
HAL Id: hal-03098441
https://hal.science/hal-03098441v1

Submitted on 26 Nov 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Reasoning about distributed information with infinitely
many agents

Michell Guzmán, Sophia Knight, Santiago Quintero, Sergio Ramírez, Camilo
Rueda, Frank Valencia

To cite this version:
Michell Guzmán, Sophia Knight, Santiago Quintero, Sergio Ramírez, Camilo Rueda, et al.. Reasoning
about distributed information with infinitely many agents. Journal of Logical and Algebraic Methods
in Programming, 2021, �10.1016/J.JLAMP.2021.100674�. �hal-03098441�

https://hal.science/hal-03098441v1
https://hal.archives-ouvertes.fr


Algebraic Structures from Concurrent Constraint Programming Calculi for
Distributed Information in Multi-Agent Systems?

Michell Guzmánd,1, Sophia Knightc, Santiago Quinterod, Sergio Ramíreza, Camilo Ruedaa, Frank
Valenciaa,b,∗

aDepartament of Electronics and Computer Science
Pontificia Universidad Javeriana

Cali, Colombia
bCNRS, LIX École Polytechnique de Paris, France
cUniversity of Minnesota Duluth, Minnesota, USA

dLIX École Polytechnique de Paris, France

Abstract

Spatial constraint systems (scs) are semantic structures for reasoning about spatial and epistemic information
in concurrent systems. We develop the theory of scs to reason about the distributed information of potentially
infinite groups. We characterize the notion of distributed information of a group of agents as the infimum
of the set of join-preserving functions that represent the spaces of the agents in the group. We provide
an alternative characterization of this notion as the greatest family of join-preserving functions that satisfy
certain basic properties. For completely distributive lattices, we establish that the distributed information
of c amongst a group is the greatest lower bound of all possible combinations of information in the spaces
of the agents in the group that derive c. We show compositionality results for these characterizations and
conditions under which information that can be obtained by an infinite group can also be obtained by a
finite group. Finally, we provide an application on mathematical morphology where dilations, one of its
fundamental operations, define an scs on a powerset lattice. We show that distributed information represents
a particular dilation in such scs.
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1. Introduction

In current distributed systems such as social networks, actors behave more as members of a certain group
than as isolated individuals. Information, opinions, and beliefs of a particular actor are frequently the result
of an evolving process of interchanges with other actors in a group. This suggests a reified notion of group
as a single actor operating within the context of the collective information of its members. It also conveys
two notions of information, one spatial and the other epistemic. In the former, information is localized in
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compartments associated with a user or group. In the latter, it refers to something known or believed by a
single agent or collectively by a group.

In this paper we pursue the development of a principled account of a reified notion of group by taking
inspiration from the epistemic notion of distributed knowledge [1]. A group has its information distributed
among its member agents. We thus develop a theory about what exactly is the information available to agents
as a group when considering all that is distributed among its members.

In our account a group acts itself as an agent carrying the collective information of its members. We can
interrogate, for instance, whether there is a potential contradiction or unwanted distributed information that
a group might be involved in among its members or by integrating a certain agent. This is a fundamental
question since it may predict or prevent potentially dangerous evolutions of the system.

Furthermore, in many real life multi-agent systems, the agents are unknown in advance. New agents can
subscribe to the system in unpredictable ways. Thus, there is usually no a-priori bound on the number of
agents in the system. It is then often convenient to model the group of agents as an infinite set. In fact, in
models from economics and epistemic logic [2, 3], groups of agents have been represented as infinite, even
uncountable, sets. In accordance with this fact, in this paper we consider that groups of agents can also be
infinite. This raises interesting issues about the distributed information of such groups. In particular, that of
group compactness: information that when obtained by an infinite group can also be obtained by one of its
finite subgroups.

Context. Constraint systems (cs)2 are algebraic structures for the semantics of process calculi from
concurrent constraint programming (ccp) [4]. In this paper we shall study cs as semantic structures for
distributed information of a group of agents. We added some

clarifications
about order in
the next para-
graphs to ad-
dress N14.

A cs is typically formalized as a complete lattice (C,v) [5]. The elements of C represent partial in-
formation and we shall think of them as being assertions. They are traditionally referred to as constraints
since they naturally express partial information (e.g., x > 42). The relation v corresponds to information
order; c v d, often written d w c, means that c can be derived from d, that d represents at least as much
information as c, or that if we assume that d holds true then c also holds true (e.g., x > 42 w x > 41). The
join t, the meet u, the bottom true , and the top false of the lattice correspond to conjunction, disjunction,
the empty information and, the join of all (possibly inconsistent) information, respectively. For example,
(x > 42 t x < 42) = false and (x > 42 u x < 42) = true3.

The notion of computational space and the epistemic notion of belief in the spatial ccp (sccp) process
calculi [6] is represented as a family of bottom and join-preserving maps si : C→ C called space functions.
A cs equipped with space functions is called a spatial constraint system (scs). From a computational point
of view, si(c) can be interpreted as an assertion specifying that c resides within the space of agent i. Thus,
given a constraint s = si(c) t sj(d) t e we may think of c and d as holding within the spaces of agents i
and j, respectively. Similarly, si(sj(c)) can be viewed as a hierarchical spatial specification stating that c
holds within the space the agent i attributes to agent j. From an epistemic point of view, si(c) specifies that
i considers c to be true. An alternative epistemic view is that i interprets c as si(c). All these interpretations
convey the idea of c being local or subjective to agent i 4.

This work. In the spatial ccp process calculus sccp [6], scs are used to specify the spatial distribution of
information in configurations 〈P, c〉 where P is a process and c is a constraint, called the store, representing
the current partial information. E.g., a reduction 〈 P, s1(a)t s2(b) 〉 −→ 〈Q, s1(a)t s2(b t c) 〉means that
P , with a in the space of agent 1 and b in the space of agent 2, can evolve to Q while adding c to the space

2For simplicity we use cs for both constraint system and its plural form.
3The inverse of any boolean algebra is a cs. The opposite is not true since distributivity of meets over joins is not required in cs.
4A polymodal algebra [7] is a boolean algebra with top and meet preserving functions over it. By duality, its inverse is a spatial cs.
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of agent 2.
Given the above reduction, assume that e is some piece of information resulting from the combination

(join) of the three constraints above, i.e., e = at bt c, but strictly above the join of any two of them. We are
then in the situation where neither agent has e in their spaces, but as a group they could potentially have e by
combining their information. Intuitively, e is distributed in the spaces of the group I = {1, 2}. Being able to
predict the information that agents 1 and 2 may derive as group is a relevant issue in multi-agent concurrent
systems, particularly if e represents unwanted or conflicting information (e.g., e = false).

In this work we develop the theory of group space functions DI : C → C to reason about information
distributed among the members of a potentially infinite group I . We shall refer to DI as the distributed space
of group I . In our theory d w DI(e) holds exactly when we can derive from d that e is distributed among
the agents in I . For example, for e = at bt c given above, we will have d = s1(a)t s2(b t c) w D{1,2}(e)
meaning that from the information s1(a) t s2(b t c) we can derive that e is distributed among the group
I = {1, 2}. Furthermore, DI(e) w DJ(e) holds whenever I ⊆ J since if e is distributed among a group I ,
it should also be distributed in a group that includes the agents of I .

Distributed information of infinite groups can be used to reason about multi-agent computations with
unboundedly many agents. For example, a computation in sccp is a possibly infinite reduction sequence γ
of the form 〈 P0, c0 〉 −→ 〈 P1, c1 〉 −→ · · · with c0 v c1 v · · · . The result of γ is

⊔
n≥0 cn, the join of

all the stores in the computation. In sccp all fair computations from a configuration have the same result [6].
Thus, the observable behaviour of P with initial store c, written O(P, c), is defined as the result of any
fair computation starting from 〈P, c〉. Now consider a setting where in addition to their sccp capabilities
in [6], processes can also create new agents. Hence, unboundedly many agents, say agents 1, 2, . . ., may
be created during an infinite computation. In this case, O(P, c) w DN(false), where N is the set of natural
numbers, would imply that some (finite or infinite) set of agents in any fair computation from 〈P, c〉 may
reach contradictory local information among them. Notice that from the above-mentioned properties of
distributed spaces, the existence of a finite set of agents H ⊆ N such that O(P, c) w DH(false) implies
O(P, c) w DN(false). The converse of this implication will be called group compactness and we will
provide meaningful sufficient conditions for it to hold.

Contributions and Organization.

The paper starts with some background on lattice theory in Section 2 and on spatial constraint systems
in Section 3. The main contributions are given in Sections 4 and 5 and are listed below:

1. We characterize the distributed space DI as the greatest space function below the space functions that
represent the spaces (or beliefs) of the agents of a possibly infinite group I (Section 4.2).

2. We provide an alternative characterization of a distributed space as the greatest function that satisfies
certain basic properties (Section 4.5).

3. We show that distributed spaces have an inherent compositional nature: The information of a group is
determined by that of its subgroups (Section 4.9).

4. We provide a group compactness result: Given an infinite group I , we identify a meaningful condition
under which c w DI(e) implies c w DJ(e) for some finite group J ⊆ I (Section 4.7).

5. We then show that without this meaningful condition we cannot guarantee that c w DI(e) implies
c w DJ(e) for some finite group J ⊆ I (Section 4.8).

6. We provide a characterization of distributed spaces for distributive lattices: Given an infinite group I ,
DI(c) can be viewed as the greatest information below all possible combinations of information in the
spaces of the agents in I that derive c (Section 4.9).
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7. Finally, we investigate applications of the theory developed in this paper to geometry and mathematical
morphology (MM) (Section 5). Below we use A,B, . . . to denote sets in a vector space. In geometry,
the Minkowski addition is given by A ⊕ B = {a + b | a ∈ A, b ∈ B} [8]. It is well-known that the
distribution law A ⊕ (B ∩ C) = (A ∩ B) ⊕ (A ∩ C) holds for convex sets5 but not in general. As
a simple application of our theory, we identify a novel and pleasant law for A ⊕ (B ∩ C): Namely,
A⊕ (B ∩ C) =

⋂
X⊆A(X ⊕B) ∪ ((A \X)⊕ C).

In MM, a dilation by a structuring element A can be seen as a function δA that transforms every input
image X into the image δA (X) = A ⊕ X [9]. We show that dilations are space functions and that
the distributed space corresponding to these dilations is the dilation that arises from the intersection
of their structuring elements: i.e., if s1 = δA and s2 = δB then D{1,2} = δA∩B .

All in all, in this paper we put forward an algebraic theory for group reasoning in the context of ccp that
can also be applied to other domains. The theory here developed can be used in the semantics of the spatial
ccp process calculus to reason about or prevent potential unwanted evolutions of ccp processes. One could
imagine the incorporation of group reasoning in a variety of process algebraic settings and indeed we expect
that such formalisms will appear in due course. We will also show that our algebraic theory can be applied
to prove new results in other realms such as geometry and mathematical morphology.

Remark 1. This paper is the extended version of the CONCUR’19 paper in [10] with full proofs and the
contributions described above in the points 5, 6 and 7. For the sake of the reviewers we also include contents,
index and subject tables and for Sections 4 and 5, which contain the main contributions, we include a
summary at the end of each section.

2. Background

We presuppose knowledge of basic notions from domain theory and order theory [11, 12, 13]. In this
section we present notation and definitions that we use throughout the paper.

Notation 1. Let (P,vP ) be a poset and let S ⊆ P . We use
⊔

P
S to denote the least upper bound (lub) (or

supremum or join) of the elements in S, and
d

P
S is the greatest lower bound (glb) (infimum or meet) of the

elements in S. We shall often omit the index P from vP ,
⊔

P
and

d
P

when no confusion arises. As usual,
if S = {c, d}, c t d and c u d represent

⊔
S and

d
S, respectively. If S = ∅, we denote

⊔
S = true andd

S = false .
An element e ∈ S is the greatest element of S if and only if for every element e′ ∈ S, e′ v e. If such an

e exists, we denote it by maxS. We added the
following nota-
tion.

The dual (or inverse) of a poset (P,v) is the poset (P,vop) where c vop d holds if and only if d v c
holds.

The next definition introduces complete lattices and some of their basic properties.

Definition 1 ([14]). Let (P,v) be a poset

(i) P is said to be a complete lattice if and only if
⊔
S and

d
S exist for every S ⊆ P .

(ii) P is distributive if and only if for every a, b, c ∈ P , a t (b u c) = (a t b) u (a t c).

5A convex set is a set of points such that, given any two points in that set, the line segment joining them lies entirely within that set.
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(iii) A non-empty set D ⊆ P is directed if and only if for every pair of elements x, y ∈ D, there exists
z ∈ D such that x v z and y v z, or, equivalently, if and only if every finite subset of D has an upper
bound in D.

(iv) An element c ∈ P is compact if and only if for any directed set D ⊆ P , c v
⊔
D implies that c v d

for some d ∈ D.
(v) P is said to be a completely distributive lattice if it is a complete lattice and for any doubly indexed

subset {xij}i∈I,j∈Ji of P ⊔
i∈I

l

j∈Ji

xij

 =
l

f∈F

(⊔
i∈I

xif(i)

)

where F is the class of choice functions f choosing for each index i ∈ I some index f(i) ∈ Ji.

Our space functions will be defined as self-maps with some structural properties intended to capture our
notion of space.

Definition 2 ([13]). Let (L,v) be a complete lattice. A self-map on L is a function f from L to L. Let f be
a self-map on L.

(i) f is monotonic if for every a, b ∈ L such that a v b, then f(a) v f(b).
(ii) We say that f preserves the join of a set S ⊆ L if and only if f(

⊔
S) =

⊔
{f(c) | c ∈ S}.

(iii) We say that f preserves arbitrary joins if and only if it preserves the join of any arbitrary set.
(iv) f is continuous if and only if it preserves the join of any directed set on L.

We conclude this background section with a well-known fact about continuous functions.

Proposition 1 ([15]). Let (P,v) be a poset where P is a countable set. Let f be a self-map that preserves
the join of increasing chains, i.e., for every S = {c1, c2, . . .} ⊆ P such that c1 v c2 v · · · , we have
f(
⊔
S) =

⊔
{f(c) | c ∈ S}. Then f is continuous.

3. Spatial and Standard Constraint Systems

In this section we recall the notion of constraint system and its spatial extension [6]. Furthermore, we
generalize this extension to allow for infinitely many agents and state some results that will be used in later
sections.

3.1. Constraint Systems We changed this
paragraph.Constraint systems (cs) [4] are semantic structures to specify partial information. Following the tradi-

tional approach in [5], a cs can be formalized as a complete lattice (C,v). The elements of C are called
constraints and they represent (partial) information.

Definition 3 (Constraint Systems [5]). A constraint system (cs) is a complete lattice (C,v). The elements
of C are called constraints. The symbols t, true and false will be used to denote the join operation, the
bottom, and the top element of C.
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Remark 2. Some readers familiar with boolean algebras may feel uneasy about referring to the bottom and We added the
next remark.top as true and false , respectively. Nevertheless, this is the traditional information order in cs [16]. One can

think of cs as the the dual of boolean algebras without the distributivity requirement. In fact the Herbrand
cs [5] given below is not distributive.

We added the
next four para-
graphs to ad-
dress N12, N13.

The term constraints has been traditionally used in the realm of concurrent constraint programming to
refer to partial information for historical reasons; they were developed as a generalization of assertions or
restrictions over variables. For example, constraints can be instantiated as arithmetic assertions such as
x > 42 or as a set of equalities between Herbrand terms such as {x = a, y = b} where x, y are variables
and a, b are constants [5]. In fact, much of the terminology for the abstract definition of cs is derived from
concrete constraint systems such as the Herbrand cs illustrated below in Ex. 1. We will use this concrete cs
to give some intuitions about the intended meaning of cs.

The relation v represents information order. Thus c v d, alternatively written d w c, means that the
information represented by c can be derived from the information represented by d, that the assertion d
represents at least as much information as c, or that if d holds then c must also hold. For example, we
shall see that {x = y} v {x = a, y = a} in the Herbrand cs below. This realizes the intuition that if
x = a ∧ y = a holds then x = y holds.

