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Abstract

Shape constraints, such as non-negativity, monotonicity, convexity or supermodularity, play
a key role in various applications of machine learning and statistics. However, incorporat-
ing this side information into predictive models in a hard way (for example at all points
of an interval) for rich function classes is a notoriously challenging problem. We propose a
unified and modular convex optimization framework, relying on second-order cone (SOC)
tightening, to encode hard affine SDP constraints on function derivatives, for models be-
longing to vector-valued reproducing kernel Hilbert spaces (vRKHSs). The modular nature
of the proposed approach allows to simultaneously handle multiple shape constraints, and
to tighten an infinite number of constraints into finitely many. We prove the consistency
of the proposed scheme and that of its adaptive variant, leveraging geometric properties of
vRKHSs. The efficiency of the approach is illustrated in the context of shape optimization,
safety-critical control and econometrics.

Keywords: vector-valued reproducing kernel Hilbert space, shape-constrained optimiza-
tion, matrix-valued kernel, kernel derivatives

1. Introduction

The design of flexible predictive models is among the most fundamental problems of machine
learning. However, in several applications one is faced with a limited number of samples
due to the difficulty or the cost of data acquisition. One principled way to tackle this serious
bottleneck and to improve sample-efficiency corresponds to incorporating qualitative priors
on the shape of the model, such as non-negativity, monotonicity, convexity or supermod-
ularity, collectively known as shape constraints (Guntuboyina and Sen, 2018). This side
information can originate from both physical and theoretical constraints on the model such
as “stay within boundaries“ in path-planning or “be nonnegative and integrate to one“ in
density estimation.

Various scientific fields, including econometrics, statistics, biology, game theory or fi-
nance, impose shape constraints on their hypothesis classes. For instance, economic theory
dictates increasing and concave utility functions, decreasing demand functions, or monotone
link functions (Johnson and Jiang, 2018; Chetverikov et al., 2018). In statistics, applying a
monotonicity assumption on the regression function (for instance in isotonic regression; Han
et al. 2019) dates back at least to Brunk (1955). Density estimation entails non-negativity
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which can be paired with other constraints (Royset and Wets, 2015), whereas, in quantile
regression, conditional quantile functions grow w.r.t. the quantile level (Koenker, 2005). In
biology, monotone regression is particularly well-suited to dose-response studies (Hu et al.,
2005) and to identification of genome interactions (Luss et al., 2012). Inventory problems,
game theory and pricing models commonly rely on the assumption of supermodularity (Top-
kis, 1998; Simchi-Levi et al., 2014). In financial applications, call option prices should be
increasing in volatility, monotone and convex in the underlying stock price (Aı̈t-Sahalia and
Duarte, 2003). In control theory, shape constraints are known as state constraints, and rank
among the most difficult topics of the field (Hartl et al., 1995; Aubin-Frankowski, 2020).

A large and important class of these shape requirements takes the form of an affine SDP
(positive semidefinite) inequality over the derivatives of f ∈ F where F is a hypothesis class
(a set of candidate predictive models). Particularly, these constraints are requested to hold
pointwise at all elements of a set K ⊆ Rd:

0P×P 4 diag(b) + Df(x) ∀x ∈ K (1)

for some bias b ∈ RP and differential operator D (e.g., the Hessian). The fundamental
challenge one faces when optimizing an objective L(f) over F is that in most relevant cases
the set K has non-finite cardinality, and hence there is an infinite number of constraints to
satisfy. For instance, in constrained path-planning, K corresponds to a time interval and
the goal is to avoid collisions at all times.

In the statistics community, the main emphasis has been on designing consistent esti-
mators and on studying their rates (Han and Wellner, 2016; Chen and Samworth, 2016;
Freyberger and Reeves, 2018; Lim, 2020; Deng and Zhang, 2020; Kur et al., 2020). While
these asymptotic results are of significant theoretical interest, imposing shape priors is gen-
erally beneficial in the small-sample regime. Since optimization with an infinite number of
constraints (1) is computationally intractable, one has to either relax or tighten the problem.
Relaxing corresponds to approaches for which the constraint (1) is not guaranteed to be
satisfied. For instance, one can choose to enforce the constraint only at a finite number
of points (Takeuchi et al., 2006; Blundell et al., 2012; Agrell, 2019) by replacing K with a
discretization {xm}m=1...M ( K in (1). An alternative approach for relaxing is to add soft
penalties to the objective L(f) (Sangnier et al., 2016; Koppel et al., 2019; Brault et al., 2019).
Tightening on the contrary restricts the search space of functions to a smaller and more
amenable subset F0 ( F. This principle can be implemented by encoding the requirement
(1) into F0 through algebraic techniques. The approach is feasible for restrictive finite-
dimensional F0 such as subsets of polynomials (Hall, 2018) or polynomial splines (Turlach,
2005; Papp and Alizadeh, 2014; Pya and Wood, 2015; Wu and Sickles, 2018; Meyer, 2018).
For infinite-dimensional sets F0, the idea has recently been extended elegantly (Marteau-
Ferey et al., 2020) for a single non-negativity constraint over the whole space (K = Rd),
forcing f to be an analogue of a sum-of-squares. These limitations motivate the design of
novel shape-constrained optimization techniques which avoid (i) restricted function classes,
(ii) limited out-of-sample guarantees and (iii) the lack of modularity in terms of the shape
constraints imposed.

In this work the class of functions F is assumed to be a reproducing kernel Hilbert space
F := FK (RKHS; Steinwart and Christmann 2008; Saitoh and Sawano 2016; also referred
to as abstract splines; Wahba 1990; Berlinet and Thomas-Agnan 2004; Wang 2011). There
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are multiple advantages in selecting this family of functions. First, kernel methods rely
inherently on pointwise evaluation (Aronszajn, 1950) which are well-suited to handle the
pointwise constraints (1). In particular, the associated reproducing property (which also
holds for derivatives; Zhou 2008) allows one to rephrase the inequality constraints (1) in FK
using a geometric perspective. Moreover, RKHSs can be rich enough to approximate various
function classes (including the space of continuous bounded functions, a property known
as universality; Steinwart 2001; Micchelli et al. 2006; Sriperumbudur et al. 2011; Simon-
Gabriel and Schölkopf 2018). In addition, the models f ∈ FK obtained through kernel
regression share the regularity of the underlying kernel (Steinwart and Christmann, 2008),
allowing one to incorporate additional prior knowledge through the choice of K. Further-
more, vector-valued RKHSs (vRKHS; Micchelli and Pontil 2005; Brouard et al. 2011; Kadri
et al. 2016) induced by operator-valued kernels can efficiently encode dependency between
output coordinates. These vRKHSs have similar spectral decomposition (Vito et al., 2013)
and universal approximation properties (Carmeli et al., 2010) as their real-valued counter-
part. Finally, despite the infinite-dimensional nature of most vRKHSs of interest, kernel
methods often remain computationally tractable thanks to representer theorems (Schölkopf
et al., 2001; Zhou, 2008). However, classical representer theorems only hold for a finite
number of evaluations both in the objective and in the constraints. This is one of the
points we address through our approach based on finite compact coverings.

With a vRKHS choice for F, our contributions can be summarized as follows.

1. We propose two principled ways to tighten the infinite number of SDP constraints (1)
through compact coverings in vRKHSs and through an upper bound of the modulus of
continuity of Df . Specifically, we show that (1) can be tightened into a finite number of
SDP inequalities with second-order cone (SOC) terms

ηm‖f‖K IP 4 diag(b) + Df(x̃m), ∀m ∈ [M ] (2)

for a suitable choice of ηm > 0 and x̃m ∈ K.
2. When considering supervised learning over vRKHSs, we prove an existence result and a

representer theorem for the strengthened problems; this approach allows handling several
shape constraints in a modular way. In addition, we establish the convergence to the
solution of the original problem with constraint (1).

3. We design adaptive variants of the previous schemes, in order to enforce the constraints
only where it is necessary, and show their convergence.

4. We illustrate the efficiency of our approach in the context of shape optimization, safety-
critical control and econometrics.

In this paper, we thus propose a unified and modular convex optimization framework for
kernel machines relying on SOC tightening to encode hard affine SDP constraints on function
derivatives. Our framework is suited for a large number of settings and applications owing
to the ubiquity of shape constraints.

This article extends the results of Aubin-Frankowski and Szabó (2020) by (i) considering
matrix-valued rather than real-valued kernels, (ii) generalizing the shape requirements stud-
ied from real-valued to affine SDP constraints, (iii) proposing an adaptive covering scheme
and showing its convergence, and (iv) providing applications complementary to the previous
focus on joint quantile regression. The present article also encompasses two prior domain-
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specific applications with X = [0, T ]: convoy trajectory reconstruction (Aubin-Frankowski
et al., 2020) and linear quadratic optimal control (Aubin-Frankowski, 2020).

The paper is structured as follows. Our problem is introduced in Section 2. Section 3 is
about the handling of hard affine SDP shape constraints. The constraints are then embed-
ded into supervised learning in Section 4. In Section 5 we present the soap bubble algorithm
which is an adaptive scheme combining the results of Section 3 and Section 4. Numerical
illustrations are given in Section 6. Conclusions are drawn in Section 7. Proofs are collected
in Section A.

Notations: Below we introduce the notations N, N∗, R+, [[n1, n2]], [a, b], [N ], #S, A\B,∏
i∈[I] Si, S

I , χS , max(S), diam(Ω), S̊, S̄, 〈a,b〉, ‖a‖2, Sd−1, a ≥ b, a > b, u ⊗ v,

diag(v), M>, 〈A,B〉F , ei, 0d1×d2 , Id, S
+
d , [V1; . . . ; VN ], [H1, . . . ,HN ], KA, |r|, ∂r, ∂r,q,

Cs
(
X,Rd

)
, Cs,s

(
X× X,Rd1×d2

)
, O1,s, OQ,s, H

+
F (f, ρ), H−F (f, ρ), HF(f, ρ), BF(c, r), BX(c, r),

V ⊥. Depending on the reader’s background, (s)he may skip these definitions, and return
to them if necessary.

Sets: Let N = {0, 1, . . .}, N∗ = {1, 2, . . .} and R+ denote the set of natural numbers,
positive integers and non-negative reals, respectively. We write [[n1, n2]] for the set of integers
between n1, n2 ∈ N (not to be confused with the closed interval [a, b]) and use the shorthand
[N ] := [[1, N ]] with N ∈ N, with the convention that [0] is the empty set. The cardinality of
a set S is denoted by #S, the difference of two sets A and B by A\B. Given sets (Si)i∈[I],

let
∏
i∈[I] Si be their Cartesian product; we use the shorthand SI if S = S1 = . . . = SI . For

a set S, its characteristic function is χS : χS(x) = 0 if x ∈ S, χS(x) = ∞ otherwise. The
maximum of a set S ⊂ R with finite cardinality is denoted by max(S). Let the diameter of
a set Ω contained in a normed space (F, ‖·‖F) be denoted by diam(Ω) = supx,y∈Ω ‖x− y‖F;

diam(Ω) < ∞ if Ω is bounded. The interior of a set S ⊆ F is denoted by S̊, its closure
by S̄. Throughout the paper X ⊆ Rd denotes a set which is contained in the closure of its

interior (X ⊆ ¯̊
X).1

Linear algebra: The inner product of vectors a,b ∈ Rd is denoted by 〈a,b〉 =∑
i∈[d] aibi; the Euclidean norm is written as ‖a‖2 =

√
〈a,a〉. The d-dimensional sphere

is denoted by Sd−1 =
{
x ∈ Rd : ‖x‖2 = 1

}
. For vectors a and b ∈ Rd, a ≥ b means that

ai ≥ bi for all i ∈ [d]. Similarly, a > b is defined as ai > bi for all i ∈ [d]. Let the tensor
product of vector u ∈ Rd1 and v ∈ Rd2 be defined as u⊗v = [uivj ]i∈[d1], j∈[d2] ∈ Rd1×d2 . The

d × d sized matrix with diagonal v ∈ Rd is diag(v). The transpose of a matrix M is M>.
The Frobenius product of the matrices A,B ∈ Rd1×d2 is 〈A,B〉F =

∑
i∈[d1], j∈[d2]AijBij .

The i-th canonical basis vector is ei; the zero matrix is 0d1×d2 ∈ Rd1×d2 ; the identity matrix
is denoted by Id ∈ Rd×d. The set of d × d symmetric positive semi-definite matrices is
denoted by S+

d =
{
M ∈ Rd×d : M = M> and 0d×d 4 M

}
. The vertical concatenation of

matrices V1 ∈ Rd1×d, . . . ,VN ∈ RdN×d is [V1; . . . ; VN ] ∈ R(
∑

n∈[N ] dn)×d; similarly the hor-

izontal concatenation of H1 ∈ Rd×d1 , . . . ,HN ∈ Rd×dN is [H1, . . . ,HN ] ∈ Rd×(
∑

n∈[N ] dn).
A tensor K ∈ Rd×d×d×d defines an Rd×d 7→ Rd×d bounded linear operator by acting on a
matrix A ∈ Rd×d as (KA)i,j :=

∑
n,m∈[d] an,mKi,j,n,m with i, j ∈ [d].

1. Examples of such sets include for instance open sets or half intervals [a, b) where a ∈ R, b ∈ R ∪ {∞}.
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Analysis: Given a multi-index r ∈ Nd let |r| =
∑

j∈[d] rj be its length, and let the

r-th order partial derivative of a function f be denoted by ∂rf(x) = ∂|r|f(x)

∂x
r1
1 ...∂x

rd
d

. Similarly

for multi-indices r,q ∈ Nd, let ∂r,qf(x,y) = ∂|r|,|q|f(x,y)

∂x
r1
1 ...∂x

rd
d ∂y

q1
1 ...∂y

qd
d

. For a fixed s ∈ N, let

the set of Rd-valued functions on X with continuous derivatives up to order s be denoted
by Cs

(
X,Rd

)
. The set of Rd1×d2-valued functions on X × X for which ∂r,rf exists and

is continuous up to order |r| ≤ s ∈ N is denoted by Cs,s
(
X× X,Rd1×d2

)
. Let the set of

linear differential operators of order at most s ∈ N on real-valued functions be denoted

by O1,s =
{
D : D(f)(x) =

∑
j∈J cj∂

rjf(x),#J <∞, |rj | ≤ s, cj ∈ R (∀j ∈ J)
}

. The set

of linear differential operators of order at most s ∈ N on RQ-valued functions is OQ,s ={
D : D(f)(x) =

∑
q∈[Q] βqDq(fq)(x), βq ∈ R, Dq ∈ O1,s

}
.

Hilbert spaces: Let F be a Hilbert space. For f ∈ F and ρ ∈ R, let the closed
half-spaces and the affine hyperplane associated to the pair (f, ρ) be defined as H+

F (f, ρ) =
{g ∈ F : 〈f, g〉F ≥ ρ}, H

−
F (f, ρ) = {g ∈ F : 〈f, g〉F ≤ ρ}, HF(f, ρ) = {g ∈ F : 〈f, g〉F = ρ}.

The closed ball in F with center c ∈ F and radius r > 0 is BF(c, r) = {f ∈ F : ‖c− f‖F ≤ r}.
When F = X ⊆ Rd is endowed with a norm ‖·‖X, we write BX(c, r) for balls. Let V be
a closed subspace of a Hilbert space F, the orthogonal complement of V in F is V ⊥ =
{f ∈ F : 〈f, g〉F = 0 ∀g ∈ V }.

2. Problem Formulation

In this section we formulate our problem after recalling the definition of vector-valued
reproducing kernel Hilbert spaces (vRKHS).

vRKHS: A function K : X × X → RQ×Q is called a (positive definite) matrix-valued
kernel on X if K(x,x′) = K(x′,x)> for all x,x′ ∈ X and

∑
i,j∈[N ] v

>
i K(xi,xj)vj ≥ 0 for

all N ∈ N∗, {xn}n∈[N ] ⊂ X and {vn}n∈[N ] ⊂ RQ. For x ∈ X, let K(·,x) be the mapping

x′ ∈ X 7→ K (x′,x) ∈ RQ×Q. Let FK denote the vRKHS associated to the kernel K; we use
the shorthand ‖·‖K := ‖·‖FK

and 〈·, ·〉K := 〈·, ·〉FK
for the norm and the inner product on

FK . The Hilbert space FK consists of X → RQ functions for which (i) K(·,x)c ∈ FK for
all x ∈ X and c ∈ RQ, and (ii) 〈f ,K(·,x)c〉K = 〈f(x), c〉 for all f ∈ FK , x ∈ X and c ∈ RQ.
The first property of vRKHSs describes the basic elements of FK , the second one is called
the reproducing property. Constructively, FK = span

{
K(·,x)c : x ∈ X, c ∈ RQ

}
where

span denotes the linear hull of its argument and the bar stands for closure w.r.t. ‖ · ‖K .
Given a vRKHS FK , we use the shorthands H+

K(f , ρ), H−K(f , ρ), HK(f , ρ) and BK(c, r)
for H+

FK
(f , ρ), H−FK

(f , ρ), HFK
(f , ρ) and BFK

(c, r). For differential operators D, D̃ ∈ OQ,s
defined as D(f)(x) =

∑
q∈[Q] βqDq,x(fq)(x) and D̃(f)(x′) =

∑
q∈[Q] β̃qD̃q,x′(fq)(x

′) and for

a kernel K ∈ Cs,s
(
X× X,RQ×Q

)
, let

D̃>DK(x′,x) =
∑

q,q′∈[Q]

β̃q′βqe
>
q′D̃q′,x′Dq,xK(x′,x)eq ∈ R.

