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Frege’s Theory of Real Numbers: A Consistent Rendering

FRANCESCA BOCCUNI∗ & MARCO PANZA†

Abstract

Frege’s definition of the real numbers, as envisaged in the second volume of Grundgesetze
der Arithmetik, is fatally flawed by the inconsistency of Frege’s ill-fated Basic Law V. We
restate Frege’s definition in a consistent logical framework and investigate whether it can
provide a logical foundation of real analysis. Our conclusion will deem it doubtful that such
a foundation along the lines of Frege’s own indications is possible at all.

1 Overview

The aim of the present paper is twofold: (i) rephrasing Frege’s inconsistent definition1 of real
numbers, as envisaged in Part III of Grundgesetze der Arithmetik (Frege 1893-1903), in a con-
sistent setting ruling out value-ranges, and so involving no version of the infamous Basic Law V
(BLV); (ii) wondering whether the rephrased definition can be considered logical, and, as such,
as a ground for a logicist view about real analysis.

Concerning (ii) a proviso is in order. In the debate on neologicism, a distinction has been
made between logicality and analyticity, by suggesting, for instance, that, though not logical,
Hume’s Principle (HP) is analytic. We are far from undermining the relevance of this distinction,
but we consider unnecessary to stress it for our present purpose. There are two reasons for that.
On the one side, we deem all the arguments we will advance against the logicality of the relevant
principles and definitions also apt to oppose their analyticity—though some of those advanced
in favor of the former are possibly only sufficient to argue for the latter. On the other side, we
are interested in the epistemic attitude that a faithful Fregean (or even Frege himself) might
have (had) in the face of a definition such as our own. Hence, for the sake of our discussion, we
must follow Frege himself in taking a “truth” to be analytic if, in its proof, “one only runs into
logical laws and definitions” (Frege 1884, § 3; Frege 1953, p. 4)2, and in regarding definitions as
mandatorily explicit, which suggests regarding logicality as a necessary condition for analyticity,
rather than the latter as a weaker condition than the former.

Concerning (i), it is important to observe that, for Frege, real numbers had to be defined as
ratios of magnitudes, and magnitudes had to belong to different domains. Hence, his definition
should have included two successive steps: a definition of domains of magnitudes, and a definition
of ratios on these domains. As a matter of fact, he accomplished only the former step, and merely
gave some informal indications on how to accomplish the latter. Both things are done in the

∗Vita-Salute San Raffaele University, Milan. Orcid: 0000-0001-9814-1431.
†IHPST (CNRS and Université de Paris 1, Panthéone Sorbonne), and Chapman University, Orange, CA.
1In what follows we will use ‘definition’ quite broadly. The meaning of its occurrences will be clarified in context.
2We slightly modify Austin’s translation.
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second volume of Grundgesetze3. The latter step should have presumably been accomplished in
a third volume that, once aware of Russell’s paradox, Frege never wrote.

Had he accomplished this step, he should have made it conform to a crucial requirement:
supposing that several domains of magnitude exist, the definition of real numbers should have
identified a ratio on one of these domains with the same real number as a ratio on each one of
the others. Our definition actually complies with this requirement.

After a short presentation of Frege’s strategy in § 2, we will consistently rephrase his definition
of domains of magnitudes in § 34. To eliminate value-ranges, we will rephrase first-order formulas
involving terms for them as higher-order formulas proper to a system of higher-order predicate
logic as weak as possible, on which we will take stock in § 4. This seems to us the most faithful
way to consistently render Frege’s original definition. Insofar as our appreciation of the logicality
of our definition depends on assuming, in a genuinely Fregean vein, the logicality of higher-order
logic, we contend that this appreciation ipso facto provides an appreciation of the logicality of
Frege’s own definition that remains perfectly independent of any judgement about the logicality
of (any consistent version of) BLV5.

In § 5, we will investigate how to define real numbers by following Frege’s indications, on the
base of our definition of domains of magnitudes. In § II.164 of his treatise, Frege explicitly ac-
knowledged that his envisaged definition of these numbers requires an existence proof of nonempty
such domains. We will explain why this is so. Here, it is only in order to observe that, in this
same §, he also argues that this existence depends on the existence of continuously many objects
(an infinity of objects larger than “Endloss”, the cardinality of “finite cardinal numbers”), and
sketches a plan for this proof, which, taking the existence of natural numbers for granted, aims at
constructing these objects from them. He then claims that, thanks to this proof, he would have
succeeded “in defining the real number purely arithmetically or logically as a ratio of magnitudes
that are demonstrably there” (Frege 2013, p. 1622).

The adverb “arithmetically” is clearly used to emphasize that the envisaged definition would
have been independent of both empirical considerations and geometry. In this sense, the defini-
tion would have surely been arithmetical, and our rendering of it will be as well. But there is
another sense in which, despite his appealing to natural numbers, Frege did not certainly want his
definition to be arithmetical: both his criticisms to the alternative definitions depending on an
extension of the domain of rationals—including Cantor’s (§§ II.68-85), Dedekind’s (§§ II.138-147),
and Weierstrass’s (§§ II.148-155)—and the very purpose of identifying real numbers with ratios
of magnitudes make clear he wanted these numbers to be strictly independent of natural ones, to
be properly Zahlen, rather then Anzahlen. By offering our definition, we will try, among other
things, to comply with this requirement.

In § 6, we will account for two distinct strategies to get the required existence proof in our
setting. One of them conforms to Frege’s indications, while the other might be considered more
appropriate for ensuring logicality, since, pace Frege, it does not require that the existence of
continuously many objects be established. In § 7, we will investigate whether the resulting

3Frege (1893-1903), §§ II.165-II.245 and § II.164, respectively; §§ II.55-II.159 contain a critical discussion of
alternative definitions, while §§ II.160-II.163 contain an informal introduction and a principled justification of the
definition of domains of magnitudes.

4Knowledge of Frege’s original definition is required to appreciate its correspondence with our rephrasing. Useful
accounts of it can be found in Dummett (1991, ch. 22); Schirn (2013); Simons (1987); Shapiro & Snyder (2020).

5Anyone supporting Quine’s view on the non-logicality of higher-order logic can take our granting it as made
for the sake of the argument.
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definition does comply with logicality and non-arithmeticity—in the mentioned sense. In § 8, we
will provide some concluding remarks.

2 Frege’s Strategy

Frege’s strategy agrees with the “application constraint”: the requirement that a mathematical
theory be shaped as to immediately account for its applications6. This motivates his suggestion
to define real numbers as ratios of magnitudes, magnitudes as elements of distinct domains sup-
posedly including those of geometric, mechanic and empirical ones, and ratios on these domains
as measures of the relevant magnitudes. Insofar as it would be odd to require that the theory
of real numbers involve these magnitudes as such, together with their respective theories, this
makes providing a structural definition of domains of magnitudes mandatory: a definition that
merely fixes the conditions that a certain domain of independent items has to meet in order to
be recognized as a domain of magnitudes. Frege himself clearly stresses this crucial point (Frege
1893-1903, §II.161; Frege 2013, p. 1582):

There are many different kinds of magnitudes: lengths, angles, periods of time,
masses, temperatures, etc., and it will scarcely be possible to say how objects that
belong to these kinds of magnitudes differ from other objects that do not belong to any
kind of magnitude. Moreover, little would be gained thereby; for we still lack any way
of recognizing which of these magnitudes belong to the same domain of magnitudes.

Instead of asking which properties an object must have in order to be a magnitude,
one needs to ask: how must a concept be constituted in order for its extension to be
a domain of magnitudes?

A natural way to render the required structural definition would have provided definitional
axioms, as usually done for groups or fields. An informal conception of magnitudes recognizing the
existence of “lengths, angles, periods of time, masses, temperatures, etc.” might have suggested
that there are non-isomorphic models satisfying these axioms. Still, for Frege, magnitudes are just
those items that real numbers are ratios of, and they all behave as lengths do, so that domains of
magnitudes are all isomorphic to each other. Had he defined them through appropriate axioms,
these should have then been expected to be categorical, though algebraic in nature—as it happens
for the usual axioms for real numbers themselves, namely the axioms of a totally ordered and
Dedekind-complete field. Moreover, insofar as magnitudes are required to add to each other but
not to multiply with each other (namely to admit only a single internal composition law), what
he would have needed is a categorical axiomatization for totally ordered, dense and Dedekind-
complete (and, then, also Abelian and Archimedean)7 groups.

Frege did not straightforwardly follow this route, however. Conforming with a remark by
Gauss (1931, p. 635, also in Werke, II, pp. 175-76; quoted in Frege, 1893-1903, § II.161) and
putting it in his perspective, he conceives of magnitudes as value-ranges of permutations, and so
defines their domains not as domains of items merely satisfying certain conditions, but rather as
domains of extensions of appropriate first-level binary relations satisfying these conditions. This
makes him able to appeal, along with his definitions, to structural properties of first-level binary

6See Panza & Sereni (2020) and Sereni (2019), which include a critical survey of the recent discussion on Frege’s
attitude toward applications of mathematical theories.