The operator t represents join of information; ctd results from joining the information from both c and
d. Notice that ctd is the least constraint that allows us to derive both c and d, i.e., ctd w c and ctd w d. The
join is typically interpreted as the conjunction of information and in the concrete case of Hebrand cs below is
obtained by set union. For instance, in the Herbrand cs below for e = {x = a}t{y = b} = {x = a, y = b},
we have e w {x = a} and e w {x = b}. This realizes the intuition that if x = a ∧ y = b holds the both
x = a and y = b also hold.

The top element of the cs represents the join of all, possibly inconsistent, information, hence it is tradi-
tionally refereed to as false . For example {x = a}t{x = b} = false where a and b are different constants.
This realizes the intuition that assertion x = a ∧ x = b is inconsistent. The bottom element true represents
empty or null information, i.e., from true you cannot derive anything else, true 6w e for any e 6= true. In
the particular case of the Herbrand cs below, true is the empty set.

The following examples recall two standard concrete cs. The former captures syntactic equality between
terms based on a first-order alphabet and, the later shows that boolean assignments can be made into a cs
and logic propositions can be interpreted on it. The next exam-

ple is new, to
address N2.Example 1 (Herbrand Constraint System [5]). The Herbrand cs captures syntactic equality between terms

t, t′, . . . built from a first-order alphabet L with variables x, y, . . ., function symbols, and equality =. The
constraints are (equivalence classes of) sets of equalities over the terms of L: E.g., {x = t, y = t} is a con-
straint. The relation c v d holds if the equalities in c follow from those in d: E.g., {x = y} v {x = t, y = t}.
The constraint false is the set of all term equalities in L and true is (the equivalence class of) the empty set.
The compact elements are the (equivalence class of) finite sets of equalities. The join is the (equivalence
class of) set union. Fig. 1 depicts the Herbrand cs for variables x and y and, terms (constants) a and b.

The next para-
graph is associ-
ated to the above
example. We
added this also
to clarify the
order in cs.

In the above example constraints are represented as set of equations and thus the join of constraints
corresponds to the equivalence class of union of their equations. We can also view a constraint c as a
representation of a set of variable assignments [17]. For instance, a constraint x > 42 can be thought of as
the set of assignments mapping x to a value greater than 42; i.e., the solutions to (or models of) x > 42.
In this case the join of constraints naturally corresponds to the intersection of their assignments, false as
the empty set of assignments, and true as the set of all assignments. For example, the interpretation of the
constraint x > 42 ∧ x < 50 corresponds to the intersection, hence the join, of the interpretation of the
constraints x > 42 and x < 50. Below we illustrate this in more detail for the case of boolean assignments.
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herbrand-cs-picture/herbrand-cs-crop.pdf

Figure 1: Herbrand cs for variables x and y and, constants a and b.

Example 2 (Boolean Constraint System [18]). Let Φ be a set of primitive propositions. A boolean (or The next exam-
ple is new, this
addresses N2.

truth) assignment π over Φ is a total map from Φ to the set {0, 1}. We use A(Φ) to denote the set of all
such boolean assignments. We can now define the boolean cs B(Φ) as (P(A(Φ)),⊇): The powerset of
assignments ordered by ⊇. Thus constraints in B(Φ) are sets of assignments, v is ⊇, false is ∅, true is
A(Φ), the join operator t is ∩, and the meet operator u is ∪. A constraint c in B(Φ) is compact iffA(Φ) \ c
is a finite set.

Notice that logic propositions can be straightforwardly interpreted as constraints in B(Φ). Let L0(Φ) be
the propositional language built from Φ by the grammar

φ, ψ, . . . := p | φ ∧ ψ | ¬φ (1)

where p ∈ Φ. As usual F ≡ p∧¬p for some p ∈ Φ, T ≡ ¬F, φ∨ψ ≡ ¬(¬φ∧¬ψ) and, ψ ⇒ φ ≡ ¬φ∨ψ. A
boolean assignment π satisfies φ iff π |= φ where |= is defined inductively as follows: π |= p iff π(p) = 1,
π |= φ ∧ ψ iff π |= φ and π |= ψ, and π |= ¬φ iff π 6|= φ. We interpret each formula φ as the constraint
BJφK def

= {π ∈ A(Φ) | π |= φ} in B(Φ). Under this interpretation, we clearly have the following equalities:

BJFK = false = ∅
BJTK = true = A(Φ)

BJpK = {π ∈ A(Φ) | π(p) = 1}
BJφ ∧ ψK = BJφK tBJψK = BJφK ∩BJψK

BJ¬φK = A(Φ) \BJφK.

Also notice that BJφK v BJψK holds iff ψ ⇒ φ is valid, i.e., satisfied by every truth assignment.

Other typical examples include constraint system for streams (the Kahn cs), rational intervals, and first-
order theories [4].

3.2. Distributive Constraint Systems
Distributivity is ubiquitous in order theory and it plays a fundamental role in the results of this paper. We

consider three forms of distribution.
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Definition 4 (Distributive cs). A cs (C,v) is said to be distributive (completely distributive) iff it is a
distributive (completely distributive) lattice. It is said to be a constraint frame iff its finite joins distribute
over arbitrary meets. More precisely, c t

d
S =

d
{c t e | e ∈ S} for every c ∈ C and S ⊆ C.

Clearly every completely distributive cs is a constraint frame and every constraint frame is also distribu-
tive cs. For finite constraint systems all the three notions of distributivity are equivalent.

Constraint frames allow us to include the subtraction operator from co-Heyting Algebras, the dual of
Heyting algebras [19]. The subtraction operator d 	 c in our setting corresponds to the weakest constraint
one needs to join c with to derive d. The following

definition and
proposition have
changed to ad-
dress N26, N27.

Definition 5 (Subtraction [20]). Let (C,v) be a cs. Define d	 c as
d
{e ∈ C | c t e w d}.

The following properties of subtraction correspond to standard logical properties if we interpret t as
conjunction, w as entailment, and d	 c as the logical implication of d by c.

Proposition 2 ([18]). Let (C,v) be a constraint frame. Then for every c, d ∈ C the following properties
hold: (1) c t (d	 c) = c t d, (2) d w (d	 c), (3) d	 c = true iff c w d.

Notice that under the above logical interpretation, Prop. 2 (1) corresponds to Modus Ponens. Let us now
illustrate a simple application of this proposition.

Example 3. Constraint systems of the form (P(U),⊇) as B(Φ) in Ex. 2 are completely distributive lattices, We added the
next example.hence constraint frames. It is easy to see that BJφ⇒ ψK = BJψK	BJφK. From Ex. 2, we have the following

equality BJφ ∧ (φ ⇒ ψ)K = BJφK t BJφ ⇒ ψK. Thus using Prop. 2 (1) we obtain BJφ ∧ (φ ⇒ ψ)K =
BJφ ∧ ψK as expected.

The powerset ordered by inclusion is a stereotypical example of completely distributive lattice.

Example 4 (Powerset Constraint System). The power set of any set S ordered by inclusion (P(S),⊆) is The next exam-
ple has changed
according to
Prop. 2 and
comment N27.

a cs. In fact it is the stereotypical example of completely distributive cs. In this case v = ⊆, true = ∅,
false = S , for every A,B ⊆ S, A tB = A ∪B, A uB = A ∩B, B 	A = B \A.

We conclude this section by discussing the distributivity of the cs of our previous examples.

Remark 3. Notice that the cs in Ex. 2 and Ex. 4 are distributive as they are powersets ordered by (reversed) We added the
next remark.inclusion, whereas the Herbrand cs in Ex. 1 is not. To see this consider the constraints c = {x = a},

d = {x = a, y = a} and e = {x = b} in Fig. 1. We have

c t (d u e) = c t true = c 6= (c t d) u (c t e) = d u false = d .

3.3. Spatial Constraint Systems

The authors of [6] extended the notion of cs to account for distributed and multi-agent scenarios with
a finite number of agents, each having their own space for local information and their computations. The
extended structures are called spatial constraint systems (scs). In this section we adapt scs to reason about
possibly infinite groups of agents. First we recall the intuition about scs given in [6].

9



Remark 4. In Remark 2 we pointed out that (distributive) cs are the dual of boolean algebras, the algebraic This remark is
new associated
to N9, N14,
N15, N23.

generalization of propositional logic. The extension of cs to scs from [6] is much like the extension of
boolean algebras to (poly)modal algebras [21], the algebraic generalization of the Kn propositional modal
logic. A modal algebra is a boolean algebra equipped with unary operators, called modalities, that preserve
meets and top. Dually, a scs is a cs equipped with functions, called space functions, that preserve joins and
bottom.

Roughly speaking, the preservation of joins by a space function f , i.e., f(c t d) = f(c) t f(d), cor-
responds to the Distribution Axiom K, of modal logic which states that box modality � distributes over
conjunction. The preservation of bottom, i.e., f(true) = true , corresponds to Generalization Axiom N,
that states that if a formula φ is valid, hence equivalent to true, then the formula �φ is also valid.

Furthermore, if these space functions are also closure operators (i.e., idempotent and extensive space
functions), the corresponding scs is called epistemic scs [6] and they correspond to the S4 modal logic of
knowledge and belief. In fact epistemic scs are dual to closure algebras [22] which are modal algebras
whose modalities are closure operators. Closure algebras are the generalization of the S4 modal logic for
knowledge. The extensiveness of a space function f , i.e., f(c) w c, corresponds to the Truth Axiom T of S4,
�φ→ φ, stating that if φ is known then it must be true. Idempotence of a space function f , f(c) = f(f(c)),
corresponds to the Axiom 4 of S4, �φ → ��φ, stating that it is known what it is known (the implication
��φ→ �φ follows from Axiom T).

Modal logics have been widely used to reason about space, knowledge, and belief [23, 24, 25, 26]. They
typically arise as restrictions over the Kripke models of the above-mentioned modal logic Kn. For this
reason we will focus on scs in general rather than in the more restrictive epistemic scs. This will allow us to
interpret scs as structures for space, belief or knowledge.

Below we shall often use the term epistemic to refer to both belief or knowledge. When necessary we
will use the more specific term doxastic to refer to belief.

A scs is defined over a set (or group) of agents G. Each agent i ∈ G has a space function si : C → C
that preserve joins and bottom. Recall that constraints can be viewed as assertions. Thus given c ∈ C, we
can then think of the constraint si(c) as an assertion stating that c is a piece of information residing within
the space of agent i. Some alternative epistemic interpretations of si(c) is that it is an assertion stating that
agent i believes c, that c holds within the space of agent i, or that agent i interprets c as the constraint si(c).
All these interpretations convey the idea that c is local or subjective to agent i. We added the

next paragraph
to address N1,
N14, N15.

The reader familiar with modal logic may notice that the above intuition about representation of infor-
mation in scs is fundamentally different from the representation of information in epistemic/doxastic logic,
or in modal logic in general. In epistemic logic, the statement w |= Ki(φ) means “at world w, agent i
knows fact φ,” or “at world w, agent i possesses information φ.” Here w is a world (or state), part of the
model, describing a potential situation or state of affairs, and φ and Ki(φ) are formulas, representing pieces
of information. In scs, on the other hand, the statement si(d) v c means that when c is actually true, agent i
knows/believes d, or possesses information d. In this case, unlike in epistemic logic, one constraint (c) rep-
resents a (possibly partial) description of the actual state of the world, and another constraint (d) represents
a description of the information that an agent possesses, and a third constraint, si(d), represents the fact that
agent i possesses information d.

We now introduce the notion of space function.

Definition 6 (Space Functions). A space function over a constraint system (C,v) is a continuous self-map
f : C→ C such that for every c, d ∈ C :

(S.1) f(true) = true , and
(S.2) f(c t d) = f(c) t f(d).

10



p ∨ q

p q

p ∧ q

true

false

s1 s1

s1

s1

s1

s1

Figure 2: Cs ordered by logical implication and space function s1.

We shall use S(C) to denote the set of all space functions over C.
We added the
following clarifi-
cation

In Remark 4 we pointed out that S.1 and S.2 correspond to Axioms N and K of modal logic. From a
spatial point of view, the assertion f(c) can be interpreted as saying that c is in the space represented by f .
Property S.1 states that having an empty local space amounts to nothing. Property S.2 allows us to join and
distribute the information in the space represented by f .

A spatial constraint system is a constraint system with a possibly infinite group of agents each one having
a space function. We specify such a group as a tuple of space functions.

Definition 7 (Spatial Constraint Systems). A spatial constraint system (scs) is a constraint system (C,v)
equipped with a possibly infinite tuple s = (si)i∈G of space functions in S(C).

We shall use (C,v, (si)i∈G) to denote an scs with a tuple (si)i∈G. We refer to G and s as the group
of agents and space tuple of C and to each si as the space function in C of agent i. Subsets of G are also
referred to as groups of agents (or sub-groups of G).

We added the
next paragraph
to clarify the
interpretation of
space functions.

As mentioned before we can think of scs as the dual of polymodal boolean algebras [21] without the
distributivity requirement, where each space function corresponds to a modal operator.

In Remark 4 we pointed out that epistemic scs are those scs whose space functions are idempotent and
extensive. They were used in [6] to reason about knowledge. Here is an example of such a scs.

Example 5 (Knowledge). Consider the cs in Fig. 2 and the space function s1 defined on it. It is easy to We added the
next example
and Fig. 2.

see that s1 is an idempotent and extensive space function. If we want to determine what agent 1 knows at q,
we have no problem because q = s1(q), meaning that agent 1 knows q. On the other hand, for p ∨ q, it is
more difficult to determine what agent 1 knows because there is no constraint c such that s1(c) = p ∨ q. We
solve this problem by considering the constraints below p ∨ q. Since c v p ∨ q means that p ∨ q logically
implies c, if we can find a constraint c where c v p ∨ q and c = s1(c′) for some constraint c′, we know that
p ∨ q logically implies s1(c′), so at p ∨ q, agent 1 has information c′. Finally, by taking the join (logical
conjunction) of all such c′, we take into account all of the information that agent 1 possesses at p ∨ q.

11



The idempotence or extensiveness of space functions from epistemic scs allows for knowledge interpre-
tations but it may be too restrictive. For example, notice that extensiveness implies that si(false) = false
and si(c) t si(d) = false if c t d = false . This would rule out interpretations we wish to allow for general
scs as those given below.

Doxastic and Spatial Interpretations. We could have a scs where si(false) 6= false for some agent i. This is
referred to as inconsistency confinement and, intuitively, can be seen as if inconsistencies generated within
an agent’s space are confined to its own space. We also have the possibility that given two different agents
i and j, si(x > 42) t sj(x < 42) 6= false , despite x > 42 t x < 42 = false . The spatial interpretation is
that x > 42 is in the space of i while x < 42 is in the space of j, so there is no conflict or contradiction.
The doxastic interpretation is that agent i believes x > 42 while agent j believes that x < 42. We refer to
this as freedom of opinion. Agents could have different information or perception about the same subject.
Another aspect is information blindness. It is possible that an agent cannot distinguish between two different
constraints, e.g., a color blind agent i that cannot distinguish red from green, i.e., si(red) = si(green) as
shown in the next example. The next ex-

ample is new
associated to
N1, N3. We also
added Table 1.

Example 6 (Color Perception). Table 1 describes color perception for four agents. The underlying cs is
based on four colors ordered by color brightness. We define space functions s1, s2, s3 and s4 as shown in
the table. In these situations, agent 1 perceives colors accurately, but agent 2 is colorblind and cannot tell
any difference between yellow, red and green, i.e., s2(yellow) = s2(red) = s2(green). Similarly, agent 3
cannot distinguish between red and yellow, i.e., s3(red) = s3(yellow). Finally, agent 4 is totally blind, he
perceives all the colors as black.

Our next example illustrate a simple scs that will be used throughout the paper.