In this paper we focus on optimization problems over vRKHSs with hard affine SDP
shape constraints on derivatives. We formulate our problem in the empirical risk minimiza-
tion framework. Assume that we have access to samples S = ((xn,yn))n∈[N ] ⊂ X × RQ

5



Aubin-Frankowski and Szabó

which are supposed to be fixed and X ⊆ Rd is assumed to be contained in the closure of
its interior. We are given a kernel K : X × X → RQ×Q with associated vRKHS FK ; K is
assumed to belong to Cs,s

(
X× X,RQ×Q

)
with order s ∈ N. The function family FK is used

to capture the relation between the random variables x and y via the samples S, with the
optional usage of a bias term b ∈ RB. The goodness of the estimated pair (f ,b) ∈ FK×RB
is measured through a loss function L (with the samples S kept fixed) which can take into
account both function values and function derivatives at the input points xn; their number
#Jn is allowed to differ for each n. The function values and derivatives of interest at each
point xn are represented by the linear differential operators (D0

n,j)j∈Jn ⊂ OQ,s. With these
notations, our objective function to minimize is

L(f ,b) = L

(
b,
((
D0
n,j(f)(xn)

)
j∈Jn

)
n∈[N ]

)
+R (‖f‖K) , (3)

where L : RB × R
∑

n∈[N ] #Jn → R ∪ {∞}, and R : R+ → R is a regularizer. The pair (f ,b)
is constrained: the bias variable b has to belong to a closed convex set B ⊆ RB, and more
importantly (f ,b) is required to satisfy I ∈ N∗ hard affine SDP shape constraints on given
sets Ki ⊆ X which are assumed to be compact2:

C = {(f ,b) : 0Pi×Pi 4 Di(f − f0,i)(x) + diag(Γib− b0,i), ∀x ∈ Ki,∀ i ∈ [I]} . (C)

In (C) the operator Di aggregates s-th order derivatives to the SDP constraints, i.e.

Di(f)(x) =
[
Di
p1,p2

(f)(x)
]
p1,p2∈[Pi]

∈ SPi (4)

with elements Di
p1,p2

∈ OQ,s. For instance, when Q = 1, s = 2, I = 1, P1 = d, 0d×d 4 D1 :=
[∂ei+ej ]i,j∈[d] requires the estimated function to be convex when its domain is restricted to
a (convex) compact set K1; requiring the function to be convex only in a subset of its
arguments can be achieved by setting Pi < d. Possible shifts in (C) are expressed by the
terms b0,i ∈ RPi and f0,i ∈ FK . The matrices Γi ∈ RPi×B allow linear interaction between
the bias coordinates. The bias b ∈ RB can be both variable (e.g. fq + bq) and constraint-
related (such as b1 ≤ f(x), b2 ≤ f ′(x)); hence B can differ from Q. The geometric intuition
of the (f ,b) pair follows that of the classical support vector machines where f controls the
direction, whereas b determines the bias of the optimal hyperplane. Thus our problem
of interest combining the objective (3) and the hard affine SDP constraints (C) can be
written as (

f̄ , b̄
)
∈ arg min

f ∈FK ,b∈B,
(f ,b)∈C

L(f ,b). (P)

Remarks:
• Rewriting SDP constraints as (C): Using (C) one can incorporate affine SDP constraints

of the form

{(f ,b) |0P×P 4 D̃(f − f0)(x) + M, ∀x ∈ K},

2. While in general we assume the Ki-s to be compact in X, this requirement can be relaxed to boundedness
of their image in FK under additional assumptions; see remark ’Non-compact K’ in Section 3.1.
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where M ∈ SP . Indeed, by setting Γ = 0 and b0 = −eig(M) to be the negative of the
eigenvalues of M, and using the spectral theorem

0P×P 4 D̃(f − f0)(x) + M = D̃(f − f0)(x) + U>eig(M)U

= D̃(f − f0)(x) + U> diag(Γb− b0)U⇔
0P×P 4 UD̃(f − f0)(x)U>︸ ︷︷ ︸

=:D(f−f0)(x)

+ diag(Γb− b0).

• Further specific cases of (C): Examples of (C) beyond the more classical case of non-
negativity, monotonicity or convexity include for instance n-monotonicity, monotonicity
w.r.t. various partial orderings, n-alternating monotonicity, or supermodularity (Aubin-
Frankowski and Szabó, 2020, Section C).

• Cases not covered in (C): Examples not covered directly by (C) include for instance the
Slutzky shape constraint and the quasi-convexity formula which are alternative assump-
tions on demand or utility functions. These non-affine requirements write as ∂f(x1,x2)

∂x1
+

f(x1, x2)∂f(x1,x2)
∂x2

≤ 0 for ∀x1, x2 and f(αx + (1 − α)x′) ≤ max (f(x), f (x′)) for ∀α ∈
[0, 1], ∀x,x′, respectively.

• Equality constraints in (P): In this article, our primary focus is on convex inequality
constraints, handled through an interior approximation. Considering equalities, convex
equalities are affine, so they would effectively restrict the hypothesis class to a closed affine
subspace. A closed subspace of a vRKHS is also a vRKHS, possibly with a different kernel.
Finitely many equality constraints can be handled in our framework without difficulty
and without changing kernel; see our example on shape optimization in Section 6.1. On
the other hand, an infinite number of equality requirements may require to determine
explicitly the kernel of the subspace, which can be difficult. Nevertheless this is possible
for instance in case of a linear control problem (see Section 6.2 and footnote 11).

Examples: It is instructive to consider a few examples for the problem family (P).

• Joint quantile regression (JQR; as for instance defined by Sangnier et al. (2016)): Assume
that we are given samples ((xn, yn))n∈[N ] from the random variable (X,Y ) with values in

X× R ⊆ Rd+1, as well as Q levels 0 < τ1 < . . . < τQ < 1. Our goal is to estimate jointly
the τq-quantiles of the conditional distributions P(Y |X = x) for q ∈ [Q]. In the JQR
problem the estimated τq-quantile functions (fq + bq)q∈[Q] (modulo the biases bq ∈ R)
belong to a real-valued RKHS Fk associated to a kernel k : X×X→ R, and they have to
satisfy jointly a monotonically increasing property w.r.t. the quantile level τ . It is natural
to require this non-crossing property on the smallest rectangle containing the input points

(xn)n∈[N ], in other words on K =
∏
j∈[d]

[
min {(xn)j}n∈[N ] ,max {(xn)j}n∈[N ]

]
. Hence,

the optimization problem in JQR takes the form

min
f∈(Fk)Q,

b∈RQ

L (f ,b):=
1

N

∑
q∈[Q]

∑
n∈[N ]

`τq (yn − [fq(xn) + bq]) + λb‖b‖22 + λf
∑
q∈[Q]

‖fq‖2Fk

s.t. fq(x) + bq ≤ fq+1(x) + bq+1, ∀q ∈ [Q− 1], ∀x ∈ K
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where λb > 0, λf > 0,3 and the pinball loss is defined as `τ (e) = max(τe, (τ − 1)e)
with τ ∈ (0, 1). This problem can be obtained as a specific case of (P) by choosing
B = Q, s = 0, I = Q − 1, Pi = 1, Di(f) = fi+1 − fi, Γi(b) = bi+1 − bi (∀i ∈ [I]),
K (x,x′) = k (x,x′) IQ, f0,i = 0, b0 = 0, B = RB. Further details and numerical
illustration on the JQR problem are provided by Aubin-Frankowski and Szabó (2020).

• Convoy trajectory reconstruction (CTR): Here, the goal is to estimate vehicle trajecto-
ries based on noisy observations. This is a typical situation with GPS measurements,
where the imprecision can be compensated through side information, not using only the
position of every vehicle but also that of its neighbors. Assume that there are Q vehicles
forming a convoy (i.e. they do not overtake and keep a minimum inter-vehicular distance
between each other) with speed limit on the vehicles. For each vehicle q we have Nq noisy
position measurements (yq,n)n∈[Nq ] ⊂ R, each associated with vehicle-specific time points
(xq,n)n∈[Nq ] ⊂ X := [0, T ]. Without loss of generality, let the vehicles be ordered in the
lane according to their indices (q = 1 is the first, q = Q is the last one). Let dmin ≥ 0
be the minimum inter-vehicular distance, and vmin be the minimal speed to keep.4 By
modelling the location of the qth vehicle at time x as bq + fq(x) where bq ∈ R, fq ∈ Fk
and k : X× X→ R is a real-valued kernel, the CTR task can be formulated as

min
f=[fq ]q∈[Q]∈(Fk)Q,

b∈RQ

L (f ,b) :=
1

Q

Q∑
q=1

 1

Nq

Nq∑
n=1

|yq,n − (bq + fq(xq,n)) |2
+ λ‖fq‖2Fk


s.t. dmin + bq+1 + fq+1(x) ≤ bq + fq(x), ∀q ∈ [Q− 1], ∀x ∈ X,

vmin ≤ f ′q(x) ∀q ∈ [Q], ∀x ∈ X.

This problem can be obtained as a specific case of (P) by choosing B = Q, s = 1,
I = 2Q−1, Pi = 1 (i ∈ [I]), K (x,x′) = k (x,x′) IQ, Di(f) = fi−fi+1 (i ∈ [Q−1]), Γib =
bi−bi+1 (i ∈ [Q−1]), b0,i = dmin (i ∈ [Q−1]), Di(f) = f ′i−(Q−1) (i ∈ {Q,Q+1, . . . , 2Q−1}),
Γi = 01,Q (i ∈ {Q,Q+ 1, . . . , 2Q− 1}), b0,i = vmin (i ∈ {Q,Q+ 1, . . . , 2Q− 1}), B = RB.
This application was investigated by Aubin-Frankowski et al. (2020).

• Further examples: In Section 6 we consider three complementary problems with numer-
ical illustration. The examples cover a shape optimization task (minimizing the defor-
mation of a catenary under its weight, with a stand underneath), safety-critical control
(piloting an underwater vehicle while avoiding obstacles), and econometrics (learning
production functions).

3. Constraints

In this section we propose two approaches to handle a single hard affine SDP shape con-
straint (I = 1) appearing in (C) over a (non-finite) compact2 set K

CP = {(f ,b) : 0P×P 4 D(f − f0)(x) + diag(Γb− b0), ∀x ∈ K} . (CP )

3. Sangnier et al. (2016) used the same loss function but a soft non-crossing inducing regularizer inspired
by matrix-valued kernels, and also set λb = 0.

4. The requirement vmin = 0 means that the vehicles go forward. A maximum speed constraint can be
imposed similarly.
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Multiple shape constraints (I > 1) can be addressed by stacking the presented results.
There are two main challenges to tackle: (i) CP cannot be directly implemented since

K is non-finite, (ii) deriving a representer theorem is also problematic as the number of
evaluations of f is non-finite. To address these challenges, we propose two complementary
approaches (depending on the value of P ) to tighten CP through finite coverings5:
1. Compact covering in FK with balls and half-spaces, P = 1: This first approach

focuses on the real-valued case of P = 1, i.e.

C1 = {(f ,b) : 0 ≤ D(f − f0)(x) + Γb− b0, ∀x ∈ K} . (C1)

We show that (C1) can be written as the inclusion in the vRKHS FK of a compact set in
a half-space. We then tighten this inclusion by taking a finite covering of the compact set
through balls and half-spaces in FK , and present a general theorem which enables one to
translate such inclusions into convex equations.

2. Upper bounding the modulus of continuity, P ≥ 1: Our second approach tackles
the general case of P ≥ 1, i.e. (CP ), through an upper bound on the modulus of continuity
of D(f−f0) defined on a finite covering of K. The upper bound has the form ηm,P ‖f−f0‖K
which leads to second-order cone (SOC) constraints instead of affine inequalities. We
will see that the two methods coincide when P = 1 and when only ball coverings are
considered.

We start with a lemma stating the reproducing property for derivatives of matrix-valued
kernels.

Lemma 1 (Reproducing property for derivatives with matrix-valued kernels) Let
s ∈ N, X ⊆ Rd be a set which is contained in the closure of its interior, K be a matrix-valued
kernel such that K ∈ Cs,s

(
X× X,RQ×Q

)
, and D ∈ OQ,s be a differential operator such that

D(f)(x) =
∑

q∈[Q] βqDqfq(x). Let

DK(x′,x) :=
∑
q∈[Q]

βq[Dq,xK(x′,x)]eq ∈ RQ, (5)

where Dq,xK(x′,x) := Dq[x
′′ 7→ K(x′,x′′)](x) ∈ RQ×Q and eq ∈ RQ is the q-th canonical

basis vector. Then

f ∈ Cs
(
X,RQ

)
, DK(·,x) ∈ FK , D(f)(x) = 〈f , DK(·,x)〉K (6)

for all f ∈ FK and x ∈ X.

Remark: Specifically for s = 0, one has that D(f)(x) =
∑

q∈[Q] βqfq(x) = β>f(x) and

(6) reduces to the classical reproducing property in vRKHSs, i.e. β>f(x) = 〈f ,K(·,x)β〉K .
The reproducing property for kernel derivatives has been studied over open sets X, for real-
valued (Saitoh and Sawano, 2016) and matrix-valued (Micheli and Glaunés, 2014) kernels,
and over compact sets which are the closure of their interior for real-valued kernels (Zhou,
2008). In Lemma 1 we generalize these results to matrix-valued kernels and to sets X which
are contained in the closure of their interior.

5. By considering finite coverings, we make the problem amenable to optimization. This computational
aspect is elaborated in Section 4.
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3.1 Constraints by Compact Covering in FK

In our first approach, applying Lemma 1, we rephrase constraint (C1) as an inclusion of
sets using the non-linear embedding ΦD : x ∈ K 7→ DK(·,x) ∈ FK

(f ,b) ∈ C1 ⇔ b0 − Γb ≤ D(f − f0)(x) = 〈f − f0, DK(·,x)〉K ∀x ∈ K

⇔ ΦD(K) := {DK(·,x) : x ∈ K} ⊆ H+
K(f − f0, b0 − Γb). (7)

The set ΦD(K) is compact in FK since K is compact in X and ΦD is continuous. However
it is intractable to directly ensure the inclusion described in (7) whenever K is not finite.
We thus consider an approximation with a “simpler“ set Ω̄ containing ΦD(K), and require
the inclusion

ΦD(K) ⊆ Ω̄ ⊆ H+
K(f − f0, b0 − Γb) (8)

which implies (7).6 Since ΦD(K) is compact, drawing upon compact coverings, we assume
that

Ω̄ = ∪m∈[M ]Ω̄m, (9)

where each Ω̄m is the closure of a non-empty finite intersection (JB,m, JH,m ∈ N) of non-
trivial (rm,j > 0, vm,j 6= 0) open balls and open half-spaces.

Ωm =

 ⋂
j∈[JB,m]

B̊K(cm,j , rm,j)

 ∩
 ⋂
j∈[JH,m]

H̊−K(vm,j , ρm,j)

 . (10)

Remarks:

• Form of (10): The motivation for considering Ω̄ and Ω̄m of the form (9) and (10) is
several-fold. Having a finite description enables one to derive a representer theorem.
However, only a few sets (mainly points, balls and half-spaces) enjoy explicit convex
separation formulas (which arise naturally when considering inclusions, see footnote 8).
Focusing on points leads to a discretization of ΦD(K) and greedy strategies (such as the
Frank-Wolfe algorithm), but without guarantees outside of the points considered. A finite
union of balls can approximate any compact set, but balls result in enforcing “buffers“
in every direction of FK . A finite intersection of half-spaces can approximate any convex
set,7 but this finite intersection is always unbounded for infinite-dimensional FK resulting
in a poor approximation of compact sets. Motivated by obtaining guarantees, we thus
consider combinations of balls and half-spaces as in (9)-(10).

6. A simple example for translation-invariant kernels K(x,y) = K0(x − y) is the (coarse) approx-

imation ΦD(K) ⊆ BK

(
0,
√
D>DK0(0)

)
. Indeed, ‖DK(·,x)‖K =

√
〈DK(·,x), DK(·,x)〉K =√

D>DK(x,x) =
√
D>DK0(0) for any x ∈ X by Lemma 1.

7. To motivate the use of half-spaces in (10): notice that since the half-space on the r.h.s. of (7) is closed and
convex, (7) is equivalent to showing that the closed convex hull co(ΦD(K)) is a subset of H+

K(f − f0, b0−
Γb). Using the support function characterization of closed convex sets, we have that co(ΦD(K)) =⋂

g∈FK
H−K(g, σK(g)) where σK(g) := supx∈KD(g)(x) has to be computed. Considering any finite

collection of g ∈ FK provides an over-approximation of co(ΦD(K)) with finite description.
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𝜂𝑚 

(a) (b)

Figure 1: Two examples of coverings in FK of ΦD(K) by a set Ω̄ = ∪m∈[M ]Ω̄m contained in

the halfspace H+
K(f − f0, b0 − Γb). (a): covering through balls Ωm = B̊K (DK(·, x̃m), ηm).

(b): covering through a ball intersected with halfspaces (JB,m = JH,m = 1).

