the variance
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of mutation effects is sufficently small, however, we can instead study a diffusive
approximation of equation (6). Assume that the effects of mutation on phenotype
can be described by a mutation kernel J , such that ρ(y,x) = J(x− y). Namely,

M(b f)(x) = U

(∫
x−Ω

(b f)(x− y) J(y) dy − (b f)(x)

)
.

Formally, we write a Taylor expansion of (b q)(t,x− y) at x ∈ Ω:

(b q)(t,x− y) =
∞∑

k1,...,kn=0

(−1)k1+···+kn y
k1
1 · · · yknn
k1! · · · kn!

∂k1+···+kn(b q)

∂xk11 · · · ∂xknn
(t,x).

We define the central moments of the distribution:

ωk1,...,kn =

∫
Rn

yk11 · · · yknn J(y1, . . . , yn) dy1 . . . dyn.

We make a symmetry assumption on the kernel J which implies that ωk1,...,kn = 0
if at least one of the ki’s is odd. Moreover, we assume the same variance λ at each
trait: ω0,...,0,ki=2,0,...,0 = λ, and that the moments of order k1 + · · · + kn ≥ 4 are
of order O(λ2). These assumptions are satisfied with the classic isotropic Gaussian
distribution of mutation effects on phenotype. For λ� 1, we obtain:

U

(∫
x−Ω

(b q)(t,x− y) J(y) dy − (b q)(t,x)

)
≈ λU

2
∆(b q)(t,x) +O(λ2).

Thus, when the variance λ of the (symmetric) mutation kernel J is small, we expect
that the solution to (6) behaves as the solution to (Qb):

∂tq(t,x) = D∆(b q)(t,x) + (m(x)−m(t)) q(t,x),

where D = λU/2.

Remark 2.2. We recall that the assumption here is that mutations occur during
reproduction. If we had assumed that mutations take place at a constant rate during
each individual’s lifetime, instead of linking them to reproduction events, we would
have obtained a different equation in (5), where the birth rate b does not appear in
front of the operator M∗. As a result, in this case, we would have obtained the
standard model (Qstand) instead of (Qb).

2.2 Derivations of the standard model (Qstand)
The standard model (Qstand) is classically derived by letting the variance of the
mutation kernel tend to zero and by rescaling time to compensate for the fact that
mutations have very small effects. In order to obtain the convergence of the process
(νKt , t ≥ 0) in this regime, one also has to assume that the intensity of selection
(measured by b−d) is of the same order of magnitude as the variance of the mutation
kernel. This corresponds to a weak selection regime, where b and d are almost
constant on Ω.
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Large population limit of the continuous time model in rescaled timescale
We consider the same stochastic individual-based model as above, but we allow b, d
and ρ to depend on K. We thus let bK(x) denote the birth rate of individuals with
phenotype x, dK their death rate, and ρK will be the mutation kernel. We then
make the following assumption.

Assumption (SE) (frequent mutations with small effects) Let εK = K−η

for some 0 < η < 1 and assume that ρK is a symmetric kernel such that, for all
1 ≤ i ≤ d,∫

Ω

(yi − xi)
2ρK(x,y)dy = εK λ+ o(εK),

∫
Ω

(yi − xi)
2+δρ(x,y)dy = o(εK),

for all in x ∈ Ω for some λ > 0 and δ ∈]0, 2].

This assumption is what justifies the so-called diffusive approximation, where
the effect of mutations on the phenotype density is modelled by a Laplacian in
continuous time.

Assumption (WS) (weak selection) Assume that

bK(x) = 1 + εK b(x), dK(x) = 1 + εK d(x), cK =
εK
K
c,

for some bounded functions b : Ω→ R, d : Ω→ R and some positive c.

The following result then corresponds to Theorem 4.3 in Champagnat et al.
(2008). Recall that Ω is assumed to be a bounded open set, and further assume
that it has a smooth boundary ∂Ω. Let C2

0(Ω) be the set of twice continuously
differentiable functions φ : Ω̄→ R such that

∇φ(x) · ~ν(x) = 0, ∀x ∈ ∂Ω,

where ~ν(x) is the outward unit normal to ∂Ω.

Proposition 2.3. Let Assumptions (SE) and (WS) be satisfied. Also assume that
νK0 converges weakly to a deterministic f0 ∈MF (Ω) as K →∞ and that

sup
K

E[〈νK0 , 1〉3] < +∞.

Then, for any fixed T > 0, as K →∞,(
νKt/εK , t ∈ [0, T ]

)
−→ (ft, t ∈ [0, T ]) ,

in distribution in D([0, T ],MK(Ω)), where ft is such that, for any φ ∈ C2
0(Ω),

〈ft, φ〉 = 〈f0, φ〉+

∫ t

0

〈fs, D∆φ+ (b− d− c〈fs, 1〉)φ〉ds,

with D = Uλ
2
.
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For all t > 0, ft admits a density f(t, ·) and the phenotype distribution q(t,x) =
f(t,x)/〈ft, 1〉 solves (Qstand):

∂tq(t,x) = D∆q(t,x) + (m(x)−m(t)) q(t,x).

As we can see, we have lost the factor b in the mutation term by taking this limit.
This comes from Assumption (WS) which states that bK(x) = 1 + O(εK) (the fact
that the leading order is 1 simply means that we are measuring time in generations,
but it is important that bK − dK = O(εK)). As a result this equation does not
distinguish the birth optimum from the survival optimum.

Large population limit of an individual-based model with non-overlapping
generations We now consider a model where generations are non-overlapping,
meaning that, between two generations (denoted t and t + 1), all the individuals
alive at time t first produce a random number of offspring and then die. The
population at time t + 1 is thus only comprised of the offspring of the individuals
alive at time t.

Let wK : Ω → R+ be a measurable and bounded function and assume that an
individual with phenotype x ∈ Ω produces a random number of offspring which
follows a Poisson distribution with parameter wK(x). In order to include compe-
tition, we assume that each of these offspring survives with probability e−cKNt for
some cK > 0, where Nt is the number of individuals in generation t. Each newborn
individual either carries the phenotype of its parent, with probability 1 − U , or,
with probability U , carries a phenotype y chosen at random from some distribution
ρK(x,y)dy, where x is the phenotype of its parent.

We now make several assumptions in order to obtain an approximation of the
process as the population size tends to infinity. For the limiting process to be
continuous in time, we need to assume that the change in the composition of the
population from one generation to the next is very small, and then rescale time by
the appropriate factor. This ties our hands somewhat, and we need to assume that
wK is very close to one everywhere in Ω. More precisely, we make the following
assumption.

Assumption (WS’) Let εK = K−η for some 0 < η < 1 and assume that

wK(x) = exp (εKm(x)) , cK =
εK
K
c,

for some bounded function m : Ω→ R and some positive c.

Here, wK(x) corresponds to the Darwinian fitness (the average number of off-
spring of an individual with phenotype x), whilem(x) corresponds to the Malthusian
fitness (i.e. the growth rate of the population of individuals with phenotype x). We
further assume that ρK satisfies Assumption (SE) above.