7See footnotes 19 and 28 below.
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relations, namely to the way they compose and are inverted, as well as to there being the identity
relation among them. Accordingly, rather than listing a number of axioms, and finally getting
an implicit definition, Frege explicitly defines domains of magnitudes as extensions of concepts
under which extensions of certain first-level relations fall. The difficulty he tackles is then that
of looking for an explicit definition of the concept of being one of these extensions (and, then, a
magnitude), and falling under one of these concepts.

Since for Frege extensions are objects, this concept is first-level. In order to define it, he
appeals to a special function allowing him to reduce higher-level concepts to first-level ones, so as
to work in a first-order fragment of his second-order theory. This is the first-level two-arguments
function ξ _ ζ, often too quickly identified with set-theoretic membership, whose definition is
licensed by BLV. Once BLV is omitted, this function can no more be defined, and the reduction to
first-order is no more possible—unless by a form of set theory. Hence, making Frege’s definition
consistent by eliminating BLV without falling into a set-theoretical setting requires replacing
Frege’s first-order definitions with higher-order ones. We will explain how this can be done by
appropriately rephrasing Frege’s definitions, and in clarifying the logical nature of the (logical)
system that is required for that. This is the purpose of the next two §§.

3 Frege’s Definition of Domains of Magnitudes Rephrased

3.1 Eliminating Value-Ranges

The omission of BLV is made possible by the elimination, from Frege’s language, of terms for
value-ranges. Insofar as the presence of these terms in his definition of domains of magnitudes
entirely depends on the function ξ _ ζ, we have to make its use pointless.

To make a long story short, this function is such that for any objects Γ and ∆, if Γ is the
value-range

,
εΦ (ε) of a first-level one-argument function Φ (ξ)8, then ∆ _ Γ is Φ (∆), and if Γ is

not such a value-range—or, better, it is not a value-range at all, since, in Frege’s formalism, any
value-range reduces to the value-range of a first-level one-argument function—, then ∆ _ Γ is
the value-range of a first-level concept under which no object falls—for example that of ¬ (ξ = ξ),
which we could denote by ‘�’, for short. In other terms, ∆ _ Γ is the value, for ∆ as argument,
of the first-level one-argument function of which Γ is the value-range, if Γ is a value-range, and
�, if it isn’t—whatever object ∆ might be.

In a rich enough second-order predicate language including the operator ‘ιz [z : ϕ]’ for definite
descriptions, together with a symbol for value-ranges, the individual variables ‘x’, ‘y’ and ‘z’, and
the monadic predicate one ‘F ’, this stipulation could be rendered as follows:

∀x, y
[
x _ y = ιz

[
z : ∃F

(
y =

,
εF (ε) ∧ F (x) = z

)]]
,

provided that ‘ιz [z : ϕ]’ designates a well-defined object, namely �, even if there is no z such
that ϕ. If ‘a’ and ‘b’ are terms, this makes ‘a _ b’ be a term in turn.

This licenses using this term to denote the ζ-argument of the same function ξ _ ζ. Taking a
new term ‘c’ to denote the ξ-argument, one has the new term ‘c _ (a _ b)’ such that

c _ (a _ b) = ιz
[
∃G
(
b =

,
α
,
εG (ε, α) ∧G (c, a) = z

)]
.

8Our use of Greek capital letters to denote objects and functions whatsoever corresponds to Frege’s, in his
“exposition” of his formal language (Frege 1893-1903, Part I, § I.1-52).
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It follows that ‘c _ (a _ b)’ is a term that denotes the value for c and a as arguments of the
first-level two-argument function of which b is the value-range, if b is such a value-range9.

Hence, if Φ (ξ) and Ψ (ξ, ζ) are a first-level one-argument and a first-level two-argument func-
tion, respectively, then

a _
,
εΦ (ε) = Φ (a)

c _
(
a _

,
α
,
εΨ (ε, α)

)
= Ψ (c, a) .

Suppose that ‘Pb’ and ‘Rb’ be respectively a monadic and a dyadic predicate10 appropriate
for rendering, in an appropriate predicate language, two functions Φ (ξ) and Ψ (ξ, ζ) of which b
is the value-range. It follows that, in order to make the use of the function ξ _ ζ pointless,
and so eliminate value-ranges while restating Frege’s definition of domains of magnitudes, it is
enough to replace each term of the form ‘a _ b’ with the formula ‘Pba’ and each term of the form
‘c _ (a _ b)’ with the formula ‘cRba’, and to transform Frege’s formal system accordingly11.
The system so obtained will be independent of BLV, and so will any definition stated in it.

3.2 Working with Binary First-Order Relations

Informally speaking, Frege conceived of a nonempty domain of magnitudes as a totally ordered,
dense and Dedekind-complete additive group of permutations. In light of his rejection of implicit
definitions, defining such a group required to explicitly defining a particular function to play
the role of its (additive) law of composition, which required, in turn, to have objects available,
endowed with an internal structure making such a definition possible. To this purpose, he made
the simplest choice possible: he took those objects to be extensions of functional first-level binary
relations, and assigned the role of this law to the composition of the corresponding relations. This
obviously resulted in taking the extension of the identity relation as the neutral element of the
group, and the extensions of the inverse relations as its inverse elements.

This choice is easily rendered in a predicate setting lacking extensions. We merely have to fix
the conditions under which a first-level binary relation is functional and results either from the
inversion of another such relation, or from the composition of two other such relations. Taking ‘R’
and ‘S’ to range over first-level binary relations, this can be formally done through the following
explicit definitions:

[Functionality] ∀R (IR⇔ ∀x, y(xRy ⇒ ∀z(xRz ⇒ y = z))) ,

[Inversion] ∀R∀x, y (xR−y ⇔ yRx) ,

[Composition] ∀R,S∀x, y (x[R t S]y ⇔ ∃z (xRz ∧ zSy)) .

These definitions define three third-order constants, respectively: the monadic predicate con-
stant ‘I ’, designating a property of first-level binary relations; the monadic functional constant

9If b is not such a value-range, different cases are possible. It is not necessary to account for them, here. For a
complete treatment, see Panza (FC1).

10Here and in what follows, we take boldface capital latin letters as dummy letters for first-level properties and
relations. The same letters in italics will, instead, be used for the corresponding variables.

11To be sure, this rendering of the function ξ _ ζ in terms of predication is not fully faithful to Frege’s original
view: for Frege, both ‘∆ _ Γ’ and ‘—∆ _ Γ’ (see footnote (12), below) denote an object, while for us ‘a _ b’
is rather a formula. Nevertheless, whenever ‘Γ’ denotes the extension of a concept Φ (ξ), ‘∆ _ Γ’ and ‘—∆ _ Γ’
are, for Frege, names of the True if and only if ‘Φ(∆)’ itself is a name of the True. Insofar as only this case is
relevant here, this rendering does not alter the aspects of Frege’s definition that are of interest here.
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‘∼−’, designating a one-argument function from and to first-level binary relations; the dyadic
functional constant ‘∼ t ∼’, designating a two-argument function from and to first-level binary
relations, again. Hence, in order to be licensed, they require appropriate instances of predicative
comprehension. The first requires the following instance of third-order predicative comprehension
without parameters:

(Functionality-CA) ∃X ∀R (X R⇔ ∀x, y(xRy ⇒ ∀z(xRz ⇒ y = z))) .

The other two require the following instances of second-order dyadic predicative comprehension
with parameters respectively:

(Inversion-CA) ∀R∃S∀x, y (xSy ⇔ yRx) ,

(Composition-CA) ∀R,S∃T∀x, y (xTy ⇔ ∃z(xRz ∧ zSy))) ,

where ‘T ’ ranges over first-level binary relations, too.
One might replace, however, these explicit definitions with mere (metalinguistic) typographic

stipulations:
(Functionality′) I (R) := ∀x, y(xRy ⇒ ∀z(xRz ⇒ y = z)),

(Inversion′) R− (xy) := yRx,

(Composition′) R t S (xy) := ∃z(xRz ∧ Szy).

Any instance of the left-hand side of these stipulations is intended to be a mere abbreviation of the
corresponding instance of the right-hand side. For example, while ‘IR’ in (Functionality) is an
atomic third-order (open) formula, ‘I (R)’ in (Functionality′) is an atomic symbol abbreviating
the second-order (open) formula ‘∀x, y(xRy ⇒ ∀z(xRz ⇒ y = z))’. And analogously for ‘xR−y’
and ‘R− (xy)’ in (Inversion) and (Inversion′), respectively, and for ‘x [R t S] y’ and ‘R t S (xy)’
in (Composition) and (Composition′), respectively. Adopting these stipulations requires neither
any instance of comprehension, nor any extension of the usual second-order language.

We will see in what follows whether these stipulations are enough for our purpose, or the
corresponding explicit definitions are needed, and the instances of comprehension they require12.