• Non-compact K: Coverings of the form (9) and (10) exist for any bounded ΦD(K). In
particular, if the kernel D>DK(·, ·) is bounded, then for any set K ⊆ X, ΦD(K) ⊂ FK is
bounded as well. Consequently the proposed method can be applied to non-compact K

provided that the derivatives of the chosen kernel are bounded.

Theorem 2 below provides an explicit convex formula to be satisfied that is equivalent
to the tightened inclusion (8) under the choice (9)-(10). Since Ω̄m is the closure of the
non-empty open set Ωm, and the half-spaces H+

K are closed,

Ω̄ = ∪m∈[M ]Ω̄m ⊆ H+
K(f − f0, b0 − Γb) ⇔ Ω̄m ⊆ H+

K(f − f0, b0 − Γb) ∀m ∈ [M ]

⇔ Ωm ⊆ H+
K(f − f0, b0 − Γb) ∀m ∈ [M ]. (11)

Hence we can consider separately the inclusion of each Ωm, formulate the theorem for M = 1
and drop the index m.8

Theorem 2 (Inclusion formula for balls and half-spaces) Let FK be the vRKHS as-
sociated to a RQ×Q-valued kernel K. Then the following statements are equivalent:

1. ∅ 6= Ω :=
(⋂

j∈[JB ] B̊K(cj , rj)
)
∩
(⋂

j∈[JH ] H̊
−
K(vj , ρj)

)
⊆ H+

K (f − f0, b0 − Γb) 6= FK .

2. There exists JB functions (gj)j∈[JB ] ⊂ span
(
f − f0, {cj}j∈[JB ] , {vj}j∈[JH ]

)
and JH non-

negative coefficients (ξj)j∈[JH ] ∈ RJH+ such that

−b0 + Γb +
∑
j∈[JB ]

〈gj , cj〉K −
∑
j∈[JH ]

ξjρj −
∑
j∈[JB ]

rj ‖gj‖K ≥ 0,

−(f − f0) +
∑
j∈[JB ]

gj −
∑
j∈[JH ]

ξjvj = 0.
(12)

8. Since Ωm is convex, the inclusion Ωm ⊆ H+
K(f − f0, b0−Γb) in (11) is equivalent to Ωm∩ H̊−K(f − f0, b0−

Γb) = ∅ which can be interpreted as a convex separation problem.

11



Aubin-Frankowski and Szabó

Remarks:
• (C1,Ω) is tighter than (C1): Theorem 2 provides a general finite-dimensional formula for

separating convex sets combining balls and half-spaces. It can be of independent interest
for studies in RKHSs. Specifically, using the notation

C1,Ω = {(f ,b) : (12) holds for all m ∈ [M ]} , (C1,Ω)

requiring (f ,b) ∈ C1,Ω is equivalent to having Ω̄ ⊆ H+
K(f − f0, b0 − Γb) by Theorem 2

and (8). Hence, owing to (7), (C1,Ω) is a tighter constraint than (C1), i.e. C1,Ω ⊆ C1.

• Illustration: A visual illustration of the inclusion relation for a single ball (JB = 1, JH =
0), and for one ball and one half-space (JB = JH = 1) is given in Fig. 1(a) and Fig. 1(b),
respectively.

• Case of a single ball (JB = 1, JH = 0): In the simplest case where there is a single ball
and no half-spaces, i.e. Ω = B̊K(c, r), then (12) reduces to g = f − f0 and 〈g, c〉K ≥
r ‖g‖K + b0 − Γb, thus

〈f − f0, c〉K ≥ r ‖f − f0‖K + b0 − Γb. (13)

• Case of one ball and one half-space (JB = JH = 1): In this case Ω = B̊K(c, r)∩ H̊−K(v, ρ)
and (12) writes as f − f0 = g − ξv and 〈g, c〉K ≥ r ‖g‖K + b0 − Γb + ξρ, thus

〈f − f0 + ξv, c〉K ≥ r ‖f − f0 + ξv‖K + b0 − Γb + ξρ. (14)

• Constructing Ω using the compactness of K: A natural choice of Ω of the form (9) can
be obtained by leveraging the compactness of K. Indeed, let us take any finite covering
of K through balls centered at M points {x̃m}m∈[M ] with radius δm > 0. Then one can

cover the sets ΦD(BX(x̃m, δm)) ⊂ FK by balls Ωm = B̊K(DK(·, x̃m), ηm) with radii

ηm = sup
x∈BX(x̃m,δm)

‖DK(·, x̃m)−DK(·,x)‖K , m ∈ [M ]. (15)

In other words, ΦD(K) ⊆
⋃
m∈[M ] ΦD(BX(x̃m, δm)) ⊆

⋃
m∈[M ] Ω̄m =: Ω̄, hence Ω̄ satisfies

(8) and (f ,b) ∈ C1,Ω. In this case (C1) has been strengthened to the SOC constraints

〈f − f0, cm〉K ≥ rm ‖f − f0‖K + b0 − Γb, ∀m ∈ [M ], (16)

where cm := DK(·, x̃m) and rm := ηm, by using (13).

The tightening we detailed in this section allows for a large class of coverings based on balls
and half-spaces. However the reformulation (7) heavily relies on the assumption of P = 1.

3.2 Constraints by Upper Bounding the Modulus of Continuity

We now present a second approach capable of handling P ≥ 1, i.e. the affine SDP
constraint (CP ). The method relies on an upper bound of the modulus of continuity of
D(f − f0) over a finite covering of a compact K ⊆

⋃
m∈[M ] BX(x̃m, δm). For simplicity,

we present the high-level idea for P = 1. Let the modulus of continuity of D(f − f0) on
BX (x̃m, δm) be defined as

ωD(f−f0)(x̃m, δm) := sup
x∈BX(x̃m,δm)

|D(f − f0)(x)−D(f − f0) (x̃m)| . (17)
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Assume that we have an exact finite covering, in other words K =
⋃
m∈[M ] BX(x̃m, δm). If

ωD(f−f0)(x̃m, δm) was known for every m ∈ [M ], then the constraint (f ,b) ∈ CP would be
equivalent to

ωD(f−f0)(x̃m, δm) ≤ D(f − f0)(x̃m) + Γb− b0, ∀m ∈ [M ]. (18)

The equivalence follows from (17) since the modulus of continuity is the smallest upper
bound of the variations of the values. Applying the reproducing property for derivatives
(Lemma 1) and the Cauchy-Schwarz inequality, we obtain an upper bound

ωD(f−f0)(x̃m, δm) = sup
x∈BX(x̃m,δm)

|〈f − f0, DK(·,x)−DK(·, x̃m)〉K | ≤ ηm‖f − f0‖K (19)

with ηm defined as in (15). While the original quantity ωD(f−f0)(x̃m, δm) can be hard to eval-
uate, the bound ηm ‖f − f0‖K is much more favourable from a computational perspective.
Indeed, the term ηm has an explicit finite-dimensional description (see Lemma 4 below), and
combining (19) with (18) gives rise to the tightened second-order cone (SOC) constraints

ηm ‖f − f0‖K ≤ D(f − f0)(x̃m) + Γb− b0, ∀m ∈ [M ].

for which the term ‖f − f0‖K of (19) ensures that the problem is still convex and imple-
mentable.

The following theorem extends the idea presented in (19) to affine SDP constraints and
states our result on how to translate a finite ball-covering of K (meant w.r.t. a norm ‖·‖X)
into a SOC tightening of (CP ).

Theorem 3 (Tighter constraint for ball covering in X and P ≥ 1) Assume that the
points {x̃m}m∈[M ] ⊂ X associated with radii δm > 0 form a ball-covering of K, i.e.
K ⊆

⋃
m∈[M ] BX(x̃m, δm). Let D = [Dp1,p2 ]p1,p2∈[P ] (Dp1,p2 ∈ OQ,s), and

ηm,P := sup
x∈BX(x̃m,δm),

u=[up]p∈[P ]∈SP−1

∥∥∥∥∥∥
∑

p1, p2∈[P ]

up1up2

[
Dp1,p2K(·, x̃m)−Dp1,p2K(·,x)

]∥∥∥∥∥∥
K

, (20)

CP,SOC := {(f ,b) : ηm,P ‖f − f0‖KIP 4 D(f − f0)(x̃m) + diag(Γb− b0), ∀m ∈ [M ]} .
(CP,SOC)

Then (CP,SOC) is tighter than (CP ), i.e. CP,SOC ⊆ CP .

The following lemma provides a more explicit, finite-dimensional description of ηm,P .

Lemma 4 (Finite-dimensional description of ηm,P ) For z ∈ X, δ > 0, and a differ-
ential operator D = [Dp1,p2 ]p1,p2∈[P ] (Dp1,p2 ∈ OQ,s), let

η(z, δ; D) := sup
x∈BX(z,δ),

u∈SP−1

|〈u⊗ u, [K(z, z) + K(x,x)− 2K(z,x)] (u⊗ u)〉F |1/2, (21)
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with the symmetric 4D-tensor K(x′,x) =
[
K(x′,x)p1, p2, p′1, p

′
2

]
p1, p2, p′1, p

′
2∈[P ]

∈ RP×P×P×P ,

having elements K(x′,x)p1, p2, p′1, p
′
2

:= D>p′1, p′2
Dp1, p2K(x′,x) and acting as a linear operator

over matrices of RP×P . Then, the quantity ηm,P defined in (20) can be written as

ηm,P = η (x̃m, δm; D) . (22)

Remarks:
• Relation of ηm,P to the eigenvalues of K: Since u ∈ Sp−1, ‖u⊗ u‖2F = 1. This means that
ηm,P can be upper bounded by the supremum over the ball BX (x̃m, δm) of the square

root λ
1/2
max of the maximal eigenvalue of the 4D-tensor K(x̃m, x̃m) + K(x,x)− 2K(x̃m,x)

ηm,P = sup
x∈BX(x̃m,δm),

u∈SP−1

|〈u⊗ u, [K(x̃m, x̃m) + K(x,x)− 2K(x̃m,x)] (u⊗ u)〉F |1/2

≤ sup
x∈BX(x̃m,δm),

U∈RP×P : ‖U‖F =1

|〈U, [K(x̃m, x̃m) + K(x,x)− 2K(x̃m,x)] U〉F |
1/2

= sup
x∈BX(x̃m,δm)

λ1/2
max (K(x̃m, x̃m) + K(x,x)− 2K(x̃m,x)) .

In particular, by continuity of the spectral radius, this ensures that ηm,P = ηm,P (δm)
converges to zero when δm goes to zero. Hence when the discretization steps (δm)m∈[M ]

decrease to zero, we recover the original constraint (CP ).

• Equivalence of Theorem 2 and Theorem 3 for balls and P = 1: When P = 1, u ∈ S0

means that |u| = 1. Hence |u1u2| = 1 can be pulled out from (20) and ηm,1 reduces to

ηm,1 = sup
x∈BX(x̃m,δm)

‖DK(·, x̃m)−DK(·,x)‖K ,

so we recover ηm as defined in (15), and as anticipated in (19). In other words, for P =
1, when choosing a ball covering Ωm = B̊K(DK(·, x̃m), ηm), Theorem 2 coincides with
Theorem 3. This specific choice was followed by Aubin-Frankowski and Szabó (2020). The
two theorems presented here have complementary advantages: for real-valued constraints,
Theorem 2 allows more general coverings than just balls, whereas Theorem 3 is able to
handle affine SDP constraints with P > 1.

• Computation of ηm,P : The value of ηm,P can be computed analytically in various cases.
For instance, for P = 1 and D = Id, with a monotonically decreasing radial kernel
K(x,y) = K0(‖x− y‖X) (such as the Gaussian kernel), (22) simplifies to

ηm,1(δm) = sup
x∈BX(0,δm)

√
|2K0(0)− 2K0 (‖x‖X)| =

√
|2K0(0)− 2K0 (δm)|. (23)

Depending on the choice of the kernel, similar computations could be carried out for
higher-order derivatives. For translation-invariant kernels, ηm,P can be computed on a
single δm-ball around the origin as in (23). A fast approximation of ηm,P can also for
instance be performed by sampling x (resp. u) in the ball BX(x̃m, δm) (resp. sphere SP−1).
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Moreover, as ηm,P is related to the modulus of continuity of DK, the smoother the kernel,
the smaller ηm,P and the tighter the approximation of ΦD(K). As intuitively explained in
(19), ηm,P is one possible upper bound on the modulus of continuity, enabling guarantees
for hard shape constraints. Depending on the objective function L, this bound is also
tight in the equality case of the Cauchy-Schwarz inequality.

4. Objective Function

In Section 3 we detailed how one can tighten an infinite number of affine SDP constraints
over a compact set of X into finitely many convex constraints in RKHSs through finite
coverings of compact sets in X or in FK . The proposed construction tightens the constraints
(C) into the ones defined in (CP,SOC) and (C1,Ω). Our next theorem shows that the resulting
optimization problem can be expressed as a finite-dimensional one (representer theorem)
and when the tightening converges to the original constraint, the solutions of the constrained
tasks converge as well to the solution of the original problem, provided that it was strongly
convex.

Theorem 5 (Existence, representer theorem, performance guarantee) Let X ⊆ Rd
be a set which is contained in the closure of its interior and is endowed with a matrix-valued
kernel K ∈ Cs,s

(
X× X,RQ×Q

)
for some s ∈ N. Let B be a closed convex set in RB, con-

sider the samples (xn)n∈N ⊂ X, and I ∈ N with [I] be partitioned into two disjoint index
sets ISOC and IΩ ([I] = ISOC ∪IΩ). Define the optimization problem

(
f̄app, b̄app

)
∈ arg min

f ∈FK ,b∈B
(f ,b)∈Capp

L (f ,b) = L

(
b,
((
D0
n,j(f)(xn)

)
j∈Jn

)
n∈[N ]

)
+R (‖f‖K) , (24)

where Capp :=
(⋂

i∈ISOC
CiPi,SOC

)
∩
(⋂

i∈IΩ C
i
1,Ω

)
, with loss L : RB × R

∑
n∈[N ] #Jn → R ∪

{∞}, monotonically increasing regularizer R : R+ → R, differential operators (D0
n,j)j∈Jn ⊂

OQ,s, and CiPi,SOC and Ci1,Ω defined as in (CP,SOC) and (C1,Ω). Then

1. Existence: Assume that (i) R is coercive (i.e. limz→∞R(z) =∞), (ii) L is “uniformly“
coercive in b: lim‖b‖2→∞ infy∈B|·‖2 (0,r) L (b,y)+χB(b) =∞ for any r > 0, (iii) L+χCapp

is lower bounded, (iv) the functions L and R are lower semi-continuous9, and (v) there
exists an admissible pair (f ,b) ∈ Capp∩dom(L)∩(FK×B). Then there exists a minimizer(
f̄app, b̄app

)
.

2. Representer theorem: If there exists a minimizer, then there also exists a minimizer f̄app

and coefficients {aL,n,j}n∈[N ], j∈Jn, {aS,i, p1, p2}i∈ISOC, p1, p2∈[Pi], {aB,i,m,j}i∈IΩ,m∈[Mi], j∈[JB,i,m],

9. An extended real-valued function g : D ⊆ Rq → R ∪ {∞} is called lower semi-continuous (shortly l.s.c.)
if g(x0) ≤ lim inf

x→x0

g(x) for all x0 ∈ dom(g) := {x ∈ D : g(x) <∞}.
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{aH,i,m,j}i∈IΩ,m∈[Mi], j∈[JH,i,m], {a0,i}i∈[I] ⊂ R such that

f̄app =
∑
n∈[N ]

∑
j∈Jn

aL,n,jD
0
n,jK(·,xn)

︸ ︷︷ ︸
input samples xn

+
∑

i∈ISOC

∑
p1,p2∈[Pi]

∑
m∈[Mi]

aS,i,p1,p2D
i
p1,p2

K(·, x̃i,m)

︸ ︷︷ ︸
virtual points x̃i,m in Ci

Pi,SOC

+
∑
i∈IΩ

∑
m∈[Mi]

 ∑
j∈[JB,i,m]

aB,i,m,jci,m,j +
∑

j∈[JH,i,m]

aH,i,m,jvi,m,j


︸ ︷︷ ︸

centers ci,m,j and normal vectors vi,m,j of Ωi,m associated to Ci
1,Ω

+
∑
i∈[I]

a0,if0,i︸ ︷︷ ︸
affine biases f0,i

, (25)

where the functions D0
n,jK(·,xn) and Di

p1,p2
K(·,xi,m) are defined as in (5).

3. Performance guarantee: Let vrelax be the optimal value of any relaxation of (P), and
vapp = L

(
f̄app, b̄app

)
. If L is (µf , µb)-strongly convex w.r.t. (f ,b), then (f̄ , b̄) exists,

unique and

∥∥f̄app − f̄
∥∥
K
≤

√
2(vapp − vrelax)

µf
,

∥∥bapp − b̄
∥∥

2
≤

√
2(vapp − vrelax)

µb
. (26)

Let us assume in addition that (i) B = dom(L(f̄ , ·)) = RB, (ii) there exists β ∈ RB
such that Γiβ > 0 for all i ∈ I, (iii) {x̃i,m}m∈[Mi]

⊆ Ki, ∀i ∈ ISOC, and (iv) L(f̄ , ·) is

Lb−Lipschitz continuous on B‖·‖2
(
b̄, η∞cf

∥∥β∥∥
2

)
where cf :=

maxi∈[I]‖f̄−f0,i‖K
mini∈[I],p∈Pi

(Γiβ)p
and

η∞ := max

(
max

i∈ISOC,m∈[Mi]
ηi,m,Pi , max

i∈IΩ,m∈[Mi]
diam(Ωi,m)

)
. (27)

Then

∥∥f̄app − f̄
∥∥
K
≤

√
2Lbcfη∞

∥∥β∥∥
2

µf
,

∥∥b̄app − b̄
∥∥

2
≤

√
2Lbcfη∞

∥∥β∥∥
2

µb
. (28)

Remarks:
• Existence for our examples: All the examples provided at the end of Section 2 satisfy the

conditions of our existence result. For instance, for the JQR problem, R is quadratic, L

is continuous, nonnegative and L(b,y)/‖b‖2
‖b‖2→∞−−−−−−→ ∞ when y ∈ B‖·‖2(0, r) for any

r > 0 (this property is often referred to as (super)coercivity of L in the variable b).