The large population limit of this process is then given by the following result,
which is analogous to similar results in continuous time (for example in Champagnat
et al. (2008)). For the sake of completeness, we provide its proof in Appendix A.
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Proposition 2.4. Assume that Assumption (WS’) is satisfied, along with (SE).
Also assume that, νK0 converges weakly to a deterministic f0 ∈ MF (Ω). Then, for
any fixed T > 0, as K → +∞,(

νKbt/εKc, t ∈ [0, T ]
)
−→ (ft, t ∈ [0, T ]) ,

in distribution in D([0, T ],MF (Ω)), where (ft, t ∈ [0, T ]) is such that, for any φ ∈
C2

0(Ω),

〈ft, φ〉 = 〈f0, φ〉+

∫ t

0

〈fs,M∗φ+ (m− c 〈fs, 1〉)φ〉 ds, (7)

where

M∗φ(x) =
λU

2
∆φ(x).

We note that, for all t > 0, ft admits a density with respect to the Lebesgue
measure. Let f(t, ·) ∈ L1(Ω) denote the corresponding density. Then f(t, ·) solves
the equation

∂tf(t,x) = (Mf)(t,x) +

(
m(x)− c

∫
Ω

f(t,y)dy

)
f(t,x).

We also note that if we set

q(t,x) =
f(t,x)

N(t)
, with N(t) =

∫
Ω

f(t,x)dx,

then q(t, ·) solves (Qstand).

Propositions 2.3 and 2.4 show how the standard model (Qstand) arises as a large
population limit of individual-based models in the weak selection regime with small
mutation effects. However, as Proposition 2.1 shows, the fact that the birth rate does
not appear in the mutation term is a consequence of the weak selection assumption.
In the next section, we will focus on a situation corresponding to a strong trade-off
between birth and survival. In this case, the weak selection assumption is not satis-
fied. Thus, the new model (Qb) should be more appropriate to study the dynamics
of adaptation, at least when generations are overlapping.

In the model with non-overlapping generations, we expect that the model (Qstand)
emerges even when the weak selection assumption is not satisfied. From an intu-
itive perspective, with this model, the expected number of mutants per generation
is U N(t). Thus, if N(t) is close to the carrying capacity, the overall number of
mutants should not depend on the phenotype distribution in the population. How-
ever, if one tries to take a large population limit of the discrete time model in the
same regime as in Proposition 2.1 (keeping w and ρ fixed and letting the population
size tend to infinity), then the phenotype distribution converges to the solution to
a deterministic recurrence equation of the form

〈qt+1, φ〉 =
〈
qt,

w
w(t)
M∗φ+ w

w(t)
φ
〉
,
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whereM∗ is as in (5). We do not study this equation here, but it is interesting to
note that the fitness has an effect on the mutations, albeit quite different from that
in (5).

In the following section, we use (Qb) to study the consequences of a birth-
dependent mutation rate on the trade-off between birth and survival, and we com-
pare our results to the standard approach of (Qstand) and to individual-based sim-
ulations.

3 Consequences of a birth-dependent mutation rate
on the trade-off between birth and death

We focus here on the trajectories of adaptation and the large time dynamics given
by the model (Qb), with a special attention on the differences with the standard
approach (Qstand) which neglects the dependency of mutation rate on birth rate.

In most related studies, the relationships between the phenotype x and the fit-
ness m(x) is described with the standard Fisher Geometrical Model (FGM) where
m(x) = rmax−‖x‖2 /2. This phenotype to fitness landscape model is widely used, see
e.g. Tenaillon (2014), Martin and Lenormand (2015). It has shown robust accuracy
to predict distributions of pathogens Martin et al. (2007), Martin and Lenormand
(2006), and to fit biological data (Perefarres et al., 2014; Schoustra et al., 2016).
Here, however, in order to study the trade-off between birth and survival, we shall
assume that the death rate d takes the form: d(x) = r − s(x) for some r > 0, such
that

m(x) = b(x)︸︷︷︸
birth

+ s(x)︸︷︷︸
survival

−r, (8)

for some function s : Ω → [0, r] such that b and s are symmetric about the axis
x1 = 0 and we assume that b has a global maximum that is not on this axis. As
a result s also has a global maximum, which is the symmetric of that of b. The
positive constant r has no impact on the dynamics of the phenotype distribution
q(t,x) in model (Qb), as it vanishes in the term m(x) −m(t). To keep the model
relevant, the constant r must therefore be chosen such that d(x) > 0 for all x ∈ Ω.

We assume that b(x) reaches its maximum at Ob ∈ Ω and s(x) reaches its
maximum at Os ∈ Ω. If one of the optima leads to a higher fitness value, we expect
that the corresponding strategy (high birth vs. high survival) will be selected. To
avoid such ‘trivial’ effects, and to analyse the result of the trade-off between birth
and survival independently of any fitness bias towards one or the other, we make the
following assumptions. The domain Ω is symmetric about the hyperplane {x1 = 0}.
Next, b and s are positive, continuous over Ω and symmetric in the following sense:

b(x) = s(ι(x)), with ι(x) = ι(x1, x2, ..., xn) = (−x1, x2, ..., xn). (9)

The optima are then also symmetric about the axis x1 = 0:

Ob = (β, 0, . . . , 0) and Os = (−β, 0, . . . , 0),
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Figure 1: Schematic representation of the fitness function m(x) along the
phenotype dimension x1. In both cases the black dashed lines correspond to
the survival optimum Os = (−β, . . . , 0) (on the left) and the birth optimum Ob =
(β, 0, . . . , 0) (on the right). In Figure 1(a) those optima are almost superposed with
those ofm, which is very different from Figure 1(b). In red we pictured the functions
b and s− r.

for some β > 0, so that the birth optimum is situated to the right of x1 = 0 and
the survival optimum is situated to the left of x1 = 0. A schematic representation
of the birth and survival terms and corresponding fitness function, along the first
dimension x1 is given in Figure 1.

Finally, we assume that the birth rate is larger than the survival rate in the
whole half-space around Ob (Ω ∩ {x1 > 0}), and conversely, from (9), the survival
rate is higher in the other half-space. In other terms:

b(x1, . . . , xn) > s(x1, . . . , xn), for all x ∈ Ω ∩ {x1 > 0},
s(x1, . . . , xn) > b(x1, . . . , xn), for all x ∈ Ω ∩ {x1 < 0}. (10)

From the symmetry assumption (9), we know that the hyperplane {x1 = 0} is a criti-
cal point for b+s in the direction x1, that is ∂x1b(0, x2, . . . , xn) = −∂x1s(0, x2, . . . , xn).

For the well-posedness of the model (Qb), and as the integral of q(t,x) over Ω
must remain equal to 1 (recall that q(t, ·) is a probability distribution), we assume
reflective (Neumann) boundary conditions:

b(x)(∇q(t,x) · ~ν(x)) + (∇b(x) · ~ν(x)) q(t,x) = 0,x ∈ ∂Ω,

with ~ν(x) the outward unit normal to ∂Ω, the boundary of Ω. We also assume a
compactly supported initial condition q0(x) = q(0,x), with integral 1 over Ω.

3.1 Trajectories of adaptation

The methods developed in Hamel et al. (2020) provide analytic formulas describing
the full dynamics of adaptation, and in particular the dynamics of the mean fitness
m(t), for models of the form (Qstand), i.e., with a constant mutation rate. As
far as model (Qb) is concerned, due to the birth-dependent term in the mutation
operator D∆(b q), the derivation of comparable explicit formulas seems out of reach.
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To circumvent this issue, we use numerical simulations to exhibit some qualitative
properties of the adaptation dynamics, that we demonstrate next. We focus on the
dynamics of the mean phenotype x(t) and of the mean fitness m(t), to be compared
to the ‘standard’ case, where the mutation rate does not depend on the phenotype,
and to individual-based stochastic simulations with the assumptions of Section 2.
In the PDE setting, the mean phenotype x(t) ∈ Ω and mean fitness m(t) ∈ R− are
defined by:

x(t) :=

∫
Ω

x q(t,x) dx, m(t) :=

∫
Ω

m(x) q(t,x) dx.

