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Abstract A Local Optima Network (LON) encodes local optima connectivity in the
fitness landscape of a combinatorial optimisation problem. Recently, LONs have
been studied for their fractal dimension. Fractal dimension is a complexity index
where a non-integer dimension can be assigned to a pattern. This paper investi-
gates the fractal nature of LONs and how that nature relates to metaheuristic per-
formance on the underlying problem. We use visual analysis, correlation analysis,
and machine learning techniques to demonstrate that relationships exist and that
fractal features of LONs can contribute to explaining and predicting algorithm per-
formance. The results show that the extent of multifractality and high fractal dimen-
sions in the LON can contribute in this way when placed in regression models with
other predictors. Features are also individually correlated with iterated local search
performance, and visual analysis of LONs shows insight into this relationship.

Keywords Fitness Landscapes · Fractal Analysis · Local Optima Networks

1 Introduction

Fractals are patterns which contain parts resembling the whole (Mandelbrot, 1972).
Under this definition fractals are ubiquitous in the complex simplicity of nature,
from microscopic blood vessel networks to the macroscopic pattern of the rings of
Saturn. Nature and evolution seem to favour fractal design: using a pattern repeat-
edly allows replicability with very few instructions. The fractal dimension (Mandel-
brot, 1975) is a complexity index capturing how the detail in a pattern changes when
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one views it using a different resolution or scale. Fractal dimension analysis has
been used in diagnostic imaging (detecting colon cancer (Esgiar et al., 2002); charac-
terising images in mammography (Caldwell et al., 1990); characterising leukaemia
cells (Mashiah et al., 2008)), search and rescue (analysing the layout of victim loca-
tion after building collapses (Saeedi and Sorensen, 2009)), and in engineering for the
design of antenna (Werner and Ganguly, 2003), among innumerable others. Fractal
geometry can also facilitate vast amounts of information being embedded in a com-
paratively small space. Indeed, branching structures inside human lungs fill space
in a fractal way; because of this, the equivalent surface area of a tennis court is com-
pacted within the volume of the lungs. The fractal dimension of human lungs has
been measured at approximately 2.88 (Uahabi and Atounti, 2017), which indicates
high spatial complexity and convolution.

Fitness landscapes of some combinatorial optimisation problems have been viewed
under a fractal lens (Weinberger and Stadler, 1993). Fitness landscapes are both a lu-
cid metaphor and a mathematical object; they contain the set of solutions to an op-
timisation problem, the fitnesses of those solutions (these can be visualised as the
heights), and a function for measuring adjacency between solutions. The study of
fitness landscape architecture provides insight about reactions between metaheuris-
tic algorithms and problems. This can serve as a springboard for more informed
algorithm design or selection.

The first study to conduct fractal analysis on fitness landscapes (Weinberger and
Stadler, 1993) stipulated that for certain problems, landscape ruggedness scales at
different levels of abstraction and that this indicated fractal structure. Subsequent
studies have reported similar findings (Zelinka et al., 2014; Locatelli, 2005; Richter,
2018) and some have emphasised the potential lying dormant in the largely un-
tapped field of fractal analysis for landscapes.

A Local Optima Network (LON) (Ochoa et al., 2008) models local optima and
their connectivity in a fitness landscape. That is, the nodes are local optima and the
edges are metaheuristic search transitions between two local optima under a chosen
search operation. There is a significant body of evidence suggesting that features of
LONs can correlate to, explain, or predict metaheuristic algorithm performance on
the underlying combinatorial problem (Daolio et al., 2010, 2011; Verel et al., 2011;
Herrmann et al., 2016; Ochoa and Veerapen, 2018; Ochoa et al., 2017).

Little is known about the fractal complexity in LONs and how their fractal na-
ture relates to metaheuristic algorithm performance. Preliminary work has indi-
cated that the fractal dimension might have a connection to search (Thomson et al.,
2018a,b). That being said, the latter study considers only small problem instances
(size N = 18 for a binary-encoded problem, NK Landscapes). The first study men-
tioned is on the Quadratic Assignment Problem (QAP) and they consider some
benchmark instances from QAPLIB (Burkard et al., 1997) up to N = 28 (Thomson
et al., 2018a), although only two of the library’s several instance classes for this
problem size range are included; consequently, the fractal analysis is conducted on
only 25 QAPLIB instances.

We intend to illuminate understanding of the relationships between fractal ge-
ometry in LONs and metaheuristic algorithm performance. The QAP serves as a
testbed for the analysis and we use QAPLIB instances, increasing the number of
instances considered threefold when compared to previous work (Thomson et al.,
2018a) and raising the maximum problem size from 28 to 50. A recent and refined
LON construction algorithm (Ochoa and Herrmann, 2018) is used to intelligently
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build LONs for the QAPLIB instances. Features of the LONs, including fractal di-
mension features, are computed and the parallel between them and performance is
investigated using visual tools, correlation analysis, and linear and random forest
regression models.

The contributions of this article can summarised as follows:

1. We bring new insight into how multifractal geometry at the local optima level
can help explain and predict algorithm performance

2. A significant expansion of the data-set used for fractal analysis in LONs (using
more than 3x the previous number of QAPLIB instances and raising N ≤ 28 to
N ≤ 50, as well as deploying a recent refined and tested sampling algorithm for
constructing the LONs)

3. Enhanced statistical techniques for properly validating the use of LON frac-
tal analysis for algorithm explanation and prediction (random forest to model
non-linearities; random repeated subsampling cross-validation; using intelligi-
ble predictors such as the extent of multifractality and the median fractal di-
mension).

The article is structured as follows: Section 2 contains the necessary background
information to render this article self-contained; Section 3 details aspects of the
methodology used; Section 4 gives the experimental setup, with Section 5 present-
ing the results; finally, Section 6 finishes the article with conclusions and directions
for future work.

2 Preliminaries

2.1 Fitness Landscapes

A fitness landscape (Stadler, 2002) is composed of three parts, (S,N, f) : S is the full
solution set; N : S −→ 2S is known as the neighbourhood function and assigns a
set of adjacent solutions N(s) to every s ∈ S; and f is a fitness function f : S −→ R

that provides a mapping from solution to associated fitness. That fitness can be
conceptualised as the solution height within the landscape metaphor.