Example 7 (Proposition Perception). The scs (C,v, (si)i∈{1,2}) in Fig. 3 is given by the four-element
boolean algebra (isomorphic to the complete lattice M2) and two agents. We have C = {p∨¬p, p, ¬p, p∧
¬p} and c v d holds if c is a logical consequence of d. The top element (false) is p∧¬p, the bottom element
(true) is p ∨ ¬p, and the constraints p and ¬p are incomparable with each other.
The set of agents is {1, 2} with space functions s1 and s2 depicted in Fig. 3. The intuition is that the agent 2
sees no difference between p and false while agent 1 interprets ¬p as p and vice versa.

We conclude this section with the Kripke scs from [18] which can be used to interpret modal, doxastic
and epistemic logics. Other examples of scs for epistemic reasoning are Aumann structures and they will be
illustrated in Sec. 4.4. The next sub-

section is new.
We present the
Kripke scs.

3.4. Kripke Spatial Constraint Systems
We now extend Ex. 2 by moving from the set boolean assignments to the set of (pointed) Kripke struc-

tures.

Definition 8 (Kripke Structures [24]). An n-agent Kripke structure (model) (KS) M over a set of atomic
propositions Φ is a tuple M = (S, π,R1, . . . ,Rn) where

• S is a nonempty set of states,

• π : S → (Φ → {0, 1}) is an interpretation that associates with each state a truth assignment to the
primitive propositions in Φ, and

• Ri is a binary relation on S.

12



black

red green

yellow

s1

s1

s1

s1

black

red green

yellow

s2

s2 s2

s2

Agent 1 sees colors accurately. Agent 2 is color blind, he perceives red and
green as yellow.

black

red green

yellow

s3

s3

s3

s3

s3

black

red green

yellow

s4

s4 s4

s4

s4

Agent 3 cannot distinguish between red and
yellow.

Agent 4 is completely blind.

Table 1: Cs (isomorphic to the four-element boolean algebra) of colors ordered by color brightness. Space functions s1, s2, s3 and s4.
Perception of color by agents 1, 2, 3 and 4.
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p ∨ ¬p

p ¬p

p ∧ ¬p

s1

s1

s1

s1 s2

s2

s2

s2

Figure 3: Cs given by the four-element boolean algebra ordered by logical implication and space functions s1 and s2.

Notation 2. The states of a KS are often referred to as worlds. EachRi is referred to as the accessibility or
possibility relation for agent i: (s, t) ∈ Ri is meant to capture that agent i considers world t possible given
its information in world s. We use s i−→M t to denote (s, t) ∈ Ri in the KS M . We use Wi(M, s) =

{t | s i−→M t} to denote the worlds agent i considers possible from a state s of KS M . The interpretation
function π tells us what primitive propositions are true at a given world: p holds at state s iff π(s)(p) = 1.
We use πM to denote the interpretation π of the KS M .

Recall that in Ex. 2 constraints are sets of boolean assignments. This allowed us to interpret each propo-
sitional formula as a constraint; the set of assignments that are models of (or satisfy) the formula. Similarly,
in the following example (spatial) constraints are sets of (pointed) KS models. A pointed KS is a pair (M, s)
where M is a KS and s, called the actual world, is a state of M . This will allows us to interpret each modal
formula as its set of pointed KS models; i.e., a spatial constraint.

Definition 9 (Kripke scs [18]). Let Sn(Φ) be a non-empty set of n-agent Kripke structures over Φ. Let ∆
be the set of all pointed Kripke structures (M, s) such that M ∈ Sn(Φ). We define the Kripke n-scs for
Sn(Φ) as the tuple

K(Sn(Φ)) = (C,v,K1, . . . ,Kn)

where C = P(∆), and for every X,Y ∈ C : X v Y iff Y ⊆ X , and

Ki(X)
def
= {(M, s) ∈ ∆ | ∀t : s

i−→M t implies (M, t) ∈ X} (2)

for every agent i ∈ {1, . . . , n}.

The Kripke n-scs K(Sn(Φ)) is a complete lattice given by a powerset ordered by ⊇. The t is set
intersection, the top element false is ∅, and the bottom true is the set ∆ of all pointed Kripke structures
(M, s) with M ∈ Sn(Φ). It is easy to verify that Ki(true) = true and Ki(c1 t c2) = Ki(c1) t Ki(c2).
Similar to Ex. 2, a constraint c in K(Sn(Φ)) is compact iff ∆ \ c is a finite set [18].

Proposition 3 ([18]). Let K(Sn(Φ)) = (C,v,K1, . . . ,Kn) be as in Definition 9. Then K(Sn(Φ)) is a scs.
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A modal language. Modal formulae can be interpreted as constraints in the scs K(Sn(Φ)).
The modal language Ln(Φ) is obtained by extending the grammar for the propositional language L0(Φ)

in Eq. 1 with modalities �iφ in the standard way.

Definition 10 (Modal Language). Let Φ be a set of primitive propositions. The language Ln(Φ) is given
by the following grammar:

φ, ψ, . . . := p | φ ∧ ψ | ¬φ | �iφ (3)

where p ∈ Φ and i ∈ {1, . . . , n}.

The semantics of modal logics is typically given using KS’s. We say that a pointed KS (M, s) satisfies
φ iff (M, s) |= φ where |= is defined inductively as follows: (M, s) |= p iff πM (s)(p) = 1, (M, s) |= φ∧ψ
iff (M, s) |= φ and (M, s) |= ψ, (M, s) |= ¬φ iff (M, s) 6|= φ, and (M, s) |= �iφ iff (M, t) |= φ for every
t such that s i−→M t.

As in Ex. 2 we can interpret each formula φ as constraints in Kripke constraint systems.

Definition 11 (Kripke Constraint Interpretation). Let C be a Kripke scs K(Sn(Φ)). Given a modal for-
mula φ in the languageLn(Φ), its interpretation in the Kripke scs C is the constraint CJφK inductively defined
as follows:

CJpK = {(M, s) ∈ ∆| πM (s)(p) = 1 }
CJφ ∧ ψK = CJφK t CJψK
CJ¬φK = ∆ \ CJφK
CJ�iφK = Ki( CJφK )

where ∆ is the set of all pointed Kripke structures (M, s) such that M ∈ Sn(Φ).

Notation 3. Notice that the interpretation of �i(φ), CJ�i(φ)K, is equal to the constraint Ki( CJφK ) in
K(Sn(Φ)). Often, by abuse of notation, we shall suppress the semantic symbols CJ K from formulae–e.g.,
we write Ki(φ) for the constraint Ki( CJφK ).

Following our intended meaning of constraints, we think of Ki(φ) as stating that φ holds in the space of
agent i, or as an epistemic assertion stating that agent i considers/believes φ to be true.

3.5. Continuity We reorganized
the next two
paragraphs.

In [6] space functions were not required to be continuous. Nevertheless, we will argue later, in Remark 7,
that continuity comes naturally in the intended phenomena we wish to capture: modeling information of
possibly infinite groups. In fact, in [6] scs could only have finitely many agents. In this work we also extend
scs to allow arbitrary, possibly infinite, sets of agents. We illustrate scs with infinite groups in the next
section.

Notice that the continuity and preservation of finite joins by space functions will provide us with their
preservation of arbitrary joins. The following proposition gives us sufficient conditions for the existence
of the join of an arbitrary set on a given poset. A sketch of its proof is presented in [27], for the sake of
completeness we present our own proof of it.

Proposition 4 ([27]). Let (P,v) be a poset. Suppose that
⊔
F and

⊔
D exist for every finite set F ⊆ P

and for every directed set D ⊆ P. Then
⊔
A also exists for every A ⊆ P.
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Proof. Let A ⊆ P be an arbitrary set and let D = {
⊔
F | F ⊆ A and F is finite}. First we prove that D is

directed. For F1, F2 ⊆ A, both finite sets, the elements
⊔
F1,
⊔
F2 ∈ D and the set F3 = F1 ∪ F2 ⊆ A is

finite. Then
⊔
F3 ∈ D and, both

⊔
F1 v

⊔
F3 and

⊔
F2 v

⊔
F3 hold.

To complete the proof we show that for every c ∈ P :

c is an upper bound of D if and only if c is an upper bound of A.

For the “only if” direction, we prove its contrapositive. Let c ∈ P . If c is not an upper bound of A, there is
an a ∈ A such that a 6v c. Notice that {a} ⊆ A and thus

⊔
{a} = a ∈ D but a 6v c. Hence c is not an upper

bound of D.
For the other direction, assume that c ∈ P is an upper bound of A. Let F be any finite subset of A. Since
e v c for every e ∈ F , then

⊔
F v c. Therefore, c is an upper bound of D.

We then conclude
⊔
A =

⊔
D as wanted.

The following proposition states two useful properties of space functions: monotonicity and preservation
of arbitrary joins.

Proposition 5 ([28]). Let f : C→ C be a function over a cs (C,v). Then

1. If f is space function then f is monotonic.
2. f is space function if and only if it preserves arbitrary joins.

4. Distributed Information

This section contains the main technical contributions of this paper. In particular, we will characterize
the notion of collective information of a group of agents. Roughly speaking, the distributed (or collective)
information of a group I is the join of each piece of information that resides in the space of an agent i ∈ I .
For each constraint c, the distributed information of I w.r.t c is the distributive information of I that can
be derived from c. We wish to formalize whether a given constraint e can be derived from the collective
information of the group I w.r.t c.

The following examples, which we will use throughout this paper, illustrate the above intuition.

Example 8. Consider an scs (C,v, (si)i∈G) where G = N and (C,v) is a constraint frame. Let c =
s1(a) t s2(b	 a) t s3(e	 b). The constraint c specifies the situation where a, b 	 a and e 	 b are in the
spaces of agent 1, 2 and 3, respectively. Neither agent necessarily holds e in their space w.r.t c. Nevertheless,
the information e can be derived from the collective information of the three agents w.r.t c, since from Prop. 2
we have a t (b	 a) t (e	 b) w e. Let us now consider an example with infinitely many agents. We changed this

paragraph.Infinitely Many Agents. Suppose that there exists an element e′ ∈ C and an increasing chain a0 v a1 v
· · · such that

⊔
i∈N ai w e′ and e′ 6v ai for every i ∈ N. Therefore e′ is not compact (see Def. 1). Let

c′
def
=
⊔
i∈N si(ai). Notice that for no agent i ∈ N holds (or can derive) e′ in their space since e′ 6v ai. Yet,

from our assumption, e′ can be derived from the collective information w.r.t c′ of all the agents in N, i.e.,⊔
i∈N ai w e′.

The above example may suggest that distributed information can be obtained by joining individual local
information derived from c. Such information can be characterized as the i-projection of agent i w.r.t c.
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(a) Projections π1 (dashed) and π2 (dotted) given s1 and s2.

p ∨ ¬p

p ¬p

p ∧ ¬p

s1

s1

s1

s1 s2

s2

s2

s2

DI

DI

DI

DI

(b) DI with I = {1, 2} given s1 and s2.

Figure 4: Projections (see Def. 12) (a) and distributed space function (see Def. 15) (b) over four-element boolean algebra.

Definition 12 (Agent and Join Projections). Let (C,v, (si)i∈G) be an scs. Given i ∈ G, the i-agent pro-
jection of c ∈ C is defined as πi(c)

def
=
⊔
{e | c w si(e)}. We say that e is i-agent derivable from c if and only

if πi(c) w e. Given I ⊆ G the I-join projection of a group I of c is defined as πI(c)
def
=
⊔
{πi(c) | i ∈ I}.

Similarly, we say that e is I-join derivable from c if and only if πI(c) w e.

The i-agent projection of i ∈ G of c naturally represents the join of all the information that agent i has
in c. The I-join projection of group I joins individual i-agent projections of c for i ∈ I . This projection can
be used as a sound mechanism for reasoning about distributed-information: If e is I-join derivable from c
then it follows from the distributed-information of I w.r.t c.

Example 9. Let c be as in Ex. 8. We have π1(c) w a, π2(c) w (b 	 a) and π3(c) w (e 	 b). Indeed e is
I-join derivable from c since π{1,2,3}(c) = π1(c) t π2(c) t π3(c) w e. Similarly, we conclude that e′ is
I-join derivable from c′ in Ex. 8 since πN(c′) =

⊔
i∈N πi(c) w

⊔
i∈N ai w e′.

Nevertheless, I-join projections do not provide a complete mechanism for reasoning about distributed
information as illustrated below.

Example 10. Let d def
= s1(b) u s2(b). Recall that we think of t and u as conjunction and disjunction of

assertions: d specifies that b is present in the space of agent 1 or in the space of agent 2 though not exactly
in which one. Thus from d we should be able to conclude that b belongs to the space of some agent in
{1, 2}. Nevertheless, b is not necessarily I-join derivable from d since from π{1,2}(d) = π1(d) t π2(d) we
cannot, in general, derive b. To see this consider the scs in Fig. 4a, taking b = ¬p. We have π{1,2}(d) =
π1(d) t π2(d) = true t true = true 6w b. One can generalize this example to infinitely many agents.
Infinite Many Agents. Consider the scs in Ex. 8 and let d′ def

=
d
i∈N si(b

′). We should be able to conclude We changed this
paragraph.from d′ that b′ is in the space of some agent in N but, in general, b′ is not N-join derivable from d′.
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4.1. Distributed Spaces

We have just illustrated in Ex. 10 that the I-join projection of c, πI(c), the join of individual projections,
may not project all distributed information of a group I . To solve this problem we develop the notion of
I-group projection of c, written as ΠI(c). We will first define a space function DI called the distributed
space of group I . The function DI can be thought of as a virtual space including all the information that can
be in the space of a member of I. We will then define an I-projection, ΠI , in terms of DI much like πi is
defined in terms of si.

Set of Space Functions
We now introduce a new partial order induced by C: The set of space functions ordered point-wise.

Recall that S(C) denotes the set of all space functions over a cs C (Def. 6). For notational convenience, we
shall use (fI)I⊆G to denote the tuple (fI)I∈P(G) of elements of S(C).

Definition 13 (Function Order). Let (C,v) be a cs. Given f, g : C → C define f vs g iff f(c) v g(c)
for every c ∈ C.

An important design aspect of our structure is that the set of space functions S(C) can be made into a
complete lattice.

Lemma 1 ([29]). Let (C,v) be a cs. Then (S(C),vs) is a complete lattice.

In the next section we use the properties of (S(C),vs) to formalize the distributed space of a group I
as the greatest space function below every space function si with i ∈ I .

4.2. Distributed Spaces as Max Spaces

We can now give the definition of distributed spaces. It is convenient to give the following intuition first.

Remark 5. Suppose that f and g are space functions in S(C). Intuitively, f(c) means c is within the space We changed the
next remark ac-
cording to com-
ment N38.

represented by f . By definition, f vs g means f(c) v g(c) for every c ∈ C. Intuitively, from the assertion
that c is in the space represented by g we can derive that c is also in the space represented by f . This can
be interpreted as saying that the space represented by g is included in the space represented by f ; in other
words the bigger the space, the smaller the function that represents it. Thus every c in g is also in f , hence
f is a bigger space.

Following the above intuition, the order relationvs of S(C) represents (reverse) space inclusion and the
join and meet operations in S(C) represent intersection and union of spaces. The biggest and the smallest
spaces are represented by the bottom and the top elements of the lattice S(C), here called λ⊥ and λ>,
respectively, and defined as follows.

Definition 14 (Top and Bottom Spaces). Let S(C) be the lattice of space functions. Define λ⊥ and λ> in
S(C) as follows: λ⊥(c)

def
= true for every c ∈ C; and λ>(c)

def
= true if c = true and λ>(c)

def
= false if c 6=

true .

The distributed space DI of a group I can be viewed as the function that represents the smallest space that
includes all the local information of the agents in I . From Remark 5, DI should be the greatest space function
below the space functions of the agents in I . The existence of such a function follows from completeness of
(S(C),vs) stated in Lemma 1.
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Definition 15 (Distributed Space). Let (C,v, (si)i∈G) be an scs. The distributed spaces of C are given
by D = (DI)I⊆G where

DI
def
= max { f ∈ S(C) | f vs si for every i ∈ I } .

We shall say that e is distributed among I ⊆ G w.r.t c if and only if c w DI(e). We shall refer to each DI as
the (distributed) space of the group I .