Numerical simulations. Our numerical computations are carried out in dimen-
sion n = 2, starting with an initial phenotype concentrated at some point x0 in
Ω. The trajectories given by the PDE (Qb) with a birth-dependent mutation rate
are depicted in Figure 2(a), together with 10 replicate simulations of a stochastic
individual-based model with overlapping generations (see Section 2). The mean
phenotype is first attracted by the birth optimum Ob. In a second time, it converges
towards Os. This pattern leads to a trajectory of mean fitness which exhibits a
small ‘plateau’: the mean fitness seems to stabilize at some value smaller than the
ultimate value m∞ during some period of time, before growing again at larger times.
The trajectories given by individual-based simulations exhibit the same behaviour.

On the other hand, simulation of the standard equation (Qstand) without depen-
dence of the mutation rate with respect to the phenotype (with Neumann boundary
conditions), leads to standard saturating trajectories of adaptation, see Figure 2(b)
(already observed in Martin and Roques, 2016, with this model).

If the initial population density q0 is symmetric about the hyperplane {x1 = 0},
then so does q(t,x) at all positive times in this case. This is a consequence of the
uniqueness of the solution of (Qstand) (which follows from Hamel et al., 2020): we
observe that if q(t,x) is a solution of (Qstand) with initial condition q0, then so does
q(t, ι(x)). By uniqueness, q(t,x) = q(t, ι(x)) for all times. This in turns implies
that the mean phenotype x(t) remains on the hyperplane {x1 = 0}, i.e., at the same
distance of the two optima Ob and Os. Besides, even if q0 was not symmetric about
{x1 = 0}, i.e., if the initial phenotype distribution was biased towards one of the two
optima, the trajectory of x(t) would ultimately still converge to the axis {x1 = 0}.
Again, this is a consequence of the uniqueness of the positive stationary state of
(Qstand) (with integral 1), which is itself a consequence of the uniqueness of the
principal eigenfunction (up to multiplication) of the operator φ 7→ D∆φ + m(x)φ
(this uniqueness result is classical, see e.g. Alfaro and Veruete, 2018). This time,
the trajectories given by the model (Qb) are in good agreement with those given by
an individual-based model with non-overlapping generations (see section 2).

Initial bias towards the birth optimum, a multidimensional feature. One
of the qualitative properties observed in the simulations (Figure 2(a)) is an initial
tendency of the trajectory of the mean phenotype x(t) to go towards the birth
optimum Ob. We show here that this is a general feature, conditioned by the shape
of selection along other dimensions. For simplicity, we denote by x1(t) the mean
value of the first trait, that is, the first coordinate of x(t). We consider initial
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(a) Model (Qb)

(b) Model (Qstand)

Figure 2: Trajectory of adaptation and stationary distribution: model
(Qb) with birth-dependent mutation rate vs standard model (Qstand).
The red circles in the left panels correspond to the position of the mean phe-
notype x(t) with initial condition concentrated at x0 = (0,−0.3), at successive
times t = 0, 1, . . . , 100. The central panels describes the dynamics of the mean
fitness m(t), in a logarithmic scale. The black curves in these panels corre-
spond to 10 replicate simulations of the individual based models of Section 2,
with either overlapping generations (upper panels) or non-overlapping generations
(lower panels). The right panels correspond to the distribution at t = 100. We
assumed here that the dimension is n = 2, Ob = (1/2, 0), Os = (−1/2, 0)
(i.e., β = 1/2), b(x) = b(x1, x2) = exp

[
−(x1 − β)2/(2σ2

x1
)− x2

2/(2σ
2
x2

)
]
, s(x) =

exp
[
−(x1 + β)2/(2σ2

x1
)− x2

2/(2σ
2
x2

)
]
, σ2

x1
= σ2

x2
= 1/10 and D = 1/4000.
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conditions q0 that are symmetric about the hyperplane {x1 = 0}, and that are
localized around a phenotype x0 ∈ {x1 = 0}. By localized, we mean that q0 vanishes
outside some compact set that contains x0. We denote by K0 the support of q0, and
define K+

0 := K0 ∩ {x1 > 0} the ‘right part of K0’. We prove the following result
(the proof is detailed in Appendix A).

Proposition 3.1. Let q be the solution of (Qb), with an initial condition q0 which
satisfies the above assumptions. Then the following holds.

• If ∆(x1m) ≥ 0 (and 6≡ 0) on K+
0 , then the solution is initially biased towards

the birth optimum, that is

x′1(t = 0) = 0 and x′′1(t = 0) > 0. (11)

• If ∆(x1m) ≤ 0 (and 6≡ 0) on K+
0 , then the solution is initially biased towards

the survival optimum, that is

x′1(t = 0) = 0 and x′′1(t = 0) < 0. (12)

A surprising feature of this proposition is the discussion around the sign of the
quantity ∆(x1m). It shows that the local convexity (or concavity) of m around the
initial phenotype is important. It stems from the overall shape and symmetry of m.
We first illustrate this in dimension 1. In that case, the Laplace operator simply
becomes

∆(xm) = xm′′(x) + 2m′(x) =: g(x),

and the initial distribution q0 is located around 0. By the symmetry assumption
(9), we know that m′(0) = 0 and thus g(0) = 0. Therefore, in this one dimensional
case, the discussion of Proposition 3.1 about the sign of ∆(xm) is linked to the sign
of g′(0) = 3m′′(0), that is the local convexity of m around 0. Equivalently, it is
also dictated by a discussion about the shape of m: if m presents a profile with two
symmetric optima (camel shape, Figure 1(a)) or a single one located at 0 (dromedary
shape, Figure 1(b)), the outcome of the initial bias is different. If m has two local
maxima, one around Ob, and the other around Od, then necessarily m admits a local
minimum around 0, see the camel shape in Figure 1. Therefore, as a consequence of
Proposition 3.1, there is an initial bias towards the birth optimum. If now m admits
a single optimum, as a sum of birth and survival, the critical point 0 is also a global
maximum of m. From Proposition 3.1, it means that, reversing it, there is an initial
bias towards survival. We refer to Figure 3 for the numerical representations of the
different shapes of m, the sign of g and the implications relatively to the trajectories
of fitness.

This can be explained as follows. In the case where m has two optima, the
population is initially around a minimum of fitness. By symmetry of m there is no
fitness benefice of choosing either optimum. However, individuals on the right have
a higher mutation rate, which generates variance to fuel and speed-up adaptation,
which explains the initial bias towards right. On the other hand, if 0 is the unique
optimum of the fitness function, the initial population is already at the optimum.
Thus, generating more variance does not speed-up adaptation, but on the contrary
generates more mutation load, which explains the initial bias towards left.
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In a multidimensional setting, we can follow the same explanations, even if an-
other phenomenon can arise. The reason lies in the following formula:

∆(x1m) = ∂x1x1(x1m) + x1

∑
j≥2

∂xjxjm. (13)

Suppose that, as in Figure 1(a), there is a local minimum around x0, in the first
dimension. Then, the first term of (13) is positive in a neighborhood of x0 as soon
as x1 > 0, as we explained previously. In dimension n ≥ 2, if the sum of the
second derivatives with respect to the other directions is negative, the overall sign
of ∆(x1m) may be changed. Such a situation can arise in dimension 2 if x0 is a
saddle point. This phenomenon can be observed on Figure 3. In both Figure 3(a)
and Figure 3(b), the fitness function m is camel like along the first dimension, as
pictured in Figure 1(a). However, as a consequence of the second dimension, we
observe, or not, an initial bias towards the birth optimum. Similarly to the one-
dimensional case, one can observe that if the mutational load is too important, here
on the second dimension, we do not observe this initial bias. This of course cannot
be if x0 is a local minimum of m in Rd.