• Tightness of assumptions for existence: Below we illustrate that the statement on the
existence is tight. Particularly, we give examples (with B = {0}) showing that if the
coercivity of R or the lower bounded property of L + χCapp does not hold, then there
might not be solutions.

– L + χCapp is not lower bounded: Consider the unconstrained problem with L(f) =

2f(x0)/
√
K(x0,x0) + ‖f‖K with x0 taken such that K(x0,x0) > 0. In this case

R(z) = z, hence the coercivity of R holds. However, L is not lower bounded as for
fn = −2nK(·,x0) ∈ FK , we have L(fn) = −2n

√
K(x0,x0)

n→∞−−−→ −∞.
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– R is not coercive: Let L(f) = 2 arctan
(
f(x0)/

√
K(x0,x0)

)
+arctan (‖f‖K) with x0 as

above. In this case L(f) > −π. However R(z) = arctan(z) ≤ π
2 , hence the coercivity

of R does not hold. With the same fn as in the previous example, one gets that

L(fn) = − arctan
(

2n
√
K(x0,x0)

)
n→∞−−−→ −π/2.

• Representer theorem⇒ finite-dimensional optimization task: Using the parameterization
of f̄app in (25) with the reproducing property (Lemma 1), the finite-dimensional optimiza-
tion problem over the coefficients of (25) immediately follows. Such a reformulation was
exemplified by Aubin-Frankowski and Szabó (2020) for Q = P = 1.

• Performance bound:
– Assumption on Γi: When Pi = 1 for all i ∈ [I], the surjectivity of [Γ1; . . . ; ΓI ] (assumed

by Aubin-Frankowski and Szabó 2020) implies the existence of β ∈ RB such that
Γiβ > 0 for all i ∈ I; hence the assumption on Γi-s made in Theorem 5 is weaker than
the one imposed by Aubin-Frankowski and Szabó (2020).

– Bound (28), role of η∞: Notice that one gets a non-trivial bound in (28) if diam(Ωi,m) <
∞, i.e. JB,i,m ∈ N∗ for all i ∈ IΩ and m ∈ [Mi]. Moreover, (28) shows that the error of
the presented tightening is controlled by the value of η∞. Shrinking all the radii ηi,m,Pi

and the diameters diam(Ωi,m) to zero, forces η∞ to zero; the former can be achieved
by a uniformly refined covering in FK .

In the next section, we present the “soap bubble“ algorithm which is capable of achieving
convergence without having to refine the covering everywhere.

5. Adaptive Covering Algorithm of Compact Sets in RKHSs

In this section we present an adaptive approach, the soap bubble algorithm which provides
a non-uniform covering relying on the objective L. The rationale behind this algorithm is
to avoid (i) applying a uniformly refined covering and (ii) tightening (P) independently of
L. Instead, the soap bubble algorithm starts from a coarse covering (which allows faster
computation), and then it gradually refines the covering where the constraints are saturated.

Throughout this section we assume to have access to some covering oracles: Alg. 1 and
Alg. 2. Alg. 1 operates in X, and for any compact set K ⊆ X and radius δmax it outputs a
covering of K with balls of radius at most δmax. Alg. 2 works in FK , and for any compact
set K ⊆ X and diameter dmax it outputs a covering of ΦD(K) with sets Ω̄m of diameter at
most dmax.

The soap bubble algorithm iterates between solving a tightened optimization problem
given a covering of ΦD(K) and refining the covering by a factor of γ for the covering subsets
in FK which saturate the constraints. The resulting algorithm (Alg. 3) is instantiated in the
framework of Theorem 2 with sets Ω̄m and using the covering oracle Alg. 2. The method
writes as Alg. 4 in the framework of Theorem 3 with ball-coverings and using the covering
oracle Alg. 1.

Remark: For P = I = 1 and ball covering Ω̄
(k)
m = BK

(
DK

(
·, x̃(k)

m

)
, η

(k)
m,1

)
, Alg. 3 and

Alg. 4 coincide. In this case saturating the constraints at the kth iteration corresponds to
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(a) (b)

Figure 2: Illustration of one iteration of the soap bubble algorithm Alg. 3 with ball covering
(corresponding to Alg. 4 with P = I = 1). (a): After computing the optimal

(
f (k),b(k)

)
for

a given covering at step k, the elements of the covering that are tangent to the hyperplane
burst (red). The other elements (blue) are kept for the next iteration. (b): The elements
that are tangent are replaced by a new covering of the subset of ΦD(K) that they covered.
This covering is chosen such that its radii are smaller by at least a factor γ than the previous
radii. The covering at step k+ 1 of ΦD(K) is formed by combining the elements untouched
at step k with the new elements. These new constraints define a new optimization problem
leading to

(
f (k+1),b(k+1)

)
.

being tangent to the affine hyperplane HK

(
f (k) − f0, b0 − Γb(k)

)
. For an illustration, see

Fig. 2.

Algorithm 1 Ball covering in X (shortly Cover)

Input: Compact set K ⊆ X, maximal covering radius δmax > 0.
Output: Covering (xm, δm)m∈[M ] s.t. K ⊆ ∪m∈[M ]BX (xm, δm) and maxm∈[M ] δm ≤
δmax.a

a. We assume that superfluous covering sets, i.e. for which BX (xm, δm) ∩K = ∅ are not generated.

Algorithm 2 Ω-covering in FK (shortly Ω-Cover)

Input: Compact set K ⊆ X, kernel K, differential operator D, maximal covering diam-
eter dmax > 0.
Output: Covering

(
Ω̄m

)
m∈[M ]

s.t. ΦD(K) ⊆ Ω̄ := ∪m∈[M ]Ω̄m and

maxm∈[M ] diam
(
Ω̄m

)
≤ dmax, with Ω̄m of the form (10).a

a. We assume that superfluous covering sets, i.e. for which Ω̄m ∩ΦD(K) = ∅ are not generated.

Our next result shows the convergence of the soap bubble algorithm when I = P = 1
for general covering sets of the form (9)-(10).
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Algorithm 3 Soap Bubble Algorithm with Ω-covering (I = P = 1)

Input: Compact set K ⊆ X, kernel K, constraint set B, bias f0 and b0, linear transforma-
tion Γ ∈ R1×B, differential operator D, refinement rate γ ∈ (0, 1), number of iterations

kmax ∈ N, maximal initial covering diameter d
(0)
max > 0.

Initialization:
(

Ω̄
(0)
m

)
m∈[M(0)]

:= Ω-Cover
(
ΦD(K), d

(0)
max

)
.

for k = 0 to kmax do
Solve the tightening with Ω-covering Ω̄(k) =

⋃
m∈[M(k)] Ω̄

(k)
m :

(
f (k), b(k)

)
= arg min

f∈FK ,b∈B
L(f , b), (P

(
Ω̄(k)

)
)

s.t. Ω̄(k)
m ⊆ H+

K(f − f0, b0 − Γb) ∀m ∈
[
M (k)

]
.

Find the indices I(k) ⊆
[
M (k)

]
for which the sets intersect the hyperplane:

I(k) :=
{
m ∈

[
M (k)

]
: Ω̄(k)

m ∩HK

(
f (k) − f0, b0 − Γb(k)

)
6= ∅
}
.

The associated
(

Ω̄
(k)
m

)
m∈I(k)

burst and give rise to a finer covering:

for j ∈ I(k) do

New Ω-covering:
(

Ω̄
(k+1)
j,m

)
m∈

[
M

(k+1)
j

] := Ω-Cover
(
ΦD(K) ∩ Ω̄

(k)
j , γ diam

(
Ω̄

(k)
j

))
end for(

Ω̄
(k+1)
m

)
m∈[M(k+1)]

=
(

Ω̄(k)
m

)
m∈[M(k)]\I(k)︸ ︷︷ ︸

non-burst coverings

∪
⋃

j∈I(k)

(
Ω̄

(k+1)
j,m

)
m∈

[
M

(k+1)
j

]
︸ ︷︷ ︸

burst ⇒ refined coverings

end for
Output: Ω-covering

(
Ω̄

(kmax)
m

)
m∈[M(kmax+1)]
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Algorithm 4 Soap Bubble Algorithm with ball coverings I ≥ 1, Pi ≥ 1

Input: Compact sets {Ki}i∈[I], kernel K, constraint set B, biases {f0,i}i∈[I] and
{b0,i}i∈[I], linear transformations {Γi}i∈[I], differential operators {Di}i∈[I], refinement

rate γ ∈ (0, 1), number of iterations kmax ∈ N, maximal initial covering radii
{
δ

(0)
i,max

}
i∈[I]

.

Initialization:
(
x̃

(0)
i,m, δ

(0)
i,m

)
m∈

[
M

(0)
i

] := Cover
(
Ki, δ

(0)
i,max

)
for all i ∈ [I].

for k = 0 to kmax do
Compute buffers using (22):

η
(k)
i :=

(
η

(k)
i,m,Pi

)
m∈

[
M

(k)
i

] =
(
η
(
x̃

(k)
i,m, δ

(k)
i,m; Di

))
m∈

[
M

(k)
i

] ∀i ∈ [I].

Solve the tightening with buffers
{
η

(k)
i

}
i∈[I]

and anchors
{

x̃
(k)
i,m

}
i∈[I],m∈

[
M

(k)
i

]:
(
f (k), b(k)

)
= arg min

f∈FK ,b∈B
L(f , b),

s.t. η
(k)
i,m,Pi

‖f − f0‖KIPi 4 Di (f − f0,i)
(
x̃

(k)
i,m

)
+ diag (Γib− b0,i)

∀i ∈ [I],∀m ∈
[
M

(k)
i

]
.

Find the indices I(k)
i ⊆

[
M

(k)
i

]
for which the constraints are saturated; the associated

BK
(
DK

(
·, x̃(k)

i,m

)
, η

(k)
i,m,Pi

)
balls burst and give rise to a finer covering:

for i ∈ [I] do

I(k)
i :=

{
m ∈

[
M

(k)
i

]
: η

(k)
i,m,Pi

∥∥∥f (k) − f0,i

∥∥∥
K

IPi = Di

(
f (k) − f0,i

)(
x̃

(k)
i,m

)
+ diag

(
Γib

(k) − b0,i

)}
.

Refine the covering on I(k)
i :

for j ∈ I(k)
i do

δ
(k+1)
i,j,max := largest solution of the equation over δ: η

(
x̃

(k)
i,j , δ; Di

)
= γη

(k)
i with η

defined in (21).

Implied covering in X:
(
x̃

(k+1)
i,j,m , δ

(k+1)
i,j

)
m∈

[
M

(k+1)
i,j

] :=Cover
(
K ∩ B

(
x̃

(k)
i,j , δ

(k)
i,j

)
, δ

(k+1)
i,j,max

)
end for(
x̃

(k+1)
i,m , δ

(k+1)
i,m

)
m∈

[
M

(k+1)
i

] =
(
x̃

(k)
i,m, δ

(k)
i,m

)
m∈

[
M

(k)
i

]
\I(k)

i︸ ︷︷ ︸
non-burst coverings

∪
⋃

j∈I(k)
i

(
x̃

(k+1)
i,j,m , δ

(k+1)
i,j

)
m∈

[
M

(k+1)
i,j

]
︸ ︷︷ ︸

burst ⇒ refined coverings

end for
end for

Output: covering

{(
x̃

(kmax+1)
i,m , δ

(kmax+1)
i,m

)
m∈

[
M

(kmax+1)
i

]
}
i∈[I]
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Theorem 6 (Convergence of Alg. 3) Let us assume that Alg. 3 is written for Ω-
coverings (Alg. 2) with elements defined as in (9)-(10), in other words, with balls and
half-spaces.

1. Limit covering: If all the iterates
(
f (k),b(k)

)
k∈N of Alg. 3 exist, then the corresponding

coverings
(
Ω̄(k)

)
k∈N converge in Hausdorff distance to a limit set Ω̄(∞) containing ΦD(K).

Moreover the solutions of P
(
Ω̄(∞)

)
also solve the original problem.

2. Convergence of
(
f (k),b(k)

)
k∈N: Assume that (i) R is monotonically increasing and coer-

cive, (ii) L is “uniformly“ coercive in b, lim‖b‖2→∞ infy∈B‖·‖2 (0,r) L (b,y) = ∞ for any

r > 0, (iii) L is lower bounded, (iv) the functions L and R are lower semi-continuous,

(v) there exists an admissible pair
(
f̂ , b̂
)

for P
(
Ω̄(0)

)
, (vi) B = dom(L(f , ·)) = RB and

L

(
·,
((

D0
n,j(f)(xn)

)
j∈Jn

)
n∈[N ]

)
is continuous for all f in its domain, and (vii) Γ 6= 0.

Then the sequence of iterates
(
f (k),b(k)

)
k∈N exists and is bounded in FK ×RB. Moreover

every weakly-converging sub-sequence converges to a solution of the original problem. If(
f̄ , b̄
)

is unique, then the iterates
(
f (k),b(k)

)
k∈N converge weakly to

(
f̄ , b̄
)
.

Remark: The assumptions (i)-(vii) are stronger than that of Theorem 5 as instead of
having a single problem (24) to solve, we consider a sequence of tasks (P

(
Ω̄(k)

)
)
k∈N. This

requires additional regularity on the objective.

6. Numerical Experiments

In this section we demonstrate the efficiency of the proposed tightened schemes. Particu-
larly, we designed the following experiments:

• Experiment-1: We show that the soap bubble algorithm (Section 5) can be more efficient
both in terms of accuracy and of computation time when compared to non-adaptive
techniques (Section 4). We illustrate this result on a 1D-shape optimization problem
(Q = 1) with a single constraint over a large domain.

• Experiment-2: In our second application we tackle a linear-quadratic optimal control
problem with state constraints. This is a vector-valued example (Q > 1) where we show
how the proposed hard shape-constrained technique enables one to guarantee obstacle
avoidance when piloting an underwater vehicle, in contrast to classical discretization-
based approaches.

• Experiment-3: Our third example pertains to econometrics, the goal being to learn
of production functions based on only a few samples. This example underlines how
shape constraints interpreted as side information can empirically improve generalization
properties. In this case the function to be determined is real-valued (Q = 1) with several
shape constraints including an SDP one (joint convexity, Pi > 1).

6.1 Experiment-1: Soap Bubble Algorithm

In our first experiment we demonstrate the efficiency of the soap bubble algorithm (Alg. 3)
compared to non-adaptive schemes. Our benchmark task corresponds to a shape optimiza-
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Figure 3: Illustration of the soap bubble algorithm to optimize the shape of a constrained
catenary. Compared techniques: (uniform) covering with balls, covering with balls and half-
spaces, soap bubble covering with balls, soap bubble covering with balls and half-spaces.
(a): Shape constraint on [0.2, 0.8] (grey), optimal solution (black), first 6 iterates of the
estimates using the soap bubble technique with balls (coloured curves, first: blue, sixth:
cyan). (b): Performance as a function of the number of elements in the covering (M). (c):
Illustration of bursting in (a); kept balls (blue); burst balls (red). (d): Computational time
as a function of accuracy.
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tion problem. Particularly, the goal is to determine the deformation of a catenary under
its weight. This is equivalent to minimizing the potential energy of its shape. Our do-
main is X = [0, 1], the form of the catenary is described by a function f ∈ FK where
K(x, x′) = e−λ|x−x

′| (λ > 0) is the Laplacian kernel. This form is constrained at 3 points
x ∈ {0, 0.5, 1} to be equal to 0, 1.5 and 0 respectively, and the catenary has to be above
the value 0.5 on the whole interval [0.2, 0.8]. The resulting optimization problem can be
expressed as

min
f∈FK

‖f‖K

s.t. f(0) = 0, f(0.5) = 1.5, f(1) = 0,

0.5 ≤ f(x), ∀x ∈ [0.2, 0.8].

This task can be written equivalently as

min
f∈FK

L(f) := ‖f‖K + χ{0}(f(0)) + χ{1.5}(f(0.5)) + χ{0}(f(1))

s.t. 0.5 ≤ f(x), ∀x ∈ [0.2, 0.8],

which falls within the framework (P) with Q = I = P = 1, K = [0.2, 0.8], D(f) = f , f0 = 0,
b0 = 0.5, Γ = 0 and B = {0}. One of the advantages of this problem is that its solution
can be computed analytically for some values of λ (for an illustration, see the black solid
curve in Fig. 3(a)). This optimal solution can be thought of as the tilt of a circus tent, and
is used as the ground truth.