The analysis of fitness landscape objects can provide an intense understanding
of optimisation problems and their reactions with metaheuristic algorithms (Pitzer
and Affenzeller, 2012). Indeed, landscapes have been used to facilitate algorithm
selection (Hoos et al., 2004), operator selection (Merz and Freisleben, 2000), and
parameter tuning (Hutter et al., 2007).

2.2 Local Optima Networks

The Local Optima Network (LON) model (Ochoa et al., 2008) was introduced as a
tool for studying the connectivity of local optima in a fitness landscape, and has
subsequently shown proficiency in helping with explaining metaheuristic search
dynamics (Chicano et al., 2012; Herrmann et al., 2016; McMenemy et al., 2018). We
define the components of a LON before describing the model as a whole.
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Nodes. The set of nodes LO are the local optima, meaning that a node loi has su-
perior fitness with respect to the entire neighbourhood. Formally: ∀n ∈ N(loi) :
f(loi) ≤ f(n) (assuming minimisation) where N(loi) is the neighbourhood and n
is a neighbour.

Edges. An edge is delineated between two nodes if the probability of ”escape” from
the source local optimum to the destination is greater than zero. The ”escape” is
defined with respect to a chosen search operation (or sequence of operations). The
edge is weighted with the probability as wij . Formally local optima loi and loj
comprise the source and destination of an edge respectively iff wij > 0. In this
work, sampling is used; as a result, nodes are not necessarily associated with their
complete set of potential edges.

Local optima network (LON). A local optima network, LON = (LO,E), consists of
nodes loi ∈ LO which are the local optima, and edges eij ∈ E between pairs of
nodes loi and loj with weight wij iff wij > 0. We remark here that wij may be
different than wji; it follows that two weights are needed and that a LON is an
oriented and weighted graph.

2.3 Fractal Dimension

The notion of a fractal dimension for patterns was conceived by Mandelbrot (Man-
delbrot, 1975) and is defined as a complexity index which captures how the detail in
the pattern changes with resolution used to measure it. The fractal dimension can
be computed as the ratio between the logarithm of the detail and the logarithm of
the scale used:

fractal dimension =
log(detail)

log(scale)
(1)

To understand what the fractal dimension of a shape means we can begin by
revisiting the familiar shapes associated with the topological dimension: a one-
dimensional line; a two-dimensional square; a three-dimensional cube.

We can observe the relationship between scale and detail for a square in Fig-
ure 1. Looking first at Figure 1a where the length scale m used to measure is one
(the length of one side of the square) the detail measured is precisely one square.
Moving onto Figure 1b we observe that a length scale ofm = 1

2 is used here (this is a
scaling factor of two because the resolution is twice as fine). That results in the mea-
surement of four smaller copies of the larger square. The scale is two and the detail
is four. Similarly, whenm is one-quarter of the length of a side of the square (scaling
factor of four; see Figure 1c) this results in sixteen copies of the larger square being
measured, giving a scale of four and detail of sixteen. The relationship 4x = 16

where x is dimension can be transformed into log(16)
log(4) , i.e. the ratio between detail

and scale which is two in this case. The square is two-dimensional because for any
scale the detail observed will be scale2.

For some patterns the exponent x is not an integer but rather somewhere else
on the real number line. In this case, the way detail changes with resolution cannot
be captured with topological dimension. An illustrative example of this can be seen
in Figure 2 with the Sierpinski Triangle.
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(a)

m = 1

(b)

m = 1
2

(c)

m = 1
4

Fig. 1: The relationship between detail and scale for a square;m is the length of scale
used for measurement

Figure 2a shows that when a scaling factor m of one is used we accordingly
measure the complete pattern. If we increase the resolution twofold as in Figure 2b
three smaller copies of the large triangle are now measured. Recalling that fractal
dimension can be obtained by solving for x the equation scalex = detail we ob-
serve that x is not an integer here. The equation is 2x = 3 which results in a fractal
dimension of x = ∼1.585.

Fractal dimensions can have efficacy in obtaining spatial and geometric infor-
mation about real-world systems. They have been used, for example, in engineering
for detecting cracks in plate structures (Hadjileontiadis and Douka, 2007); in biol-
ogy for characterising the tortuosity of animal trails (Dicke and Burrough, 1988);
and also in medicine for characterising mammographic patterns (Caldwell et al.,
1990) and detecting colon cancer (Esgiar et al., 2002).

m = 1

(a) scaling factor of one

m = 1/2

(b) scaling factor of two

Fig. 2: The relationship between detail and scale for a fractal with topological di-
mension two and fractal dimension of ∼1.585

In our study we are computing fractal dimensions on LONs to obtain spatial
complexity information about fitness landscapes. A widely-used method to esti-
mate fractal dimension for a complex network is the ”box counting” algorithm
(Song et al., 2005). This ”boxes” together nodes which are within m network edges
of each other, aiming to describe the network using as few ”boxes” as possible. The
parameter m is the scale of measurement used and serves as the denominator in
Equation 1 to obtain fractal dimension alongside the number of ”boxes” required to
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cover the network, which is the amount of detail observed. In stage one of the pro-
cedure, ”centre” nodes are initially identified as those which are the best connected
in the network. Nodes which are at a distance of no more thanm edges to the centre
node are then marked as ”covered” and are added to the ”box” associated with the
centre. The process continues until all nodes are either ”covered” or they are centre
nodes. That means wherever a node cannot be ”covered” with respect to any of the
centres, it becomes a centre itself. In stage two the central distances for all nodes
are calculated; this is — for each node — the closest distance to a centre. Following
that, the ”box” membership identity of each non-centre node is switched to that of
a neighbour which is closer to a centre node. The original node is removed.