Large time behaviour. We now analyze whether the convergence towards the
survival optimum at large times observed in Figure 2(a) is a generic behavior. In that
respect, we focus on the stationary distribution q∞ associated with the model (Qb).
It satisfies equation

D∆(b q∞)(x) +m(x) q∞(x) = m∞ q∞(x), x ∈ Ω, (14)

for some m∞ ∈ R. Setting
v(x) := b(x) q∞(x),

this reduces to a more standard eigenvalue problem, namely

D∆v(x) +
m(x)

b(x)
v(x) = m∞

1

b(x)
v(x), x ∈ Ω, (15)

supplemented with Neumann boundaries conditions:

∇v(x) · ~ν(x) = 0, x ∈ ∂Ω. (16)

As the factor 1/b(x) multiplying m∞ is strictly positive, we can indeed apply the
standard spectral theory of Courant and Hilbert (2008) (see also Cantrell and Cos-
ner, 2003). Precisely, there is a unique couple (v(x),m∞) satisfying (15)—(16) (with
the normalization condition

∫
Ω
v(x)dx = 1) such that v(x) > 0 in Ω. The ‘principal

eigenvalue’ m∞ is provided by the variational formula

m∞ = max
ψ∈W 1,2(Ω)

Q[ψ], (17)

where

Q[ψ] :=
−D

∫
Ω
‖∇(ψ

√
b)‖2(x)dx +

∫
Ω
m(x)ψ2(x)dx∫

Ω
ψ2(x)dx

.
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(a) Shape 1: ∆(x1m(x1, x2)) > 0 on the axis {x1 = 0}
fig

(b) Shape 2: ∆(x1m(x1, x2)) changes sign on the axis {x1 = 0}

Figure 3: Trajectory of adaptation with different shapes of the fitness
function. The left panels depict the fitness function. The central panels describe
the sign of ∆(x1m(x1, x2)) in the region {x1 > 0}: this quantity is negative in
the blue region and positive otherwise. The right panels depict the corresponding
trajectories of the mean phenotype x(t) obtained with the model (Qb), at successive
times t = 0, 1, . . . , 100. In both cases, the initial condition is concentrated at x0 =
(0,−0.1), leading to a positive sign of ∆(x1m(x1, x2)) at (x1, x2) = x0 in the upper
panels and a negative sign in the lower panels. The parameter values are the same
as in Fig. 2, except for the fitness function of the lower panel, where σ2

x1
= 1/18 and

σ2
x2

= 1/10.
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An immediate consequence of formula (17) is thatm∞ is a decreasing function of the
mutational parameter D. This means that, as expected, the mutation load increases
when the mutational parameter is increased.

We expect the stationary state to ‘lean mainly on the left’, meaning that the
survival optimum is selected at large times, but deriving rigorously the precise shape
of q∞ seems highly involved. However, formula (17) gives us some intuition. First,
multiplying (15) by v and integrating, we observe that Q[v/

√
b] = Q[

√
b q∞] = m∞.

Thus, formula (17) shows that the shape of q∞ should be such that ψ =
√
b q∞

maximizes the Rayleigh quotient Q.
We thus consider each term of Q separately. From Hardy-Littlewood-Pólya re-

arrangement inequality, the term
∫

Ω
m(x)ψ2(x)dx is larger when ψ is arranged like

m, i.e., ψ takes its largest values where m is large and its smallest values where m is
small. Thus, this term tends to promote shapes of ψ which look like m. The other
term −D

∫
Ω
‖∇(ψ

√
b)‖2(x)dx tends to promote functions ψ which are proportional

to 1/
√
b. Finally, the stationary distribution q∞ should therefore realize a compro-

mise between 1/b and m/
√
b. As both functions take their larger values when b is

small, we expect q∞ to be larger close to the survival optimum Os.
More rigorously, define q̃(x) = q(−x1, x2, . . . , xn) = q(ι(x)). As

√
b q∞ realises a

maximum of Q, we have
Q[
√
b q∞] ≥ Q[

√
s q̃∞].

Recalling s(x) = b(ι(x)) and using the symmetry of m, this implies that∫
Ω

‖∇(q̃∞
√
b s)‖2 =

∫
Ω

‖∇(q∞
√
b s)‖2 ≥

∫
Ω

‖∇(q∞ b)‖2. (18)

Now, we illustrate that moralement this gradient inequality means that the station-
ary distribution tends to be closer to Os than to Ob. In dimension n = 1, assume
that b(x) = exp(−(x − β)2) and s(x) = exp(−(x + β)2). Assume that the domain
is large enough so that the integrals over Ω can be accurately approached by inte-
grals over (−∞,+∞). Among all functions of the form hγ(x) = exp(−(x − γ)2), a
straightforward computation reveals that(∫ +∞

−∞
[∂x(hγ

√
b s)]2(x) dx ≥

∫ +∞

−∞
[∂x(hγ b)]

2(x) dx

)
⇔ γ ≤ −β/2,

which means that the inequality is satisfied by functions h whose maximum is
reached at a value x = γ closer to Os = −β than to Ob = β.

Large mutation effects. This advantage of adaptation towards the survival op-
timum becomes more obvious when the mutation effects are large. We observed
above that mD

∞ (seen here as a function of D) is decreasing. Moreover, from (17),
we have, for all D > 0,

mD
∞ ≥ Q[1/

√
b] =

(∫
Ω

mb−1

)(∫
Ω

b−1

)−1

Thus mD
∞ admits a limit m∞∞ as D → ∞. Moreover, the corresponding stationary

states satisfy ∆(b qD∞)(x) + qD∞(x) (m(x)−mD
∞)/D = 0. Standard elliptic estimates
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and Sobolev injections imply that, up to the extraction of some subsequence Dk →
∞, the functions qDk

∞ converge, as k →∞, in C2(Ω) to a nonnegative solution (with
mass 1) of ∆(b q∞∞)(x) = 0. As such a solution is unique and given by:

q∞∞(x) = C/b(x) with C =

∫
Ω

b−1,

the whole sequence qD∞ converges to C/b(x) as D → ∞. Thus, in order to reduce
the mutation load, the phenotype distribution tends to get inversely proportional to
b in the large mutation regime.

An analytically tractable example. Consider the following form for the birth
rate, in dimension n = 1:

b(x) =


2 for x ∈ (0, a),
1 for x ∈ (−a, 0),
−M for x 6∈ (−a, a).

(19)

With the assumptions (8) and (19), we get:

m(x) = 3− r, for x ∈ (−a, a),

and m(x) = −(r + 2)M outside (−a, a). Then, we consider the corresponding 1D
eigenvalue problem (14) in an interval Ω containing (−a, a). Assuming that the
phenotypes are extremely deleterious outside (−a, a) (i.e., M � 1), we make the
approximation q∞(±a) = 0. In this case, we prove (see Appendix A) that∫ 0

−a q∞(x) dx∫ a
0
q∞(x) dx

>
1

2
√

2−
√

2− 2 +
√

2
> 1.