In our experiments we chose the bandwidth parameter to be λ = 5. We compared the
efficiency (in terms of time and accuracy) of four different covering schemes which we detail
in the following.
1. Covering with balls only: In this case the M points of the covering of K were equidistant

over the interval K, i.e. x̃m = 0.2 + 1
2M + (j − 1) 1

M and δm = 0.8−0.2
2M with m ∈ [M ]. The

shape constraint 0.5 ≤ f(x) for all x ∈ K was tightened to the SOC one (ηm‖f‖K +0.5 ≤
f (x̃m) for all m ∈ [M ]) with ηm =

√
|2− 2ρ̃m| =

√
2− 2ρ̃m and ρ̃m := e−λδm according

to (23). This choice corresponds to the ball covering

Φ(B|·|(x̃m, δm)) ⊆ BK
(
K (·, x̃m)︸ ︷︷ ︸

cm

, ηm︸︷︷︸
rm

)
(29)

in the RKHS FK , with JB,m = 1, JH,m = 0 (∀m ∈ [M ]) in accordance with (9)-(10) and
(16). The resulting convex optimization problem was solved directly using the representer
theorem (Theorem 5).

2. Covering with balls and half-spaces: This method corresponds to the coverings (9)-(10)
with JB,m = JH,m = 1, as depicted on Fig. 1(b). The rationale behind this scheme is to
provide a finer covering compared to the previous one, and thus a more accurate approx-
imation. As mentioned in footnote 6, since for the Laplacian kernel K(x, x) = 1 for all
x ∈ X, we have that Φ(K) ⊆ BK(0, 1). Moreover for x ∈ B|·|(x̃m, δm), K(x̃m, x) =

e−λ|x−x̃m| ≥ e−λδm = ρ̃m. Hence −K(x, x̃m) = 〈K(·, x),−K(·, x̃m)〉K ≤ −ρ̃m, i.e.
K(·, x) ∈ H−K (−K(·, x̃m),−ρ̃m), consequently

Φ(B|·|(x̃m, δm)) ⊆ BK
(

0︸︷︷︸
cm

, 1︸︷︷︸
rm

)
∩H−K

(
−K(·, x̃m)︸ ︷︷ ︸

vm

,−ρ̃m︸︷︷︸
ρm

)
(30)
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in line with (14). This is indeed a covering at least as tight as (29), as, when considering
an element g in the r.h.s. of (30), then

‖g −K (·, x̃m) ‖2K = ‖g‖2K +K (x̃m x̃m)− 2〈g,K (·, x̃m)〉K ≤ 2− 2ρ̃m = η2
m,

which gives that

BK
(
0, 1
)
∩H−K

(
−K(·, x̃m),−ρ̃m

)
⊆ BK

(
K (·, x̃m) , ηm

)
.

The values of x̃m, δm, ρ̃m and ηm were chosen similarly as in the previous point.

3. Soap bubble covering with balls only: In contrast to the direct solution with a fine
covering, our first soap bubble scheme using balls (Alg. 4) is initialized with a coarser

uniform covering with an initial covering radius δ
(0)
max = 0.01; the latter results in M =

0.8−0.2
2×0.01 = 30 anchor points at the beginning. This initial covering is then iteratively
refined in our experiments using a rate γ = 0.8. The shape constraint were considered to
be saturated when the condition |ηm‖f‖k + 0.5− f(x̃m)| ≤ 10−8 held, determining the
bursting condition of the balls in Alg. 4.

4. Soap bubble covering with balls and half-spaces: A combination of balls and half spaces
were considered as in the second covering scheme, to which the soap bubble algorithm
(Alg. 3) was applied. The initialization was the same as in the third scheme.

Our results are summarized in Fig. 3. The figure shows that the adaptive soap bubble
technique (i) converges to the optimal solution as the iteration proceeds (in accordance
with Theorem 6; see Fig. 3(a)) with illustration of the bursts in Fig. 3(c). (ii) It achieves
the same accuracy with smaller number of covering points (Fig. 3(c)) and faster (Fig. 3(d))
compared to the non-adaptive schemes. These experiments demonstrate the efficiency of
the adaptive soap bubble algorithm in the context of shape optimization.

6.2 Experiment-2: Safety-Critical Control

In our second experiment we focus on a constrained path-planning problem. Particularly,
in this task the trajectory of an underwater vehicle navigating in a two-dimensional cavern
is described by a curve t ∈ T := [0, 1] 7→ [x(t); z(t)] ∈ R2 describing its lateral (x) and
depth (z) coordinates at time t ∈ T . For simplicity, we assume that the lateral component
satisfies x(0) = 0 and ẋ(t) = 1 for all t ∈ T .10 In this case, x(t) = t for all t ∈ T and
the control problem reduces to that of ensuring that the depth z(t) stays between the floor
and ceiling of the cavern (z(t) ∈ [zlow(t), zup(t)] for all t ∈ T ). We take as initial conditions
z(0) = 0 and ż(0) = 0. By denoting the control with u ∈ L2(T ,R) where L2(T ,R) is the
set of square-integrable real-valued functions on T , our control task can be formulated as

min
u(·)∈L2(T ,R)

∫
T
|u(t)|2dt

s.t. z(0) = 0, ż(0) = 0,

z̈(t) = −ż(t) + u(t), ∀ t ∈ T ,
zlow(t) ≤ z(t) ≤ zup(t), ∀ t ∈ T .

(Pcave)

10. The notations ġ(t) and g̈(t) stand for the first and second-order derivative of a function g at time t.
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The task (Pcave) belongs to the class of linearly-constrained linear quadratic regulator prob-
lems. As shown by Aubin-Frankowski (2020), these tasks can be rephrased as a shape-
constrained kernel regression for a kernel K defined by the objective and the dynamics. By
defining the full state of the vehicle as f(t) := [z(t); ż(t)] ∈ R2, f evolves according to the
linear dynamics

ḟ(t) = Af(t) + Bu(t) ∈ R2, f(0) = 0, A =

[
0 1
0 −1

]
∈ R2×2, B =

[
0
1

]
∈ R2.

Using that f(0) = 0 the controlled trajectories f belong to a R2-valued RKHS FK defined
over T with the matrix-valued kernel11

K(s, t) :=

∫ min(s,t)

0
e(s−τ)ABB>e(t−τ)A>dτ, s, t ∈ T , (31)

where eM denotes the matrix exponential. With this kernel-based formulation, the problem
(Pcave) can be rewritten as an optimization problem over full-state trajectories

min
f=[f1;f2]∈FK

‖f‖2K

s.t. zlow(t) ≤ f1(t) ≤ zup(t), ∀ t ∈ T .

In our experiment we assume that the given bounds zlow and zup are piece-wise constant:
taking a uniform δ-covering T = ∪m∈[M ]Tm with Tm := [tm− δ, tm + δ] and tm+1 = tm + 2δ
for m ∈ [M − 1], this means that zlow(t) = zlow,m for all t ∈ Tm; similarly zup(t) = zup,m

for all t ∈ Tm. Hence, with the piece-wise constant assumption, the control task (Pcave)
reduces to

min
f=[f1;f2]∈FK

‖f‖2K

s.t. zlow,m ≤ f1(t) ≤ zup,m, ∀ t ∈ Tm, ∀m ∈ [M ].

This optimization problem belongs to the family (P) with Q = 2, P = 1, Dm(f) = f1 and
b0,m = zlow,m for m ∈ [M ] (zlow,m ≤ f1(t) for t ∈ Tm and m ∈ [M ]), DM+m(f) = −f1 and
b0,M+m = −zup,m for m ∈ [M ] (−zup,m ≤ −f1(t) for t ∈ Tm and m ∈ [M ]), f0,m = 0 and
Γm = 0 for m ∈ [2M ], I = 2M and B = {0}.

In Fig. 4 we compare the optimal trajectory obtained with the proposed SOC tightening
(using ball covering) to the one derived when applying discretized constraints (formally
corresponding to taking ηm = 0). Here the piece-wise constants bounds were obtained as
piece-wise approximations of random functions drawn in a Gaussian RKHS. As illustrated
in Fig. 4(a), the vehicle guided with discretized constraints crashes into the blue wall at
multiple locations, whereas the trajectory resulting from the SOC-based tightening stays
within the bounds at all times. The SOC trajectory can be described as solving a problem
where zlow,m (resp. zup,m) was replaced by zlow,m + ηm,1

∥∥f̄∥∥
K

(resp. zup,m − ηm,1
∥∥f̄∥∥

K
).

This acts as a supplementary buffer which we illustrate in Fig. 4(b) (green solid line). Even

11. The Hilbert space FK corresponding to (31) is the one of controlled trajectories with zero initial condition
(f(0) = 0) such that ‖f‖K = ‖u‖L2(T ,R).
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Figure 4: Illustration of the optimal control problem (Pcave) of piloting a vehicle staying
between the ceiling (zup) and the floor (zlow) of a cavern. Red solid line: SOC-based
approach. Red dashed line: solution based on a discretization (formally setting η = 0).
Blue solid lines: constraints (zlow,m and zup,m). Black solid lines: functions used to generate
the constraints. Green solid lines: constraints with buffer ±ηm,1

∥∥f̄∥∥
K

.

though the SOC trajectory intersects the green boundary, the buffer ηm,1
∥∥f̄∥∥

K
is guaranteed

to be large enough for the SOC trajectory to never collide with the blue boundary. This
experiment demonstrates the efficiency of the SOC approach in a safety-critical application
where the constraints have to be met at all times.

Remark (encoding of the bounds zlow and zhigh): In this control application we assumed
that the prescribed bounds are piecewise constant and we generated them using functions
which do not necessarily belong to FK . If one faces instead boundaries zlow and zhigh ∈ FK ,
then these bounds could be treated as biases f0,i = [zup; zlow]-s. While this would reduce
the number of shape constraints from I = 2M to I = 2, our current choice allows us to
investigate the efficiency of the proposed approach in a complementary setting. Indeed, in
contrast to the considered shape optimization task with one shape constraint (I = 1) on
a large K which is refined by the soap bubble algorithm, the path-planning task involves
I = 2M constraints on an already refined grid.

6.3 Experiment-3: Econometrics

Our third example belongs to econometrics; our goal is to estimate production functions
based on very few samples and additional side information. Particularly, let us consider
a firm which produces an output from d different goods/inputs/factors. Let the quantity
corresponding to the ith input be written as xi ∈ R+ (i ∈ [d]). Then the corresponding
output can be modelled by a production function f : X ⊆ Rd+ → R+. Classical assumptions
on the production function (Varian, 1984; Allon et al., 2007) are (i) non-negativity (f(x) ≥ 0
∀x), (ii) monotonically increasing property (i.e., more inputs gives rise to more output;
∂eif(x) ≥ 0 ∀x and ∀i ∈ [d]), (iii) f(0) = 0 (zero input gives no output) and (iv) concavity
(also called diminishing marginal returns; [(∂ei+ejf) (x)]i,j∈[d] 4 0d×d ∀x). Having access
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to N input-output samples {xn, yn}n∈[N ], the learning of a production function can be
addressed by solving

min
f∈FK

L(f) :=
1

N

∑
n∈[N ]

[yn − f(xn)]2 + λ ‖f‖2K , (λ > 0)

s.t. 0 ≤ f(x) ∀x ∈ K,

0 ≤ ∂eif(x) ∀x ∈ K,∀i ∈ [d],

0 = f(0),

0d×d 4 −
[(
∂ei+ejf

)
(x)
]
i,j∈[d]

∀x ∈ K,

where K ⊂ (R+)d is a compact set containing the samples. This problem belongs to the
family (P) with the choice s = 2, I = d+ 2, D1(f) = f and P1 = 1, Di = ∂ei−1 and Pi = 1
for i ∈ {2, 3, . . . , d + 1}, Dd+2 = − [∂ei+ej ]i,j∈[d], Pd+2 = d, Γi = 0, b0,i = 0 and f0,i = 0
for all i ∈ [d+ 2]. The requirement f(0) = 0 can be encoded by incorporating an indicator
function to the loss function.

For our experiment, we considered a benchmark dataset containing the production data
of 569 Belgian firms.12 The input x is two-dimensional (d = 2), describing the capital
expressed in euros (x1) and the labour involved, interpreted as the number of workers (x2).
The output y is one-dimensional (Q = 1), and is the added value in euros. We applied a
standard pre-processing of the data (Mazumder et al., 2019) by (i) considering the negative
logarithm of the output13, (ii) mean-centering and standardizing each component of the
input and of the output to have zero mean and unit variance, and (iii) removing some
outliers, resulting in Ntot = 543 points kept. The final optimization problem14 contains two
monotonicity and one joint convexity constraint:

min
g∈FK

L(g) :=
1

N

∑
n∈[N ]

[yn − g(xn)]2 (32a)

s.t. ‖g‖K ≤ λ̃, (32b)

0 ≤ −∂e1g(x) ∀x ∈ K, (32c)

0 ≤ −∂e2g(x) ∀x ∈ K, (32d)

02×2 4
[(
∂ei+ejg

)
(x)
]
i,j∈[2]

∀x ∈ K. (32e)

To demonstrate the importance of imposing the shape constraints we made the problem
even more challenging and fixed K =

∏
j∈[2]

[
minn∈[Ntot](xn)j , 2

]
. This choice allows us to

illustrate how the imposed shape constraints are satisfied outside of K, which here does not
contain all the points. The covering of K was uniform, performed through rectangles of
size δ1 × δ2. The values of δ1 and δ2 were chosen to have 15 added points per dimension,
resulting in M = 225 x̃m-s. The chosen kernel was Gaussian with bandwidth σ set to the

12. The dataset is available at https://vincentarelbundock.github.io/Rdatasets/doc/Ecdat/Labour.

html.
13. Taking the logarithm of the output improves the numerical stability at the price of discarding the

constraint f(0) = 0.

14. Imposing the quadratic regularization λ ‖g‖2K as an equivalent constraint ‖g‖K ≤ λ̃ is in line with the
implementation of conic convex problems through interior point methods.
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Figure 5: MSE as a function of incorporating shape constraints with the proposed SOC
technique. NoCons: no constraint. SOC Monot.: two monotonicity constraints. SOC
Conv.: one convexity constraint. SOC Conv.+Monot.: one convexity and two monotonicity
constraints.

square root of the eighth decile of the squared pairwise distances of the points {xn}n∈[Ntot].
As discussed after (23), the Gaussian kernel being translation-invariant, the computation
of ηm,Pi can be centered at the origin, and it is sufficient to evaluate η(0, δ;Di) defined in
(21). These values were approximated numerically by taking 50 X-points uniformly at ran-
dom in [−δ1, δ1]× [−δ2, δ2]. For the convexity constraint (Pi = 2), we applied additionally
a u = [cos(θ); sin(θ)] parameterization with 20 equidistant values of θ from [0, π), by the
invariance of η(0, δ;Di) when replacing u by −u. We considered four scenarios in terms of
the shape constraints imposed: (i) no shape constraint [(32b)], (ii) two SOC-based mono-
tonicity constraints [(32b)-(32d)], (iii) one SOC-based convexity constraint [(32b), (32e)],
(iv) two SOC-based monotonicity and one SOC-based convexity constraint [(32b)-(32e)].
In our experiments, we partitioned randomly the dataset {(xn, yn)}n∈[Ntot]

into a validation
set Dval and a test set Dtest of approximately equal size (#Dval = 271, #Dtest = 272)
corresponding each to 50% of the total dataset. 20-fold cross-validation was performed on
Dval to estimate the optimal value of λ̃ on a logarithmic grid. We then selected randomly
10% of Dval (referred to as D

′
val) to optimize L over this small training set using one of the

four constraint settings detailed above for the estimated λ̃.15 The efficiency of the resulting
estimate for g was evaluated by the mean-squared error (MSE) over D

′
val and Dtest. The

whole experiment was repeated 20 times. The resulting statistics on the MSE values are
summarized in Fig. 5, with a visual illustration of the underlying curves in Fig. 6. As it can
be observed, adding shape constraints gradually improves the generalization performance
(Fig. 5) while mitigating overfitting on the training set, and also helps satisfying the shape
requirements outside of the constraint set K (Fig. 6).

These three applications demonstrate the efficiency of the proposed SOC approach in
the context of shape optimization tasks, safety-critical control, and econometrics.

15. The rationale behind selecting only 10% of Dval is to make the problem more challenging and to illustrate
the usefulness of considering shape constraints for small sample size.
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(d) SOC Conv.+Monot.

Figure 6: Illustration of the production function estimates with different shape constraints.
Notation of the methods: as in Fig. 5. Red circles: covering points of K. Red points on the
surface: resulting y values. Black circles with vertical lines: Nte test points. Black circles
without vertical lines: remaining (x, y) points.

29



Aubin-Frankowski and Szabó

7. Conclusions

In this paper we focused on the problem of incorporating hard affine SDP shape constraints
on function derivatives into optimization problems over vector-valued reproducing kernel
Hilbert spaces. We proposed a unified and modular second-order cone (SOC) based convex
optimization framework to tackle this task. We designed and analysed two complementary
approaches to derive SOC-based tightenings; they build upon a convex separation theorem
in RKHSs (Theorem 2) and on an upper bound of the modulus of continuity (Theorem 3).
We established the consistency of the techniques in terms of the refinement of the covering
(Theorem 5). In addition, we proposed the soap bubble algorithm which guarantees hard
shape constraints while adaptively refining the covering, and proved it convergence (Theo-
rem 6). The efficiency of the approach was demonstrated in three applications (Section 6):
in the context of shape optimization, safety-critical control and econometrics.