12In Frege’s original setting things would not be so simple. Consider only the example of (Functionality). In
this setting, the role of this definition is played by the definition of the first-level concept Iξ (Frege, 1893-1903,
§ I.37). By adapting Frege’s notation to our modern one, the definition might be stated as follows:[

∀x, y
[
— (x _ (y _ a))⇒ ∀z

[
— (x _ (z _ a))⇒ y = z

]]]
= Ia.

where ‘a’ is a term used as a parameter, and —ξ is the horizontal concept (ibidem, § I.8), which is such
that —Γ is the True if Γ is also the True, and the False otherwise. It follows that Ia is the same object as
∀x, y

[
— (x _ (y _ a))⇒ ∀z

[
— (x _ (z _ a))⇒ y = z

]]
, which is a truth-value. If a is not a value-range of a

first-level binary relation, — (b _ (c _ a)) is the False for whatever pair of objects b and c, and Ia is then the
True, which makes any object other than a value-range of a first-level binary relation fall under the concept Iξ. If
a is the value-range of a first-level binary relation Φ (ξ, ζ), a falls under the concept Iξ if and only if either Φ (ξ, ζ)
is empty, or, for any x, there is at most one y such that Φ (x, y) is the True. Clearly, there is no way to regard this
definition as a mere typographic stipulation. It rather defines a total first-level concept by introducing a functional
constant to designate it. Among many others, there are two relevant differences with our case: i) Frege’s definition
applies in general, whereas both (Functionality) and (Functionality′) only apply to first-order binary relations;
ii) Differently from (Functionality′), Frege’s definition is licensed only via a stipulation analogous to second-order
comprehension. Mutatis mutandis, this also applies to (Inversion) and (Composition), and to any other particular
definition entering his definition of domains of magnitudes.
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3.3 Domains of Classes

For Frege, a domain of magnitudes is the domain of a “positive class”, which is in turn a “positival
class” of an appropriate sort. In his setting, a class is the extension of a first-level concept
(Frege, 1893-1903, § II.16), and the objects falling under this concept are said to belong to the
class. Positival and positive classes are, in particular, extensions of concepts under which (only)
extensions of first-level binary relations fall. Defining them amounts to fixing the conditions that
a concept is to meet for the objects falling under it to be just these extensions. To do this, Frege
appeals to their “domains”. He has, then, to firstly define, in general, domains of classes (ibidem,
§ II.173). The definition applies to any class, but we only need to consider its application to the
case of the domain of a class of extensions of first-level binary relations.

This is the extension of a concept under which fall: the extensions in the class; the extensions
of the inverses of the relations whose extensions are in the class; and the extensions of the relations
composed by each of the relations whose extensions are in the class and their inverses—which in
case these relations are functional, as required for both positival and positive classes, all coincide
with the extension of the identity relation. In our setting, we can, then, rephrase, Frege’s definition
of the domain of a class of extensions of first-level binary relations as follows:

(3.1) ∀X ∀R

ðX R⇔

 X R∨

∃S
[
X S ∧ ∀x, y

[
[xRy ⇔ S− (xy)]∨
[xRy ⇔ S t S− (xy)]

]] 


where ‘X ’ is a third-order monadic variable, and ‘ð’ a functional operator applied to it. This
definition makes clear that, when applied to whatever (second-level) property Q of first-level
binary relations13, ð gives another property ðQ of these same relations.

To license this definition, we need to ensure the existence and uniqueness of a second-level
property providing a putative value for ðX under the existence of a second-level property pro-
viding a value for X , and this requires, in turn, third-order comprehension with parameters. But
suppose we wanted to define a certain (third-level) property Q14 that a class of first-level binary
relations should have in order to be positival, which is required to render Frege’s definition of
positival classes. If, in defining it, we had to appeal to the domains of the classes that could have
it, as is also required to render Frege’s definition, we should have recourse to a definition like this:

∀X [QX ⇔ φ (ðX )]

where ‘φ (ðX )’ stands for an appropriate formula involving the predicate ‘ðX ’. Hence, insofar as,
in our rendering of Frege’s definition of positival and positive classes and domains of magnitudes,
this predicate would only appear in instances of formulas of the form ‘ðX R’, we can replace (3.1)
with the following abbreviation stipulation

(3.1′) ð(X )(R) :=

 X R∨

∃S
[
X S ∧ ∀x, y

[
[xRy ⇔ S− (xy)]∨
[xRy ⇔ S t S− (xy)]

]]  ,

then use appropriate instances of ‘ð(X )(R)’ instead of the corresponding instances of ‘ðX R’. As
a matter of fact, this stipulation is all we need for our present purpose, and it must be supplied

13Here and in what follows we use ‘Q’ as a dummy letter for second-level properties. Later we will also use ‘A ’,
‘E ’, ‘H ’, ‘L ’, ‘M ’ and ‘P’ for the same purpose.

14Here we use ‘Q’ as a dummy letter for third-level properties.
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by no sort of comprehension, since it introduces no new predicate, but merely lets each instance
of its left-hand side be an abbreviation of the corresponding instance of the right-hand side. For
short, read both ‘ðXR’ and ‘ð(X )(R)’ as ‘R belongs to the domain of the class of first-order
binary relations that have X ’.

3.4 Positival Classes

We can now consider Frege’s definition of positival classes. If we had to render it through a(n
explicit) definition, we should define a fourth-order monadic predicate constant designating a
third-level property. This would require to quantify over second-level properties, and, then, to
appeal to fourth-order comprehension. But, once again, we are not forced to do it. As above, we
might recur to an abbreviation stipulation by so avoiding any sort of comprehension.

In agreement with Frege’s definition, the extension of a first-level binary relation R belongs to
a positival class if (and only if): both R and its inverse are functional; the extension of R tR−,
i.e. the identity relation, does not belong to the class; and for any first-level binary relation S, if
its extension belongs to the class, then: the class of the objects that bear R to some other object
coincides with the class of the objects to which some object bears S15; the extension of R t S
belongs to the class; both the extension of R− t S and that of R t S− belong to the domain of
the class. In our setting, this can be rendered either this way

(3.2) ∀X


LX ⇔ ∀R


X R⇒


∀S

X S ⇒


∀x [∃y (xRy)⇔ ∃z (zSx)]∧

X R t S∧

ðX R t S−∧

ðX R− t S



∧
IR ∧IR− ∧ ¬X R tR−






,

or this way:

(3.2′) L(X ) := ∀R


X R⇒


∀S

X S ⇒


∀x [∃y (xRy)⇔ ∃z (zSx)]∧

X R t S∧

ð(X ) (R t S−)∧

ð(X ) (R− t S)



∧
I (R) ∧I (R−) ∧ ¬X R tR−




,

where both ‘LX ’ and ‘L (X )’ are short for ‘X is a positival class’ or, more precisely, ‘the
first-level binary relations having X form a positival class’.

In (3.2), ‘L’ is a fourth-order predicate constant and ‘LX ’ an atomic (open) formula. This
is, then, an explicit definition, which is to be licensed by an appropriate form of fourth-order
comprehension. In (3.2′), ‘L (X )’ is, instead, an abbreviated (open) formula, and ‘L’ is merely a
symbol occurring in it. Hence (3.2′) neither requires a fourth-order language nor is to be licensed
by any form of fourth-order comprehension.

15This makes the relations whose extensions belong to the class permutations on a subjacent first-order domain.
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This does not mean that no form of comprehension is required to license it. Since, in its
right-hand side, the signs ‘−’ and ‘t’ do not merely occur as parts of the abbreviated formulas
‘R− (xy)’ and ‘RtS (xy)’ introduced by (Inversion′) and (Composition′), but as functional signs
allowing to construe the predicate variables ‘R−’ and ‘R t S’. Their use in (3.2′) is, then, to
be licensed by the explicit definitions (Inversion) and (Composition), which respectively require,
in turn, (Inversion-CA) and (Composition-CA), or, more generally, the following second-order
predicative comprehension axiom schema with parameters:

(PCA2
∆1

0
) ∀R . . . T∃U∀x, y

[
xUy ⇔ φ∆1

0
(R . . . T )

]
,

where ‘U ’, ‘R’, ‘S’, and ‘T ’ range over first-level binary relations, and ‘φ∆1
0

(R . . . T )’ stands for
any second-order formula containing the parameters ‘R’, . . . ‘T ’, but no higher-order quantifiers.

Before going ahead with the definition of positive classes, some remarks are in order about the
informal import of the conditions characterizing a positival class. They apply, mutatis mutandis,
both to (3.2) and to (3.2′), but, for short and simplicity, we only make them about the latter.

Let L be a second-level property. Requiring that

∀R
[
LR⇒

(
I (R) ∧I (R−)

)]
amounts to requiring that both a binary relation that has L and its inverse are functional. If
this condition obtains, requiring that

∀R
[
LR⇒ ¬LR tR−

]
and that

∀R,S∀x [(LR ∧L S)⇒ ∃y [(xRy)⇔ ∃z (zSx)]]

respectively amount to requiring that the identity relation has not L , and that all the relations
having L are permutations16 on a subjacent unspecified set. Hence, only permutations but the
identity one, have L . Thus, t is an associative law of composition without neutral element on
the relations having L . Again, if all the above conditions obtain, requiring that

∀R,S [(LR ∧L S)⇒ LR t S]

amounts to requiring that the family of permutations having L is closed under t. This makes:
the inverse of any such permutation not have L —since, if it did, the identity permutation would
also have it; the family of permutations that satisfy the open formula ‘ð(L )(R)’ be also closed
under composition of the inverses of those having L —since, for whatever permutations R and
S that have L , R− t S− is the same permutation as (S tR)

−
. All this is still not enough to

ensure that the family of permutations that satisfy the open formula ‘ð(L )(R)’, if any, is closed
under t, and forms, then, a(n additive) group of permutations. Also requiring that

∀R,S
[
(LR ∧L S)⇒

[
ð(L )

(
R t S−

)
∧ ð(L )

(
R− t S

)]]
just amounts to requiring it. If L is a second-level (monadic) property such that L (L ), the
first-level binary relations satisfying the open formula ‘ð(L )(R)’, if any, form, then, a(n additive)

16One should better say ‘correspond to permutations’, since, strictly speaking, permutations are functions, not
relations. Let us adopt, however, a more straightforward, though abusive, language, for short.
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group of permutations, whose internal law of composition is t, whose neutral element is the
identity permutation, and whose inverse function is R 7−→ R−.