Remark 6. From Lemma 1, DI =
⊔
S(C) { f ∈ S(C) | f vs si for each i ∈ I } =

d
S(C){si | i ∈ I}

where
⊔
S(C) and

d
S(C) are the join and meet in the complete lattice (S(C),vs).

Let us consider a concrete example.

Example 11. Fig. 4b illustrates an scs with space functions s1 and s2, and their distributed space D{1,2}.
The reader can verify that D{1,2} is indeed the greatest function such that D{1,2} vs s1 and D{1,2} vs s2.
Notice that s1(p) t s2(¬p) w D{1,2}(p t ¬p) = D{1,2}(false) meaning that if agents 1 and 2 had p and ¬p
in their corresponding spaces, as a group they could derive an inconsistency.

We added the
next paragraph
and example to
address N41.

In [6], shared information of a group I specifies the fact that a given constraint e resides within the space
of every agent in a group I . In contrast, distributed information specifies that e is distributed among the
members of I . The next example illustrates this difference.

Example 12. Let I = {1, . . . , n} and let sI(e)
def
=
⊔
i∈I si(e) as in [6]. Here sI(e) specifies that e is shared

by the agents in I: e is present in the space of i for every i ∈ I . Instead, DI(e) means that the information
e is distributed among the spaces of the members in I . To see the difference, let I = {1, 2} and consider
the scs in Fig. 4b. Let c = s1(p) t s2(¬p). Notice that p ∧ ¬p is distributed in I w.r.t c: c w DI(p ∧ ¬p).
However, p ∧ ¬p is not shared information of I w.r.t c, namely, c 6w sI(p ∧ ¬p).

4.3. Compositionality of Distributed Spaces
Distributed spaces have pleasant compositional properties. They capture the intuition that the distributed

information of a group I can be obtained from the the distributive information of its subgroups.

Proposition 6. Let (DI)I⊆G be the distributed spaces of an scs (C,v, (si)i∈G). Suppose that K,J ⊆ I ⊆
G.

1. DI = λ> if I = ∅.
2. DI = si if I = {i}.
3. DJ(a) t DK(b) w DI(a t b).
4. DJ(a) t DK(c	 a) w DI(c) if (C,v) is a constraint frame.

Proof. 1. It follows directly from Def. 14 and Def. 15.
2. Let I = {i}, from Def. 15, DI = max{f ∈ S(C) | f vs si} = si.
3. Assume K,J ⊆ I. From Def. 15 we conclude DI vs DJ and DI vs DK . Thus DJ(a) w

DI(a),DK(b) w DI(b) and therefore DJ(a)tDK(b) w DI(a)tDI(b). Since DI is a space function,
DI(a) t DI(b) = DI(a t b), then we obtain DJ(a) t DK(b) w DI(a t b) as wanted.

4. It follows from part (3) with a = a and b = c	 a, and Prop. 2.
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Recall that λ> corresponds to the empty space (see Def. 14). The first property realizes the intuition
that the empty subgroup ∅ does not have any information whatsoever distributed w.r.t a consistent c: for if
c w D∅(e) and c 6= false then e = true . Intuitively, the second property says that the function DI for the
group of one agent must be the agent’s space function. The third property states that a group can join the
information of its subgroups. The last property uses subtraction, hence the constraint frame condition, to
express that by joining the information a and c	 a of their subgroups, the group I can obtain c.

Let us illustrate how to derive information of a group from smaller ones using Prop. 6.

Example 13. Let c = s1(a) t s2(b	 a) t s3(e	 b) as in Ex. 8. We want to prove that e is distributed
among I = {1, 2, 3} w.r.t c, i.e., c w D{1,2,3}(e). Using Properties (2) and (4) in Prop. 6 we obtain
c w s1(a) t s2(b	 a) = D{1}(a) t D{2}(b	 a) w D{1,2}(b), and then c w D{1,2}(b) t s3(e	 b) =
D{1,2}(b) t D{3}(e	 b) w D{1,2,3}(e) as wanted.

Remark 7 (Continuity and Infinitely Many Agents). The example with infinitely many agents in Ex. 8
illustrates well why we require our spaces to be continuous in the presence of possibly infinite groups.
Clearly c′ =

⊔
i∈N si(ai) w

⊔
i∈N DN(ai). By continuity,

⊔
i∈N DN(ai) = DN

(⊔
i∈N ai

)
which indeed

captures the idea that each ai is in the distributed space DN.

4.4. Distributed Spaces in Aumann and Kripke Structures
We now consider an important structure from mathematical economics used for group epistemic reason-

ing: Aumann structures [3]. We illustrate that the notion of distributed knowledge in these structures is an
instance of a distributed space.

Example 14. Aumann Constraint Systems [6]. Aumann structures are an event-based approach to mod- We added a foot-
note in this ex-
ample to include
a comment in
N43

elling knowledge. An Aumann structure is a tuple A = (S,P1, . . . ,Pn) where S is a set of states and each
Pi is a partition on S for agent i [3]. The sets of each partition Pi are called information sets. If two states
t and u are in the same information set for agent i, it means that in state t agent i considers state u possible,
and vice versa. An event in an Aumann structure is any subset of S. Event e holds at state t if t ∈ e. The set
Pi(s) denotes the information set of Pi containing s. The event of agent i knowing e is defined as

Ki(e) = {s ∈ S | Pi(s) ⊆ e} ,

and the distributed knowledge of an event e among the agents in a group I ⊆ {1, . . . , n} is defined as

DI(e) =

{
s ∈ S |

⋂
i∈I
Pi(s) ⊆ e

}
.

An Aumann structure induces the spatial constraint system C(A) with events as constraints, i.e., C = {e |
e is an event in A}, and for every e1, e2 ∈ C, e1 v e2 iff e2 ⊆ e1. The operators join (t) and meet (u) are
intersection (∩) and union (∪) of events, respectively; true = S and false = ∅6. The space functions are
the knowledge operators, i.e., si(c) = Ki(c).

The next proposition states that in fact distributed knowledge and distributed information coincide. We added the
next proposition
to address com-
ment N43.
IMPORTANT:
Its proof uses
one of the main
results of this
paper –Th. 4.

Proposition 7 (Distributed Spaces in Aumman Structures). Let A = (S,P1, . . . ,Pn) be an Aumann struc-
ture and let C(A) be its induced scs. Then DI = DI for every I ⊆ {1, . . . , n}.

6Notice that in this cs we use the reverse inclusion which is the dual of the powerset example in Ex. 4. Then, the join and meet
operators and, the top and bottom elements, are swapped.
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Therefore distributed knowledge in Aumann structures is indeed an instance of distributed information.
The proof uses one of the main results of this paper (Th. 4). For the sake of the presentation, we postpone it
to Sec. 6.1.

The next example shows that distributed knowledge in epistemic logic is also an instance of distributed
information. We added the

next example.
Example 15 (Distributed Spaces in Kripke Structures). Distributed knowledge in logic is expressed with
the formula DI(φ) whose intended meaning is that the knowledge φ is distributed among the members of
I . Its semantics is expressed in terms of its Kripke models; i.e., the models of DI(φ) are given by DI(X)
defined next where X are the models of φ [24].

Let K(Sn(Φ)) = (C,v,K1, . . . ,Kn) be a Kripke n-scs as in Def. 9. The function D : C → C is
defined as

DI(X)
def
=

{
(M, s) ∈ ∆ | ∀t : (s, t) ∈

⋂
i∈I
Ri implies (M, t) ∈ X

}
.

The following proposition states that DI = DI . As for Prop. 7, we use Th. 4 to prove it. The proof is given
in Sec. 6.2. We added the

next proposition.
IMPORTANT:
Its proof uses
one of the main
results of this
paper –Th. 4.

Proposition 8 (Distributed Spaces in Kripke Structures). Let K(Sn(Φ)) = (C,v,K1, . . . ,Kn) be a Kripke
n-scs as in Def. 9. Then DI = DI for every I ⊆ {1, . . . , n}.

Hence we can extend the semantics in Def.11 to distributed knowledge formulae DI(φ) as CJDI(φ)K =
DI( CJφK ).

In Prop. 6 we listed some useful properties about (DI)I⊆G. In the next section we shall see that (DI)I⊆G
is the greatest solution of three basic properties.

4.5. Distributed Spaces as Group Distributions Candidates.

We now wish to single out a few fundamental properties on tuples of self-maps that can be used to
characterize distributed spaces.

Definition 16 (Distribution Candidates). Let (C,v, (si)i∈G) an scs. A group distribution candidate (gdc)
of C is a tuple d = (dI)I⊆G of self-maps on C such that for each I, J ⊆ G:

(D.1) dI is a space function in C,
(D.2) dI = si if I = {i},
(D.3) dI ws dJ if I ⊆ J .

Property D.1 requires each dI to be a space function. This is trivially met for dI = DI . Property D.2
says that the function dI for a group of one agent must be the agent’s space function. Clearly, d{i} = D{i}
satisfies D.2; indeed the distributed space of a single agent is their own space. Finally, Property D.3 states
that dI(c) w dJ(c), if I ⊆ J . This is also trivially satisfied if we take dI = DI and dJ = DJ . Indeed
if a group I has some distributed information c then any group J , that includes I , should also have c. This
realizes the intuition in Remark 5: The bigger the group, the bigger the space and thus the smaller the space
function that represents it.

Properties D.1-D.3, however, do not determine D uniquely. In fact, there could be infinitely-many tuples
of space functions that satisfy them. For example, if we were to chose d∅ = λ>, d{i} = si for every i ∈ G,
and dI = λ⊥ whenever |I| > 1 then D.1-D.3 would be trivially met. But these space functions would not
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capture our intended meaning of distributed spaces: E.g., we would have true w dI (e) for every e thus
implying that any e would be distributed in the empty information true amongst the agents in I 6= ∅.

Nevertheless, we prove that (DI)I⊆G is the greatest solution satisfying D.1-D.3.

Theorem 1 (Max gdc). Let (DI)I⊆G be the distributed spaces of (C,v, (si)i∈G). Then

1. (DI)I⊆G is a gdc of C.
2. If (dI)I⊆G is a gdc of C then dI vs DI for each I ⊆ G.

Proof. Let (DI)I⊆G be the distributed spaces of C.

1. We need to prove that (DI)I⊆G satisfies properties D.1-D.3 in Def. 16.
Property D.1 follows from definition of DI (see Def. 15). Property D.2 is proven in Prop. 6 part (2).
For property D.3, let I, J ⊆ G such that I ⊆ J . Notice that {f ∈ S(C) | f vs si for every i ∈ I} ⊆
{f ∈ S(C) | f vs sj for every j ∈ J}. Then DJ vs DI .

2. Since (dI)I⊆G is a gdc, we have dI vs d{i} = si, for every i ∈ I . Then dI ∈ {f ∈ S(C) | f vs

si for every i ∈ I} which implies dI vs DI .

Therefore, Th. 1 tells us that distributed spaces could have been equivalently defined as the greatest space
functions satisfying Properties D.1-D.3. We shall use the characterization of distributed spaces in Th. 1 in
the proofs of Prop.9 and Th.5 in the next sections. Let us first illustrate the use of such properties in the
following example. We updated the

next example ac-
cording to N44.Example 16. Let (C,v, (si)i∈G) and c = s1(a) t s2(b	 a) t s3(e	 b) as in Ex. 8. Here we shall show

that e can be derived from the distributed information among I = {1, 2, 3}.
We want to prove c w DI(e) for I = {1, 2, 3}. Since C is a constraint frame, by Def. 16 and Prop. 2 we
have

c = D{1}(a) t D{2}(b	 a) t D{3}(e	 b) (Def. 16 D.2)
w DI(a) t DI(b	 a) t DI(e	 b) (Def. 16 D.3)
= DI(a t (b	 a) t (e	 b)) (Def. 16 D.1)
w DI(e). (Prop. 2)

Thus c w DI(e) as wanted.
Infinitely Many Agents. Recall the case with infinitely many agents from Ex. 8. Similarly, we can show

that e′ is distributed in N w.r.t c′:

c′ =
⊔
i∈N

D{i}(ai) w
⊔
i∈N

DI(ai) = DI

(⊔
i∈N

ai

)
w DI(e′).

Now consider our counter-example in Ex. 10 where we have d = s1(b) u s2(b). Recall that d specifies
that b resides either within the space of agent 1 or in the space of agent 2, although we do not know exactly
in which one. Here we wish to prove that b is distributed in the group {1, 2}, i.e., b can be derived from d as
being in a space of a member of {1, 2}. We want to prove d w DI(b) for I = {1, 2}:

d = s1(b) u s2(b) = D{1}(b) u D{2}(b) (Def. 16 D.2)
w D{1,2}(b) u D{1,2}(b) (Def. 16 D.3)
= D{1,2}(b) (Prop. of u)
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Then d w D{1,2}(b) as wanted.
Infinitely Many Agents. If we have d′ def

=
d
i∈N si(b

′) we can show that b′ is distributed in the group N
w.r.t d′: d′ =

d
i∈N D{i}(b′) w

d
i∈N DN(b′) = DN(b′).

The above example shows the capability of DI to express the distributed information of a group I in
different scenarios. In the later sections we shall provide properties of DI and its characterization for com-
pletely distributive lattices.

4.6. Group Projections

As promised at the beginning of Section 4.2 we now give a definition of Group Projection. The function
ΠI(c) extracts exactly all information that the group I may have distributed w.r.t c.

Definition 17 (Group Projection). Let (DI)I⊆G be the distributed spaces of an scs (C,v, (si)i∈G). Given
the set I ⊆ G, the I-group projection of c ∈ C is defined as ΠI(c)

def
=
⊔
{e | c w DI(e)}. We say that e is

I-group derivable from c if and only if ΠI(c) w e.

Much like space functions and agent projections, group projections and distributed spaces also form a
pleasant correspondence: a Galois connection [11].

Proposition 9. Let (DI)I⊆G be the distributed spaces of an scs (C,v, (si)i∈G). For every c, e ∈ C,

1. c w DI(e) if and only if ΠI(c) w e.
2. ΠI(c) w ΠJ(c) if J ⊆ I .
3. ΠI(c) w πI(c).

Proof. Let (DI)I⊆G be the distributed spaces of C and let c, e ∈ C.

1. Let S = {d | c w DI(d)}. First, assume that c w DI(e). Since e ∈ S, by Def. 17, ΠI(c) =
⊔
S w e.

Second, assume ΠI(c) w e. Then by monotonicity, DI(ΠI(c)) w DI(e). From continuity of DI , we
know that DI(ΠI(c)) = DI(

⊔
S) =

⊔
{DI(d) | d ∈ S} and by definition of S, for every d ∈ S, we

have c w DI(d), then c w
⊔
{DI(d) | d ∈ S}. Therefore, c w DI(e).

2. Given that (DI)I⊆G is a gdc (see Th. 1), if J ⊆ I , then DJ ws DI . Hence {d | c w DJ(d)} ⊆ {d |
c w DI(d)} and thus ΠI(c) w ΠJ(c) for every c ∈ C.

3. By part (2), for every {i} ⊆ I and every c ∈ C, we have ΠI(c) w Π{i}(c). It implies, ΠI(c) w⊔
i∈I Π{i}(c), for every c ∈ C. Then

⊔
i∈I Π{i}(c) =

⊔
i∈I{

⊔
{d | c w D{i}(d)}} =

⊔
i∈I{

⊔
{d | c w

si(d)}} =
⊔
i∈I{πi(c)} = πI(c). Therefore, ΠI(c) w πI(c), for every c ∈ C.

The first property in Prop. 9, a Galois connection, states that we can conclude from c that e is in the
distributed space of I exactly when e is I-group derivable from c. The second says that the bigger the group,
the bigger the projection. The last property says that whatever is I-join derivable is I-group derivable,
although the opposite is not true as shown in Ex. 10.

23



4.7. Group Compactness.

Suppose that an infinite group of agents I can derive e from c (i.e., c w DI(e)). A legitimate question
is whether there exists a finite sub-group J of agents from I that can also derive e from c. The following
theorem provides a positive answer to this question given that e is a compact element (see Section 2) and
I-join derivable from c.