Acknowledgments

ZSz benefited from the support of the Europlace Institute of Finance and that of the Chair
Stress Test, RISK Management and Financial Steering, led by the French École Polytech-
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Appendix A. Proofs

Section A.2 contains the proofs of our results (detailed in Section 3 – Section 5). Section A.1
is dedicated to auxiliary lemmas used in Section A.2.

A.1 Auxiliary Lemmas

In this section we provide auxiliary lemmas with their proofs.

Lemma 7 (Infimum over balls) Let F be a Hilbert space, g, c ∈ F and r > 0. Then

inf
w∈B̊F(c,r)

〈g,w〉F = 〈g, c〉F − r‖g‖F.

Proof (Lemma 7) The statement follows by noting that

inf
w∈B̊F(c,r)

〈g,w〉F = 〈g, c〉F + inf
w∈BF(0,r)

〈g,w〉F = 〈g, c〉F − r‖g‖F.

Lemma 8 (Infimum over half-spaces) Let F be a Hilbert space, g,v ∈ F, v 6= 0, ρ > 0
and assume that inf

w∈H̊−
F

(v,ρ)
〈g,w〉F is finite. Then there exists ξ ∈ R+ such that

g = −ξv and − ξρ = inf
w∈H−

F
(v,ρ)
〈g,w〉F .
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Proof (Lemma 8) Let us decompose g along the one-dimensional subspace spanned by v:
g = −ξv + u where ξ ∈ R, u ∈ F and 〈u,v〉F = 0. We show that a finite infimum implies
that in this decomposition ξ ≥ 0 and u = 0. Indeed,

• ξ ≥ 0:

−∞
(a)
< inf

w∈H−
F

(v,ρ)
〈g,w〉F

(b)

≤ inf
τ∈R+

〈
−ξv + u,

ρ

‖v‖2F
v − τv

〉
F

(c)
= −ξρ+ inf

τ∈R+

ξτ‖v‖2F. (33)

where (a) holds by our assumption on the finiteness of the infimum. (b) is implied by
the fact that for all τ ≥ 0, ρ− τ ‖v‖2F ≤ ρ, so 〈 ρ

‖v‖2
F

v − τv,v〉F ≤ ρ, hence ρ
‖v‖2 v − τv ∈

H−F (v, ρ). (c) follows from 〈u,v〉F = 0. As v 6= 0, (33) implies that ξ ≥ 0.

• u = 0:

−∞
(a)
< inf

w∈H−
F

(v,ρ)
〈g,w〉F

(b)

≤ inf
τ∈R+

〈
−ξv + u,

ρ

‖v‖2F
v − τu

〉
F

(c)
=−ξρ+ inf

τ∈R+

−τ‖u‖2F. (34)

Our assumption on the finiteness of the infimum implies (a). (b) follows from ρ
‖v‖2

F

v−τu ∈
H−F (v, ρ) since 〈 ρ

‖v‖2
F

v − τu,v〉F = ρ for any τ ∈ R. (c) is again a consequence of

〈u,v〉F = 0. Hence (34) means that u = 0.

Applying the obtained g = −ξv relation (ξ ≥ 0), we conclude that

inf
w∈H−

F
(v,ρ)
〈g,w〉F = inf

w∈H−
F

(v,0)

〈
−ξv, ρ

‖v‖2F
v + w

〉
F

= inf
w∈H−

F
(v,0)

(−ξρ+ 〈−ξv,w〉F) = −ξρ

using that 〈−ξv,w〉F ≥ 0 since ξ ≥ 0 and w ∈ H−F (v, 0), with the infimum attained at
w = 0.

Lemma 9 (Closed convex constraints) Let Capp =
(⋂

i∈ISOC
CiPi,SOC

)
∩
(⋂

i∈IΩ C
i
1,Ω

)
with CiPi,SOC and Ci1,Ω defined as in (CP,SOC) and (C1,Ω), then Capp is a closed convex set

of FK × RB.

Proof (Lemma 9) The set Capp is closed and convex as it is the intersection of the closed

convex sets
{
CiPi,SOC

}
i∈ISOC

and
{
Ci1,Ω

}
i∈i∈IΩ

. The closedness of the latter sets can be

proved as follows.

• Closedness of CiPi,SOC: Since ‖ · ‖K is lower semicontinuous, the SOC constraints define

closed sets, thus any CiPi,SOC is closed.

• Closedness of Ci1,Ω: Let
(
f (k),b(k)

)
k∈N ∈

(
Ci1,Ω

)N
converge to some (f ,b) ∈ FK × RB.

We show that (f ,b) ∈ Ci1,Ω which is equivalent to Ωi,m ⊆ H+
K (f − f0,i, b0,i − Γib) for

every m ∈ [Mi] by (11). Since the sequence
(
f (k),b(k)

)
k∈N ∈

(
Ci1,Ω

)N
, one has Ωi,m ⊆

H+
K

(
f (k) − f0,i, b0,i − Γib

(k)
)

for all k ∈ N and m ∈ [Mi] by (11), i.e. 〈g, f (k) − f0,i〉K ≥
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b0,i −Γib
(k) for all k ∈ N and any g ∈ Ωi,m. This implies that 〈g, f − f0,i〉K ≥ b0,i −Γib

also holds for all g ∈ Ωi,m by continuity. Hence Ωi,m ⊆ H+
K(f − f0,i, b0,i − Γib) for all

m ∈ [Mi] which means that (f ,b) ∈ Ci1,Ω by (11).

A.2 Proofs of Our Results

This section contains the proofs of the results presented in Section 3, Section 4, and Sec-
tion 5: Lemma 1 (Section A.2.1), Theorem 2 (Section A.2.2), Theorem 3 (Section A.2.3),
Lemma 4 (Section A.2.4), Theorem 5 (Section A.2.5), Theorem 6 (Section A.2.6).

A.2.1 Proof of Lemma 1

By the reproducing property of matrix-valued kernels

fq(x) = e>q f(x) = 〈f ,K(·,x)eq〉K
(∗)⇒ Dqfq(x) = 〈f , DqK(·,x)eq〉K

provided that the terms on the r.h.s. of the implication (∗) exist, which is proved below.
Hence

D(f)(x) =
∑
q∈[Q]

βqDqfq(x) =
∑
q∈[Q]

βq 〈f , DqK(·,x)eq〉K =

〈
f ,
∑
q∈[Q]

DqK(·,x)βqeq

〉
K

.

For (∗) to be valid, one has to show that for any r ∈ Nd satisfying |r| ≤ s and any q ∈ [Q]
we have

f ∈ Cs(X,RQ), (35a)

∂r
2K(·,x)eq ∈ FK , (35b)

∂r(fq)(x) = 〈f , ∂r
2K(·,x)eq〉K (∀ f ∈ FK , x ∈ X), (35c)

where ∂r
2K(x′,x) := ∂r[x 7→ K(x′,x)] ∈ RQ×Q; this extends to general Dq by taking linear

combinations. We prove (35a), (35b), (35c) by induction over s0 ∈ [[0, s− 1]], assuming the
property to be satisfied for all r such that |r| ≤ s0. For s0 = 0, the assertion is true. Fix
p, q ∈ [Q] and r satisfying |r| = s0. Let r′ := r + ep, |r′| = |r|+ 1 = s0 + 1 where p, q ∈ [Q]
are fixed and ep ∈ Rd is the p-th canonical basis vector. We show the statement first for

the interior X̊, then for the whole X, extending by continuity. For all h 6= 0 and x ∈ X, let
us introduce the difference quotient ∆h,x, the limits of which shall give (35a), (35b), (35c)

∆h,x :=
∂r

2K(·,x + hep)eq − ∂r
2K(·,x)eq

h
. (36)

• Case of X̊: Take x1,x2 ∈ X̊ and ρ > 0 such that BX(x1, ρ) ∪ BX(x2, ρ) ⊂ X̊. Let
h1, h2 ∈ [−ρ, ρ]\{0}. By induction, for any x,x′ ∈ X,

e>q ∂
r
1∂

r
2K(x′,x)eq = ∂r(e>q ∂

r
2K(·,x)eq)(x

′) =
〈
∂r

2K(·,x)eq, ∂
r
2K(·,x′)eq

〉
K
, (37)
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where ∂r
1 is defined analogously to ∂r

2. Let us derive Cauchy sequences based on ∆h,x. Since

‖∆h1,x1 −∆h2,x2‖2K = ‖∆h1,x1‖2K + ‖∆h2,x2‖2K − 2 〈∆h1,x1 ,∆h2,x2〉K , (38)

it is sufficient to consider quantities of the form

〈∆h1,x1 ,∆h2,x2〉K
=

1

h1h2

[
〈∂r

2K(·,x1 + h1ep)eq, ∂
r
2K(·,x2 + h2ep)eq〉K + 〈∂r

2K(·,x1)eq, ∂
r
2K(·,x2)eq〉K

− 〈∂r
2K(·,x1)eq, ∂

r
2K(·,x2 + h2ep)eq〉K − 〈∂

r
2K(·,x1 + h1ep)eq, ∂

r
2K(·,x2)eq〉K

]
.

=
1

h1h2
e>q [∂r

1∂
r
2K(x2 + h2ep,x1 + h1ep) + ∂r

1∂
r
2K(x2,x1)

−∂r
1∂

r
2K(x2 + h2ep,x1)− ∂r

1∂
r
2K(x2,x1 + h1ep)] eq

=

∫ 1

0

∫ 1

0
e>q ∂

r′
1 ∂

r′
2 K(x1 + αh1ep,x2 + βh2ep)eqdαdβ, (39)

where (39) follows from integration by parts and by the fact that K ∈ Cs,s
(
X× X,RQ×Q

)
.

Applying the resulting expression (39) in (38), we obtain that

‖∆h1,x1 −∆h2,x2‖2K =
∑
i,j∈[2]

(−1)i+j
∫ 1

0

∫ 1

0
e>q ∂

r′
1 ∂

r′
2 K(xi + αhiep,xj + βhjep)eqdαdβ.

(40)

To upper bound (40), since K ∈ Cs,s
(
X× X,RQ×Q

)
, one can define the modulus of conti-

nuity for any δ ≥ 0

ω
(
e>q ∂

r′
1 ∂

r′
2 K(·, ·)eq, δ

)
= sup

x,x′,y,y′∈X,
‖x−x′‖2≤δ, ‖y−y′‖2≤δ

∣∣∣e>q ∂r′
1 ∂

r′
2 K(x′,x)eq − e>q ∂

r′
1 ∂

r′
2 K(y′,y)eq

∣∣∣
which is a continuous function of δ, with limit 0 at 0. Forming two groups in (40) with
(i, j) ∈ {(1, 1), (1, 2)} and (i, j) ∈ {(2, 2), (2, 1)} one gets the bound

‖∆h1,x1 −∆h2,x2‖K ≤
√

2ω
(
e>q ∂

r
1∂

r
2K(·, ·)eq, ‖x1 − x2‖2 + |h1|+ |h2|

)
(41)

depending on ω(e>q ∂
r
1∂

r
2K(·, ·)eq, ·), since

‖(x1 + βh1ep)− (x2 + βh2ep)‖2 ≤ ‖x1 − x2‖2 + β︸︷︷︸
∈[0,1]

|h1 − h2| ‖ep‖2︸ ︷︷ ︸
=1

≤ ‖x1 − x2‖2 + |h1|+ |h2|.

Having derived the upper bound (41) to control ‖∆h1,x1 − ∆h2,x2‖K , let us choose x1 =

x2 = x ∈ X̊ and any sequence (hn)n∈N ⊂ [−ρ, ρ]\{0} such that hn
n→∞−−−→ 0. In this case,

(41) shows that (∆hn,x)n∈N is a Cauchy sequence in the Hilbert space FK so it converges
by the completeness of FK . Moreover (41) ensures that all the sequences — independently
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of the choice of (hn)n∈N — have the same limit which we denote formally by ∆0,x ∈ FK .
Since strong convergence in FK implies weak convergence, for any f ∈ FK , we have

lim
h→0

∂rfq(x + hep)− ∂rfq(x)

h
= lim

h→0
〈f ,∆h,x〉K = 〈f ,∆0,x〉K . (42)

Consequently ∂r′fq(x) exists. Moreover, by choosing f = K(·,x′)eq′ in (42), we deduce that
∆0,x ∈ FK equals to ∂r′

2 K(·,x)eq which establishes (35b) and (35c) for r′. The continuity

of ∂r′fq(x) on X̊, hence (35a) for r′ follows from the Cauchy-Schwarz inequality∣∣∣∂r′fq(x1)− ∂r′fq(x2)
∣∣∣ ≤ ‖f‖K‖∆0,x1 −∆0,x2‖K

combined with (41).
• Case of X: Let us consider an arbitrary point x ∈ X. Then there exists a sequence
(x′n)n∈N ∈ (X̊)N converging to x since X is contained in the closure of its interior. For any
such sequence (x′n)n∈N, (∆0,x′n)n∈N is a Cauchy sequence by (41) applied with h1 = h2 = 0
(hence convergent by the completeness of FK), with the same limit which we again denote
formally by ∆0,x ∈ FK . Consequently,

lim
x′→x

∂r′fq(x
′) = lim

x′→x

〈
f ,∆0,x′

〉
K

= 〈f ,∆0,x〉K ,

so ∂r′fq(x) exists and ∆0,x ∈ FK can be identified with ∂r′
2 K(·,x)eq which establishes (35b)

and (35c) for r′. Let f
[r′]
q (x′) :=

〈
f ,∆0,x′

〉
K

for x′ ∈ X. Again by the Cauchy-Schwarz

inequality, we obtain that f
[r′]
q is continuous on X, and it is the continuous extension of

∂r′fq from X̊ to X. This proves (35a) for r′ and concludes the induction.

A.2.2 Proof of Theorem 2

By the convex separation formula of Dubovitskii and Milyutin (1965), the first statement
is equivalent to the existence of gf , (gB,j)j∈[JB ], (gH,j)j∈[JH ] ∈ FK not vanishing simultane-
ously and satisfying

inf
w∈H̊−K(f−f0,b0−Γb)

〈gf ,w〉K +
∑
j∈[JB ]

inf
w∈B̊K(cj ,rj)

〈gB,j ,w〉K +
∑
j∈[JH ]

inf
w∈H̊−K(vj ,ρj)

〈gH,j ,w〉K ≥ 0,

gf +
∑
j∈[JB ]

gB,j +
∑
j∈[JH ]

gH,j = 0.

Since the sum of the infima is nonnegative, each infimum is finite. Hence by Lemma 7 and
Lemma 8 we get that the inclusion Ω ⊆ H+

K (f − f0, b0 − Γb) holds if and only if there exist

[ξf ; ξ1; . . . ; ξJH ] ∈ RJH+1
+ and (gB,j)j∈[JB ] ∈ F

JB
K not vanishing simultaneously (since ξf = 0

⇔ gf = 0, and ξj = 0 ⇔ gH,j = 0) such that

−ξf b0 − Γb +
∑
j∈[JB ]

〈gB,j , cj〉K −
∑
j∈[JH ]

ξjρj −
∑
j∈[JB ]

rj ‖gB,j‖K ≥ 0,

−ξf (f − f0) +
∑
j∈[JB ]

gB,j −
∑
j∈[JH ]

ξjvj = 0.
(43)
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Let V = span
(
f − f0, {cj}j∈[JB ] , {vj}j∈[JH ]

)
and gj = projV(gB,j) where projV denotes the

projection onto the subspace V. Since 〈gB,j , cj〉K = 〈gj , cj〉K and ‖gj‖K ≤ ‖gB,j‖K , this

family also satisfies (43). Here, again [ξf ; ξ1; . . . ; ξJH ] ∈ RJH+1
+ and (gj)j∈[JB ] ∈ F

JB
K cannot

all vanish. Indeed, if it were the case, then by 〈gB,j , cj〉K = 〈gj , cj〉K = 0, (43) would give
−
∑

j∈[JB ] rj ‖gB,j‖K ≥ 0, so, since rj > 0 (∀j ∈ [JB]), (gB,j)j∈[JB ] would all vanish too.

The nonnegative number ξf cannot be zero since in this case either H−K (f − f0, b0 − Γb)
or Ω would be empty by (43) (Dubovitskii and Milyutin, 1965), both cases being excluded
by assumption. Hence, we can divide (43) by ξf > 0; replacing ξj with ξj/ξf and gj with
gj/ξf , the claimed equation (12) follows.

A.2.3 Proof of Theorem 3

In accordance with the r.h.s. of (20) let us define

gx,u(·) := u>DK(·,x)u :=
∑

p1, p2∈[P ]

up1up2Dp1, p2K(·,x) ∈ FK , (44)

where x ∈ X and u ∈ SP−1. Since K ⊆
⋃
m∈[M ] BX(x̃m, δm), for any x ∈ K let us take x̃m

for which ‖x− x̃m‖X ≤ δm. Applying the reproducing formula (6) and the Cauchy-Schwartz
inequality, for any f ∈ Fk one gets the lower bound

u>D(f − f0)(x)u = 〈f − f0,u
>DK(·,x)u〉K

= u>D(f − f0)(x̃m)u + 〈f − f0,u
> [DK(·,x)−DK(·, x̃m)] u〉K

≥ u>D(f − f0)(x̃m)u− ‖f − f0‖K
∥∥∥u> [DK(·,x)−DK(·, x̃m)] u

∥∥∥
K

≥ u>D(f − f0)(x̃m)u− ηm,P ‖f − f0‖K . (45)

This means that for (f ,b) ∈ CP,SOC and for any u ∈ SP−1,

ηm,P ‖f − f0‖K u>u︸︷︷︸
=1

≤ u>D(f − f0)(x̃m)u + u> diag(Γb− b0)u

0 ≤ u>D(f − f0)(x̃m)u− ηm,P ‖f − f0‖K + u> diag(Γb− b0)u

0
(45)

≤ u>D(f − f0)(x)u + u> diag(Γb− b0)u,

in other words, (f ,b) ∈ CP ; this proves Theorem 3.