At the end of the process the number of ”boxes” needed to cover the network
completely, which we refer to as mb, is the number of detail units observed when
using the resolution scale m. We can obtain the fractal dimension for the network
by inserting mb and m into Equation 1:

fractal dimension =
log(mb)

log(m)
(2)

Fractal complexity in local optima networks has been calculated previously us-
ing box counting (Thomson et al., 2018a,b). The box counting algorithm was altered
in Thomson et al. (2018b) to specialise to LONs. For two nodes to be ”boxed” as a
single ”unit” of detail they must either be a single edge apart or they are within m
edges of each other and they also have a fitness distance less than a set threshold ε.

A subsequent study proposed additional mechanisms for computing and there-
fore defining the fractal dimension of a LON (Thomson et al., 2018a). A box count-
ing variant which was introduced which used LON edge weights during the pro-
cess. In a LON edge weights represent the probability that a search path between
the local optima will be followed. The box counting variant used as the criteria
for ”boxing” that two nodes have a single edge between them which is weighted
with a probability greater than β. The authors referred to values obtained using this
method as probabilistic fractal dimensions.

In real-world complex systems a single fractal dimension can sometimes be in-
sufficient to capture the complexity (Mandelbrot et al., 1997). Monofractal analysis
such as the box counting described earlier is based on the assumption that fractal
complexity is roughly uniform in the pattern. Some networks have been found to be
multifractal (Song et al., 2015; Furuya and Yakubo, 2011). A multifractal algorithm
has been used on LONs in a prior study (Thomson et al., 2018a) and we deploy
this in our experiments. The process produces a spectrum of fractal dimensions for
a single pattern (LON in our case). Details and pseudo-code for the algorithm are
provided later on in Sections 3.3 and 4.3.

3 Methodology

3.1 The Quadratic Assignment Problem

Our analysis is conducted on the much-studied Quadratic Assignment Problem
(QAP) (Lawler, 1963) which is often used in fitness landscape analysis (Merz and
Freisleben, 2000; Merz, 2004; Daolio et al., 2011; Pitzer and Affenzeller, 2012; Verel
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et al., 2018). A QAP instance is specified with a distance matrix and a flow ma-
trix. An entry in the distance matrix, Dl1,l2 is the distance between two locations:
d(l1, l2). In the flow matrix this is the flow between two items: f(i1, i2). Solutions
are encoded as a permutation of length N , and are the allocation of N items to N
locations. Fitness of a solution is the product of distances and flows between the
locations and items according to the permutation and the aim is minimisation. The
fitness function, g, for a solution x is then g(x) =

∑N
i=1

∑N
j=1DijFij ,∀x ∈ S.

3.2 Constructing Sampled LONs

LON sampling algorithms are generally augmented on top of an existing optimi-
sation algorithm. We align with this trend here, opting for a recently-introduced
construction algorithm which joins an ILS with LON logging for QAP (Ochoa and
Herrmann, 2018).

The ILS algorithm is run r times from independent random starting solutions.
In the ILS process, the local optimisation is a pairwise exchange of items, with the
perturbation being k pairwise exchanges. Whenever the ILS Sampling detects no
improving moves from the current solution, the solution is added as a local opti-
mum node — this is an approximation of the true structure, because the algorithm
does not consider the existence of saddle points. Only improving or equal fitness
local optima are accepted. It follows that local optima plateaus might be explored,
although not exhaustively, during sampling. When there is a local optima plateau,
this is not collapsed by default; plateaus are sometimes collapsed to facilitate the
extraction of certain LON features and to assess the neutrality present. Each local
optimum encountered during search is stored in the set of nodes LO alongside its
fitness, and if two optima l1 and l2 are connected by an ILS cycle (local search fol-
lowed by k perturbations) during the search, an edge el1,l2 is stored in the LON
edge-set, E. The nodes are edges logged during the r runs are joined to form a sin-
gle local optima network for the problem instance. All parameters for the algorithm
are stated later on in Section 4.2.

3.3 Fractal Analysis Algorithms

As stipulated in Section 2.3 the standard approach for calculating and defining
fractal dimension of a complex network is with a box counting algorithm (Song
et al., 2005, 2006). This process iteratively ”boxes” together nodes iff the distance
d(n1, n2) < m, i.e. the nodes are < m edges apart. The parameter m provides the
scaling factor which is used to compute the fractal dimension of the network along-
side the associated detail observed when using that scaling factor. Empirically the
detail is defined as the number of ”boxes” needed to completely cover the network,
taken as a proportion of the network size.

We mentioned that the box counting algorithm has been specialised for the spe-
cific case of a local optima network previously (Thomson et al., 2018b). In that they
allowed nodes to be ”boxed” if either the distance d(n1, n2) = 1 or d(n1, n2) < m
and also |f(n1) − f(n2)|< ε where f(nx) is the fitness of node x and ε is the maxi-
mum fitness difference between nodes n1 and n2.
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3.3.1 Multifractal Dimension Analysis

The process for calculating multifractal dimensions is different to standard box
counting and it produces a spectrum of fractal dimensions for a single pattern. One
approach is called the sandbox algorithm (Liu et al., 2015) where several nodes are
randomly selected to be sandbox ”centres”. Members of the sandboxes are com-
puted as nodes are r edges apart from the centre c. After that the average sandbox
size is calculated. The procedure is replicated for different values of r which is the
sandbox radius. To facilitate the production of a dimension spectrum the whole pro-
cess is repeated for several arbitrary real-valued numbers which supply a parame-
ter we call q. The sandbox algorithm was specialised and modified to suit LONs in
a prior study (Thomson et al., 2018a) and this is the process we use for our fractal
analysis experiments. In our version of the algorithm a node n can be included in
the ”sandbox” of a central node c if either the distance d(n, c) = 1 or d(n, c) = r − 1
and |(f(n)− f(c))|< ε. Pseudocode is given in Algorithm 1.