Theorem 2 (Group Compactness). Let (DI)I⊆G be the distributed spaces of an scs (C,v, (si)i∈G). Sup-
pose that c w DI(e). If e is compact and I-join derivable from c then there exists a finite set J ⊆ I such that
c w DJ(e).

Proof. Suppose that c w DI(e). If I is finite then take J = I . If I is not finite, since e is I-join derivable
from c we have πI(c) =

⊔
S w e where S = {πi(c) | i ∈ I}.

Define DI = {πJ(c) | J ⊆ I and J is finite}. Take any πH(c), πK(c) ∈ DI . Since H and K are finite,
their union K ∪H must also be finite and included in I . Hence πH∪K(c) ∈ DI . Therefore, DI is a directed
set.

Since S = {πi(c) | i ∈ I} = {π{i}(c) | i ∈ I} is included in DI , we obtain
⊔
DI w

⊔
S w e. But e is

compact and DI directed hence there must be πJ(c) ∈ DI , with J a finite set, such that πJ(c) w e. From
Prop.9 (3) and Prop.9 (1), we conclude c w DJ(e) as wanted.

Let us illustrate Th. 2 with our recurrent example.

Example 17. Consider an scs (C,v, (si)i∈G) whereG = N and C is a countable set. Let d =
⊔
i∈N si(ai) We rewrote this

example.for some increasing chain a0 v a1 v · · · , and b ∈ C such that b v
⊔
i∈N ai.

Notice that d w DN(b) and πN(d) w b. Hence b is N-join derivable from d. If b is compact, by Th. 2
there must be a finite subset J ⊆ N such that d w DJ(b).

4.8. Group-Compactness without I-join derivability

Let us assume c w DI(e) as in Th. 2. By Prop. 9 (1), we know that e is I-group derivable from c but not
necessarily I-join derivable from c. The problem in establishing group compactness in the absence of I-join
derivability has to do with d′ in the infinite case in Ex. 10. We have d′ =

d
i∈N si(b

′). Notice that we cannot
guarantee that b′ is N-join derivable from d′ (πN(d′) w b′). One can verify that d′ w DN(b′), i.e., b′ resides
in the space of agent i for some i ∈ N. Then, b′ is I-group derivable from d′ (ΠN(d′) w b′). Nevertheless
we cannot guarantee the existence of a finite J ⊂ N such that that d′ w DJ(b′). In fact, the existence of such
a J cannot be guaranteed even if e (b′ in Ex. 10) is compact as stated in the next theorem.

Theorem 3 (Non-Compactness). There exists an scs (C,v, (si)i∈G) with distributed spaces (DI)I⊆G such
that for some c, e ∈ C and I ⊆ G: (1) e is compact, (2) c w DI(e) but (3) there is no finite subset J ⊆ I
with c w DJ(e).

Proof. Consider the scs (C,≤, (sn)n∈N) (Fig. 5) defined by

C =

{
0,

1

2

}
∪
{

1

2
+

1

2n

∣∣∣ n ≥ 1

}
and sn(x) =

{
1
2 + 1

2n x ≥ 1
2

0 x < 1
2

where sn is a self-map on C for every n ≥ 1. For n = 0, sn(x) = 0 for every x ∈ C.
First we prove that for every n ∈ N, sn is a space function. From Def. 6 we prove:
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0

1/2

1

3/4

...
1/2 + 1/2n...

Figure 5: Constraint system (C,≤) with C =
{
0, 1

2

}
∪
{

1
2
+ 1

2n
|≥ 1

}
.

a. sn preserves 0 and binary joins.
Recall that for every n ∈ N, sn(0) = 0. If x < 1/2 and y < 1/2, then sn(x t y) = 0 = sn(x) t sn(y).
If either x ≥ 1/2 or y ≥ 1/2 hold, then sn(x t y) = 1/2 + 1/2n = sn(x) t sn(y).

b. sn is continuous.
For n = 0, it is immediate that sn is continuous.
Since C is countable, from Prop. 1 it suffices to prove that sn preserves the join of increasing chains.
For any n ≥ 1, consider any increasing chain x1 ≤ x2 ≤ · · · in (C,≤). To prove

⊔
i≥1 sn(xi) =

sn

(⊔
i≥1 xi

)
.

Let J,K ⊆ N \ {0} be two index sets such that: if xi < 1/2 then i ∈ J and if xi ≥ 1/2 then
i ∈ K. Notice that J ∩ K = ∅ and J ∪ K = N \ {0}. Then using this and part (a), we
have sn

(⊔
i≥1 xi

)
= sn

((⊔
j∈J xj

)
t
(⊔

k∈K xk
))

= sn

(⊔
j∈J xj

)
t sn

(⊔
k∈K xk

)
. Also,⊔

j∈J xj = 0 and
⊔
k∈K xk ≥ 1/2, therefore sn

(⊔
j∈J xj

)
t sn

(⊔
k∈K xk

)
= 0 t (1/2 + 1/2n) =⊔

j∈J 0 t
⊔
k∈K(1/2 + 1/2n) =

⊔
j∈J sn(xj) t

⊔
k∈K sn(xk) =

⊔
i≥1 sn(xi). Then sn

(⊔
i≥1 xi

)
=⊔

i≥1 sn(xi) as wanted.

To complete the proof we now show that given the above scs (C,≤, (sn)n∈N) for I = N \ {0} and
c = e = 1/2: (1) e is compact, (2) c ≥ DI(e) but (3) c 6≥ DN (e) for any finite set N ⊆ I .

1. 1/2 is compact. This follows directly from the definition of our constraint system (C,≤).
2. 1/2 ≥ DI(1/2). By definition of DI , DI(1/2) ≤ sn(1/2) for every n ∈ I . Then DI(1/2) ≤

d
n≥1 sn(1/2).

Since for every n ≥ 1, sn(1/2) = 1/2 + 1/2n ≥ 1/2 then
d
n≥1 sn(1/2) = 1/2. Thus, 1/2 ≥ DI(1/2).

3. 1/2 6≥ DN (1/2) for any finite set N ⊆ I . Notice that, for any finite set N ⊆ I , DN (1/2) = sm(1/2) >
1/2, where m = max(N). Hence, 1/2 6≥ DN (1/2).
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4.9. Distributed Spaces in Completely Distributive Lattices

In this section we present another characterization of distributed spaces for distributive lattices: For a
group I , DI(c) can be understood as the greatest information below all possible combinations of information
in the spaces of the agents in I that derive c. We also provide compositionality properties capturing the
intuition that just like distributed information of a group I is the collective information from all its members,
it is also the collective information of its subgroups. We shall argue that the following results can be used to
produce algorithms to efficiently compute DI(c) for finite constraint systems.

We recall J-tuples, a general form of tuples that allows for an arbitrary index set J .

Definition 18 ([30]). Let J be an index set. Given a set X , a J-tuple of elements of X is a function x :
J → X . If j ∈ J , we denote x(j) by xj and refer to it as the j-th coordinate of x. The function x is denoted
itself by (xj)j∈J . We use XJ to denote the set of all J-tuples.

The next theorem is one of main results of this paper. It establishes that for completely distributed
lattices, DK(c) is the greatest information below all possible combinations of information in the spaces of
the agents in K that derive c.

Theorem 4. Let (DI)I⊆G be the distributed spaces of an scs (C,v, (si)i∈G). Suppose that (C,v) is
completely distributive. Let DK : C→ C, with K ⊆ G, be the function defined as follows:

DK(c)
def
=

l
{ ⊔
k∈K

sk(ak) | (ak)k∈K ∈ CK and
⊔
k∈K

ak w c

}
.

Then DK = DK .

The above theorem is presented in [10] for finite cs. Here we extend this for completely distributive
lattices.

For the sake of the presentation, we give the proof of the above theorem in Section 6. Nevertheless,
we would like to mention that the central and non-obvious property used in the proof is that of DK being a
continuous function. The distributivity of (C,v) is crucial for this. In fact without it the equality DK = DK
does not necessarily hold as shown by the following counter-example.

Example 18. Consider the lattice M3, which is not (completely) distributive, and the space functions s1 and
s2 in Fig. 6b. We obtain DI(b t c) = DI(e) = a and DI(b) t DI(c) = b t a = b. Then, DI(b t c) 6=
DI(b) t DI(c), i.e., DI is not a space function.

We can use Th.4 to prove the following properties characterizing the information of a group from that of
its subgroups.

Theorem 5. Let (DI)I⊆G be the distributed spaces of an scs (C,v, (si)i∈G). Suppose that (C,v) is
completely distributive. Let I, J,K ⊆ G be such that I = J ∪K. Then the following equalities hold:

1. DI(c) =
l
{DJ(a) t DK(b) | a, b ∈ C and a t b w c} . (4)

2. DI(c) =
l
{DJ(a) t DK(c	 a) | a ∈ C} . (5)

3. DI(c) =
l
{DJ(a) t DK(c	 a) | a ∈ C and a v c} . (6)
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(a) For I = {1, 2}, σI(c) =
d

i∈I si(c) is not a space function:
σI(p t ¬p) 6= σI(p) t σI(¬p).

a

b c d

e

(b) For I = {1, 2}, s1 (···→) and s2 (99K) are space functions.
The function DS (→) in Th. 4 is not a space function: DI(b) t
DI(c) = b 6= a = DI(b t c).

Figure 6: Counter-examples over the four-element boolean algebra (a) and non-distributive lattice M3 (b).

We find it convenient to give the proof of Th. 5 in Section 6. The properties in this theorem bear witness
to the inherent compositional nature of our notion of distributed space. The first property in Th. 5 essentially
reformulates Th. 4 in terms of subgroups rather than agents. It can be proven by replacing DJ(a) and DK(b)
by DJ(a) and DK(b), defined in Th. 4 and using distributivity of joins over meets. The second and third
properties in Th. 5 are pleasant simplifications of the first one using co-Heyting subtraction. These properties
realize the intuition that by joining the information a and c	 a of their subgroups, the group I can obtain c.

In Section 6 we use Th.4 to prove Th. 5. We now conclude this section with a brief discussion on how to
use Th.4 to solve a computational lattice problem.

Computing Distributed Information. Let us assume that C is finite and distributive. We wish to compute
DI . Notice that under this finiteness assumption, space functions are exactly those that preserve the join
of finite sets, also known as join-endomorphisms [29]. Recall that S(C) denotes the set of space functions
(join-endomorphism in this case) over C.

From Remark 6, computing the distributed space DI is then equivalent to the following lattice problem:
Given a finite set S = {si | i ∈ I} of join-endomorphisms over the finite distributive lattice C, find its meetd
S(C) S. Even in small lattices with four elements and two space functions, finding DI =

d
S(C) S may

not be immediate, e.g., consider S = {s1, s2} in Fig. 4b.
A naive approach would be to compute each DI(c) by taking the point-wise meet construction σI(c)

def
=d

{si(c) | i ∈ I}. But this does not work in general since
d
{si | i ∈ I}(c) is not necessarily equal to σI(c).

In fact σI ws DI but σI may not even be a space function as shown in Fig. 6a.
A brute force solution to computing DI(c) is to generate the set {f(c) | f ∈ S(C) and f v si for all i ∈

I} and then take its join (see Remark 6). This approach works since for any set S of join-endomorphisms
(
⊔

S(C)
S)(c) =

⊔
C
{f(c) | f ∈ S}. The problem, however, is that the number of join-endomorphisms over

a distributive lattice can be non-polynomial in the size of the lattice [31].
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Nevertheless we can use Th. 4 to obtain a worst-case polynomial bound for computing DI . The next
proposition shows this.

Proposition 10. Let C be a distributive lattice of size n. Let S = {si | i ∈ I}, where I = {1, . . . ,m}, be a
set of join-endomorphisms over C. Assuming that binary meets and joins over C can be computed in O(1),
the meet DI =

d
S(C) S can be computed in O(mn3) worst-case time complexity.

Proof. Let C be a distributive cs (lattice) of size n and let sj and sk be space functions (join-endomorphisms)
over C. From Th. 4, the value DK(c) = (sj uS(C) sk)(c) = DK(c), with K = {j, k}, can be computed
in O(n2) by performing O(n2) joins and O(n2) meets. Hence the function DK can be computed in O(n3)
whenever |K| = 2.

We now proceed by induction on the size of S = {si | i ∈ I} where I = {1, . . . ,m}. Suppose that
m = 1. We can then compute D{1} = s1 in O(n) and hence in O(n3). Assume that D{1,...,m−1} can be
computed in O((m − 1)n3). From the associativity of the meet operation, DI = D{1,...,m−1} uS(C) sm.
Thus, we can compute first D{1,...,m−1} inO((m−1)n3) and then DK , with sj = D{1,...,m−1} and sk = sm,
in O(n3). The total worst-case time complexity for computing DI is then in O(mn3).

4.10. Summary of Section 4
In this section we presented the main technical results of this paper. We have formalized and developed

the theory of the collective information of a group of agents I as the space function DI . Intuitively, the space
function DI represents the smallest space that includes all the local information of the agents in I .

We first constructed the complete lattice (S(C),vs) (Lemma 1) where S(C) is the set of all space
functions defined on the complete lattice (C,v). We then defined DI as the greatest space function in S(C)
below the space functions of agents in I (Def. 15) and presented some of its basic compositional properties
(Prop. 6). We showed that DI could also be alternative defined as the greatest group distribution candidate
(gdc) (Th. 1). We illustrated in Ex.14 that DI can be interpreted as Distributed Knowledge in Aumann
structures, a representative model for epistemic group reasoning. Furthermore, in Ex. 15 we showed that We added the

next phrase.distributed knowledge in epistemic logic is also an instance of distributed information.
We also defined agent, join and group projections (Def. 12, Def 17). Group (agent) projection of a given

c ∈ C represents the join of all the information that the group (agent) has in c. Join projections are the
join of individual agent projections. We stated that group projections and distributed spaces form a Galois
connection (Prop. 9). We then provided a group compactness result: Given an infinite group I , we identified
join-derivability (Def. 12) as a condition under which c w DI(e) implies c w DJ(e) for some finite group
J ⊆ I (Th. 2). We then showed that without this condition we cannot guarantee the existence of such finite
set J ⊆ I (Th. 3).

Finally we showed that if C is completely-distributive, DI(c) can be characterized as the greatest infor-
mation below all possible combinations of information in the spaces of the agents in I (Th. 4) that derive c
and, more succinctly, as the combination of the information of its subgroups (Th. 5) that derive c. For the
finite-case we briefly explained how Th. 4 can be used to compute distributed space functions in polynomial
time.

5. Applications to Minkowski Addition and Mathematical Morphology

In this section we shall show that some fundamental operations from Mathematical Morphology (MM)
have a counterpart in the theory we developed in the previous sections. In particular we shall show that
distributed spaces, the central notion of this paper, have a natural interpretation in MM. Furthermore, we
shall use our results on distributed information to provide new constructions and results for MM.
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5.1. Modules

We assume that the reader is familiar with basic concepts of abstract algebra [32, 33]. To present the
results in this section uniformly we shall use a fundamental structure from algebra, namely, that of a module.
Recall that a module M over a ring R is a generalization of the notion of vector space. In a vector space the
ring R needs to be a field. We shall take the liberty of referring to the elements of M and R as vectors and
scalars, resp. The former will be written in boldface to distinguish them from the latter.

More precisely, a module M over a ring R [33], also called an (left) R-module M , is a set that satisfies
the following three conditions. It must be closed under addition and scalar multiplication: u + v ∈ M
and ru ∈ M whenever u,v ∈ M and r ∈ R. It must also form an abelian group under addition: + is a
commutative and associative operator with 0 as additive identity and with an additive inverse −u for every
u ∈M . Finally, it must also satisfy the following axioms for scalar multiplication: For every u,v ∈M and
every r, s ∈ R, r(su) = (rs)u, r(u + v) = ru + rv, (r + s)u = ru + su, and 1u = u where 1 is the
multiplicative identity of R.