This group is not necessarily Abelian, for t is not commutative on permutations. But it
is endowed with a total and right-invariant order defined in terms of the composition operation.
Since, if H and K are two permutations whatsoever that satisfy ‘ð (L ) (R)’, requiring that HtK−

have the property L is equivalent to requiring that K and H bear a right-invariant strict-order
relation, let as say <L , on these permutations17. Hence, if this relation is conceived of as the
smaller-than relation (that is, ‘L HtK−’ or ‘K <L H’ are read as ‘K is smaller than H’), then
we can take the collection of the permutations that have L , if any, as the positive semi-group of
the group of permutations formed by the permutations that satisfy ‘ð(L )(R)’18.

3.5 Positive Classes and Domains of Magnitudes

Informally speaking, a nonempty positive class is a positival class whose domain is a totally-
ordered, dense and Dedekind-complete group of permutations, which is, by consequence, also

17The proof is simple. As it has been required that ¬LHtH−, we immediately have that ¬H <L H. As KtH−
is the same permutation as

(
H tK−

)−
, we have that LH tK− ⇒ ¬LK tH−, i.e. K <L H ⇒ ¬H <L K.

Again, if J is, also, a permutation that satisfies ‘ð (L ) (R)’, then J tK− is the same permutation as
(
J tH−

)
t(

H tK−
)
, and so we have that

(
LH tK− ∧L J tH−

)
⇒ L J tK−, i.e. (K <L H ∧H <L J) ⇒ K <L J.

Finally, as (H t J)t(K t J)− is the same permutation as HtK−, we have that LHtK− ⇒ L (H t J)t(K t J)−,
i.e. K <L H⇒ K t J <L H t J.

18In commenting his definition of positival classes, Frege (1893-1903, § II.175; Frege 2013, pp. 1712-722) claims
to have “tried [bemüht ]” to include in it only “necessary [nothwendigen]” and “mutually independent [einander
unabhängig]” conditions, though taking as unprovable his having succeeded in this. In a note added at the end of
his book (ibidem vol. 2, p. 243, Frege 2013, p. 2432), explicitly referred to this comment, he corrects himself by
observing that a proof could have been possible by means of counterexamples, though taking it to be “doubtful
[bezweifeln]” that these counterexamples could be given in his formal setting. Dummett (1991, p. 288) suggests that
his doubt concerned the independence of the condition we expressed by ‘∀R,S

[
(LR ∧LS)⇒ ð(L )

(
R− t S

)]
’

from the other ones characterizing a positival class, by observing that, in his developments concerning domains
of magnitudes, Frege appeals to this condition as late as possible (namely only in § II.218), after making explicit
(§ II.217) the “indispensability” of this condition for the purpose for which it is used, which, in our setting,
corresponds to prove that if H and K belong to a positive class and H is smaller than K over the positive
semigroup involved in this class, then K− is smaller than H− over the corresponding group. Adeleke, Dummett
and Neumann (1987, th. 2.1) have finally proved that this condition is actually independent of the others. When
transposed in our setting, the proof goes along the following lines. Let L ? be a property satisfying ‘L (X )’ except
for the condition at issue, G? be the structure formed by the permutations that satisfy ‘ð (L ?) (R), and H and

K two binary first-level relations having L ?. Insofar as
(
K− tH

)−
is the same permutation as H− t K, not

ensuring that K− tH satisfies ‘ð (L ?) (R)’ is the same as not ensuring that the disjunction

‘LK− tH ∨ ∀x, y
[
xH−y ⇔ xK−y

]
∨LH− tK’ i.e. ‘H− <L K− ∨H− =L K− ∨K− <L H−’

holds, namely that H− and K− are comparable according to the order over G?. It would follow that, besides of
not being a group, this last structure is not endowed with a total order, but only with a partial one. It can be
proved (ibidem, Lemma 1.2) that this partial order is an “upper semilinear order”—that is, a strict partial order
“such that the elements greater than any given one are comparable, and that, for any two incomparable elements,
there is a third greater than both of them”, or, more simply, a strict partial order that “may branch downwards,
but cannot branch upwards” (Dummett 1991, p. 288). But G? is a sub-structure of the group G formed by the
permutations that satisfy ‘ð (L ) (R), where L satisfies ‘L (X )’ as a whole. Hence, the condition at issue follows
from the others if and only if G? can be extended in no group other than G. To prove the independence of this
condition it is, then, enough to prove that there is a group including G? other than G. By Cayley’s theorem, any
group is isomorphic to a group of permutations. It is, then, enough to prove that there is a partially ordered group
whatsoever not isomorphic to G (that is, not totally ordered) that includes a sub-structure isomorphic to G?. This
is just what Adeleke, Dummett and Neumann do.
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Archimedean and Abelian19. By having a strict order available, the density condition can be
stated easily. For stating the Dedekind-completeness one, further means are required.

To this purpose, Frege defines the upper rims over a positival class. Let L be such that L (L ),
and A a sub-property of it. In our setting, an upper rim U of the collection of permutations
that have A over the collection of those that have L is a relation having L , such that any other
relation that has L and is smaller than U over the former collection has A . To define it, Frege
begins with a general definition, then applies it to positival classes. In the general case, both the
informal notion of an upper rim and the subsequent one of an upper limit become nonsensical.
Formally speaking, this is immaterial, however, since the following definition of positive classes
excludes that the deviant cases obtain in the case of such a class20.

Once again, there are two ways to render the general definition: either as

(3.3) ∀X ,Y ∀R
[
X `RY ⇔ ∀S

[(
X S ∧X R t S−

)
⇒ Y S

]]
,

or as

(3.3′) [(X )` (Y )] (R) := ∀S
[(

X S ∧X (R t S−
)
)⇒ Y S

]
.

The upper limit of a sub-class of a positival class is the greatest of all the upper rims of the
former over the latter, if there is one. Anew, Frege’s definition can be rendered in two ways:
either as

(3.4) ∀X ,Y ∀R
[
X  lRY ⇔

{
LX ∧X R ∧X `RY ∧ ¬∃S

[
X S ∧X S tR− ∧X `SY

]}]
,

or as:

(3.4′) [(X )  l (Y )] (R) :=

{
L (X ) ∧X R ∧ [(X )` (Y )] (R) ∧ ¬∃S

[
X S ∧X (S tR−)∧

[(X )` (Y )] (S)

]}
.

For short, read both ‘X `RY ’ and ‘[(X )` (Y )] (R)’ as ‘R is an upper rim of Y over X ’, and
both ‘X  lRY ’ and ‘[(X )  l (Y )] (R)’ as ‘R is the upper limit of Y over X ’.

Let P be a third-level monadic property of first-order binary relations. Informally speaking,
the relations that have it form a positive class if they form a positival one, and are such that:
for any relation R which has P, there is another relation S smaller than it over P (density);
any proper subclass Y of P which has an upper rim over P also has an upper limit over P
(Dedekind-completeness). These conditions can be rendered in two ways: either as

(3.5) ∀X

PX ⇔



LX ∧

∀R [X R⇒ ∃S [X S ∧X R t S−]]∧

∀Y

[[
∃R [X `RY ∧X R]∧

∃S [X S ∧ ¬Y S]

]
⇒ ∃T [X  lTY ]

]


 ,
19That a totally-ordered, dense and Dedekind-complete group (of permutations) is also Archimedean and Abelian

is in fact proved by Frege himself. He proves that a Dedekind-complete positival class is Archimedean (Frege 1893-
1903, th. 635, § II. 214), and that the domain of a positive class is Abelian (ibidem, th. 689, § II. 244). This is
the last theorem he proves. Insofar as the proof of the former theorem does not appeal to the condition considered
in footnote (18) above, Adeleke, Dummett and Neumann (1987, p. 516) restate these theorems as follows: a
Dedekind-complete upper semilinear order is Archimedean—which, of course makes it also a Dedekind-complete
total order; if the order of a group is dense, Archimedean and total, then the group is Abelian.

20See footnote 21 below.
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or as:

(3.5′) P (X ) :=



L (X )∧

∀R [X R⇒ ∃S [X S ∧X R t S−]]∧

∀Y

[[
∃R ([(X )` (Y )] (R) ∧X R)∧

∃S (X S ∧ ¬Y S)

]
⇒ ∃T [[(X )  l (Y )] (T )]

]

.