Algorithm 1 Algorithm for Multifractal Analysis of a LON
Input: LON , q.values, radius.values, fitness.thresholds, number.centres
Output: mean sandbox size

1: Initialisation:
2: centre.nodes← ∅, noncentre.nodes← all.nodes
3: mean.sandbox.sizes← ∅
4: for q in q.values do
5: for rd in radius.values do
6: for ε in fitness.thresholds do
7: centre.nodes← RANDOM.SELECTION(all.nodes, number.centres)
8: sandbox.sizes← ∅
9: for c in centre.nodes do

10: number.boxed← 0
11: for v in all.nodes do
12: d← DISTANCE(c, v)
13: j ← DIFFERENCE(f(c), f(v))
14: if ( d == 1 ) OR ( d == rd - 1 and j < ε ) then:
15: number.boxed← number.boxed + 1
16: end if
17: end for
18: sandbox.sizes← sandbox.sizes ∪ {[number.boxed]}
19: end for
20: bs← MEAN(sandbox.sizes)
21: mean.sandbox.sizes[q][rd][ε]← bs
22: end for
23: end for
24: end for

At the end of each ”sandboxing” iteration conducted with particular values for
the parameters q, r and ε, the associated fractal dimension is calculated:

fractal dimension =
log(detailq−1)

(q − 1) ∗ log(scale) (3)

where detail is the average ”sandbox” size (as a proportion of the network size), q is
an arbitrary real-valued value, and scale is r

dm , with r being the radius of the boxes
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and dm the diameter of the network. We use this process as the foundation for ob-
taining multifractal dimensions for LONs in this work. In addition we separately
implement a modified version of it where the metaheuristic path probabilities en-
coded in LON edge weights are used in the calculations. Specifically, for a node n to
be a member of the sandbox with centre c there must be one of two situations: either
there is a single edge between n and c (of any probability; this is to guarantee box-
ing momentum), or there is an edge between a direct neighbour of n and c which is
weighted with a probability greater than a specified threshold β. This element was
implemented with the motivation that nodes which are in close proximity to a prob-
able path towards the central node should be included in the sandbox. We remove
the fitness distance check for this algorithm variant and instead of a set of values for
”sandbox” radii the sandboxes are of a fixed width, r = 2. The rest of the algorithm
remains the same and a spectrum of fractal dimensions is produced. To differentiate
the results produced by this particular algorithm variant in the following Sections
we refer to the fractal dimensions obtained by this method as probabilistic fractal
dimensions. The algorithm which does not include the probability constraint but
instead includes ”sandbox” radius variation as well as fitness distance constraints
produces values which we refer to as deterministic fractal dimensions. The parame-
ters for both algorithms described are stated in Section 4.3.

4 Experimental Setup

4.1 Instances Used

All instances used are from the QAPLIB benchmark library for QAP, the Quadratic
Assignment Problem Library (QAPLIB) (Burkard et al., 1997). We cap the maximum
problem size at 50 due to the computational expense (Liu et al., 2015) associated
with multifractal analysis of large networks. It follows that further study is needed
in order to confirm any findings on larger problem instances. We additionally re-
move the ”esc” instances from the group because their LONs have very few distinct
fitnesses due to large amounts of neutrality present. The resultant set consists of 85
problems, with the problem sizes ranging from 12 to 50. In all cases the global opti-
mum is known.

The nature of QAP instances can commonly be characterised into one of four
classes (Stützle, 2006): uniform random distances and flows; random flows based
on grids; real-world; and random ”real-world like”, which are not real-world but
mimic distance and flow patterns seen in real-world presentations of QAP. Table 1
shows the QAPLIB instances used in the experiments and present them in these
four categories. Numbers which form part of the instance names indicate the prob-
lem size, i.e. number of locations and flows and the length of a permutation solu-
tion.

4.2 Construction of Local Optima Networks

For each QAP instance we construct a local optima network. As stipulated in Sec-
tion 3.2, this is done by using an ILS algorithm which has been augmented with
LON logging mechanisms. The LON logging amalgamates the unique nodes and
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Table 1: The QAPLIB instances used in the experiments

class instance names

uniform random tai{12a, 15a, 17a, 20a, 25a, 30a, 35a, 40a, 50a} |
rou{12, 15, 20}

random grids had{12, 14, 16, 18, 20} |
nug{12, 14, 16a-b, 17, 18, 20, 21, 22, 24, 25,
27, 30} | scr{12, 15, 20} | sko{42, 49} |
tho{30,40} | wil{50}

real-world bur{a-h} | chr{12a-c, 15a-c, 18a-b, 20a-c, 22a-b,
25a} | {els19} | kra{30a-b, 32} | lipa{20a-b,
30a-b, 40a-b, 50a-b} | ste36{a-c}

real-world like tai{12b, 15b, 20b, 25b, 30b, 35b, 40b, 50b}

edges from 200 ILS runs into a single network. Each run terminates after 10,000
iterations without an improvement. This is a deliberately lenient condition which
was chosen with the motivation that ILS runs should converge to a natural stalling
point. The parameter setting, however, means that some LONs (those associated
with the larger problems in the instance set) are built over a number of hours; this
computational cost is a limitation to our approach. We argue, however, that the ben-
efit of the insight gained through our method outweighs the cost. The remaining ILS
parameters and setup are detailed shortly in Section 4.4.

4.3 Fractal Analysis

In contrast to traditional monofractal analysis, to generate multifractal dimensions for
the LONs a range of arbitrary real-valued numbers is needed. We set these as q in
the range [3.00, 8.90] in step sizes of 0.1. The number of ”sandbox” centres in each
iteration is set at 50 and the choice of these centres is randomised. As mentioned,
in our deterministic multifractal algorithm variant fitness distance is considered in
order to specialise to local optima networks. The comparison between two fitness
values is conducted through logarithmic returns:

fitness difference = log(f1/f2) (4)

where f1 and f2 are the fitnesses of two local optima at the start and end of a
LON edge. We take the absolute value of the computed fitness difference because if
f1 6 f2, the result of Equation 4 is negative. This value can then be compared with
a set threshold, ε. A range of ten values is used for that algorithm: ε ∈ {0.01, 0.19}
in step sizes of 0.02. Another essential element of deterministic multifractal anal-
ysis is the sizes (radii) for the sandboxes. For these we use values in the range
r ∈ {2, diameter − 1}where diameter is the LON diameter.