We shall use the following basic properties of modules. The additive identity for any module M and the
additive inverse for every u ∈M are unique. If R is a field then the R-module M is a vector space over R.
If M is a vector space over R then 1 is the only multiplicative identity for M .

The following examples of modules are fundamental in Mathematical Morphology. One of them is not
a vector space; it justifies using modules rather than vector spaces as the underlying structure.

Example 19. The set Rn of all n-tuples of elements of a ring R can be made into an R-module. Given
u = (p1, . . . , pn) ∈ Rn,v = (q1, . . . , qn) ∈ Rn and r ∈ R, define u + v = (p1 + q1, . . . , pn + qn) and
r · v = (rp1, . . . , rpn). The module additive identity 0 is (0, . . . , 0) ∈ Rn, where 0 is the ring additive
identity, and the module inverse additive−u is (−p1, . . . ,−pn) where−pi is the ring additive inverse of pi.

The Euclidean n-dimensional space Rn is obtained by taking R as the set of reals numbers R in the
above example. Since R is also a field, Rn is also a vector space. The n-dimensional grid Zn is obtained by
taking R as the set of integers Z. This is an example of a module that it is not a vector space since the ring
Z is not a field.

5.2. Minkowski Addition

In geometry, vector addition is extended to addition of sets of vectors in an operation known as Minkowski
addition. From now on we shall omit mentioning the ring of the module when it is unimportant or clear from
the context.

Definition 19 (Minkowski Sum [8]). Let M be a module and A,B ⊆ M . The Minkowski addition of A
and B is defined thus A⊕B = {u + v | u ∈ A and v ∈ B}.

It is easy to see that ⊕ is associative and commutative, it has {0} and ∅ as identity and absorbent
elements, resp., and that it distributes over set union.

Proposition 11 ([8]). Let M be a module. Then (P(M),⊕) is a commutative monoid with zero element ∅
and identity {0}. Furthermore, X ⊕ (A ∪B) = (X ⊕A) ∪ (X ⊕B) for every X,A,B ⊆M .

Recall that a convex set is a set of points such that, given any two points in that set, the line segment
joining them lies entirely within that set. It is well-known that the distribution law A ⊕ (B ∩ C) = (A ∩
B)⊕ (A∩C) holds for convex sets [8]. Nevertheless, in general, ⊕ does not distribute over set intersection
as illustrated next.
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Example 20. Take the Euclidean one-dimensional vector space R and let X = {0, 1}, A = {1} and B =
{2}. One can verify that ∅ = X ⊕ (A ∩B) 6= (X ⊕A) ∩ (X ⊕B) = {2}.

However, as part of the application results in this section we shall establish a pleasant new equation for
X ⊕ (A ∩B). Namely, for every module M and for all X,A,B ⊆M we have

X ⊕ (A ∩B) =
⋂
Y⊆X

(Y ⊕A) ∪ ((X \ Y )⊕B). (7)

The Minkowski sum has been applied in mathematical morphology as well as in collision detection, robot
motion planing, aggregation theory [34, 35, 36]. In this section we focus on applications to mathematical
morphology.

5.3. Mathematical Morphology

Mathematical morphology (MM) is a theory developed for the analysis of geometric structures [37] . It
is founded upon, among others, set theory, lattice theory, geometry, topology and probability. Basically, this
theory considers an arbitrary space M where its objects are transformed by two fundamental operations:
dilation and erosion.

In [9] dilations and erosions are typically defined in terms of Minkowski additions over the modules Rn
or Zn given in Ex. 19. Here we generalize the definition in [9] to arbitrary modules.

Definition 20 (Dilations and Erosions in Modules). Let M be a module. A dilation by S ⊆ M is a func-
tion δS : P(M) → P(M) given by δS (X) = X ⊕ S =

⋃
u∈S X ⊕ {u}. An erosion by S ⊆ M is a

function εS : P(M)→ P(M) given by εS (X) = X 	 S where X 	 S def
=
⋂

u∈S X ⊕ {−u}.

In MM, a binary image X is typically represented as a subset of the module M = Z2 where a pixel
is activated if its corresponding coordinate (or position vector) is in X . The translation of a vector u by
a vector v is given by u + v. The dilation δS (X) describes the interaction of X with another image S
referred to as a structuring element and typically assumed to include the center, i.e., 0 = (0, 0) ∈ S. The
dilated image δS (X) “inflates" the original one by including X and adding the pixels from the translation
of every v in X by each u in S. Intuitively, δS (X) can be viewed as redrawing the image X with the
brush S [9]. This is illustrated in Fig. 7 where an image X is dilated by the structuring element S =
{(0, 0), (0,−1)}, and in Fig. 8 where an image X is dilated by two different structuring elements A =
{(1, 1), (0, 0), (1, 0), (−1,−1), (0,−1)} and B = {(−1, 1), (−1, 0), (0, 0), (0,−1), (1,−1)}.

Furthermore, the erosion εS (X) in Rn or Zn can be defined in terms of the translations of S that are
contained in X . The next proposition states this result for modules.

Proposition 12. Let M be a module and S,X ⊆M . Then εS (X) = {u ∈M | S ⊕ {u} ⊆ X}.

Proof. LetM be a module and S,X ⊆M . From Def. 20, we will prove that
⋂

u∈S X⊕{−u} = {u ∈M |
S ⊕ {u} ⊆ X}. Take any v ∈

⋂
u∈S X ⊕ {−u}, then for every u ∈ S, v = w + (−u) for some w ∈ X .

Since for every u ∈ S, u + v ∈ S ⊕ {v} and u + v = w ∈ X (see Prop. 11), we have S ⊕ {v} ⊆ X .
Therefore, v ∈ {u ∈M | S ⊕ {u} ⊆ X}.

Now, let v ∈ {u ∈ M | S ⊕ {u} ⊆ X}, then S ⊕ {v} ⊆ X . Notice that for any w ∈ S, w + v ∈
S ⊕ {v} ⊆ X and therefore v = (w + v) + (−w) ∈ X ⊕ {−w} for every w ∈ S. Then v ∈

⋂
u∈S X ⊕

{−u}.
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Figure 7: Example of Galois connection between dilations and erosions: δS (X) ⊆ Y iffX ⊆ εS (Y ). HereX and Y are images, S is
the structuring element (centered at the origin), δS (X) is a dilation and εS (Y ) is an erosion. Pixels added/removed by dilation/erosion
are depicted in dark/light gray.

Assume that S includes the center. The above proposition tells us that an erosion εS (X) reduces the
image X by erasing the pixels in X whose translation by some element of S is not within X . This can
also be easily seen from the fact that erosions satisfy the equation εS (X) = {u ∈ M | for each v ∈ S :
u + v ∈ X} which follows directly from Prop. 12. Fig. 7 illustrates the erosion of an image Y by the
structuring element S.

5.4. Dilations as Space Functions

We now state that the power set with the usual order and the set of all dilations over it form a (completely
distributive) spatial constraint system; i.e., an scs whose underlying lattice is completely distributive.

Theorem 6. Let M be a module. Then (P(M),⊆, (δS)S⊆M ) is a completely distributive scs.

Proof. The power set of any set ordered by inclusion is a completely distributive lattice with join t = ∪ and
meet u = ∩ [11]. Hence (P(M),⊆) is a completely distributive cs.

It remains to prove that for any S ∈ P(M), the dilation δS is a space function. From Prop. 5 part (2) it
suffices to show that δS (

⋃
iAi) =

⋃
i δS (Ai) for every arbitrary union

⋃
iAi ∈ P(M). This follows from

the following equations:

δS

(⋃
i

Ai

)
=

{
x + e | x ∈

⋃
i

Ai and e ∈ S

}
= {x + e | x ∈ Ai for some i and e ∈ S}
= {x + e | x + e ∈ δS (Ai) for some i}

=
⋃
i

δS (Ai)

Thus, (P(M),⊆, (δS)S⊆M ) is a completely distributive scs.
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Figure 8: From left to right, imageX , structuring elementsA,B andA∩B, dilations δA (X) and δB (X), and dilation D{A,B}(X).
Structuring elements are centered at the origin. Pixels added by dilation are depicted in gray.

The above theorem states that dilations are space functions. Erosions, on the other hand, are space
projections (see Def. 12).

Proposition 13. Let M be a module. For every S ⊆ M , the function εS is the S-projection in the scs
(P(M),⊆, (δS)S⊆M ).

Proof. Let M be a module and S ⊆ M . To prove that εS is an S-projection we show that dilations and
erosions form a Galois connection, i.e., for every X,Y ⊆ P(M), δS (X) ⊆ Y iff X ⊆ εS (Y ). It is known
that a Galois connection determines each function uniquely. Therefore from Prop. 9 (1) it follows that the
erosion εS must then be a projection.

Pick arbitrary X,Y, S ⊆ P(M). We have δS (X) =
⋃

v∈S X ⊕ {v} ⊆ Y iff for every u ∈ S,
X ⊕ {u} ⊆ Y . Furthermore, with the help of the monoid laws for ⊕ (Prop. 11) we can show that for every
u ∈ S:

X ⊕ {u} ⊆ Y
iff 〈Property of⊆〉

(X ⊕ {u}) ∪ Y = Y

iff 〈Z=Z⊕{0} and {0}={−u}⊕{u}〉
(X ⊕ {u}) ∪ (Y ⊕ {−u} ⊕ {u}) = Y

iff 〈X⊕(A∪B)=(X⊕A)∪(X⊕B)〉
(X ∪ (Y ⊕ {−u}))⊕ {u} = Y

iff 〈Adding {−u} by⊕〉
(X ∪ (Y ⊕ {−u}))⊕ {u} ⊕ {−u} = Y ⊕ {−u}

iff 〈{−u}⊕{u}={0} and Z⊕{0}=Z〉
X ∪ (Y ⊕ {−u}) = Y ⊕ {−u}

iff 〈Property of⊆〉
X ⊆ Y ⊕ {−u}.
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Clearly for every u ∈ S, X ⊆ Y ⊕ {−u} iff X ⊆
⋂

v∈S Y ⊕ {−v} = εS (Y ). We have then established
that δS (X) ⊆ Y iff X ⊆ εS (Y ) as wanted.

In the proof of the above proposition, we show that dilations and erosions form a Galois connection.
This is a known fact in the MM community for Rn or Zn space [38]. Here we proved a more general version
of it for modules.

Remark 8 (An Epistemic Interpretation of MM operations). Since we have shown that dilation is a space We extended the
following re-
mark according
to N46. Also we
added Fig. 9

function, and erosion is a space projection, we can now think of these functions in terms of information avail-
able to an agent. Thus, for example in Fig. 7, when Y is the actual state, εS (Y ) shows what S perceives.
The interpretation of δS is more complicated: in fact, we interpret X as the information available to, or
perceived by, agent S, when δS (X) is the real situation.

We notice that with the interpretation of dilations as visual perception, an agent with perfect vision has
the structuring element which is a single pixel at the origin, and if structuring elements S1 ⊆ S2, then
S2 represents vision which is more blurry than the vision represented by S1, as seen in Fig. 9. Thus, the
agent only perceives some of the real information, and some parts of the actual state of the world are hidden
from the agent. Specifically, we can consider this as an agent with blurred vision who does not perceive
some of the edges of objects. In the instance of Fig. 9, there are two agents, agent 1, corresponding to
structuring element S1, with slightly blurred vision, and agent 2 with corresponding structuring element S2,
with extremely blurred vision. Neither agent can perceive the edges of the objects. So, when δS1 (X) is the
true state of affairs, S1 perceives the information in X; in effect, losing one pixel at the edge of each object.
On the other hand, when δS2

(X) is the real situation, S2 perceives it as X , because this agent loses two
pixels from the edge of every object.
Thus, given an agent S, we may think of δS (X) as the situation where agent S has information X , because
X is what the agent perceives when δS (X) is the real situation.

In contrast, in Fig. 9 we note that if X represents the real situation, then agent 1 perceives εS1 (X),
losing one pixel at the edge of each object. Similarly, agent 2 perceives εS2

(X) losing two pixels at the
edge of each object.

In Fig. 7, the agent’s vision is blurred in the vertical direction: they only perceive a pixel if it also has
another pixel below it, but they are unable to perceive the bottom edge of any object.

One may wonder if every space function over (P(M),⊆) is a dilation δS for some S ⊆ M . Prop. 15
answers this question negatively. First, we need to introduce a new family of functions over modules.

Definition 21 (Scale Function). Let M be a module over a ring R. Given r ∈ R, a scale by r is a function
sr : P(M)→ P(M) defined as sr (X) = {ru | u ∈ X}.

It is easy to see that sr is a space function over (P(M),⊆).

Proposition 14. Let M be a module over a ring R. Then for every r ∈ R, sr is a space function over
(P(M),⊆).

Proof. Let M be a module over a ring R. From Prop. 5 (2), it suffices to show that given r ∈ R and an
arbitrary

⋃
iAi ∈ P(M), sr (

⋃
iAi) =

⋃
i sr (Ai). Indeed, we have sr (

⋃
iAi) = {ru | u ∈

⋃
iAi} =

{ru | u ∈ Ai for some i} = {ru | ru ∈ sr (Ai) for some i} =
⋃
i sr (Ai) as wanted.

The following proposition gives us a necessary and sufficient condition for a scale function to be a
dilation. In particular, it tells us that we can have infinitely many space functions that are not dilations by
some structuring element if the underlying module is, for example, the Euclidean vector space Rn or the
grid Zn (see Ex. 19).
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Figure 9: From left to right, image X , structuring elements S1 and S2, dilations δS1
(X) and δS2

(X), and erosions εS1
(X) and

εS2
(X). Structuring elements are centered at the origin. Pixels added/removed by dilation/erosion are depicted in dark/light grey.

Proposition 15. Let M be a module over a ring R. Then for each r ∈ R, sr = δS for some S ⊆ M if and
only if r is a multiplicative identity for M .

Proof. Suppose that r is a multiplicative identity for M . Take S = {0}. Clearly sr = δ{0}. For the other
direction we proceed by contradiction. Let us suppose that r is not a multiplicative identity for M but that
there exists S such that sr = δS . By applying both space functions to {0}, we obtain sr ({0}) = {r0} =
{0} = δS ({0}). Then for every v ∈ S, 0 + v = 0, hence v = 0. Thus S = {0}. It follows that for every
u ∈ M , sr ({u}) = {ru} = δ{0} ({u}) = {u}. This implies that for every u ∈ M , ru = u, thus r is a
multiplicative identity for M , a contradiction.

5.5. The Distributed Spaces and Dilations

We have shown that dilations are space functions while erosions are space projections. However, the
main construction of this paper is that of distributed spaces: The greatest space function below a given set
of space functions. The problem we shall address is the following: Given two dilations δA and δB , find the
greatest space function D{A,B} below them. Let us consider some issues regarding this question.

Recall that join and meet operations of the power set (P(M),⊆) are set union and intersection. No-
tice that simply taking the point-wise greatest lower bound does not work, i.e., in general, the equation
D{A,B}(X) = δA(X) ∩ δB(X) does not hold.

Example 21. Consider Ex. 20 with the Euclidean one-dimensional vector space M = R, X = {0, 1},
A = {1} and B = {2}. Let f(Y ) = δA(Y )∩ δB(Y ) for every Y ⊆M. One can verify that f({0}∪{1}) =
{2} 6= ∅ = f({0}) ∪ f({1}), hence f is not even a space function.

Furthermore, notice Prop. 15 tells us that there are space functions over (P(M),⊆) that are not dilations.
Thus, in principle it is not clear if D{A,B} is itself a dilation and if it is, we would like to identify what its
structuring element should be.

The main result of this section, given next, addresses the above issues.

Theorem 7 (Distributed Spaces as Dilations). Suppose thatM is a module. Let (DS)S⊆M be the distributed
spaces of the scs (P(M),⊆, (δS)S⊆M ). Then D{A,B} = δA∩B for every A,B ⊆M .
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Therefore, the greatest space function below two dilations is a dilation by the intersection of their struc-
turing elements. According to our intuition about dilations, the theorem tells us that given δA and δB , the
dilation D{A,B} applied to an image X can be intuitively described as the image obtained by re-drawing X
with (the brush) A ∩B. This is illustrated in Fig. 8 by showing D{A,B} applied to an image X 7.