In other word, the stationary distribution has a larger mass to the left of 0 (where
s is larger) than to the right (where b is larger).

4 Discussion
We found that a positive dependence between the birth rate and the mutation rate
emerges naturally at the population scale, from elementary assumptions at the in-
dividual scale. Based on a large population limit of a stochastic individual-based
model, we derived a reaction-diffusion framework (Qb) that describes the evolution-
ary trajectories and steady states in the presence of this dependence. We compared
this approach with stochastic replicate simulations of finite size populations which
showed a good agreement with the behaviour of the reaction-diffusion model. These
simulations, and our analytical results on (Qb) demonstrate that taking this de-
pendence into account, or conversely omitting it as in the standard model (Qstand),
has far reaching consequences on the description of the evolutionary dynamics. In
light of our results, we discuss below the causes and consequences of the positive
dependence between the birth rate and the mutation rate.
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Birth-dependent mutation rate: causes Even though the probability of mu-
tation per birth event U does not depend on the phenotype of the parent, and
therefore on its fitness nor its birth rate, a higher birth rate implies more mutations
per unit of time at the population scale. This holds true when mutations mainly
occur during reproduction, which is the case for bacteria and viruses. The math-
ematical derivation of the standard model (Qstand), that does not account for this
dependence, generally relies on a weak selection assumption, which de facto implies
a very mild variation of the birth rate with the phenotype. In such cases, the mu-
tation rate can safely be assumed to be phenotype-independent at the population
scale, even though it is positively correlated with the birth rate. Another excep-
tion corresponds to organisms with non-overlapping generations: the simulations in
Fig. 2(b) indicate that even with a fitness function that strongly depends on the
phenotype, the trajectories of adaptation are adequately described by the model
(Qstand). Species with non-overlapping generations include annual plants (but some
overlap may exist due to seedbanks), many insect species (e.g. processionary moths
Roques, 2015, again some overlap may exist due to prolonged diapause) and fish
species (such as some killifishes with annual life cycles Turko and Wright, 2015). In
the other situations, our approach reveals that the model (Qb) will be more relevant.

Birth-dependent mutation rate: consequences When the model (Qb) is cou-
pled with a phenotype to fitness landscape with two optima, one for birth, the other
one for survival, a new trade-off arises in the population. Compared to the standard
approach (Qstand), the symmetry between birth and survival is broken. Thus, in
a perfectly symmetric situation (symmetric initial condition and fitness function),
our analytical results and numerical simulations show new nontrivial strategies for
the trajectories of mean phenotype and for the stationary phenotype distribution.
These new strategies are in sharp contrast with those displayed for the standard
model equation (Qstand) for which the two optima are perfectly equivalent. With
the model (Qb), we obtained trajectories of adaptation where the mean phenotype
of the population is initially attracted by the birth optimum, but eventually con-
verges to the survival optimum, following a hook-shaped curve (see Figure 2). It is
well-known that increasing the mutation rate has antagonistic effects on adaptation
in the FGM (and other models with both deleterious and beneficial mutations) as
it generates fitness variance to fuel and speed-up adaptation (Lavigne et al., 2020)
but lowers the mean fitness by creating a larger mutation load (e.g. Anciaux et al.,
2019). Here, these two effects shape the trajectories of adaptation. When far for
equilibrium, the phenotypes with a higher mutation rate tend to be advantaged,
leading to trajectories of mean phenotype that are initially biased toward the birth
optimum. Then, in a second time, adaptation promotes the survival optimum, as it
is associated with a lower mutation load.

Another feature of the model (Qb) is that the transient trajectory of mean fit-
ness displays plateaus, as observed for instance in Figure 2. This phenomenon of
several epochs in adaptation is well documented thanks to the longest ever evolu-
tion experiment, the ‘Long Term Evolution Experiment’ (LTEE). Experimenting on
Eschereschia Coli bacteria, Wiser et al. (2013) found out that even after more than
70, 000 generations, fitness had not reached its maximum, apparently challenging
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the very existence of such a maximum, the essence of Fisher’s Geometrical Model.
It was then argued that the data could be explained by a two epoch model Good
and Desai (2015), with or without saturation. A similar pattern was observed for
a RNA virus Novella et al. (1995). Recently, Hamel et al. (2020) showed that the
FGM with a single optimum but anistropic mutation effects also leads to plateaus,
and they obtained a good fit with the LTEE data. Our study shows that, when
coupled with a phenotype to fitness landscape with two optima, the (Qb) is also a
possible candidate to explain these trajectories of adaptation.

The model (Qb) in the mathematical literature Some authors have already
considered operator which are closely related to the mutation operator in (Qb).
For instance Lorz et al. (2011) considered non homogeneous operators of the form
B(q)(t,x) = div(b(x)∇q(t,x)) within the framework of constrained Hamilton-Jacobi
equations. However this operator does not emerge as the limit of a microscopic dif-
fusion process or as an approximation of an integral mutation operator. It is more
adapted to the study of heat conduction as it notably tends to homogenize the
solution compared to the Fokker-Planck operator ∆(b(x)q(t,x)), see Figure II.7 in
Roques (2013). Finally, the flexible framework of Bürger (2000) allows for heteroge-
neous mutation rate. Due to the complicated nature of the operator involved, (B is
a kernel operator compact or power compact), the theoretical framework is in turn
very intricate. Quantitative results are in consequence either relatively few, and
typically consist in existence and uniqueness of solutions, upper or lower bounds on
the asymptotic mean fitness (Bürger, 1998, 2000), or concern simpler models (with
a discretization of the time or of the phenotypic space), see Hermisson et al. (2002),
Redner (2004).

Sexual reproduction How to take into account a phenotype dependent birth rate
with a sexual mode of reproduction is an open question to the best of our knowledge.
A classical operator to model sexual genetic inheritance in the background adopted
in this article is the infinitesimal operator, introduced by Fisher, (Fisher, 1918), see
Slatkin (1970); Cotto and Ronce (2014) or the review of Turelli (2017). It describes
a trait deviation of the offspring around the mean of the phenotype of the parents,
drawn from a Gaussian distribution. Mathematically, few studies have tackled the
operator, with the notable only exceptions of the derivation from a microscopic
point of view of Barton et al. (2017), the small variance and stability of analysis of
Calvez et al. (2019); Patout (2020), and finally in Mirrahimi and Raoul (2013); Raoul
(2017), with an additional spatial structure, the convergence of the model towards
the Kirkpatrick-Barton model when the reproduction rate is large. In all those cases,
the reproduction term is assumed to be constant. With the formalism of (2), at the
population scale, mating and birth should be positively correlated, which should
lead to considering the following variation on the infinitesimal operator, which acts
upon the phenotype x ∈ R (for simplicity, we take n = 1 here for the dimension of
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the phenotype):

M(f)(x) :=

1

σ
√
π

∫∫
R2

exp

[
− 1

σ2

(
x− x1 + x2

2

)2
]
b(x1)f(x1)

ω(x2)f(x2)∫
R ω(x′2)f(x′2) dx′2

dx1dx2. (20)

We try to explain this operator as follows. It describes how an offspring with trait x
appears in the population. First, an individual x1 rings a birth clock, at a rate given
by its trait and the distribution of birth events b, as in (1). Next, this individual
mates with a second parent x2, chosen according to the weight ω. Then, the trait
of the offspring is drawn from the normal law N

(
x1+x2

2
, σ2
)
.