For short, read both ‘PX ’ and ‘P (X )’ as ‘X is a positive class’ or, more precisely, ‘the
first-level binary relations having X form a positive class’.

While (3.3), (3.4) and (3.5) are explicit definitions, and have to be licensed by some form of
fourth-order comprehension, (3.3′), (3.4′) and (3.5′) are abbreviation stipulations, and require no
form of comprehension stronger than (PCA2

∆1
0
)21.

From the previous remarks, it should be clear that if the second-level monadic property P
is such that P (P), then the permutations that respectively satisfy ‘ðPR’ or ‘ð (P) (R)’, if any,
form a totally-ordered, dense and Dedekind-complete group of permutations. This is just what a

21Comparing (3.5) and (3.5′), on the one side, with (3.3-3.4) and (3.3′-3.4′), on the other, allows us to see why
the deviant cases pertaining to the definition of an upper rim and an upper limit become immaterial by passing
to the definition of a positive class. For short and simplicity, we only consider (3.3′-3.5′). The right-hand side
of (3.3′) fails, as such, in rendering the informal notion of an upper rim since it does not express the two crucial
conditions that Y be a sub-class of X , and that X be a positival class and R belong to it. This makes ‘X RtS−’
do not render the condition that S be smaller than R over X . Hence, according to (3.3′), it could happen that
[(L ) ` (H )] (R) even if H is not a sub-class of L or R it is not such that any relation smaller than it over L has
H . It follows that the conjunction

L (L ) ∧LR ∧ [(L ) ` (H )] (R)

renders the informal condition that R be an upper rim of H over L except for the requirement that H be a
sub-class of L . What are the consequences of missing this requirement? To see it, let us write the implication

‘∀S
[(

X S ∧X R t S−
)
⇒ Y S

]
’ as ‘¬∃S

[
X S ∧X R t S− ∧ ¬Y S

]
’.

It this clear that this formula can be satisfied by L (as value of X ) and H (as value of Y ) even if H is not a
sub-class of L . For instance, this is just what happens, whatever first-level binary relation R might be, if L is a
sub-class of H . Hence, missing the mentioned requirement results in admitting that, for any R, if L is a sub-class
of H , then [(L ) ` (H )] (R). But suppose that the first-level binary relations that have L form a positival class
and that R be one of them, that is, that L (L ) ∧ LR. If R is not the smallest relation that has L , there is
certainly another relation S such that LS ∧LR t S−. Hence, for it to hold that

¬∃S
[
LS ∧LR t S− ∧ ¬H S

]
and [(L ) ` (H )] (R) ,

it is necessary that any such S have H . But if this is so, then L and H are not disjoint. This having been
established, rewrite the right-hand side of (3.4′) in agreement with (3.3′), i.e. as follows

L (X ) ∧X R ∧ ¬∃S
[
X S ∧X R t S− ∧ ¬Y S

]
∧ ¬∃T

[
X T ∧X T tR− ∧ ¬∃W

(
X W ∧X T tW− ∧ ¬Y W

)]
.

For this conjunction to hold, it has to exist a first-order binary relation that has X but not Y . The case where L
is a sub-class of H is then expunged from those in which it can happen that [(L )  l (H )] (R) for some R. Insofar
as (3.4′) implies that [(L )  l (H )] (R) only if L is positival, R has it, and [(L ) ` (H )] (R), it follows that, provided
that R be not the smallest relation having L , it can happen that [(L )  l (H )] (R) only if H is a sub-class of L
or, at least, L and H are not disjoint, but L is not a sub-class of H . Let now P be a property of first-level
binary relations satisfying the right-hand side of (3.5′), and, then, such that P (P). The sub-group formed by the
relations having it is, then, dense. If R has P, it cannot happen that it be the smallest relation having it. Hence,
it can happen that [(P) ` (H )] (R), only if H is either a subclass of P, or P and H are not disjoint, but P is
not a subclass of H . Hence P and H are not disjoint, that is, some relation having H has also P. Thus, even
if H is not a sub-class of P, it can happen that it has both some upper rims and an upper limit over P, which
is just what is relevant for both (3.4′) and (3.5′) to comply with the informal explanations given above.
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domain of magnitudes is in our setting. Indeed, for Frege, domains of magnitudes are nothing but
domains of positive classes. This suggests either the following explicit definition licensed, again,
only by an appropriate form of fourth-order comprehension,

(3.6) ∀X [MX ⇔ ∃Y [PY ∧ ∀R [X R⇔ ðY R]]] ,

or the following abbreviation stipulation requiring no comprehension stronger than (PCA2
∆1

0
),

(3.6′) M (X ) := ∃Y [P (Y ) ∧ ∀R [X R⇔ ð (Y ) (R)]] .

where both ‘MX ’ and ‘M (X )’ are to be read as ‘X is a domain of magnitudes’ or, more
precisely, ‘the first-level binary relations having X form a domain of magnitudes’.

4 Which Definition, in which System?

As a matter of fact, (3.6) and (3.6′) provide two different definitions of domains of magnitudes.
The former results from the explicit definition of the third-order predicate constant ‘M’. The
latter merely exhibits the third-order open formula briefly designated by ‘M (X )’, and involves
no explicit definition other than (Inversion) and (Composition). Both render Frege’s definition,
but require different logical resources, and play distinct roles in our setting.

Let us begin with the logical resources they require. A first difference is manifest: while
(3.6) requires a fourth-order system, a third-order system is enough for (3.6′). Though both
systems encompass no proper axioms, the former is, by far, more entangled than the latter. This
is not only because of its higher order, but also because of the forms of comprehension it has
to incorporate, in order to license (3.6). Besides (PCA2

∆1
0
)—or its instances (Composition-CA)

and (Inversion-CA)—, required to license (Composition) and (Inversion), it also calls for other
comprehension axioms, respectively required to license (Functionality) and (3.1-3.6)22. The latter
system only needs to involve (PCA2

∆1
0
), or merely (Composition-CA) and (Inversion-CA), instead.

First-order variables (and the usual logical constants) apart, the language of this latter system
has only to include dyadic second-order and monadic third-order variables, together with the

22Namely:

(CA3
∆1

0
) ∃X ∀R

[
X R⇔ φ∆1

0

]
[where ‘φ∆1

0
’ stands for a second-order predicative formula],

required to license (Functionality);

(PCA3
Σ2

1(1)

) ∀X ∃Y ∀R
[
Y R⇔ φΣ2

1(1)
(X )

]  where ‘φΣ2
1(1)

(X )’ stands for a third-order formula

involving a second-order existential quantifier
and the parameter ‘X ’

 ,
required to license (3.1);

(CA4
Π2

1(1)

) ∃X∀X
[
XX ⇔ φΠ2

1(1)

] [
where ‘φΠ2

1(1)
’ stands for a third-order formula

involving a second-order universal quantifier

]
,

required to license (3.2);

(CA4
Π2

1(1)

) ∃V∀X ,Y ∀R
[
X VRY ⇔ φΠ2

1(1)

]
[where ‘φΠ2

1(1)
’ is as in (CA4

Π2
1(1)

)],

required to license (3.3);
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corresponding quantifiers23, and the functional constants ‘−’ and ‘t’. Though third-order, this
system is, then, quite weak. As a matter of fact, we have nevertheless shown that Frege’s definition
of domains of magnitudes can be consistently rephrased in such a weak system, and is, then, so
rephrased, equiconsistent with it24. For future reference, call this system ‘L2PCA2

∆1
0
’.

It remains, however, that (3.6′), and, then, this very system, are suitable for our present
purpose only if we are content with admitting that a second-level property M is a domain of
magnitudes (or that the first-level binary relations that have it form such a domain) if and only
if it satisfies the right-hand side of (3.6′). Were we, instead, in need of defining a (third-level)
property that M has if and only if it is so, (3.6′) would no more be suitable, and we would have to
recur to (3.6) and the corresponding fourth-order and much stronger system. Provided that the
definition of positival and positive classes is, in the present setting, merely instrumental to that
of domains of magnitudes, the former attitude might be easily admitted for the corresponding
properties. But one might consider that the same attitude is not admissible in the case of these
very domains, whose definition is the final outcome of Frege’s work, on pain of missing a genuine
entity counting as such a domain, and, then, the definition itself.