For the probabilistic multifractal algorithm variant the fitness constraint is not
used and the sandboxes are of a fixed width, r = 2. The probability threshold pa-
rameter β must be chosen. Recall that β sets the minimum edge weight between
two nodes. After preliminary runs it was noted that if β was set as greater than the
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minimum weight in the weights distribution then little-to-no ”boxing” occurred.
For this reason β is set as the minimum weight present in the distribution.

An important note. We note here that 32 out of the 85 LONs had only a single edge
weight present throughout the network. Recall that the probability-based boxing
process outlined in Section 3.3.1 stipulates that nodes can be boxed together when
either there is a single edge between n and c (of any probability; this is to guaran-
tee boxing momentum), or there is an edge between a direct neighbour of n and
c which is weighted with a probability greater than a specified threshold β, which
is set as the lowest weight in the network. As a consequence, when all weights are
equivalent, then no boxing based on probability will occur at all — no pairs of nodes
will pass the acceptance condition that their connecting edge has a weight greater
than the minimum weight seen in the LON. This renders these particular networks
ineligible for probabilistic fractal analysis under these conditions. Consequently, re-
sults which pertain to probabilistic dimensions consider the 53 eligible LONs and
their features, while those pertaining to deterministic fractal dimensions consider
all 85 LONs.

4.4 Metaheuristic Performance

To obtain algorithm performance information with which to compare the LON fea-
tures we use two search algorithms for the QAP. Stützle introduced iterated local
search (ILS) variants for state-of-the-art performance on the QAP (Stützle, 2006).
We use his ILS configured as follows: first-improvement pairwise exchanges for
local search; 3n

4 exchanges for perturbation; accepting only improving local op-
tima; and terminating when the global optimum is found or after 100 iterations.
Taillard’s Robust Taboo Search (ROTS) (Taillard, 1991) is also a competitive heuris-
tic for the QAP. This a best-improvement pairwise exchange local search with a
variable-length tabu list tail. For each facility-location combination, the most recent
point in the search when the facility was assigned to the location is retained. A po-
tential move is deemed to be ”tabu” (not allowed) if both facilities involved have
been assigned to the prospective locations within the last s cycles. The value for s
is changed randomly, but is always from the range [0.9n, 1.1n]. A run terminates
when the global optimum is found, or after 100 iterations.

We run the ILS and the ROTS in these configurations on each QAPLIB instance
100 times from different starting solutions. As a measure for their performance we
define the performance gap p as follows:

p =
f(alg)

f(opt)
(5)

where f(alg) is the fitness obtained by the algorithm and f(opt) is the fitness of
the global optimum. In this way, a ”solved” run will output ”1” and lower values
are closer to the optimal fitness. For each QAP instance we report the mean p over
100 runs. In the results that follow, p(ILS) is this value for iterated local search and
p(ROTS) is for robust tabu search.
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4.5 LON Features

Features are extracted from the local optima networks. Deterministic fractal dimen-
sion sets are calculated for each of the 85 LONs considered. In those sets there are
60 ∗ (diameter− 2) ∗ 10 dimensions, where 60 is the number of (arbitrary) q values,
diameter is the LON diameter (which differs between LONs), and 10 is the number
of values for fitness distance threshold ε. As we recall from Section 4.3 53 of the
85 LONs are eligible for probabilistic fractal analysis. Those 53 have sets of proba-
bilistic fractal dimensions calculated in addition to the deterministic ones. In each
set there are 60 dimensions (one for each value of q). This is less than there was
when using the deterministic multifractal algorithm and this is because the probabilis-
tic variant does not consider parameter ranges for ”sandbox” radius and does not
include fitness distance calculations. The statistics we draw from the fractal com-
plexity data are: the minimum fractal dimension, the median fractal dimension, the
maximum fractal dimension, the range of fractal dimensions (calculated as the dif-
ference between the largest and smallest values), and the number of distinct fractal
dimensions. The latter two capture the degree of multifractality present.

Also considered in the experiments are other LON features which are not related
to fractal dimension values:

1. number of local optima;
2. mean fitness of sampled local optima in the LON;
3. fitness range;
4. fitness of sinks (”sinks” are nodes which have no out-going edges, i.e. the algo-

rithm used to construct the LON became trapped there);
5. extent of meta-neutrality, which is neutrality at the local optima level, computed

as meta-neutrality = number unique fitnesses
number local optima ;

6. mean out-degree.

4.6 Regression Model Setup

We build algorithm performance models using LON features for predictors and the
performance of competitive metaheuristic algorithms as the response variables. The
aim is clarifying how LON features can contribute to explaining or predicting algo-
rithm proficiency, paying particular attention to the fractal nature of the LON. In
pursuit of that we conduct linear and random forest regressions. The number of ob-
servations we have is relatively small — 85 for the deterministic dimensions and 53
for probabilistic — so we use random repeated subsampling cross-validation for obtain-
ing model statistics. This is conducted for 10,000 iterations with a training-test split
of 80-20. The random forest regression uses 500 trees. Predictors are standardised
(due to different value ranges) as follows: p = (p−E(p))

sd(p) , with p being the predictor
in question. The model statistics we focus on are R2, which captures the amount of
variance in the response variable which can be explained using the predictor set,
and mean squared error, which expresses the mean squared difference between the
model-estimated values and the actual values.

For the random forest models, variable importance rankings and values are re-
ported. The values are calculated as the reduction in decision tree node impurities
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when splitting on the variable and are averaged over all 500 trees used in the re-
gression. Node impurities are measured with the residual sum of squares.

The non-fractal LON predictors used in the models are the mean fitness; fitness
range; fitness of sinks; extent of meta-neutrality; out-degree; and the number of
global optima. For the deterministic fractal dimensions, we include the minimum
fractal dimension and median. In the probabilistic case, these two are replaced with
the fractal dimension range and number of unique dimensions.

5 Results

5.1 Distribution Analysis

In Figures 3 and 4, box-plots convey information about the fractal dimensions cal-
culated on the local optima networks. Each box contains values for LONs associ-
ated with a particular QAPLIB instance class — those are indicated on the x-axis
labels. Only a sub-set of the instance classes which are involved in the central ex-
perimentation of this Chapter are considered in these plots. I chose these groups
because displaying their distributions alongside each other illustrates evident vi-
sual differences between these particular classes. Also provided in the Figures as
accompanying text for each box is the performance of iterated local search on the
QAP instances associated with those LONs; this is the performance metric p(ILS).