As the birth rate of individuals seems a decisive factor in being chosen as a
second parent, a reasonable choice would be ω = b in the formula above. Again, to
the best of our knowledge, no mathematical tools have been developed to tackle the
issues we raise in this article with this new operator. We can mention the works of
Raoul (private communication) about similar operators.

A new trade-off, similar to the one discussed in this article, can also arise with the
operator (20). Indeed, coupled with a selection term, as in (1) for instance, a trade-
off between birth and survival can appear if b (or ω) and d have different optima.
It would be very interesting to follow the trajectories of fitness along time as in
Figure 2, to discover if the effects highlighted in this paper for asexual reproduction
are still present, and when, with sexual reproduction. Of course, a third factor in
the trade-off is also present, through the weight of the choice of the second parent
via the function ω. If an external factor favors a second parent around a third
optimum, then the effect it has on the population should also be taken into account.
The relevance of such a model in an individual based setting, as in Section 2 is also
an open question to this day for the operator (20). With the assumption ω = b,
the roles of first and second parents are symmetric in the operator (20), and an
investigation of the balance between birth and survival could be carried out without
additional assumptions.

Appendix A Mathematical proofs

A.1 Proof of Proposition 2.4

For φ : Ω→ R measurable and bounded, let

Pφ(x) = (1− UK)φ(xi) + UK

∫
Ω

φ(y)ρK(xi,y)dy.

Lemma A.1. For t ∈ N,

〈νKt , φ〉 = 〈νK0 , φ〉+
t∑

s=1

〈νKs , wKe−cKK〈ν
K
s ,1〉Pφ− φ〉+MK

t (φ),

where (MK
t (φ), t ≥ 0) is a local martingale with quadratic variation
t∑

s=1

(
1

K
〈νKs , wKPφ2〉e−cKK〈νKs ,1〉 + 〈νKs , wKe−cKK〈ν

K
s ,1〉Pφ− φ〉2

)
.
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Proof. From the definition of the model, for any φ : Ω→ Rmeasurable and bounded,

E
[
〈νKt+1, φ〉

∣∣ νKt ] =
1

K

Nt∑
i=1

wK(xi) e
−cKNt

{
(1− UK)φ(xi) + UK

∫
Ω

φ(y)ρK(xi, dy)

}
= 〈νKt , wKe−cKK〈ν

K
t ,1〉Pφ〉.

Hence

E
[
〈νKt+1, φ〉 − 〈νKt , φ〉

∣∣ νKt ] = 〈νKt , wKe−cKK〈ν
K
t ,1〉Pφ− φ〉. (21)

We now wish to compute

E
[(
〈νKt+1, φ〉 − 〈νKt , φ〉

)2
∣∣∣ νKt ] .

To do this, let νKt = 1
K

∑N
i=1 δxi

and let Ni be the number of offspring of individual
i and let (Yi,j, 1 ≤ j ≤ Ni) denote their types. From the definition of the model, Ni

is a Poisson random variable with parameter wK(xi)e
−cKN and the (Yi,j, j ≥ 1) are

i.i.d. with

E[φ(Yi,j) |xi] = Pφ(xi), V[φ(Yi,j) |xi] = Pφ2(xi)− (Pφ(xi))
2.

Then we write

〈νKt+1, φ〉 − 〈νKt , φ〉 =
1

K

N∑
i=1

(
Ni∑
j=1

(φ(Yi,j)− Pφ(xi))

)

+
1

K

N∑
i=1

(
Ni − wK(xi)e

−cKN
)
Pφ(xi) + 〈νNt , wKe−cKNPφ− φ〉.

Since the third term is deterministic and the first two terms are uncorrelated,

E
[(
〈νKt+1, φ〉 − 〈νKt , φ〉

)2
∣∣∣ νKt ] =

1

K2

N∑
i=1

wK(xi)e
−cKN

(
Pφ2(xi)− (Pφ(xi))

2
)

+
1

K2

N∑
i=1

wK(xi)e
−cKN(Pφ(xi))

2 + 〈νKt , wKe−cKNPφ− φ〉2.

Rearranging, we arrive at

E
[(
〈νKt+1, φ〉 − 〈νKt , φ〉

)2
∣∣∣ νKt ]

=
1

K
〈νKt , wKPφ2〉e−cKK〈νKt ,1〉 + 〈νKt , wKe−cKK〈ν

K
t ,1〉Pφ− φ〉2. (22)

This concludes the proof of the lemma.

Note that, setting

M∗
Kφ(x) =

UK
εK

∫
Ω

(φ(y)− φ(x))ρK(x,y)dy,
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equation (21) can also be written

E
[
〈νKt+1, φ〉 − 〈νKt , φ〉

∣∣ νKt ]
= 〈νKt , wK e−cKK〈ν

K
t ,1〉 εKM∗

Kφ+ (wK e
−cKK〈νKt ,1〉 − 1)φ〉.

Using Assumption (A1), we then have

E
[
〈νKt+1, φ〉 − 〈νKt , φ〉

∣∣ νKt ] = εK〈νKt ,M∗
Kφ+ (m− c〈νKt , 1〉)φ〉+ o(εK〈νKt , 1〉).

We then note that, in the case of Assumption (FE),M∗
Kφ =M∗φ, while in the case

of Assumption (SE), by a Talyor expansion, for any φ ∈ C2
0(Ω),

M∗
Kφ(x) =

λU

2
∆φ(x) + o(1),

uniformly in x ∈ Ω. Finally, note that the first term in (22) is of the order of 1/K
while the second term is of the order of ε2

K .
For N ≥ 1, define a stopping time τKN by

τKN = inf{t ≥ 0 : 〈νKt , 1〉 ≥ N〉.

Lemma A.2. For any fixed N ≥ 1 and T > 0, for any φ ∈ C2(Ω),

sup
0≤t≤bT/εKc

|MK
t∧τKN

(φ)| −→ 0,

in probability as K →∞.

Proof. By Doob’s martingale inequality,

E

[
sup

0≤t≤bT/εKc
|MK

t∧τKN
(φ)|2

]
≤ 4E

[
|MK
bT/εKc∧τKN

(φ)|2
]

≤ 4E

bT/εKc∧τKN∑
s=1

{
1

K
〈νKs , wKPφ2〉+ 〈νKs , wKe−cεK〈ν

K
s ,1〉Pφ− φ〉2

} . (23)

Clearly, for 0 ≤ s ≤ bT/εKc ∧ τKN ,

|〈νKs , wKPφ2〉| ≤ C‖φ‖2
∞N. (24)

We then note that there exists a function rK : R→ R such that, for all x ∈ R,

eεKx = 1 + εKx e
εKrK(x), and |rK(x)| ≤ |x|.

With this notation,

wK(x)e−cKK〈ν
K
s ,1〉 − 1 = εKm(x)eεKrK(m(x))−c εK〈νKs ,1〉 − c εK〈νKs , 1〉eεKrK(−c〈νKs ,1〉).
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Hence, using the fact that rK(x) has the same sign as x,

|〈νKs , (wKe−cεK〈ν
K
s ,1〉 − 1)Pφ〉| ≤ C‖φ‖∞ εK(N +N2). (25)

Finally, Pφ − φ = εKM∗
Kφ, and, for φ ∈ C2

0(Ω), under either Assumption (FE) or
(SE),

sup
K>0
‖M∗

Kφ‖∞ ≤ Cφ,

we have

|〈νKs , Pφ− φ〉| ≤ Cφ εKN. (26)

Plugging (24), (25) and (26) in (23), we obtain

E

[
sup

0≤t≤bT/εKc
|MK

t∧τKN
(φ)|2

]
≤ CT

(
N

εKK
+ ε2

K(N +N2)2

)
.