A.2.4 Proof of Lemma 4

Taking the square of the argument of the supremum in (20), by (44) we have∥∥∥∥∥∥
∑

p1, p2∈[P ]

up1up2Dp1,p2K(·, x̃m)−
∑

p1, p2∈[P ]

up1up2Dp1,p2K(·,x)

∥∥∥∥∥∥
2

K

=

= ‖gx̃m,u − gx,u‖2K = ‖gx̃m,u‖
2
K + ‖gx,u‖2K − 2 〈gx̃m,u, gx,u〉2K . (46)
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This means that it is sufficient to compute expressions of the form
〈
gx′,u, gx,u

〉
K

where
x′,x ∈ X.

〈
gx′,u, gx,u

〉
K

=

〈 ∑
p1, p2∈[P ]

up1up2Dp1, p2K(·,x′),
∑

p1, p2∈[P ]

up1up2Dp1, p2K(·,x)

〉
K

=
∑

p′1, p
′
2, p1, p2∈[P ]

up′1up′2up1up2

〈
Dp′1, p

′
2
K(·,x′), Dp1, p2K(·,x)

〉
K︸ ︷︷ ︸

(∗)
=D>

p′1,p
′
2
Dp1,p2K(x′,x)=K(x′,x)p1,p2,p

′
1,p
′
2

=
〈
u⊗ u,K(x′,x)(u⊗ u)

〉
F
. (47)

(∗) follows from the fact that for any point x′,x ∈ X and differential operator D̃,D ∈ OQ,s
with parameterizationD(f)(x) =

∑
q∈[Q] βqDq,x(fq)(x) and D̃(f)(x′) =

∑
q∈[Q] β̃qD̃q,x′(fq)(x

′)〈
D̃K(·,x′), DK(·,x)

〉
K

=
∑

q,q′∈[Q]

βqβ̃q′e
>
q′D̃q′,x′Dq,xK(x′,x)eq = D̃>DK(x′,x)

as implied by the reproducing property (6). Combining (46) and (47) concludes the proof.

A.2.5 Proof of Theorem 5

Existence: Define the domain D := Capp ∩ dom(L) ∩ (FK ×B) and

vapp = inf
f ∈FK ,b∈B
(f ,b)∈Capp

L (f ,b) .

By definition of the infimum, there exists a sequence
(
f (k),b(k)

)
k∈N ∈ D

N such that

lim
k→∞

L
(
f (k),b(k)

)
= vapp. (48)

Using this sequence we will construct a pair
(
f̄app, b̄app

)
∈ D for which L

(
f̄app, b̄app

)
= vapp.

• Finiteness of vapp: By Assumption (v) there exists an admissible pair (f ,b) ∈ Capp which
implies that vapp <∞. Using that both L+χCapp and R are lower bounded (the former
is Assumption (iii), the latter is larger than R(0) since R is monotonically increasing),
one gets that vapp > −∞; so vapp is finite.

• Construction of
(
f̄app, b̄app

)
: Since L + χCapp is lower bounded by Assumption (iii) and

vapp is finite, the sequence
(
R
(
‖f (k)‖K

))
k∈N is necessarily upper bounded. This implies

the boundedness of
(
‖f (k)‖K

)
k∈N by Assumption (i). In other words, there exists r > 0

such that
(
‖f (k)‖K

)
k∈N ⊂ BK(0, r). Let L̃ (f ,b) := L

(
b,

((
D0
n,j(f)(xn)

)
j∈Jn

)
n∈[N ]

)
+

χBK(0,r)(f), L̃ is l.s.c. since it is the composition of the l.s.c. L (Assumption (iv)) with

the continuous maps f 7→ D0
n,j(f)(xn). Moreover, lim‖f‖K+‖b‖2→∞ L̃ (f ,b) = ∞ by As-

sumption (ii). Hence, L̃ is coercive over the Hilbert space FK × RB equipped with the
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sum of the inner products. However L̃(f (k),b(k)) ≤ L(f (k),b(k)) + R(‖f (k)‖K) − R(0) ≤
supk∈N L(f (k),b(k)) − R(0). Consequently

(
f (k),b(k)

)
k∈N belongs to a bounded closed

level set of L̃. As
(
f (k),b(k)

)
k∈N is bounded in the Hilbert space FK × RB, it has a

subsequence (w.l.o.g. one can assume that it is the sequence itself) converging weakly to
some

(
f̄app, b̄app

)
∈ FK × RB; by the closedness of the level set and of B, we have that(

f̄app, b̄app

)
∈ dom(L̃) ∩ (FK ×B) ⊆ dom(L).

•
(
f̄app, b̄app

)
∈ Capp, L

(
f̄app, b̄app

)
= vapp: One has

L

(
b̄app,

((
D0
n,j(f̄app)(xn)

)
j∈Jn

)
n∈[N ]

)
(a)

≤ lim inf
k→∞

L

(
b(k),

((
D0
n,j

(
f (k)
)

(xn)
)
j∈Jn

)
n∈[N ]

)
,

(49)

R
(∥∥f̄app

∥∥
K

) (b)

≤ R

(
lim inf
k→∞

∥∥∥f (k)
∥∥∥
K

)
(c)

≤ lim inf
k→∞

R
(∥∥∥f (k)

∥∥∥
K

)
.

(50)

(a) follows from the fact that in finite-dimensional Euclidean spaces strong and weak
convergence coincide, from the lower semi-continuity of L (Assumption (iv)), and by
the fact that limk→∞D

0
n,j

(
f (k)
)

(xn) = D0
n,j

(
f̄app

)
(xn) (∀n ∈ [N ], j ∈ Jn); the latter

is implied by the weak convergence of
(
f (k)
)
k∈N to f̄app and the reproducing property

(Lemma 1). (b) comes from the (sequentially) weakly l.s.c. property of ‖·‖K and the
monotonicity of R. The l.s.c. property of R (Assumption (iv)) gives (c): by the definition
of the lim inf, there exists a subsequence

(
f (kn)

)
n∈N such that lim infk→∞

∥∥f (k)
∥∥
K

=

limn→∞
∥∥f (kn)

∥∥
K

and R
(
limn→∞

∥∥f (kn)
∥∥
K

)
≤ lim infn→∞R

(∥∥f (kn)
∥∥
K

)
as R is l.s.c.;

again the reasoning can be restricted w.l.o.g. to the subsequence
(
f (kn)

)
n∈N.

The set Capp is a closed convex subset of Fk × RB by Lemma 9. Hence it also closed
w.r.t. weak convergence and

(
f̄app, b̄app

)
∈ Capp since it is a weak limit of a sequence(

f (k),b(k)
)
k∈N ⊂ Capp. Therefore

vapp ≤ L
(
f̄app, b̄app

)
(a)

≤ lim inf
k→∞

L

(
b(k),

((
D0
n,j

(
f (k)
)

(xn)
)
j∈Jn

)
n∈[N ]

)
+ lim inf

k→∞
R
(∥∥∥f (k)

∥∥∥
K

)
(b)

≤ lim inf
k→∞

L
(
f (k),b(k)

)
= lim

k→∞
L
(
f (k),b(k)

)
= vapp,

where (a) is implied by (49) and (50), and (b) holds by the superadditivity of lim inf.
This means that L

(
f̄app, b̄app

)
= vapp which combined with the established

(
f̄app, b̄app

)
∈

D = Capp ∩ dom(L) ∩ (FK ×B) concludes the proof.

Finite-dimensional description: Let us consider the finite-dimensional subspace

V := span
(
{f0,i}i∈[I],

{
D0
n,jK(·,xn)

}
n∈[N ],j∈Jn

, {Di
p1,p2

K(·, x̃i,m)}i∈ISOC, p1, p2∈[Pi],m∈[Mi],

{ci,m,j}i∈IΩ,m∈[Mi], j∈[JB,i,m],, {vi,m,j}i∈IΩ,m∈[Mi], j∈[JH,i,m]

)
.
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Let (f̄app, b̄app) be an optimal solution, which we decompose as f̄app = z + w where z =
projV

(
f̄app

)
∈ V and w ∈ V ⊥. We show that

(
z, b̄app

)
is then also an optimal solution.

• L
(
f̄app, b̄app

)
= L

(
z, b̄app

)
: By the linearity of the differential operators D0

n,j , the re-

producing property (Lemma 1) and the orthogonality of w ∈ V ⊥ and D0
n,jK(·,xn) ∈ V ,

one gets

D0
n,j

(
f̄app)(xn

)
= D0

n,j (z + w) (xn) = D0
n,j (z) (xn) + D0

n,j (w) (xn)︸ ︷︷ ︸
〈w,D0

n,jK(·,xn)〉
K

=0

.

This implies that the terms appearing in L are the same for f̄app and for z, and hence
L
(
f̄app, b̄app

)
= L

(
z, b̄app

)
.

• R (‖z‖K) ≤ R
(∥∥f̄app

∥∥
K

)
: This inequality follows from ‖z‖K ≤

∥∥f̄app

∥∥
K

by the mono-
tonicity of R.

•
(
z, b̄app

)
∈ CiPi,SOC for all i ∈ ISOC: Let i ∈ ISOC. Similarly to the previous point,

Di
p1,p2

(f̄app)(x̃i,m) = Di
p1,p2

(z)(x̃i,m) for all p1, p2 ∈ [Pi] and m ∈ [Mi], so the r.h.s. in
the inequalities in CiPi,SOC are the same for

(
f̄app, b̄app

)
and

(
z, b̄app

)
. Considering the

l.h.s.-s, ‖z− f0,i‖K ≤
∥∥f̄app − f0,i

∥∥
K

since by the Pythagorean theorem
∥∥f̄app − f0,i

∥∥2

K
=

‖z− f0,i‖2K + ‖w‖2K . This shows that
(
z, b̄app

)
∈ CiPi,SOC for all i ∈ ISOC.

• (z, b̄app) ∈ Ci1,Ω for all i ∈ IΩ: By (11) it is sufficient to prove that Ωi,m ⊆ H+
K(z −

f0,i, b0,i − Γib) for all i ∈ IΩ and m ∈ [Mi]. In the following the i and m indices are
assumed to be fixed; in the notations we make them implicit. By Theorem 2, we have to

show the existence of JB functions (g′j)j∈[JB ] ⊂ span
(
z− f0, {cj}j∈[JB ] , {vj}j∈[JH ]

)
and

JH non-negative coefficients (ξ′j)j∈[JH ] ∈ RJH+ satisfying (12). Consider (gj)j∈[JB ] and

(ξj)j∈[JH ] for which (12) holds for
(
f̄app, b̄app

)
. Let us define g′j := projV (gj) (in other

words, gj = g′j + g′⊥j with g′j ∈ V , g′⊥j ∈ V ⊥) and ξ′j := ξj ∈ R+. With this choice of

(g′j)j∈[JB ] and (ξ′j)j∈[JH ], the pair
(
z, b̄app

)
satisfies (12). Indeed, the inequality in (12)

holds by

〈gj , cj〉K =
〈
g′j + g′⊥j , cj

〉
K

=
〈
g′j , cj

〉
K

+
〈

g′⊥j︸︷︷︸
∈V ⊥

, cj︸︷︷︸
∈V

〉
K

=
〈
g′j , cj

〉
K
,
∥∥g′j∥∥K ≤ ‖gj‖K .

The equality in (12) is satisfied since

0 = projV (0) = projV

− (f̄app − f0

)
+
∑
j∈[JB ]

gj −
∑
j∈[JH ]

ξjvj


= −

[
projV

(
f̄app

)︸ ︷︷ ︸
=z

−projV (f0)︸ ︷︷ ︸
=f0⇐ f0∈V

]
+
∑
j∈[JB ]

projV (gj)︸ ︷︷ ︸
=g′j

−
∑
j∈[JH ]

ξj︸︷︷︸
=ξ′j

projV (vj)︸ ︷︷ ︸
=vj⇐vj∈V

.
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Finally let us fix any j ∈ [JB] and show that g′j ∈ span
(
z− f0, {ci}i∈[JB ] , {vi}i∈[JH ]

)
.

This relation follows from

gj ∈ span
(
f − f0, {ci}i∈[JB ] , {vi}i∈[JH ]

)
⇒ ∃a ∈ R, (bi)i∈[JB ] ∈ RJB , (di)i∈[JH ] ∈ RJH s.t.

gj = a(f − f0) +
∑
i∈[JB ]

bici +
∑
i∈[JH ]

divi ⇒

g′j = projV (gj) = projV

a(f − f0) +
∑
i∈[JB ]

bici +
∑
i∈[JH ]

divi


= a

[
projV (f)︸ ︷︷ ︸

=z

− projV (f0)︸ ︷︷ ︸
=f0⇐ f0∈V

]
+
∑
i∈[JB ]

bi projV (ci)︸ ︷︷ ︸
=ci⇐ ci∈V

+
∑
i∈[JH ]

di projV (vi)︸ ︷︷ ︸
=vi⇐vi∈V

.

This means that (z, b̄app) ∈ Capp and that it is necessarily optimal.

Performance guarantee: By assumption (iv), L and R are l.s.c. so L is weakly l.s.c. thus
strongly l.s.c. Since by construction Capp ⊆ C, we know that the solution

(
f̄app, b̄app

)
is

also admissible for (P). Hence

vrelax ≤ v̄ ≤ vapp, (51)

where v̄ := L
(
f̄ , b̄
)

as (f̄ , b̄) exists and is unique by the strong convexity assumption over
the l.s.c. L.

• Bound (26): Let us fix any (pf ,pb) ∈ FK × RB belonging to the subdifferential of
L(·, ·)+χC(·, ·) at point (f̄ , b̄), where χC is the characteristic function of C, i.e. χC(u,v) = 0
if (u,v) ∈ C and χC(u,v) =∞ otherwise. Using the (µf , µb)-strong convexity of L w.r.t.
(f ,b) we get

L
(
f̄app, b̄app

)
≥ L

(
f̄ , b̄
)

(52)

+ 〈pf , f̄app − f̄〉K + 〈pb, b̄app − b̄〉2︸ ︷︷ ︸
≥0

+
µf

2

∥∥f̄app − f̄
∥∥2

K
+
µb

2

∥∥bapp − b̄
∥∥2

2
,

where the non-negativity holds since
(
f̄ , b̄
)

is the optimum of (P) and
(
f̄app, b̄app

)
is

admissible for (P). One gets the claimed bound (26) by

vapp − vrelax

(51)

≥ L
(
f̄app, b̄app

)
− v̄

= L
(
f̄app, b̄app

)
− L

(
f̄ , b̄
) (52)

≥ µf

2

∥∥f̄app − f̄
∥∥2

K
+
µb

2

∥∥bapp − b̄
∥∥2

2
. (53)

• Bound (28): Recall that
(
f̄ , b̄
)

satisfies (C) and that we assume B = RB. Let η∞ be
defined according to (27), let β ∈ RB such that Γiβ > 0 for all i ∈ I, and define

β̃ := η∞cfβ = η∞
maxi∈[I]

∥∥f̄ − f0,i

∥∥
K

mini∈[I], p∈Pi
(Γiβ)p

β. (54)
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Applying Γi to (54) results in the bound (used below)

Γiβ̃ = η∞max
i∈[I]

∥∥f̄ − f0,i

∥∥
K

Γiβ

mini∈[I], p∈Pi
(Γiβ)p︸ ︷︷ ︸

≥1⇐Γiβ>0, ∀i∈[I]

≥ η∞
∥∥f̄ − f0,i

∥∥
K

1Pi , ∀i ∈ [I] (55)

with 1Pi ∈ RPi being the vector of ones.

Next we show that
(
f̄ , b̄ + β̃

)
∈ Capp.

–
(
f̄ , b̄ + β̃

)
∈ CiPi,SOC for all i ∈ ISOC: Let i ∈ ISOC. Then for all x ∈ Ki

ηi,m,Pi

∥∥f̄ − f0,i

∥∥
K

IPi

(a)

4 η∞
∥∥f̄ − f0,i

∥∥
K

IPi

(b)

4 diag
(
Γiβ̃

)
4 diag

(
Γiβ̃

)
+ Di

(
f̄ − f0,i

)
(x) + diag

(
Γib̄− b0,i

)︸ ︷︷ ︸
<0 for ∀x∈Ki⇐ (f̄ ,b̄)∈C

= Di

(
f̄ − f0,i

)
(x) + diag

(
Γi

(
b̄ + β̃

)
− b0,i

)
, (56)

where (a) comes from the definition of η∞ and (b) follows from (55). Since x̃i,m ∈ Ki,
(56) means that (f̄ , b̄ + β̃) ∈ CiPi,SOC.