In Figures 3a and 3b the distributions concern the median LON fractal dimension
which is associated with using the deterministic and probabilistic methodologies,
respectively. In the case of the deterministic fractal analysis, this is the median value
computed over all of the dimensions produced under these conditions; each dimen-
sion is the output resulting from using a different combination of the fractal analysis
parameters q, r and ε. The probabilistic median is computed from the spectrum of
dimensions associated with the range of values for q.

In both Figure 3a and Figure 3b, the ”lip” class of LONs seem to have the high-
est values and the ”had” group have the lowest. On both plots, the highest value
belongs to the ”lip” category and the lowest to ”had”. Notice that in 3b the ”lip”
and the ”nug” instances — whose LONs generally have the highest fractal dimen-
sions in this plot — also have higher values of p(ILS). As stipulated in Section 4.4,
values like these reflect that metaheuristic performance was of lower quality. With
deterministic analysis, the ”lip” group have the largest variation, while the ”had”
LONs have among the smallest; with probabilistic dimensions (Figure 3b), ”had”
have the largest and ”lip” the smallest. Deterministic fractal dimensions appear to
be higher than probabilistic fractal dimensions.

Consider now the range of fractal dimensions in the deterministic and proba-
bilistic spectra calculated for the LONs, which are given in Figures 4a and 4b.

The range of fractal dimensions for a LON is a way to quantify the extent of
multifractality present and is calculated asmaximum value -minimum valuewith
respect to the complete set of fractal dimensions produced using either the deter-
ministic or probabilistic paradigm. Also provided is the average ILS performance,
p(ILS), for the QAP instances included in the classes.

Looking at the two plots and noting the different scales used for them, it seems
clear that the probabilistic dimension calculation process lends to more compact
ranges. This is intuitive: the conditions are stricter for measuring ”boxes” during
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the dimension calculation process. Let us consider in both plots the levels of the
black lines (which indicate the distribution median). The ”had” group has the low-
est in 4a and the ”lip” group has the highest. That hints that the degree of multifrac-
tality in the ”lip” group is the most pronounced among the four, and it is the least
pronounced in the ”had” group. The previous plots told us that ”lip” LONs had
the highest dimensions, and ”had” showed the lowest. It follows that the degree
of deterministic multifractality might be associated with lower fractal dimensions.
For 4b though, ”had” LONs have the highest ranges of dimension and ”lip” have
the lowest — the opposite trend to the deterministic dimensions. With respect to
algorithm performance, we can that the ”lip” LONs, associated to problems with
the lowest metaheuristic performance (p(ILS)), appear to have a higher extent of
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deterministic multifractality and a lower extent of probabilistic multifractality. In
Figure 4b, the two problem groups with the best ILS performance have the widest
ranges of values for dimension (i.e. amount of multifractality) of the four categories.

5.2 Visualisation

Visual analysis of LONs provides valuable insight into algorithm performance and
problem structure, and can augment more empirical or statistical findings (Ochoa
and Veerapen, 2016). We begin with visualisation before moving onto correlation
analysis (Section 5.3) and machine learning models (Section 5.4) thereafter.

Figure 5 shows two partial LONs, each for a different QAPLIB instance. Only
the fittest 10% of local optima are plotted for visual clarity. Global optima are red
squares and all other nodes are grey circles. The node sizes are proportional to the
incoming strength to that node, which is the weighted incoming degree. These two
LONs were selected from the ”had” and ”lip” instance classes because the former
have lower fractal dimensions and also a lower degree of deterministic multifrac-
tality than the latter. These two instances chosen have the same problem size, N =
20, and similar numbers of local optima.

(a) partial LON of ”had20” QAPLIB instance
which has median fractal dimension 2.975 and
associated tabu search performance 1.011

(b) partial LON of ”lipa20b” QAPLIB instance
which has median fractal dimension 4.015 and
associated tabu search performance 1.154

Fig. 5: partial local optima networks for two QAPLIB instances; only local optima
which are in the fittest 10% are shown. Global optima are square and red; all others
are grey circles. The size of the nodes captures the incoming ”strength” to the node
in the LON, i.e. the weighted in-degree

In accordance with the higher fractal dimensions, the algorithm performance is
lower on the ”lip” group of problems. Using as a performance measure the obtained
fitness (as a proportion of the global fitness), robust tabu search averaged 1.096 on
the ”lip” instances. For the ”had” group this was 1.011. Our task in this Section of
the results is to seek explanation in the networks concerning the algorithm perfor-
mance differences while also paying particular attention to how their fractal nature
relates to what is visually seen in the structure.
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The median fractal dimension for ”had20”, plotted in Figure 5a, is 2.975; for
”lipa20b” it is 4.015. The range of fractal dimensions for ”had20” is around 63, and
is around 49 for ”lipa20b”. An evident difference in the two Figures is the num-
ber and connectivity of global optima — Figure 5a shows that the ”had20” LON
has many, and they appear to be densely connected to other nodes. Contrarily, the
”lipa20b” LON in Figure 5b has a single global optimum, which seems to be more
sparsely connected within its network. Also noteworthy is the relative sizes of the
non-optimal (grey) nodes. In Figure 5a there are many large nodes which are sub-
optimal and they have access to the global optima. Figure 5b is not the same; in
fact, many of the nodes which are one step from the global optimum are very small
indeed. That tells us that these nodes have small incoming degree which might hin-
der ascension through fitness levels during optimisation. These grey nodes are also
not well-connected to each other. The opposite is true for the other network. In the
”had20” LON (Figure 5a), connectivity is so dense in the promising local optima
region that visually tracking paths is impossible.

Let us now view the Figures using an algorithm performance explanation lens.
Of course, the number of global optima matters and so does the accessibility of
them. The ”lipa20b” global optimum has many incoming edges but most of these
are sourced from nodes which have low incoming degree themselves. It follows that
the global optimum is less accessible. The ”had20” LON, which is highly populated
with edges in this promising landscape region, is probably easily solvable in part
because when an algorithm reaches one of the large grey nodes (this should be
likely because they have high incoming degree) there is an abundance of paths to
a global optimum. The same trends are present when comparing the two networks
in Figures 6a and 6b.