Since the right-hand-side tends to zero as K → ∞, this concludes the proof of the
lemma.

Lemma A.3. Fix T > 0, and let

XK = sup
0≤t≤bT/εKc

〈νKt , 1〉.

Then (XK , K > 0) is tight in R+. Moreover, for any δ > 0, N can be chosen such
that

lim sup
K→∞

P(τKN ≤ bT/εKc) ≤ δ.

Proof. Looking at the statement of Lemma A.1, we note thatM∗
K1 = 0 and that

wK(x)e−cKK〈ν
K
s ,1〉 − 1 =

(
eεKm(x) − 1

)
e−cεK〈ν

K
s ,1〉 + e−cεK〈ν

K
s ,1〉 − 1

≤ CεK〈νKs , 1〉,

for some constant C > 0, using the fact that m is bounded. As a consequence,

〈νKt∧τKN , 1〉 ≤ 〈ν
K
0 , 1〉+

t∧τKN∑
s=1

εKC〈νKs , 1〉+MK
t∧τKN

(1)

≤ 〈νK0 , 1〉+
t∑

s=1

εKC〈νKs∧τKN , 1〉+MK
t∧τKN

(1).

By Gronwall’s inequality, we obtain

〈νKt∧τKN , 1〉 ≤
(
〈νK0 , 1〉+ sup

0≤s≤t
MK

s∧τKN
(1)

)
eCεKt.
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Hence,

sup
0≤t≤bT/εKc

〈νKt∧τKN , 1〉 ≤

(
〈νK0 , 1〉+ sup

0≤t≤bT/εKc
MK

t∧τKN
(1)

)
eCT .

As a result,

P(XK ≥ N) = P(τKN ≤ bT/εKc)

≤ P

([
〈νK0 , 1〉+ sup

0≤t≤bT/εKc
MK

t∧τKN
(1)

]
eCT ≥ N

)

≤ P
(
〈νK0 , 1〉 ≥

1

2
Ne−CT

)
+ P

(
sup

0≤t≤bT/εKc
MK

t∧τKN
(1) ≥ 1

2
Ne−CT

)
.

Since 〈νK0 , 1〉 is tight, for any δ > 0 we can choose N large enough such that

lim sup
K→∞

P
(
〈νK0 , 1〉 ≥

1

2
Ne−CT

)
≤ δ.

In addition, by Lemma A.2, for any N ≥ 1,

lim sup
K→∞

P

(
sup

0≤t≤bT/εKc
MK

t∧τKN
(1) ≥ 1

2
Ne−CT

)
= 0.

Hence we can choose N large enough such that

lim sup
K→∞

P(XK ≥ N) ≤ δ,

concluding the proof.

Lemma A.4. For any T > 0, the sequence of MF (Ω)-valued processes(
νKbt/εKc, t ∈ [0, T ]

)
, K > 0,

is C-tight in D([0, T ],MF (Ω)).

Proof. By (Roelly-Coppoletta, 1986, Theorem 2.1), νKb·/εKc is tight if and only if
〈νKb·/εKc, φ〉 is tight in D([0, T ],R) for any φ in a dense subset of the space of con-
tinuous functions on Ω vanishing at infinity. Hence let φ ∈ C2(Ω) and let us show
that (〈νKbt/εKc, φ〉, t ∈ [0, T ]) is tight. By Lemma A.3, it is sufficient to show that
(〈νKbt/εKc∧τKN , φ〉, t ∈ [0, T ]) is tight for any N large enough. Now, using (25) and
(26), for 0 ≤ s ≤ bT/εKc ∧ τKN ,

|〈νKs , wKe−cKK〈ν
K
s ,1〉Pφ− φ〉| ≤ Cφ,N εK ,

for some constant Cφ,N > 0 depending only on φ and N . As a result, if wθ(f)
denotes the modulus of continuity of f : [0, T ]→ R, i.e.

wδ(f) = sup
|t−s|≤θ
0≤s≤t≤T

|f(t)− f(s)|,
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we obtain

wθ

(
〈νKb·/εKc∧τKN , φ〉

)
≤ Cφ,N θ + 2 sup

0≤t≤bT/εKc
|MK

t∧τKN
(φ)|.

Hence, by Lemma A.2, for any δ > 0 and ε > 0, there exists θ > 0 such that

lim sup
K→∞

P
(
wθ

(
〈νKb·/εKc∧τKN , φ〉

)
> δ
)
≤ ε.

Combined with Lemma A.3, this shows that (〈νKbt/εKc∧τKN , φ〉, t ∈ [0, T ]) is C-tight
for any φ ∈ C2(Ω) and N > 0 (see for example (Jacod and Shiryaev, 2003, Propo-
sition VI.3.26)), and the result is proved.

We can now conclude the proof of the main result.

Proof of Proposition 2.4. Consider a converging subsequence, still denoted(
νKbt/εKc, t ∈ [0, T ]

)
and let (ft, t ∈ [0, T ]) be its limit. Since the sequence is C-tight, t 7→ ft is contin-
uous and the convergence holds uniformly on [0, T ]. Moreover, by the Skorokhod
embedding theorem, without loss of generality, we can assume that the convergence
holds in probability.

The result will be proved if we show that ft solves (7). Let φ ∈ C2(Ω). By
Lemma A.2,

sup
0≤t≤bT/εKc

∣∣∣∣∣∣〈νKt∧τKN , φ〉 − 〈νK0 , φ〉 −
t∧τKN∑
s=1

〈νKs , wKe−cKK〈ν
K
s ,1〉Pφ− φ〉

∣∣∣∣∣∣ −→ 0

in probability as K →∞. In addition,

wK(x)e−cKK〈ν
K
s ,1〉Pφ(x)− φ(x)− εK

(
M∗φ(x)− (m(x)− c〈νKs , 1〉)φ(x)

)
=
(
eεK(m(x)−c〈νKs ,1〉) − 1− εK(m(x)− c〈νKs , 1〉)

)
Pφ(x)

+ Pφ(x)− φ(x)− εKM∗φ(x)

+ εK(m(x)− c〈νKs , 1〉)(Pφ(x)− φ(x)).

Hence, for 0 ≤ s ≤ bT/εKc ∧ τKN and φ ∈ C2
0(Ω),∣∣∣wK(x)e−cKK〈ν

K
s ,1〉Pφ(x)− φ(x)− εK

(
M∗φ(x)− (m(x)− c〈νKs , 1〉)φ(x)

)∣∣∣
≤ Cε2

K + εK (M∗
Kφ(x)−M∗φ(x))

≤ C ′ε2
K .

As a result,

sup
0≤t≤bT/εKc

∣∣∣∣∣∣
t∧τKN∑
s=1

〈νKs , wKe−cKK〈ν
K
s ,1〉Pφ− φ〉

−
t∧τKN∑
s=1

εK〈νKs ,M∗φ+ (m− c〈νKs , 1〉)φ〉

∣∣∣∣∣∣ ≤ C ′TεK .
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Hence, on the event {τKN > bT/εKc},

sup
0≤t≤T

∣∣∣∣〈ft, φ〉 − 〈f0, φ〉 −
∫ t

0

〈fs,M∗φ− (m− c〈fs, 1〉)φ〉ds
∣∣∣∣

≤ 2 sup
0≤t≤T

|〈νKbt/εKc, φ〉 − 〈ft, φ〉|+ C ′TεK + sup
0≤t≤bT/εKc

∣∣∣MK
t∧τKN

(φ)
∣∣∣

+ T sup
0≤s≤T

∣∣〈νKs ,M∗φ+ (m− c〈νKs , 1〉)φ〉 − 〈fs,M∗φ+ (m− c〈fs, 1〉)φ〉
∣∣ .