Still, even if the definition of domains of magnitudes is the last step Frege reached in his
formalization of real analysis25, it is in no way the final step such a formalization should have
reached: this should have rather been an explicit definition of real numbers, and, possibly, of the
operations and relations making them form a totally ordered and Dedekind-complete field. Hence,
if Frege’s informal indications for reaching this final aim may be rendered in our setting without
defining the predicate constant ‘M’, there is no stringent reason for accepting the foregoing
argument, so that (3.6′) and L2PCA2

∆1
0

may be considered enough for the purpose of rendering

the result he was envisaging. In § 5, we will show that this can be actually done. We can, then,
conclude that, whereas (3.6), and the fourth-order system it requires, are suitable for the purpose
of defining domains of magnitude, as such, (3.6′) and L2PCA2

∆1
0

are so for the purpose of defining

real numbers as ratios on such domains. As this is our goal, we’ll go, then, for the latter option.
This is all the more justified because no form of comprehension can guarantee the existence

(CA4
Π3

1(1)

) ∃V∀X ,Y ∀R
[
X VRY ⇔ φΣ3

1(1)

] [
where ‘φΣ3

1(1)
’ stands for a fourth-order formula

involving a second-order existential quantifier

]
,

required to license (3.4);

(CA4
Π3

1(2)

) ∃X∀X
[
XX ⇔ φΠ3

1(2)

] [
where ‘φΠ3

1(2)
’ stands for a fourth-order formula

involving a third-order universal quantifier

]
,

required to license (3.5);

(CA4
Π3

1(2)

) ∃X∀X
[
XX ⇔ φΣ3

1(2)

] [
where ‘φΠ3

1(2)
’ stands for a fourth-order formula

involving a third-order existential quantifier

]
,

required to license (3.6).
23Notice that a third-order quantifier only occurs once: in the right-hand side of (3.5′). This single occurrence

is however essential for the definition of domains of magnitude to succeed.
24A note of caution. The fact that, when rephrased as suggested, Frege’s definition is equiconsistent with this

system does not entail at all that the original definition requires no impredicative comprehension, and is, then,
consistent in itself. It crucially involves the function ξ _ ζ, which cannot be defined without impredicative
(second-order) comprehension.

25To be more precise, Frege offers no explicit formal definition of domains of magnitudes, and rather is content
with informally claiming that a domain of magnitudes is the domain of a positive class.
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of positival and positive classes and domains thereof. Surely, by the standard interpretation of
higher-order logic, the stipulations (3.2′) and (3.5′-3.6′) being given, the following instances of
third-order impredicative comprehension

∃X ∀R [X R⇔ ∃Y (L (Y ) ∧ Y R)] ,

∃X ∀R [X R⇔ ∃Y (P (Y ) ∧ Y R)] ,

∃X ∀R [X R⇔ ∃Y (M (Y ) ∧ Y R)]

are enough to ensure the existence of the second-level properties that a first-level binary relation
has to have for being respectively included in a positival and a positive class and in a domain of
magnitudes. Again, the following instances of fourth-order predicative comprehension

∃X∀X [XX ⇔ L (X )] ,

∃X∀X [XX ⇔ P (X )] ,

∃X∀X [XX ⇔M (X )]

are enough to ensure the existence of the third-level properties of being a positival and a positive
class and a domain of magnitudes. Still, securing this existence is no substantial achievement,
since these properties would exist even if they were empty, or there were not enough relations
satisfying them, to make them play the required role in a definition of the reals.

Even more so, if we grant the extensional conception of properties and relations, we also have
to grant that, no matter how the first-order domain might be, both the empty first-level binary
relation and the empty second-level property exist26, which alone is enough to ensure that all
six foregoing second- and third-level properties exist, in turn, and are nonempty, since, according
to (3.2′) and (3.5′-3.6′), the empty second-level property is at the same time a positival class, a
positive one, and a domain of magnitudes27.

26Frege is not clear about what he takes to make a property or a relation exist, if at all. It is even plausible to
ascribe him an intensional conception, which makes the talk of existence of properties and relations inappropriate
(Panza 2015). What is unquestionable is that he does not explicitly endorse any sort of comprehension axiom, by
rather pervasively admitting of a substitution policy which we could consider as equivalent to full second-order
comprehension. In the light of BLV, our replacing value-ranges of binary first-level relations with these very
relations seems, however, in line with granting the extensional conception of properties and relations while doing
semantic considerations about L2PCA2

∆1
0
. This means informally taking a n + 1-order m-adic predicate variable

to range on all the subsets of ordered m-tuples of the elements of the n-order domain (n,m = 1, 2, . . .), and a
predicate constant to designate one of these subsets.

27Let E0 be the second-level empty property. From (3.2′) it follows that L(E0), since ∀R¬ [E0R]. Let V be
the empty first-level binary relation, and E1 the second-level property of being this property. If R is a first-
level binary relation (extensionally) distinct from V, then, we have that both E1V and ¬E1R. Moreover, from
(Funcionality), (Inversion′) and (Composition′), it follows that I (V), and that V extensionally coincides both
with V− and with V t V−, and, then, also with V− t V (see Frege, 1893-1903, § II.164). This is enough to
show that V does belong to no positival (and, then, positive) class, and that both ¬L(E1) and L∗(E1), where
‘L∗(X )’ is the abbreviation of the formula resulting from the right-hand side of (3.2′), by skipping the conjunct
‘¬X R t R−’. Then, E1 is positival, except for admitting the possibility that the identity relation be included
in it. Thus, both the second-level properties [R : ∃Y (L (Y ) ∧ Y R)] and [R : ∃Y (L∗ (Y ) ∧ Y R)] and the third
level ones [X : L (X )] and [X : L∗ (X )] not only exist by appropriate forms of comprehension, but are also
nonempty. Consider now (3.5′). It is enough to observe that L(E0) and ¬∃R [E0R] to conclude that P(E0).
Look, then, at E1. Insofar as R t V− coincides with V, whatever first-level binary relation R might be, from
(3.3′) it follows that [(E1)`(Y )] (R) if and only if Y is E1 itself. Insofar as ∀S¬ [E1S ∧ ¬E1S], from (3.5′) it also
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Clearly though, if a positival class exists that includes at least a first-level binary relation, then
it necessarily includes infinitely many (extensionally) distinct relations, which are continuously
many if the class is positive28. And, if this holds for a positive class, it also holds for its domain. It
follows that a positive class and a domain of magnitudes exist, which include at least a first-level
binary relation, if and only if there exists one including continuously many of them. No semantic
consideration is, however, apt to prove the existence of nonempty positive classes and domains
thereof. To prove it, it is necessary to prove that there are enough objects, for defining on them
continuously many appropriate relations.

This was the crucial challenge for Frege’s definition of the real numbers, and it is also ours.
Before tackling it, it is, however, in order to see what makes this proof indispensable both for
Frege’s and for our purposes. This requires looking at how Frege’s original theory of the reals as
objects can be revived in our setting, on the basis of (3.5′).

5 Real Numbers as Objects

Apart from some generalities, most of which we already discussed above, and the sketchy outline
of a possible existence proof for nonempty domains of magnitudes, which we will consider in § 6.1,
the pars construens of part III of Grundgesetze only contains the definition of these domains. No
precise indication of how to define the real numbers is available. The only thing that is clear is
that these numbers should be defined as ratios of magnitudes, and that these ratios have to be

follows that P∗(E1), where ‘P∗(X )’ is the abbreviation of the formula resulting from the right-hand member of
(3.5′) by replacing ‘L (X )’ with ‘L∗ (X )’. So, the properties [R : ∃Y (P (Y ) ∧ Y R)], [R : ∃Y (P∗ (Y ) ∧ Y R)],
[X : P (X )] and [X : P∗ (X )] not only exist by appropriate forms of comprehension, but they are also nonempty.
Finally, consider (3.6′). Provided that ‘M∗(X )’ be the abbreviation of the formula resulting from the right-hand
side of (3.6′) by replacing ‘P (X )’ with ‘P∗ (X )’, it is immediate that both M(E0) and M∗(E1), just because
P(E0) and P∗(E1) and the domains of E0 and E1 respectively coincide with E0 and E1 themselves. Hence, the
properties [R : ∃Y (P (Y ) ∧ Y R)], [R : ∃Y (P∗ (Y ) ∧ Y R)], [X :M (X )] and [X :M∗ (X )], too, not only exist
by appropriate forms of comprehension, but are also nonempty. Notice thatM∗ does not (extensionally) coincide
with M, since M∗(E1), but not M(E1).

28More precisely, this is with respect to the full model of L2PCA2
∆1

0
, which we also take as its intended one,

where the first-order variables, x, y, z, . . . vary over a large enough domain A of objects, the second-order dyadic
variables R, S, T , . . . vary over the full power set of A×A, and the third-order monadic variables X , Y , . . . vary
over the full power set of the power set of A. It is, indeed, easy to see that L2PCA2

∆1
0

is far from categorical. A

simple way to see it (thanks to Andrew Moshier for suggesting it to us) is to observe that the lack of third-order
comprehension makes this system have a model where the third-order variables vary over the empty set. In this
model, all closed formulas beginning by a third-order universal quantifier, as the third conjunct in the right-hand
side of (3.5′), are vacuously true. This makes ‘P (X )’ trivially satisfied by countably many (appropriate) binary
relations (whereas PCA2

∆1
0

makes any model of L2PCA2
∆1

0
include countably many first-level binary relations).

One might be surprised we take the full model to be the intended model, rather than an appropriate Henkin
one. Still, we think a restriction on comprehension, or even the lack of it, is no reason for imposing a restricted
semantics: one thing is the logical resources, in particular the instances of comprehension, required for a definition;
another the selection of the intended model. The former are deductive, syntactical tools required to formulate
definitions; the latter depends on semantic considerations relative to the informal piece of knowledge that the
relevant system is expected to render—which, in this case, involves the idea of a positive class as a complete semi-
group of permutations. We are not going to take a stand on this matter, here, but costs and benefits are worth
mentioning. Should our definition be required to recover positive classes including exactly 2ℵ0 permutations, then
the intended semantic is to be clearly full. If impredicativity were deemed a price worth paying for this purpose,
one should also be aware of the heavy-duty logical resources called for it.
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defined as objects, i.e., first-order items, logically speaking29.