(a) partial LON of ”had18” QAPLIB instance
which has median fractal dimension 3.175 and
associated tabu search performance 1.011

(b) partial LON of ”nug16b” QAPLIB instance
which has median fractal dimension 4.090 and
associated tabu search performance 1.055

Fig. 6: partial local optima networks for two QAPLIB instances; only local optima
which are in the fittest 15% are shown. Global optima are square and red; all others
are grey circles. The size of the nodes captures the incoming ”strength” to the node
in the LON, i.e. the weighted in-degree
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These are the partial LONs of the ”had18” and ”nug16b” QAPLIB instances.
Figure 6a shows ”had18”, which has a lower median fractal dimension (3.175) and
better tabu search performance on the underlying problem (1.011) when compared
with ”nug16b” shown in Figure 6b, which has a median fractal dimension of 4.090
and tabu search performance of 1.055. Surveying the two figures, we can again visu-
ally account for the discrepancy in fractal dimension and algorithm performance by
looking at the spatial complexity. Although the LON of ”nug16b” has more global
optima (in red), edges appear less uniformly distributed in their vicinity when com-
pared to the LON of ”had18”. In addition we notice that some nodes which are one
step from a global optimum in Figure 6b are small in size. This tells us that they
have low incoming degree and that the probability of search paths reaching them is
small. As a consequence potential routes towards the global optima may be missed
by algorithms.

5.3 Correlation Analysis

Figures 7 and 8 show pairwise correlations between variables. These are Spearman
rank coefficients, which are more appropriate to use where variables are not lin-
early related. Included are p(ILS) and p(ROTS) on the QAP instances, alongside
the proposed fractal dimension features (unique FDs, range FD, median FD, max FD
and min FD) — in Figure 7, these concern deterministic dimensions; in Figure 8,
they are probabilistic. Also shown are LON features which are not associated with
fractal complexity — these were introduced in Section 4.5. We additionally include
LON features from previous works (Thomson et al., 2018a; Ochoa and Herrmann,
2018; Verel et al., 2018) for comparative purposes. These are the LON diameter; the
number of compressed local optima (after connected LON nodes of the same fitness
are compressed together — labelled as comp.opt in the Figures); the correlation be-
tween the fitnesses of neighbours in the LON (fit.fit.corr); the number of sink nodes
present (sinks); and the sub-optimal sink strength (that is, the total incoming edge
weight to any sub-optimal sink nodes — so.strength). In addition, fractal dimen-
sions excerpted from arbitrary points on the multifractal spectra are considered as
features — these are arb.dfd1 and arb.dfd2 in Figure 7 and arb.pfd1 and arb.pfd2 in
Figure 8. The approach of taking an arbitrary excerpt from the spectrum and using
it as a feature was taken in the previous work on multifractality in LONs — its in-
clusion here facilitates a comparison between previous features and the proposed
ones.

In particular we are interested in the correlation between fractal features of the
LON and algorithm performance variance on the associated combinatorial prob-
lem. The intersections between the p(ILS) column and the fractal feature rows
in Figure 7 reveal moderate positive correlations between them in the case of the
fractal dimension range, median, maximum, and minimum — as well as the two
dimension excerpts, arb.dfd1 and arb.dfd2. For all of these the associated p-value is
less than 0.001. We notice that the correlations are stronger than the p(ILS) cor-
relations with other LON features such as mean.fitness, fitness.sinks, LO.neutrality,
edges, diameter, comp.opt, optima, fit.fit.corr, and assortativity. They are also slightly
stronger than the correlations between p(ILS) and sinks and so.strength. The corre-
lations with dimensional summary statistics such as med FD appear slightly larger
than arb.dfd1 and arb.dfd2, which are the fractal dimension features calculated using
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Fig. 7: Spearman correlations between pairs of variables including p(ILS) and
p(ROTS), fractal dimension metrics for the LONs, and other landscape features

the approach of previous work on multifractality in LONs (Thomson et al., 2018a),
although the difference is not pronounced. In the p(ROTS) column, there are only
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weak positive correlations with the fractal dimension variables, and indeed there
are no strong correlations with any of the fitness landscape variables included.
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Next we will consider the correlation plot which includes probabilistic fractal
dimension variables in Figure 8. Only two of the proposed fractal features show
a moderate negative relationship with p(ILS) — these are those related to the ex-
tent of multifractality, i.e., unique FDs and range FD. Those correlations have asso-
ciated p-value of less than 0.001. These two also have a weak negative correlation
with p(ROTS) — for unique FDs, the p-value is 0.0118; for range FD, it is 0.0776.
Again, the correlations between the other LON features and p(ILS) and p(ROTS)
are diminutive, with the exception of out-degree and clusteringcoef. Observe that the
fractal dimensions which were arbitrarily excerpted from the multifractal spectra,
arb.pfd1 and arb.pfd2, are far less correlated to p(ILS) than two of the fractal features
proposed in this work (that is, unique FDs and range FD).

5.4 Algorithm Performance Regression Models

5.4.1 Deterministic Fractal Dimension Features

Table 2 contains regression model statistics whose values are estimated over 10,000
random repeated subsampling iterations. Each row represents a particular model
setup. The response variable is shown in the second column. The R2 and mean
squared error are given. We can see from the R2 values that random forest regres-