Combined with Lemma A.3 and the (uniform) convergence of νKb·/εKc to f , this shows
that, for any ε > 0,

P
(

sup
0≤t≤T

∣∣∣∣〈ft, φ〉 − 〈f0, φ〉 −
∫ t

0

〈fs,M∗φ− (m− c〈fs, 1〉)φ〉ds
∣∣∣∣ > ε

)
= 0.

It follows that (ft, t ∈ [0, T ]) solves (7), and the result is proved.

A.2 Proof of Proposition 3.1

Multiplying equation (Qb) by x1, integrating over x ∈ Ω and evaluating at t = 0,
we get

x′1(0) = ∂t

(∫
Ω

x1q(t,x)dx

)
(t = 0)

= D

∫
Ω

x1∆(bq0)(x)dx +

∫
Ω

x1q0(x)m(x)dx− m̄(0)

∫
Ω

x1q0(x)dx.

From Green formula we infer∫
Ω

x1∆(bq0)(x)dx =

∫
∂Ω

x1∇(bq0) · ~ν(x) ds−
∫
∂Ω

(bq0)(x) ~e1 · ~ν(x) ds,

= 0

since q0 is compactly supported in Ω. Moreover, since q0 and m both satisfy
m(ι(x)) = m(x), q0(ι(x)) = q(x),∫

Ω

x1q0(x)m(x)dx =

∫
Ω

x1q0(x)dx = 0.

This shows that x′1(0) = 0.
We next turn to the second derivative x′′1(0). We differentiate equation (Qb) with

respect to time, multiply by x1, integrate over x ∈ Ω and evaluate at t = 0 to reach

x′′1(0) = ∂tt

(∫
Ω

x1q(t,x)dx

)
(t = 0)

= D

∫
Ω

x1∆(b∂tq(0,x))dx +

∫
Ω

x1∂tq(0,x)m(x)dx

− m̄(0)

∫
Ω

x1∂tq(0,x)dx− m̄′(0)

∫
Ω

x1q0(x)dx.
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From the above computation, this reduces to

x′′1(0) = D

∫
Ω

x1∆(b∂tq(0,x))dx +

∫
Ω

x1∂tq(0,x)m(x)dx.

Moreover, since ∂tq(0,x) is also compactly supported (this follows from equation (Qb)),
Green formula yields ∫

Ω

x1∆(b∂tq(0,x))dx = 0,

and we are left with
x′′1(0) =

∫
Ω

x1∂tq(0,x)m(x)dx. (27)

We multiply equation (Qb) by x1m(x), integrate over x ∈ Ω and evaluate at t = 0
to obtain∫

Ω

x1∂tq(0,x)m(x)dx = D

∫
Ω

∆(bq0)(x)x1m(x)dx +

∫
Ω

x1q0(x)m(x)2dx

−m̄(0)

∫
Ω

x1q0(x)m(x)dx.

By symmetry, the last two terms vanish, and another Green formula leads to∫
Ω

x1∂tq(0,x)m(x)dx = D

∫
Ω

(bq0)(x)∆(x1m(x))dx. (28)

Then, we observe that∫
Ω∩{x1<0}

b(x) q0(x)∆(x1m(x))dx = −
∫

Ω∩{x1>0}
s(x)q0(x)∆(x1m(x))dx,

as q0 and m are symmetric about {x1 = 0}, and from (9). Thus,∫
Ω

(bq0)(x)∆(x1m(x))dx =

∫
Ω∩{x1<0}

(bq0)(x)∆(x1m(x))dx

+

∫
Ω∩{x1>0}

(bq0)(x)∆(x1m(x))dx

=

∫
Ω∩{x1>0}∩K0

(b− s)(x) q0(x) ∆(x1m(x))dx,

with K0 the support of q0 (containing x0). From this, (27) and (28), we end up with

x′′1(0) = D

∫
Ω∩{x1>0}∩K0

(b− s)(x) q0(x) ∆(x1m(x))dx.

We know from (10) that (b− s)(x) > 0 in Ω ∩ {x1 > 0}. As a result, if ∆(x1m(x))
is nontrivial and nonnegative (nonpositive) on K+

0 = K0 ∩ {x1 > 0} then x′′1(0) > 0
(x′′1(0) < 0 respectively). This concludes the proof of Proposition 3.1.
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A.3 An explicit solution of the eigenvalue problem

We assume that the dimension is n = 1 and

b(x) =

{
2 for x ∈ (0, a),
1 for x ∈ (−a, 0),

and we consider the eigenvalue problem (14) with Dirichlet boundary conditions. As
b is discontinuous, the eigenvalue problem must be understood in the weak sense.
In particular, we have to solve{

D q′′1,∞(x) = (m∞ − r − 3) q1,∞(x), x ∈ (−a, 0),

2D q′′2,∞(x) = (m∞ − r − 3) q2,∞(x), x ∈ (0, a),
(29)

with the boundary, continuity and flux conditions:{
q1,∞(−a) = q2,∞(a) = 0,

q1,∞(0) = q2,∞(0), q′1,∞(0) = 2 q′2,∞(0),
(30)

the positivity conditions q1,∞, q2,∞ > 0 and m∞ − r − 3 < 0.
Set µ =

√
2D and B :=

√
−m∞ + r + 3/µ. We have

q1,∞(x) = −
√

2

B
cos
(
xB
√

2
)(

tan(xB
√

2) + tan(aB
√

2)
)
, x ∈ (−a, 0),

q2,∞(x) =
1

B
cos (xB ) (tan(aB)− tan(xB)) , x ∈ (0, a).

(31)
The equality q1,∞(0) = q2,∞(0) thus implies:

√
2 tan(aB

√
2) = − tan(aB). (32)

The positivity of q1,∞, q2,∞ implies that 0 < aB < π/2. The equation (32) thus
admits a unique solution aB ∈ (π/(2

√
2), π/2) (aB ≈ 1.338761890). Additionally,

we have: ∫ 0

−a q1,∞(x) dx∫ a
0
q2,∞(x) dx

= −(1− cos(aB
√

2)) cos(aB)

(1− cos(aB)) cos(aB
√

2)
,

and using (32), ∫ 0

−a q1,∞(x) dx∫ a
0
q2,∞(x) dx

=
1√
2

(1− cos(aB
√

2)) sin(aB)

(1− cos(aB)) sin(aB
√

2)

=
1√
2

j(aB
√

2)

j(aB)
.

with j(x) := (1− cos(x))/ sin(x). As j(x
√

2)/j(x) is increasing on (π/(2
√

2), π/2),
we get:

1√
2

j(aB
√

2)

j(aB)
≥ 1√

2

j(π/2)

j(π/(2
√

2))
=

1√
2

1

j(π/(2
√

2))
.
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As 1/(2
√

2) < 3/8 and since j is increasing on (π/(2
√

2), π/2),

j(π/(2
√

2)) < j(3 π/8) = 1−
√

2 +

√
4− 2

√
2.

Finally,∫ 0

−a q1,∞(x) dx∫ a
0
q2,∞(x) dx

=
1√
2

j(aB
√

2)

j(aB)
>

1√
2 j(3π/8)

=
1

2
√

2−
√

2− 2 +
√

2
> 1.
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