–
(
f̄ , b̄ + β̃

)
∈ Ci1,Ω for all i ∈ IΩ: Let i ∈ IΩ. By the definition of η∞, ΦDi(Ki) ⊆ Ω̄i ⊆

ΦDi(Ki)+BK(0, η∞). This inclusion with (8) means that for
(
f̄ , b̄ + β̃

)
∈ Ci1,Ω to hold

it is sufficient to prove that ΦDi(Ki) + BK(0, η∞) ⊆ H+
K

(
f̄ − f0,i, b0,i − Γi

(
b̄ + β̃

))
.

The latter holds since for any x ∈ Ki and g ∈ BK(0, η∞) we have

〈f̄ − f0,i, DiK(·,x) + g〉K + Γi(b̄ + β̃)− b0,i
(a)
= Di

(
f̄ − f0,i

)
(x) + Γib̄− b0,i + Γiβ̃ + 〈f̄ − f0,i,g〉K

(b)

≥ Di

(
f̄ − f0,i

)
(x) + Γib̄− b0,i︸ ︷︷ ︸

≥0 for ∀x∈Ki⇐ (f̄ ,b̄)∈C

+ Γiβ̃ −
∥∥f̄ − f0,i

∥∥
K
‖g‖K︸ ︷︷ ︸
≤η∞︸ ︷︷ ︸

≥0⇐ (55)

≥ 0.

In (a) we applied the reproducing formula (Lemma 1), (b) follows from the Cauchy-
Schwarz inequality.

The proved relation
(
f̄ , b̄ + β̃

)
∈ Capp implies that

(
f̄ , b̄ + β̃

)
is admissible for (24) since

b̄ + β̃ ∈ dom(L(f̄ , ·)) = RB. Thus

L
(
f̄app, b̄app

)
− L

(
f̄ , b̄
) (a)

≤ L
(
f̄ , b̄ + β̃

)
− L

(
f̄ , b̄
) (b)

≤ Lb
∥∥β̃∥∥

2

(c)

≤ Lbη∞cf
∥∥β∥∥

2
, (57)

where (a) follows from the fact that
(
f̄app, b̄app

)
is an optimal solution of (24), (b) is implied

by the local Lipschitz property of L, and (c) holds by (54). Combining (57) with (53) results
in the bound (28).
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A.2.6 Proof of Theorem 6

Part 1 (limit covering): The properties we exploit are that diam
(
Ω(0)

)
< ∞ and that

the diameters of the bursting sets decrease by a factor of γ. Recall that at the kth iteration
of Alg. 3 we have

ΦD(K) ⊆ Ω̄(k) = ∪m∈[M(k)]Ω̄
(k)
m ⊆ H+

K

(
f (k) − f0, b0 − Γb(k)

)
. (58)

We say that a set Ω̄
(j)
m present at the jth iteration is k-persistent if j ≤ k and Ω̄

(j)
m does not

burst at all in Alg. 3. Let us define

Ω̄(k)
pers ⊆ Ω̄(k) ⊆ FK (59)

as the union of the k-persistent sets. By definition one gets an increasing sequence of sets

(Ω̄
(1)
pers ⊆ Ω̄

(2)
pers ⊆ Ω̄

(3)
pers ⊆ . . .), hence we can take the closed limit of these sets and define

Ω̄
(∞)
pers :=

⋃
k∈N Ω̄

(k)
pers. We show that

lim
k→∞

Ω̄(k) = ΦD(K) ∪ Ω̄(∞)
pers. (60)

Notice that by definition Ω̄(k) is a closed and bounded set. The set ΦD(K) is compact (thus

closed and bounded) as ΦD is continuous and K is compact. The set Ω̄
(∞)
pers is closed by

definition; it is also bounded as Ω̄
(∞)
pers ⊆ ΦD(K) + BK

(
0,diam

(
Ω(0)

))
. Hence the terms in

(60) are elements of the complete (Price, 1940) metric space of closed, bounded, non-empty
sets of FK equipped with the Hausdorff distance

dH(S1, S2) = inf {ε > 0 : S1 ⊆ S2 + BK(0, ε) and S2 ⊆ S1 + BK(0, ε)}

where ’+’ denotes the Minkowski sum. The limit in (60) is meant in this dH sense.

Indeed (60) can be proved as follows. Let C
(k)
no-pers denote the covering elements of

the k-th iteration that are not k-persistent; in other words, each of these sets Ω̄
(k)
m will

burst after N
(k)
m ∈ N iterations. Let A(k) ⊆ R+ be the finite set of the diameters of the

elements in C
(k)
no-pers and α(k) := max

(
A(k)

)
. Since at each iteration, the diameters can only

decrease,
(
α(k)

)
k∈N is a non-negative decreasing sequence which thus converges to some

α ∈ R+. We show that α = 0 by contradiction. Assume that α > 0, and take k such that
0 ≤ α(k) − α < (1 − γ)α which is possible since α > 0 and γ ∈ (0, 1). As α ≤ α(k), this
choice of k implies that α(k) − α < (1 − γ)α(k), in other words that γα(k) < α. By taking

N (k) := maxmN
(k)
m , we get that

α(k+N(k)) ≤ γα(k) < α.

However, the obtained relation α(k+N(k)) < α contradicts the fact that
(
α(k)

)
k∈N converges

decreasingly to α; this contradiction establishes that α = 0.
We have that

Ω̄(k)
pers ∪ΦD(K)

(a)

⊆ Ω̄(k)
(b)

⊆ Ω̄(k)
pers ∪

(
ΦD(K) + BK

(
0, α(k)

))
, (61)
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The inclusion (a) holds since ΦD(K) ⊆ Ω̄(k) by (58) and Ω̄
(k)
pers ⊆ Ω̄(k) by (59), while (b)

holds given that at each iteration k, Ω̄
(k)
m ∩ΦD(K) 6= ∅ for any m (recall that superfluous

covering elements were discarded in Alg. 1). This means by the previously proved relation
lim
k→∞

α(k) = 0 that

lim
k→∞

Ω̄(k)
pers ∪ΦD(K) = lim

k→∞
Ω̄(k) = lim

k→∞
Ω̄(k)

pers ∪
(
ΦD(K) + BK

(
0, α(k)

))
= ΦD(K) ∪ Ω̄(∞)

pers

in Hausdorff distance sense; this establishes (60).

Let Θ(k) := Ω̄(k) \ Ω̄
(k)
pers. Since the constraints associated to Ω̄

(k)
pers are never active by

definition, they can be removed from the problem:

(
f (k),b(k)

)
∈ arg min

f ∈FK ,b∈B
Ω̄(k)⊆H+

K(f−f0,b0−Γb)

L(f ,b) = arg min
f ∈FK ,b∈B

Θ(k)⊆H+
K(f−f0,b0−Γb)

L(f ,b). (62)

However by (61) and by using the fact that (A∪B)\B ⊆ A for any sets A,B, we have that

Θ̄(∞) := lim
k→∞

Θ(k) ⊆ ΦD(K), where the limit is again meant in Hausdorff distance sense.

Hence, considering the limit constraint sets in (62), any

(
f (∞),b(∞)

)
∈ arg min

f ∈FK ,b∈B
Ω̄(∞)⊆H+

K(f−f0,b0−Γb)

L(f ,b) = arg min
f ∈FK ,b∈B

Θ̄(∞)⊆H+
K(f−f0,b0−Γb)

L(f ,b) (63)

is the solution of both a tightening (Ω̄(∞) ⊇ ΦD(K)) and a relaxation (Θ̄(∞) ⊆ ΦD(K)) of
the original problem; hence

(
f (∞),b(∞)

)
∈ arg min

f ∈FK ,b∈B
ΦD(K)⊆H+

K(f−f0,b0−Γb)

L(f ,b). (64)

This establishes the first statement of Theorem 6.

Part 2 (convergence of
(
f (k),b(k)

)
k∈N): Suppose that Assumptions (i)-(vii) hold.

• Existence of
(
f (k),b(k)

)
k∈N: First we prove the existence of the iterates

(
f (k),b(k)

)
by

induction over k. For k = 0, the existence of (f (0),b(0)) is guaranteed by Assumptions (i)-
(v) and Theorem 5(1). Suppose we reached the k-th step, and let dk := dH

(
Ω̄(0), Ω̄(k)

)
.

Let us recall that
(
f̂ , b̂
)

is an admissible pair for P
(
Ω̄(0)

)
(see Assumption (v)), and let

us define b̂k := b̂ +
dk‖f̂−f0‖K
‖Γ‖22

Γ> ∈ RB which exists since Γ 6= 0 by Assumption (vii).

With this choice, we show that

Ω̄(k) ⊆ H+
K

(
f̂ − f0, b0 − Γb̂k

)
. (65)
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Indeed, by the definition of the Hausdorff distance for any g ∈ Ω̄(k) there exists some
u ∈ BK(0, 1) and g0 ∈ Ω̄(0) such that g = g0 + dku. This implies (65) as

〈
f̂ − f0,g

〉
K

+ Γb̂k − b0 =
〈
f̂ − f0,g0 + dku

〉
K

+ Γ

b̂ +
dk

∥∥∥f̂ − f0

∥∥∥
K

‖Γ‖22
Γ>

− b0
=
〈
f̂ − f0,g0

〉
K

+ Γb̂− b0︸ ︷︷ ︸
≥0 by Assumption (v)

+ dk

〈
f̂ − f0,u

〉
K

+ dk

∥∥∥f̂ − f0

∥∥∥
K︸ ︷︷ ︸

≥0 by u∈BK(0,1) and the Cauchy-Schwartz inequality

≥ 0. (66)

(65) means that
(
f̂ , b̂k

)
is admissible for P

(
Ω̄(k)

)
as b̂k ∈ B ∩ dom

(
L
(
f̂ , ·
))

= RB by

Assumption (vi). The existence of
(
f (k),b(k)

)
follows from the proved admissibility of(

f̂ , b̂k

)
and since the conditions of Theorem 5(1) hold.

• Boundedness of
(
f (k),b(k)

)
k∈N: Let us define the bound dmax := supk∈N dk < ∞ with

dk = dH
(
Ω̄(0), Ω̄(k)

)
; dmax exists since

(
Ω̄(k)

)
k∈N converges as it was proved in (60). Let

b̂max := b̂ +
dmax‖f̂−f0‖K

‖Γ‖22
Γ>. Then

(
f̂ , b̂max

)
is admissible for P

(
Ω̄(k)

)
for all k ∈ N

by a computation analogous to (65)-(66) and by using Assumption (vi). This admis-

sibility means that L
(
f (k),b(k)

)
≤ L

(
f̂ , b̂max

)
, in other words

{(
f (k),b(k)

)}
k∈N ⊆

L−1
((
−∞,L

(
f̂ , b̂max

)])
=: S. The set S is closed and bounded as Assumption (i)-

(ii) imply the coercivity of L over the Hilbert space FK × RB equipped with the sum of
the inner products, this can be shown similarly to the construction of

(
f̄app, b̄app

)
in the

proof of Theorem 5. By the boundedness of
(
f (k),b(k)

)
k∈N, it has a weakly converging

subsequence (w.l.o.g. it is the sequence itself) to some
(
f̄app, b̄app

)
.

•
(
f̄app, b̄app

)
is admissible for P

(
Ω̄(∞)

)
: Next we show that

(
f̄app, b̄app

)
is admissible for

P
(
Ω̄(∞)

)
. Indeed, let ε > 0. Then for any g ∈ Ω̄(∞), one can find k ∈ N,

(
f (k),b(k)

)
and

gk ∈ Ω̄(k) such that∣∣∣〈f (k) − f0,gk − g
〉
K

∣∣∣+
∣∣∣〈f (k) − f̄app,g

〉
K

∣∣∣+
∣∣∣Γ(b(k) − b̄app

)∣∣∣ ≤ ε (67)

using the boundedness of
(
f (k)
)
k∈N and the convergence of

(
Ω̄(k)

)
k∈N to Ω̄(∞) in Hausdorff

distance (in the first term), and the weak convergence of
(
f (k),b(k)

)
k∈N to

(
f̄app, b̄app

)
(in the 2nd and the 3rd terms). Notice that

b0 − Γb̄app − Γ
(
b(k) − b̄app

)
= b0 − Γb(k)

(a)

≤
〈
f (k) − f0,gk

〉
K

=
〈
f (k) − f0,gk − g

〉
K

+
〈
f (k) − f̄app,g

〉
K

+
〈
f̄app − f0,g

〉
K
, (68)

where (a) holds since gk ∈ Ω̄(k). Rearranging (68) leads to〈
f̄app − f0,g

〉
K
≥ b0 − Γb̄app − Γ

(
b(k) − b̄app

)
−
〈
f (k) − f0,gk − g

〉
K
−
〈
f (k) − f̄app,g

〉
K

(67)

≥ b0 − Γb̄app − ε.
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Taking the limit ε→ 0, we get that
(
f̄app, b̄app

)
is admissible for P

(
Ω̄(∞)

)
.

•
(
f̄app, b̄app

)
is an optimal solution of P

(
Ω̄(∞)

)
: Let ξ > 0. Since our assumptions are

stronger than those of Theorem 5(1), equations (49)-(50) hold; hence, there exists N0

such that

L
(
f (k),b(k)

)
≥ L

(
f̄app, b̄app

)
− ξ for all k ≥ N0. (69)

Let us fix any arbitrary pair (f ,b) which is admissible for P
(
Ω̄(∞)

)
. Let us define cf :=

‖f−f0‖K
‖Γ‖22

Γ> and εk := dH
(
Ω̄(∞), Ω̄(k)

)
. A computation similar to (66) combined with

Assumption (vi) implies that (f ,b+ εkcf ) is admissible for P(Ω̄(k)) for all k ∈ N, and that

L(f ,b + εkcf ) ≥ L
(
f (k),b(k)

) (a)

≥ L
(
f̄app, b̄app

)
− ξ, (70)

where (a) holds by (69) for k ≥ N0. This inequality shows that

L (f ,b) ≥ L
(
f̄app, b̄app

)
− ξ (71)

by taking the limit k → ∞ (in which case εk → 0) of (70). Taking the limit of (71) as
ξ → 0 shows that

(
f̄app, b̄app

)
is a solution of P

(
Ω̄(∞)

)
. This means that

(
f̄app, b̄app

)
also

solves the original problem (P)(
f̄app, b̄app

)
∈ arg min

f ∈FK ,b∈B,
(f ,b)∈C

L(f ,b) 3
(
f̄ , b̄
)

by applying the same argument used to derive (64). Consequently if
(
f̄ , b̄
)

is unique,

then
(
f̄app, b̄app

)
=
(
f̄ , b̄
)
. Hence every weakly converging subsequence of

(
f (k),b(k)

)
k∈N

converges to
(
f̄ , b̄
)
, so the whole sequence

(
f (k),b(k)

)
k∈N weakly converges to

(
f̄ , b̄
)
.

References

Christian Agrell. Gaussian processes with linear operator inequality constraints. Journal
of Machine Learning Research, 20:1–36, 2019.

Yacine Aı̈t-Sahalia and Jefferson Duarte. Nonparametric option pricing under shape re-
strictions. Journal of Econometrics, 116(1-2):9–47, 2003.

Gad Allon, Michael Beenstock, Steven Hackman, Ury Passy, and Alexander Shapiro. Non-
parametric estimation of concave production technologies by entropic methods. Journal
of Applied Econometrics, 22(4):795–816, 2007.

Nachman Aronszajn. Theory of reproducing kernels. Transactions of the American Math-
ematical Society, 68:337–404, 1950.

Pierre-Cyril Aubin-Frankowski. Linearly-constrained linear quadratic regulator from the
viewpoint of kernel methods. Technical report, 2020. (https://arxiv.org/abs/2011.
02196).

44

https://arxiv.org/abs/2011.02196
https://arxiv.org/abs/2011.02196


Hard Shape Constraints in RKHSs

Pierre-Cyril Aubin-Frankowski and Zoltán Szabó. Hard shape-constrained kernel machines.
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vector-valued RKHSs. Advances in Neural Information Processing Systems (NIPS), pages
3693–3701, 2016.

Bernhard Schölkopf, Ralf Herbrich, and Alex J. Smola. A generalized representer theorem.
In Conference on Learning Theory (COLT), pages 416–426, 2001.

David Simchi-Levi, Xin Chen, and Julien Bramel. The Logic of Logistics: Theory, Algo-
rithms, and Applications for Logistics Management. Springer, 2014.

Carl-Johann Simon-Gabriel and Bernhard Schölkopf. Kernel distribution embeddings: Uni-
versal kernels, characteristic kernels and kernel metrics on distributions. Journal of Ma-
chine Learning Research, 19(44):1–29, 2018.

Bharath Sriperumbudur, Kenji Fukumizu, and Gert Lanckriet. Universality, characteristic
kernels and RKHS embedding of measures. Journal of Machine Learning Research, 12:
2389–2410, 2011.

Ingo Steinwart. On the influence of the kernel on the consistency of support vector machines.
Journal of Machine Learning Research, 6(3):67–93, 2001.

Ingo Steinwart and Andreas Christmann. Support Vector Machines. Springer, 2008.

Ichiro Takeuchi, Quoc Le, Timothy Sears, and Alexander Smola. Nonparametric quantile
estimation. Journal of Machine Learning Research, 7:1231–1264, 2006.

Donald M. Topkis. Supermodularity and complementarity. Princeton University Press, 1998.

47



Aubin-Frankowski and Szabó
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