Table 2: Summary statistics averaged with 10,000 iterations of random repeated sub-
sampling cross-validation for explaining p(ILS) and p(ROTS). Predictors include
deterministic fractal dimension LON statistics, as well as other landscape features
such as number of local optima and fitness distribution measures

type of regression response variable R2 mean squared error

linear iterated local search performance 0.160 0.001

linear robust tabu search performance 0.161 0.027

random forest iterated local search performance 0.482 0.000

random forest robust tabu search performance 0.611 0.011

sion produces a stronger model fit. This is likely because random forest trees are
adept at considering non-linearities between variables. The amount of variance in
the iterated local search and tabu search performance which can be explained us-
ing the predictors is higher in the random forest models. The mean squared error is
very low in the case of the random forest regression which is explaining p(ILS). The
strongest model in terms of R2 is using random forest regression with p(ROTS) as
the response, with around 61% of variance being explained using the landscape fea-
tures. Less variance in p(ILS) response, around 48%, is explained using the same
type of regression. This model setup does, however, have a much lower error rate
than the associated p(ROTS) model.
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Now let us look at the random forest predictor importance rankings, which are
provided in Figure 9. The values are averaged over 10000 iterations of random re-
peated subsampling cross-validation. For explaining p(ILS), the fitness of sinks is
most important. The median fractal dimension is second most important. These two
predictors have importance values noticeably higher than the rest, although even
the lowest predictors, LO neutrality and minimum fractal dimension, still have impor-
tance values around 0.009, which is around half the value of the highest. Fitness
of sinks is again the most important factor in Figure 9b, which is the tabu search
response model setup. This is followed by other fitness-based features in second,
third, and fourth place — LO neutrality, mean fitness, and fitness range. The median
fractal dimension contributes moderately well, ranking fourth out of eight features.
The position of minimum fractal dimension is last, but even so, it does contribute to
the model.

5.4.2 Probabilistic Fractal Dimension Features

In Table 3 is model statistics where the predictor set includes probabilistic fractal di-
mension features instead of the deterministic ones seen in Table 2. This is followed
by the associated random forest predictor rankings in Figure 10. The random for-
est p(ILS) model setup is rather weak with respect to the R2 estimate. Indeed,
in this measure it is weaker than the equivalent model which used deterministic
dimensions. It should be reiterated at this point that the data-set is composed of
fewer observations here than in the previous models (Tables 2 and 9). There are 53
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Fig. 9: Variable importance values for random forest models; the models include
deterministic fractal dimension features as part of the predictor set.
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Table 3: Summary statistics estimated with 10000 iterations of random repeated sub-
sampling cross-validation for explaining p(ILS) and p(ROTS). Predictors include
probabilistic fractal dimension statistics, as well as other landscape features such as
number of local optima and fitness distribution measures

type of regression response variable R2 mean squared error

linear iterated local search performance 0.293 0.002

linear robust tabu search performance 0.332 0.017

random forest iterated local search performance 0.304 0.000

random forest robust tabu search performance 0.578 0.033

observations here, compared with a previous 85. This might impact the formula-
tion of a well-fitting model. Nonetheless both setups with p(ILS) as the response
variable have markedly lower mean squared errors than their ROTS counterparts.
This is also true in Table 2. Back in Table 3, the p(ROTS) models have higher mean
squared errors but the random forest model is definitely the strongest with respect
to search algorithm explanation, with around 58% being accounted for by the pre-
dictors. Although a smaller portion of variance is explained in the p(ILS) models,
the low mean squared errors are encouraging in accuracy terms.
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Fig. 10: Variable importance values for random forest models; the models include
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In the predictor rankings, seen in Figure 10, we draw your attention to the two
fractal dimension metrics in the iterated local search plot (Figure 10a): they are
among the most important predictors, ranking third and fourth. Their values are
betweeen 0.005 and 0.006; for comparison, the importance value of the most dom-
inant predictor, the number of global optima, is just above 0.007. The fractal di-
mension predictors are among the least important in the tabu model setup seen in
Figure 10b. Instead, the strongest predictors for p(ROTS) appear to be relating to
the local optima level fitness distribution: mean fitness, LO neutrality, fitness of sinks,
and fitness range. In fact, these four form a distinct group on the plot, far higher in
importance than the remaining four (which include the fractal dimension features).
Nevertheless, the lower group are not useless: their values are approximately in the
range 0.04 - 0.07; the more important features have values between around 0.155
and 0.171.

6 Conclusion

We conducted multifractal analysis on the local optima networks (LONs) associ-
ated with a benchmark combinatorial optimisation problem library, QAPLIB. The
QAPLIB instance set was more than three times the size of the set used in a prior
study (Thomson et al., 2018a) and raised the considered problem sizes from N ≤
28 to N ≤ 50. A recent and refined LON construction algorithm (Ochoa and Her-
rmann, 2018) was used to build the LONs. Relationships between fractal dimension
features of LONs and algorithm performance by iterated local search (ILS) were es-
tablished using correlation analysis, visual analysis tools, and linear and random
forest regression with random repeated subsampling cross-validation. The results
showed that the extent of multifractality and the highness of values in the dimension
spectrum can contribute towards partially predicting or explaining ILS algorithm
performance. Features of the fractal dimension distribution for the LONs also dis-
played individual pairwise correlations to ILS algorithm performance. Fractal di-
mension features in LONs were less important for predicting tabu search but could
still contribute some information. Sampled fitness levels in the LON were more im-
portant in these models.

A limitation to our approach is that the features are computed from sampled
LONs, whose characteristics can alter markedly with a different sampling effort
(Bożejko et al., 2018). Nevertheless, the LON features can contribute towards ex-
plaining algorithm performance within regression models — it follows that they are
useful, even if the sample illustrates a certain version of the fitness landscape. In ad-
dition, there is no alternative to sampling when analysing QAP LONs of moderate
size (greater thanN = 11 according to Daolio et al. (2011)). Another consideration is
the random selection of box centres in the sandbox algorithm for multifractal anal-
ysis. We argue that the number of algorithm iterations — each of which contains a
random selection of centres and produces its own fractal dimension — should mit-
igate the variation induced by random selection. In addition, the resulting fractal
dimension features help to explain metaheuristic performance in statistical analysis
over 85 observations. This implies that the randomness inherent to the approach
does not affect the empirical usefulness of the computed fractal dimensions.

The present study could serve as a foundation for further work within this re-
search avenue which remains untapped. In particular, we would like to expand the
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maximum size of the problems studied, as well as venturing to other domains and
to constrained problems. Finally, we conclude with a remark concerning our inter-
est in studying the relationship between perturbation strength used to generate the
LONs, and the calculated fractal dimensions of that LON.
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