5.1 Euclid’s Principle with Natural Numbers

A simple way to accomplish this plan is by an abstraction principle governing an operator taking
pairs of relations (i.e. magnitudes) from a domain of magnitudes as arguments and having objects
(i.e. ratios) as values. As suggested by Simons (1987, pp. 39–40) and Dummett (1991, pp. 290–
91), this can be done by rephrasing definition V.5 of Euclid’s Elements, and defining the relation
of proportionality between four magnitudes taken two by two30

This raises a technical difficulty, however. Whereas this definition applies only if the magni-
tudes composing each pair are such that it cannot be the case that any multiple of one of them
be smaller, equal, or greater than any multiple of the other, this condition is not met by pairs of
magnitudes of the same domain, since, differently from what happened for Euclid’s ones, these
are intended to be either positive, negative, or null. A way to solve the difficulty is by appropri-
ately modifying the very structure of Euclid’s definition, in order to get the following abstraction
principle, which deserves, nevertheless, the name of ‘Euclid’s Principle’ (or ‘EP’, from now on),

(EP)


∀(P)X ,X ′

∀(ð(X ))R ∀X S

∀(ð(X ′))R
′ ∀X ′S′





R [R,S] = R [R′, S′]⇔

[
X R ∧X ′R′∧

∀Nx, y(xR <X yS ⇔ xR′ <X ′ yS′)

]
∨

[
X R− ∧X ′R′−∧

∀Nx, y(xR− <X yS ⇔ xR′− <X ′ yS′)

]
∨

[
∀z, w

[
(zRw ⇔ z[S t S−]w)∧

(zR′w ⇔ z[S′ t S′−]w)

]]




,

where:

– ‘R’ is the relevant abstraction operator;

– ‘∀(P)X [ϕ]’ abbreviates ‘∀X [P (X )⇒ ϕ]’, and the same for ‘X ′’;

29From what he writes in the very § of his treatise, it seems that Frege was also requiring that real numbers
form themselves a domain of magnitudes (Frege 1893-1903, § II.245; Frege 2013, p. 2432):

The commutative law for the domain of a positive class is thus proven. The next task is now to
show that there is a positive class, as indicated in § 164 [see p. 2, above]. This opens the possibility
of defining a real number as a ratio of magnitudes of a domain that belongs to a positive class.
Moreover, we will then be able to prove that the real numbers themselves belong as magnitudes to
the domain of a positive class.

This further requirement would have not only uselessly entangled Frege’s own first-order definition, if he completed
it (Dummett 1991, pp. 190-91), but it is also logically incompatible, in our predicate setting, with the requirement
that real numbers be objects. This is why we will set it aside in our reconstruction.

30As observed by Dummett (1991, pp. 282–83), Euclid’s definition, probably tracing back to Eudoxus, in fact,
had been explicitly appealed to by Hölder in his paper on the “axioms of quantity” (Hölder 1901), which appeared
two years before the second volume of the Grundgesetze. But, apparently, Frege’s was not aware of this. On Hölder
(1901), cf. B laszczyk (2013), which also sums up how the notion of magnitude was investigated around the end of
19th century by several mathematicians, including Du Bois-Reymond, Stolz, and Weber, by explicitly referring to
Euclid’s theory, and achieving results mathematically equivalent to Frege’s.
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– ‘∀(ð(X ))R [ϕ]’ abbreviates ‘∀R [ð (X ) (R)⇒ ϕ]’, and the same for ‘X ′’ and ‘R′’;

– ‘∀X S [ϕ]’ abbreviates ‘∀S [X R⇒ ϕ]’, and the same for ‘X ′’ and ‘S′’;

– ‘∀Nx [ϕ]’ abbreviates ‘∀x [Nx⇒ ϕ]’, and the same for ‘y’;

– ‘N’ denotes the property of being a natural number;

– ‘xR’ abbreviates ‘R tR t . . . tR︸ ︷︷ ︸
x times

, and the same for ‘y’, ‘S’, ‘S′’, R′’, ‘R−’, ‘R′−’;

– ‘xR <X yS’ abbreviates ‘X yS t (xR)−’, and the same for ‘X ′’, ‘R′’, ‘S′’, ‘R−’, ‘R′−’.

Informally speaking, EP states that for whatever pairs of domains of magnitudes, issued by
two positive classes P and P ′31, and whatever two ordered pairs of permutations R, S and R′,
S′, such that R, and R′ respectively belong to the domains of these classes, while S and S′ belong
to the classes themselves (and are, then, intended as positive), the ratio R [R,S] of the elements
of the first pair is the same as the ratio R [R′,S′] of the elements of the second pair if and only if:

– either both the first elements R and R′ of these pairs belong to the respective positive
classes P and P ′ (and are, then, intended as positive), and their equimultiples are always
smaller than the equimultiples of the second elements32;

– or both the inverses R− and R′− of the first elements R and R′ of these pairs belong to
the respective positive classes P and P ′ (so that R and R′ are intended as negative), and
their equimultiples are always smaller than the equimultiples of the second elements;

– or both the first elements R and R′ of these pairs are the identity relation (and are, then,
intended as null).

So rephrasing Euclid’s definition surely solves the technical difficulty, but it does not solve
all problems: though EP involves neither a predicate constant ‘P’ for the third-level property of
being a positive class, nor a functional constant ‘ð’ for the domain operator, but merely depends
on the stipulations (3.5′) and (3.1′), it cannot, as such, be added to L2PCA2

∆1
0

as a new axiom,

so as to get an extended system in which real numbers are to be defined. There are two reasons
for that. First of all, EP involves the predicate constant ‘N’ for the first-level property of being
a natural number, which is not and cannot be defined within L2PCA2

∆1
0
. Secondly, it involves

the symbol ‘xR’ (or ‘R tR t . . . tR︸ ︷︷ ︸
x times

’) (where ‘x’ is a variable ranging over the natural numbers)

whose use in a formal system is licensed only if this latter contains a device to count the iterated
applications of the functional constant ‘t’, which is not and cannot be provided within L2PCA2

∆1
0
.

A way to overcome the first issue is to extend L2PCA2
∆1

0
to a stronger system, in which the

property of being a natural number can somehow be defined, e.g. by adding HP as a new axiom

31Notice that EP does not involve domains of magnitudes as such, but rather positive classes and their domains.
This is perfectly in line with Frege’s missing a formal definition of these domains: see footnote (25), above.

32Notice also that, whereas Euclid’s definition requires that the equimultiples of the first and the third, among
the four relevant magnitudes, “alike exceed, are alike equal to, or alike fall short of [ἅμα ὑπερέχῃ ἢ ἅμα ἴσα ᾖ ἢ ἅμα
ἐλλείπῃ]” (Euclid EH, vol. II, p. 114) the equimultiples of the second and the fourth, we can just require that the
equimultiples of the first and the third magnitudes all be smaller than those of the second and the fourth, since,
as noticed by Scott (1958-59), in the case of Archimedean magnitudes, the latter condition entails the former.
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and appropriately extending its language by monadic first-order predicates, to make it include
Frege Arithmetic (FA). This would be, however, a quite radical move, which would also openly
conflict with Frege’s requirement of non-arithmeticity for his definition of real numbers. Even
more so, it would not overcome the second issue, unless the new system were supplied by some
ingenious device not usually available in (the current versions of) FA.

A much less radical and costly, though a bit laborious, way to overcome both issues at once
is available. It is in fact suggested by a trick Frege appeals to in proving the Archimedeanicity
of positive classes (Frege, 1893-1903, §§ II.199-214). It consists in amending EP with the help of
some new abbreviation stipulations, which merely require adding new third-order binary variables.

5.2 Euclid’s Principle without Natural Numbers

Let us begin by adopting the following new abbreviation stipulation:

D(T ) (R,S) := ∀x, y (xSy ⇔ x[T tR]y) .

Let R, S, and T, be whatever first-level binary relations. According to this stipulation, the
formula ‘D(T) (R,S)’ asserts that S results from, or extensionally coincide with, the composition
of T and R. Hence, ‘D(R) (R,S)’ asserts that S results from the composition of R with itself. In
the notation employed in stating EP, this means that S coincides with 2R.

This allows to simulate the usual definition of the weak ancestral of a binary relation:

D
tt
(R) (S) := ∀X




X R∧

∀R′, S′
[[

X R′∧

D(R′) (R′, S′)

]
⇒X S′

] ⇒X S

 .
This makes the formula ‘Dtt(R) (S)’ assert that S extensionally coincides with R or with the relation
resulting from a iterated composition of R with itself, and is, then, a multiple of R itself. In the
notation employed in stating EP, this means that S coincides with nR, for some natural number
n. Let, now, P be a positive class, and R a relation in it. It is clear that if Dtt(R) (T) and Dtt(R) (S),

then both T and S belong to P. Suppose it is so, and that PT t S−. We can, then, take S
to be smaller than T over P. Hence, if also P ′ is a positive class (either distinct from P or
not), R′ is a first-level binary relation that belongs to it, and it is also the case that Dtt(R′) (T′)

for some first-level binary relation T′, then T is the same multiple of R over P as T′ of R′

over P ′ if and only if there are as many first-level binary relations that satisfy the open formula
‘Dtt(R) (S) ∧PT t S−’ as those that satisfy the other open formula ‘Dtt(R′) (S′) ∧P ′T′ t S′−’.