We now devote the final part of this section to illustrate the application of the theory developed in
previous sections to prove the above result.

5.6. Application: Proof of Theorem 7
We wish to prove that D{A,B} = δA∩B forA,B ⊆M . From Def. 20, we have δA∩B (X) = X⊕(A∩B)

and, from Th. 5, we have D{A,B}(X) =
⋂
Y⊆X(Y ⊕ A) ∪ ((X \ Y ) ⊕ B). Therefore, it suffices to show

that
X ⊕ (A ∩B) =

⋂
Y⊆X

(Y ⊕A) ∪ ((X \ Y )⊕B)

for all X ⊆ M . Recall that the above equality is the distributivity equation for the Minkowski addition
discussed in Eq. 7. It is important also to recall the equation X ⊕ (A ∩B) = (X ⊕A) ∩ (X ⊕B) does not
hold in general. Nevertheless, it does if X is a singleton set as shown next.

Let us consider the singleton case: Suppose that X is an arbitrary set of the form {v}. We obtain the
following equations:

D{A,B}({v}) =
⋂
Y⊆X

(Y ⊕A) ∪ ((X \ Y )⊕B)

= ((∅ ⊕A) ∪ ({v} ⊕B)) ∩ (({v} ⊕A) ∪ (∅ ⊕B))

= ({v} ⊕B) ∩ ({v} ⊕A)

= {v + w | w ∈ B} ∩ {v + w | w ∈ A}
= {v + w | w ∈ A ∩B}
= δA∩B ({v}) .

Now for the general case we will use the continuity of space functions. Suppose that X is an arbitrary
set. From Def. 15 and Th. 6 we know that D{A,B} and δA∩B are space functions. Furthermore from Prop. 5
it follows that space functions preserve arbitrary joins. Thus, with the help of this preservation of arbitrary
joins (unions) and the singleton case above, we can obtain the desired result in a simple way; namely
D{A,B}(X) =

D{A,B}

( ⋃
v∈X
{v}

)
=
⋃
v∈X

D{A,B}({v}) =
⋃
v∈X

δA∩B ({v}) = δA∩B

( ⋃
v∈X
{v}

)
= δA∩B (X) .

5.7. Summary of Section 5
In this section we provided an application of the theory developed in Section 4 to geometry and Math-

ematical Morphology. First, we recalled the notion of Minkowski addition of sets in vector spaces as an

7The result of D{A,B}(X) was computed using the O(n2) procedure mentioned in the beginning of the proof of Prop. 10 from
Section 4.9.
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operation in the algebraic structure of modules (Section 5.1) and showed some of its basic properties (Sec-
tions 5.2 and 5.3). We then proved that given a module M , the structure (P(M),⊆, (δS)S⊆M ) is an scs
where dilations are space functions (Section 5.4). Furthermore, we showed that erosions are space projec-
tions (Prop.13). Since space functions and projections can also be viewed as the information a given agent
sees, we then gave a natural epistemic interpretation of these MM operations as an agent’s perception of a
given image (Remark 8).

In Sec. 5.5 we proved that given two dilations δA and δB , the distributed space function of the group
{A,B} (i.e., D{A,B}) corresponds to the dilation δA∩B . Finally, in Section 5.6 we used the theory developed
in previous sections to prove Th. 7 and a novel law for X ⊕ (A ∩ B): i.e., X ⊕ (A ∩ B) =

⋂
Y⊆X(Y ⊕

A) ∪ ((X \ Y )⊕B).

6. Proofs of Section 4

In this section we present proofs of some results from Sec. 4.

6.1. Proof of Proposition 7 The next proof is
new, associated
to N43.

Let A = (S,P1, . . . ,Pn) be an Aumann structure and let C(A) be its induced scs defined in Ex.14.
Then DI = DI for every I ⊆ G = {1, . . . , n}.

Proof. Let I ⊆ G. We shall prove that (i) DI ∈ S(C), (ii) DI(c) w DI(c) and, (iii) DI(c) v DI(c).

(i) Recall that in C(A) joins are intersections (Sec. 4.4). From Prop. 5 (2), it suffices to show that given an
arbitrary

⋂
j Aj ∈ C, DI

(⋂
j Aj

)
=
⋂
j DI(Aj). Indeed, we have DI

(⋂
j Aj

)
= {s |

⋂
i∈I Pi(s) ⊆⋂

j Aj} = {s |
⋂
i∈I Pi(s) ⊆ Aj for every j} =

⋂
j{s |

⋂
i∈I Pi(s) ⊆ Aj} =

⋂
j DI(Aj) as wanted.

(ii) By definition of Ki and DI (see Sec. 4.4), we know that for every c ∈ C, Ki(c) ⊆ DI(c). This implies
DI(c) v Ki(c). Then DI(c) is a lower bound in S(C) of the set of all the Ki(c). Thus, by Remark 6
DI(c) w DI(c) for every c ∈ C.

(iii) Now, let t ∈ DI(c). Then, by definition of DI , we have
⋂
i∈I Pi(t) ⊆ c. From Th. 4,

DI(c) =
⋃{⋂

i∈I
Ki(ei) |

⋂
i∈I

ei ⊆ c

}
.

Take ei = Pi(t) for every i ∈ I . By assumption,
⋂
i∈I ei ⊆ c and, by definition of Ki, we know that

t ∈ Ki(ei). Therefore, t ∈
⋂
i∈I Ki(ei), i.e., t ∈ DI(c) for every c ∈ C. Thus DI(c) v DI(c) for

every c ∈ C, as wanted.

6.2. Proof of Proposition 8 This proof is
new.Let K(Sn(Φ)) = (C,v,K1, . . . ,Kn) be an scs where Sn(Φ) is a non-empty set of n-agent Kripke

structures over Φ as in Def. 9. Then DI = DI for every I ⊆ G = {1, . . . , n}.

Proof. Let I ⊆ G. We shall prove that (i) DI ∈ S(C), (ii) DI(c) w DI(c) and, (iii) DI(c) v DI(c).
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(i) Recall that in K(Sn(Φ)) joins are intersections (Def. 9). From Prop. 5 (2), it suffices to show that
given an arbitrary

⋂
j Aj ∈ C, DI

(⋂
j Aj

)
=
⋂
j DI(Aj).

Indeed, we have DI
(⋂

j Aj

)
= {(M, s) ∈ ∆ | ∀t : (s, t) ∈

⋂
i∈I Ri implies (M, t) ∈

⋂
j Aj} =

{(M, s) ∈ ∆ | ∀t : (s, t) ∈
⋂
i∈I Ri implies (M, t) ∈ Aj for every j} =

⋂
j{(M, s) ∈ ∆ | ∀t :

(s, t) ∈
⋂
i∈I Ri implies (M, t) ∈ Aj} =

⋂
j DI(Aj) as wanted.

(ii) Recall that in K(Sn(Φ)), for every i ∈ {1, . . . , n}, si = Ki (Prop. 3). By definition of Ki andDI (see
Def. 9 and Ex. 15), we know that for every X ∈ C, Ki(X) ⊆ DI(X). This impliesDI(X) v Ki(X).
Then DI(X) is a lower bound in S(C) of the set of all the Ki(X). Thus, by Remark 6 DI(X) w
DI(X) for every X ∈ C.

(iii) Now, let (M, s) ∈ DI(X). Then, by definition of DI , we have for all t, (s, t) ∈
⋂
i∈I Ri implies

(M, t) ∈ X . From Th. 4,

DI(X) =
⋃{⋂

i∈I
Ki(Xi) |

⋂
i∈I

Xi ⊆ X

}
.

Take Xi = {(M, t) | (s, t) ∈
⋂
i∈I Ri} for every i ∈ I . It is clear that

⋂
i∈I Xi ⊆ X . Notice

that by definition of Ki, we know that (M, s) ∈ Ki(Xi). Therefore, (M, s) ∈
⋂
i∈I Ki(Xi), i.e.,

(M, s) ∈ DI(X) for every X ∈ C. Thus DI(X) v DI(X) for every X ∈ C, as wanted.

6.3. Proofs of Section 4.9

This section is devoted to the proofs of the compositionality properties of distributed spaces given in
Section 4.9. To simplify our notation, we define sets of J-tuples whose join derive a given constraint c.

Definition 22. Let (C,v) be a cs and J some index set. For every c ∈ C, let T Jc = {(aj)j∈J ∈ CJ |⊔
j∈J aj w c}. For simplicity, we use Tc instead of T Jc when no confusion arises.

6.4. Proof of Theorem 4

The function DK is defined in Th. 4. Here we find it convenient to use the following simplified version.

Proposition 16. DK(c) =
d
{
⊔
k∈K sk(ak) | (ak)k∈K ∈ Tc}.

The following is an immediate consequence of the above definition.

Proposition 17. The function DK is monotonic.

Proof. Let c w d. We have {
⊔
k∈K sk(ak) | (ak)k∈K ∈ Tc} ⊆ {

⊔
k∈K sk(ak) | (ak)k∈K ∈ Td}. Thus

DK(c) w DK(d).

Next lemma states that DK is a space function. As pointed out in Section 4.9, the proof of continuity of
DK uses the assumption of (C,v) being completely distributive.

Lemma 2. Let (C,v, (si)i∈G) be an scs. Suppose that (C,v) is completely distributive. Then, for any
K ⊆ G, DK is a space function.

37



Proof. Let (C,v, (si)i∈G) be an scs and assume (C,v) to be completely distributive. To show that DK is
a space function we prove: (i) it satisfies S.1 and S.2 in Def. 6, and (ii) it is continuous.

(i) DK satisfies S.1 and S.2.
For S.1, one can verify that DK(true) = true .
To prove S.2, it suffices to show that DK(c t d) v DK(c) t DK(d). The other direction follows by
monotonicity (Prop. 17). Consider the following derivation:

DK(c) t DK(d)

= 〈Definition of DK〉

DK(c) t
l
{ ⊔
k∈K

sk(bk) | (bk)k∈K ∈ Td

}
= 〈t distributes over u〉

l
{
DK(c) t

⊔
k∈K

sk(bk) | (bk)k∈K ∈ Td

}
= 〈Definition of DK〉

l
{

l
{ ⊔
k∈K

sk(ak) | (ak)k∈K ∈ Tc

}
t
⊔
k∈K

sk(bk) | (bk)k∈K ∈ Td

}
= 〈t distributes over u〉

l
{

l
{ ⊔
k∈K

sk(ak) t
⊔
k∈K

sk(bk) | (ak)k∈K ∈ Tc

}
| (bk)k∈K ∈ Td

}
= 〈Associativity of u〉

l
{ ⊔
k∈K

sk(ak) t
⊔
k∈K

sk(bk) | (ak)k∈K ∈ Tc and (bk)k∈K ∈ Td

}
= 〈Associativity of t〉

l
{ ⊔
k∈K

(sk(ak) t sk(bk)) | (ak)k∈K ∈ Tc and (bk)k∈K ∈ Td

}
= 〈sk is a space function〉

l
{ ⊔
k∈K

sk(ak t bk) | (ak)k∈K ∈ Tc and (bk)k∈K ∈ Td

}
w 〈ck=aktbk; (⊔k∈K ck =

⊔
k∈K(aktbk) w ctd) implies (ck)k∈K∈Tctd〉

l
{ ⊔
k∈K

si(ck) | (ck)k∈K ∈ Tctd

}
= 〈Definition of DK〉

DK(c t d)
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(ii) DK is continuous.
Let D be any directed set on C, we will prove DK(

⊔
D) =

⊔
{DK(d) | d ∈ D}. We proceed with

DK(
⊔
D) v

⊔{
DK(d) | d ∈ D

}
. The other direction follows by monotonicity.

By definition of DK ,
⊔{

DK(d) | d ∈ D
}

=
⊔
{
d
{
⊔
k∈K sk(ak) | (ak)k∈K ∈ Td} | d ∈ D}. Since

(C,v) is completely distributive (see Def. 1), for the subset {
⊔
k∈K sk(ak)}d∈D,(ak)k∈K∈Td

of C, we
have ⊔

d∈D

 l

(ak)k∈K∈Td

{ ⊔
k∈K

sk(ak)

} =
l

f∈F

{⊔
d∈D

{ ⊔
k∈K

sk(fk(d))

}}

where F is the class of choice functions f choosing for each d ∈ D some index f(d) ∈ Td. Recall that
fk(d) is the k-th element of K-tuple f(d). We can rewrite the right-hand side of the above equality
using t properties and the fact that sk preserves arbitrary joins (see Prop. 5). Then we obtain

⊔
d∈D

 l

(ak)k∈K∈Td

{ ⊔
k∈K

sk(ak)

} =
l

f∈F

{ ⊔
k∈K

sk

(⊔
d∈D

fk(d)

)}
.

We now show that for every f ∈ F ,
(⊔

d∈D fk(d)
)
k∈K ∈ TtD. Notice that for every d ∈ D,⊔

k∈K fk(d) w d. We have

⊔
k∈K

(⊔
d∈D

fk(d)

)
=
⊔
d∈D

( ⊔
k∈K

fk(d)

)
w
⊔
d∈D

d =
⊔
D.

Therefore
(⊔

d∈D fk(d)
)
k∈K ∈ TtD (see Def. 22).

Then, for every f ∈ F , the element
⊔
k∈K sk

(⊔
d∈D fk(d)

)
∈ {
⊔
k∈K sk(ak) | (ak)k∈K ∈ TtD},

this implies { ⊔
k∈K

sk

(⊔
d∈D

fk(d)

) ∣∣∣ f ∈ F} ⊆ { ⊔
k∈K

sk(ak)
∣∣∣ (ak)k∈K ∈ TtD

}
.

Consequently,

l

f∈F

{ ⊔
k∈K

sk

(⊔
d∈D

fk(d)

)}
w

l
{ ⊔
k∈K

sk(ak)
∣∣∣ (ak)k∈K ∈ TtD

}
= DK

(⊔
D
)
.

Thus, we conclude DK is continuous.

Finally we prove Th. 4. Its statement now is simplified due to Prop. 16.

Theorem (4). Let (DI)I⊆G be the distributed spaces of an scs (C,v, (si)i∈G). Suppose that (C,v) is a
completely distributive lattice. Then DK = DK .

Proof. Let (DI)I⊆G be the distributed spaces of an scs (C,v, (si)i∈G) and assume (C,v) to be completely
distributive.

We divide the proof in two parts: I. DK vs DK and II. DK vs DK .
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I. DK vs DK .
Recall that from Def. 15, DK = max{h ∈ S(C) | h vs sk for all k ∈ K}. Thus we have to prove: (i)
DK ∈ S(C) and (ii) DK vs sk for every k ∈ K.
From Lemma 2 we have (i). For part (ii), let c ∈ C and S = {

⊔
k∈K sk(ak) | (ak)k∈K ∈ Tc}. From

definition of DK , for every k ∈ K, the element sk(c) = sk(c) t
⊔
j∈K\{k} sj(true) ∈ S. Then for

every c ∈ C, DK(c) =
d
S v sk(c). Therefore for every k ∈ K, DK vs sk. Then, DK vs DK

holds.
II. DK vs DK .

Let c ∈ C and S = {
⊔
k∈K sk(ak) | (ak)k∈K ∈ Tc}. Notice that, for any (ak)k∈K ∈ Tc,⊔

k∈K DK(ak) v
⊔
k∈K sk(ak). Since DK is a space function and monotonic, we know that

⊔
k∈K

DK(ak) = DK

( ⊔
k∈K

ak

)
w DK(c).

Thus, for every (ak)k∈K ∈ Tc, we have DK(c) v
⊔
k∈K sk(ak), i.e., DK(c) is a lower bound of S.

Then for every c ∈ C, DK(c) v
d
S = DK(c). Therefore DK vs DK as wanted.

Thus, from (I) and (II), we conclude Th. 4, i.e., DK = DK .

6.5. Proof of Theorem 5

We now prove the compositional properties of distributed spaces introduced in Th. 5.

Theorem (5). Let (DI)I⊆G be the distributed spaces of an scs (C,v, (si)i∈G). Suppose that (C,v) is
completely distributive and let I, J,K ⊆ G be such that I = J ∪K. Then

1. DI(c) =
d
{DJ(a) t DK(b) | a, b ∈ C and a t b w c}.

2. DI(c) =
d
{DJ(a) t DK(c	 a) | a ∈ C}.

3. DI(c) =
d
{DJ(a) t DK(c	 a) | a ∈ C and a v c}.

We present the proof of each item separately.

PROOF OF THEOREM (5 (1)). Let (DI)I⊆G be the distributed spaces of an scs (C,v, (si)i∈G) where (C,v
) is completely distributive. Let I, J,K ⊆ G be such that I = J ∪K.

• DI(c) v
d
{DJ(a) t DK(b) | a, b ∈ C and a t b w c}.

Let a, b, c ∈ C such that a t b w c. Since (DI)I⊆G is a gdc (see Th. 1) and, both J ⊆ I and
K ⊆ I hold, for every e ∈ C, we have DI(e) v DJ(e) and DI(e) v DK(e). Then DI(a) t
DI(b) v DJ(a)tDK(b). From the fact that DI is a space function and hence monotonic we conclude
DI(c) v DI(a) t DI(b). Therefore DI(c) v DJ(a) t DK(b). Thus, DI(c) v

d
{DJ(a) t DK(b) |

a, b ∈ C and a t b w c}.

• DI(c) w
d
{DJ(a) t DK(b) | a, b ∈ C and a t b w c}.

Let c ∈ C and S = {
⊔
i∈I si(ci) | (ci)i∈I ∈ T Ic }. We first show the following claim:

Claim. For every
⊔
i∈I si(ci) ∈ S, there are some a, b ∈ C such that (i) a t b w c and (ii)⊔

i∈I si(ci) w DJ(a) t DK(b).
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Let
⊔
i∈I si(ci) ∈ S. Since I = J ∪ K, we have

⊔
i∈I si(ci) =

⊔
j∈J sj(cj) t

⊔
k∈K sk(ck). Let

a =
⊔
j∈J cj and b =

⊔
k∈K ck. From Th. 4, we have

DJ(a) =
l
⊔
j∈J

sj(aj)
∣∣∣ (aj)j∈J ∈ T Ja

 and DK(b) =
l
{ ⊔
k∈K

sk(bk)
∣∣∣ (bk)k∈K ∈ TKb

}
.

Given that (C,v) is completely distributive and by associativity of u, DJ(a) t DK(b) =
d
R where

R =
{⊔

j∈J sj(aj) t
⊔
k∈K sk(bk)

∣∣ (aj)j∈J ∈ T Ja and (bk)k∈K ∈ TKb
}

. Clearly a t b w c and⊔
i∈I si(ci) ∈ R. Then

⊔
i∈I si(ci) w

d
R = DJ(a) t DK(b). This shows (i) and (ii).

From the above claim and Th. 4, we obtain DI(c) =
d
S w

d
{DJ(a)tDK(b) | a, b ∈ C and atb w

c} as wanted.

PROOF OF THEOREM (5 (2)). Let (DI)I⊆G be the distributed spaces of an scs (C,v, (si)i∈G) where (C,v
) is completely distributive. Let I, J,K ⊆ G be such that I = J ∪K.

Let a, c ∈ C. Recall that c 	 a represents the least element e ∈ C such that a t e w c. Take any
b ∈ C such that a t b w c. Then b w c 	 a and since space functions are monotonic DJ(a) t DK(b) w
DJ(a) t DK(c	 a). From this it follows that

d
(S ∪ {DJ(a) t DK(c	 a) ,DJ(a) t DK(b)}) =

d
(S ∪

{DJ(a) t DK(c	 a)}) for any S ⊆ C.
From Th. 5 (1) and the above argument, we have

DI(c) =
l
{DJ(a) t DK(b) | a t b w c}

=
l

({DJ(a) t DK(b) | a t b w c} ∪ {DJ(a) t DK(c	 a) | a ∈ C})

=
l
{DJ(a) t DK(c	 a) | a ∈ C} .

Thus DI(c) =
d
{DJ(a) t DK(c	 a) | a ∈ C}.

PROOF OF THEOREM (5 (3)). Let (DI)I⊆G be the distributed spaces of an scs (C,v, (si)i∈G) where (C,v
) is completely distributive. Let I, J,K ⊆ G be such that I = J ∪K.

Let c ∈ C and take any a′ 6v c. It suffices to find a ∈ C such that a v c and DJ(a′) t DK(c	 a′) w
DJ(a) t DK(c	 a) since then

d
(S ∪ {DJ(a) t DK(c	 a) ,DJ(a′) t DK(c	 a′)}) =

d
(S ∪ {DJ(a) t

DK(c	 a)}) for any S ⊆ C.
Given a′ 6v c either (a) a′ A c or (b) a′ and c are incomparable w.r.t v, written a′ ‖ c.

• Suppose (a) holds. Then take a = c thus c 	 a = true. By monotonicity we have DJ(a′) t
DK(c	 a′) w DJ(a) t DK(c	 a) as wanted.

• Suppose (b) holds, i.e., a′ ‖ c. Notice that c 	 a′ v c. By cases, assume c 	 a′ = c. Then we can
take a = true , and thus c 	 a = c = c 	 a′. By monotonicity we have DJ(a′) t DK(c	 a′) w
DJ(a) t DK(c	 a) as wanted. Now suppose c 	 a′ @ c holds. We can build a poset P = ({a′ t
c, a′, c, c	 a′, a′ u (c	 a′) },v) which is a non-distributive sub-lattice of (C,v), isomorphic to a
lattice known as N5 (see Fig. 10). But this contradicts (C,v) to be distributive (see [11]).
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a′ u (c	 a′)

c	 a′

c

a′ t c

a′

Figure 10: Poset ({a′ t c, a′, c, c	 a′, a′ u (c	 a′)},v) isomorphic to lattice N5.

From Th. 5 (2) and the above argument, we have

DI(c) =
l
{DJ(a) t DK(c	 a) | a ∈ C}

=
l

({DJ(a) t DK(c	 a) | a v c} ∪ {DJ(a) t DK(c	 a) | a 6v c})

=
l
{DJ(a) t DK(c	 a) | a v c} .

Thus, DI(c) =
d
{DJ(a) t DK(c	 a) | a v c}.

7. Conclusions and Related Work

We have introduced an algebraic theory for reasoning about possibly infinite groups of agents. We have
also shown that the theory can be applied to other domains such as geometry and mathematical morphology.

This paper is an extended version of our CONCUR’19 paper [10]. With respect to that work, we have
provided significant advances in both the theoretical and practical implications of our notion of distributed
spaces in scs. On the theoretical side, we characterized spatial functions as maps preserving arbitrary joins
(Prop. 5). This allowed us to delve into the interpretation of space functions of distributed spaces as mean-
ingful operations in the field of mathematical morphology. We also pursued the study of conditions under
which a piece of information derived by the combined local information of an infinite group of agents could
be derived by some finite subgroup of those agents. We showed that this is the case when the information
inferred by the group from a given supplied piece of information, is itself compact, and derivable from the
combination of what each agent can infer from it in the local space (Th. 2). We further showed, however,
that compactness does not hold in general without those conditions (Th. 3).

Furthermore, we showed a fundamental result that provides a way to compute, for completely distributive
lattices, the greatest information that can infer some other given piece of information, and is below all
possible combinations of local informations deriving that piece in the spaces of some given group of agents
(Th. 4). This result is presented in [10] for finite cs; in this work we extended it for completely distributive
lattices. In [10] we had also stated some properties relating the information of a group of agents w.r.t the
information of subgroups of those agents but only for finite cs. In this paper we generalized these for
completely distributive lattices (Th. 5).

42



Finally, we used the developed theory to investigate applications in mathematical morphology (MM). In
this domain, two fundamental operations, dilation and erosion, provide ways to perform geometric trans-
formations, in particular within the realm of image processing based on so-called structuring elements. We
considered these MM operations, generalized with Minkowski addition over modules, and used our theory
to derive some interesting distribution properties. We also gave the interpretation of maps in group spatial
constraint systems as MM operations over structuring elements and showed that the maximum map under
two given group distribution maps (seen as dilations) corresponds to the dilation over the intersection of their
structuring elements. In so doing we provided a proof that erosion and dilations for structuring elements that
are modules form a Galois connection (Prop. 13). This allowed us to prove that the operation of erosion
corresponds to our defined operation of projection of information into the spaces of the structural element
(Def. 17). We also discussed an interpretation of dilations and erosions as epistemic as an agent’s perception
of a given image (Remark 8).

7.1. Related Work
Below we discuss closely related work divided into four categories. We added re-

lated work as
suggested by the
reviewers (N4,
N8, N11, N47).
Also, we reorga-
nized the related
work that we
had before.

Algebraic Epistemic/Spatial Reasoning. There are two major branches of approaches to modal logic: Kripke
semantics and Algebraic semantics [39]. The majority of modern work on epistemic logic has taken the
Kripke semantics approach, whereas algebraic semantics are more common in the general study of modal
logic. This is probably explained by the fact that the study of epistemic logic is most common in philos-
ophy and computer science, with specific applications in both fields, and Kripke semantics are often the
most practical approach for these applications. The Handbook of Epistemic Logic, a good survey of the
recent state of work on epistemic logic, does not include algebraic semantics [40]. The correspondence
between modal logic and boolean algebras with operators, and lattice theory more generally, however, is
well known [41, 7, 39]. Since concurrent constraint programming (ccp) uses lattices as the underlying struc-
ture [16], in our first work adding epistemic information to ccp [6], it was natural to take the algebraic
approach to epistemic logic, rather than the Kripke structure approach which is much more common in
computer science applications of epistemic logic and modal logic in general. We continued to develop our
theory of modal constraint systems [42, 43, 44, 18, 45, 10, 31], and besides its applicability to ccp, it has the
added advantage of providing a more natural method than Kripke semantics for talking about infinite groups
of agents, which is a focus of the present paper.

Since we take the algebraic approach which is less common in epistemic logic, there is not a great deal
of recent work in epistemic logic which is closely related to the present paper. As already mentioned, spatial
constraint systems (scs) were developed in [6] and are dual to (poly)modal algebras [21]. These algebras
are boolean algebras that preserve meets and top and, they characterize the minimal (multi)modal logic
Kn [46]. McKinsey and Tarski extended the Stone representation theorem for Boolean algebras to modal
algebras whose operators are closure operators to give topological semantics for the epistemic modal logic
S4 [22]. Epistemic constraint systems (ecs) are scs where the space functions are closure operators and thus
they are dual to closure algebras [47]. There is more recent work on the relation of several modal logics and
topology, among many others S5, KD45, and first-order extensions of modal logic (see [48]).

The work in [49] generalizes the epistemic update from the Logic of Epistemic Actions and Knowl-
edge [50], to a general class of algebras. In the future, it will be interesting to study whether these epistemic
updates on algebras apply to our systems. There is also work on proof theory for versions of epistemic logic,
taking the algebraic approach [51].

Nevertheless none of the above-mentioned works deal with an algebraic characterization of distributed
knowledge/information/space. To our knowledge this paper provides the first-algebraic characterization for
distributed information of infinitely many agents.
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Constraint Systems. The closest related work is that of [6] (and its extended version [52]) which introduces
spatial constraint systems (scs) for the semantics of a spatial ccp language. Their work is confined to a
finite number of agents and to reasoning about agents individually rather than as groups. We added the
continuity requirement to the space functions of [6] to be able to reason about possibly infinite groups.
In [18, 44, 43, 53] scs are used to reason about beliefs, lies and other epistemic utterances but also restricted
to a finite number of agents and individual, rather than group, behaviour of agents.

Distributed Knowledge. Our work is inspired by the epistemic concept of distributed knowledge [24].
Knowledge in distributed systems was discussed in [54], based on interpreting distributed systems using
Hintikka’s notion of possible worlds. In this definition of distributed knowledge, the system designer as-
cribes knowledge to processors (agents) in each global state (a processor’s local state). In [1] the authors
present a general framework to formalize the knowledge of a group of agents, in particular the notion of
distributed knowledge. The authors consider distributed knowledge as knowledge that is distributed among
the agents belonging to a given group, without any individual agent necessarily having this knowledge.

Infinitely many agents. In [3] the authors study knowledge and common knowledge in situations with in-
finitely many agents. The authors highlight the importance of reasoning about infinitely many agents in
situations where the number of agents is not known in advance. Their work does not address distributed
knowledge but points out potential technical difficulties in their future work. In the realm of Economics and
game theory, models of infinitely many agents are used to discover mass phenomena that do not necessarily
occur in the case of a fixed finite number of agents [55, 56, 57, 58]. Also infinite sets of agents are used in
game theory [59, 60]. For example for games played with two teams, we may want to specify that everyone
in a team knows that everyone in the other team knows a given proposition, regardless of the team size. This
could be naturally specified with infinitely many agents.

Mathematical Morphology and Topology. Complete lattices have been used as a framework to define mor-
phological operators specifically to study grey-level images [38]. In this context, dilations and erosions are
defined as operators that preserve arbitrary suprema and infima, resp. This proposal is a generalization of
what we studied in Section 5 where we present dilations and erosions by some structuring element. As a
novelty, we proposed the scs (P(M),⊆, (δS)S⊆M ) whereM is a module and (δS)S⊆M are dilations defined
on the cs (P(M),⊆). It allowed us to apply our theoretical results to prove MM properties, e.g., that dila-
tions and erosions form a Galois connection (Prop. 13). Also, we provided the interpretation of distributed
information for images. Namely, we showed that given two dilations δA and δB , the greatest dilation below
them is exactly D{A,B} which in turn equals δA∩B (Th. 7). As a future work, we plan to explore these results
for grey-scale images.

We note that the δS function bears a superficial resemblance to the topological notion of closure, and εS
resembles topological interior. Topology has important connections with modal logic and S4 type epistemic
logic in particular [48, 61]. However, in the case of mathematical morphology, the transformations are
different from topological operations, most importantly because the operators are not necessarily idempotent,
whereas closure and interior operators must be idempotent.

Other related work. In [31] the authors investigate the cardinality of the set E(L) of all join-endomorphisms
of a given lattice L. (A join-endomorphism is a self-map that preserves finite joins, hence it is a space
function without the continuity requirement.) The authors also provide efficient algorithms to compute the
meet of a given set of join-endomorphisms. In this paper, we briefly illustrated the use of Th.4 to derive a
polynomial complexity bound for computing this meet.
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There are other group phenomena that are closely related to the group phenomena here studied. In
particular, group polarization [62, 63], from social sciences, and group improvisation [64], from computer
music. Group polarization refers to the natural tendency of a group to make more extreme decisions than
their individuals. Group improvisation involves constraining musical pattern variation choices of a partici-
pant according to choices made by others in the group. We plan to study these phenomena in future work by
building upon the present work.

7.2. Future Work We added future
work accord-
ing to N7, N17,
N45, N50, N57.

Some of the proofs of the main results of this work rely on the completeness of the lattice of the underly-
ing constraint system (Th. 4). As future work we would like to generalise our results to the directed-complete
partial orders, the central semantic structure of domain theory [13]. In fact, Scott-continuity is a central con-
cept of our theory, hence this research direction seem promising.

We plan to extend our work with a process calculus with dynamic creation/removal of agents. The idea
is to investigate situations where we could prove that it is not possible to reach a state where DA(e) holds,
with A as the set of all possible agents and e is some sensible information. This could be interpreted as
saying that the agents will never be able to derive s by pooling or joining their own information. Along the
same lines, for meaningful scs such as Kripke scs with infinitely many agents, we would like to study, the
decision and complexity problem of whether c w DI(e) given c, e and infinite set I under the conditions of
our compactness result (Th.2). Notice that our compactness result, does not provide us with a bound on the
size of the finite subset J ⊂ I such that d w DI(e).
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λ⊥, bottom space, 18
λ>, top space, 18
Ln(·), modal language, 15
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