This suggests enriching the language of L2PCA2
∆1

0
by introducing third-order binary variables,

ranging over second-level binary relations between first-level such relations, and adopting the
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following further abbreviation stipulation

(5.1) (X ,X ′)E (R, T,R′, T ′) :=



Dtt(R) (T ) ∧Dtt(R′) (T ′)∧

∃R



∀S


(
Dtt(R) (S) ∧ S vX T

)
⇒

∃!S′
[
SRS′ ∧Dtt(R) (S′) ∧ S′ vX ′ T ′

]
∧

∀S′


(
Dtt(R′) (S′) ∧ S′ vX ′ T ′

)
⇒

∃!S
[
SRS′ ∧Dtt(R) (S) ∧ S vX T

]





,

where ‘R’ is such a variable, and ‘S vX T ’ abbreviates ‘X T tS− ∨∀x, y [xSy ⇔ xTy]’, and the
same as for ‘X ′’, ‘T ′’ and ‘S′’. Thus, if P, P ′, R, R′, T, and T′ are as above, then the formula
‘(P,P′)E (R,T,R′,T′)’ asserts that T is the same multiple of R over P as T′ of R′ over P ′.

For short, let us, now, adopt this other abbreviation stipulation:

(X ,X ′)E
(R,T,R′,T ′)
(S,U,S′,U ′) := (X ,X ′)E (R, T,R′, T ′) ∧ (X ,X ′)E (S,U, S′, U ′) .

EP can, then, be restated as follows:

(EP∗)


∀(P)X ,X ′

∀(ð(X ))R∀X S

∀(ð(X ′))R
′∀X ′S′





R [R,S] = R [R′, S′]⇔


X R ∧X ′R′ ∧

∀T,U, T ′, U ′
 (X ,X ′)E

(R,T,R′,T ′)
(S,U,S′,U ′) ⇒

(T <X U ⇔ T ′ <X ′ U ′)


∨


X R− ∧X ′R′−∧

∀T,U, T ′, U ′
 (X ,X ′)E

(R−,T,R′−,T ′)
(S,U,S′,U ′) ⇒

(T <X U ⇔ T ′ <X ′ U ′)


∨

[
∀zw [zRw ⇔ z[S t S−]w]∧

∀zw [zR′w ⇔ z[S′ t S′−]w]

]





.

It should be easy to verify that, informally speaking, EP∗ has the same content as EP. But
it expresses this content in the language of L2PCA2

∆1
0
, merely enriched by the addition of third-

order binary variables as ‘R’. This addition being admitted, EP∗ can, then, be added to this
system as a supplementary axiom. Since EP∗ is an abstraction principle, its left-hand side is a
first-order identity (i.e. ‘R [R,S]’ and ‘R [R′, S′]’ are singular terms). Moreover, its right-hand
side involves no constant other than ‘−’ and ‘t’. Hence, adding it to L2PCA2

∆1
0

requires no

further comprehension axiom. The theory obtained is, then, a third-order one, including first-
order, second-order binary, and third-order monadic and binary variables, but only admitting
predicative second-order comprehension.
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5.3 Real Numbers

Though EP∗ supplies the required grounds for defining real numbers as objects, this theory falls
short of achieving it. All that one can do, in the light of it, is informally (and meta-theoretically)
identify these numbers with ratios like R [R,S]. If a predicate constant designating the first-
level property of being a real number is to be available, one also has to admit a new form of
comprehension, for licensing the following explicit definition:

(5.2) ∀x
[
Rx⇔ ∃(P)X ∃(ð(X ))R∃X S [x = R [R,S]]

]
.

What we need, then, is the following second-order third-orderly impredicative axiom-scheme:

(CA2
Σ2

1
) ∃X∀x

[
Xx⇔ φΣ2

1

]
,

where ‘φΣ2
1
’ stands for a third-order formula involving a third-order existential quantifier—

together with a second-order one.
It is then only in such a (highly) impredicative third-order theory obtained from L2PCA2

∆1
0

by

adding to it both the proper axiom EP∗ and the comprehension axiom-schema (CA2
Σ2

1
), that the

property of being a real number can be properly defined in our predicate setting. For short, let
us call this theory ‘FMR’ (for ‘Frege’s (theory of) magnitudes (and) real (numbers)’). If such an
impredicative theory were to be avoided, definition (5.2) should be omitted. At most, one could
recur to a new abbreviation stipulation as

(5.2′) R (x) := ∃(P)X ∃(ð(X ))R∃X S [x = R [R,S]] ,

by then admitting that a real number is an object that satisfies the open formula ‘R (x)’. Call
‘FMR′’ the theory got from L2PCA2

∆1
0

by merely adding EP∗, and replacing (5.2) with (5.2′). The

same argument used above to prefer (3.6′) over (3.6) does not apply here, since the definition of
real numbers is the final purpose to be reached to revive Frege’s program. Hence, if one considers
that this aim is reached only if a property, counting as the property of being a real number, is
directly expressed as such, in the relevant formal setting, on pain of missing the definition itself,
there is no other option than going for FMR.

According both to (5.2) and (5.2′), a real number is a ratio over some domain of magnitudes.
This might appear odd at first glance, since, given different such domains, this might seem to
entail that different sorts of real numbers arise, according to the domain of magnitudes they are
defined on. However, from EP∗, it easily follows that, if there are several domains of magnitudes,
for any ratio (or R-abstractum) on one of them, there is just another ratio (or R-abstractum) on
each other of them that is the same object as the former—i.e. that the ratio of two first-level
binary relations having a certain property M such that M (M ) is the same object as the ratio
of two first-level binary relations having another property M ′ such that M (M ′).

Hence, once real numbers are defined, either in FMR or in FMR′, as ratios of magnitudes,
one can define the usual properties, relations and functions on them, making the development of
real analysis possible, within these systems—or some appropriate extensions of them, if needed.
We stop here, however, and rather tackle some meta-theoretical issues concerning these systems,
and the corresponding definitions.
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6 Existence Proofs

It is easy to see that EP∗ implicitly defines continuously many objects to be identified, either
through (5.2) or through (5.2′), with the real numbers, only in the presence of nonempty positive
classes. If there were no first-level binary relations R such that ∃X [P (X ) ∧X R], its second-
order universal quantifier would range on an empty domain, and this would render the right-hand
side of EP∗ nonsensical, as well as, then, both (5.2) and (5.2′) Still, a nonempty positive class
exists if and only if this is so for a nonempty domain of magnitudes. Hence, an existence proof
of such a domain (or of a positive class) is an indispensable supplement to our definition of real
numbers: it is required to make it sensible.

Of course, no form of comprehension might be appealed to in order to deliver this proof,
since no comprehension axiom can secure the existence of an R such that ∃X [M (X ) ∧X R].
Moreover, it would not be enough to observe that the empty first-level binary relation exists no
matter what the first-order domain looks like, since, as observed in footnote (27), this relation
neither forms nor belongs to a positival (and, then, positive) class. What is to be proved, then,
is that there are enough appropriate (or appropriately related) objects for defining on them
continuously many (extensionally) distinct first-level binary relations forming a nonempty domain
of magnitudes33.

This cannot be accomplished by a proof following a similar pattern as the one that allows
neologicists to prove the existence of natural numbers within the very theory in which they define
them, namely FA. This proof goes as follows:

– The concept [x : x 6= x] exists by predicative comprehension;

– Then, HP allows to define 0 as # [x : x 6= x];

– By logic, [x : x 6= x] ≈ [x : x 6= x];

– Hence, by HP, 0 = 0, from which it follows that 0 exists34;

– Since HP allows to define the successor relation on the whole first-order domain, natural
numbers can be defined as the objects that bear the weak ancestral of this relation to 0;

33This is just what Frege seems to signal at the beginning of § II.164, in the passage we have quickly referred to
in footnote (27) above (Frege 1893-1903, § II.164; Frege 2013, pp. 1602-612; notice that the English term ‘Relation’
with capital ‘R’ is used here to translate the German term ‘Relation’, which Frege uses, as opposed to ‘Beziehung’,
translated instead as ‘relation’, to name value-ranges of relations):

We can now approach the question raised earlier (§ 159) from where we obtain the magnitudes whose
ratios are real numbers. They will be Relations; and they must not be empty, i.e., they must not
be extensions of relations in which no objects stand to each other. For such relations have the same
extension; there is only one empty Relation. We could not define any real number with it. If q is the
empty Relation, then [. . . ][q−] is the same; likewise [. . . ][q t q−]. Also the composition of Relations
on our domain of magnitudes cannot result in the empty Relation; but that would happen if there
were no object to which some object stood in the first Relation and which also stood to some object
in the second Relation. We thus require a class of objects that stand to each other in the Relations
of our domain of magnitudes, and, in particular, this class has to contain infinitely many objects.

34Notice that, since HP licenses the formation of the term ‘# [x : x 6= x]’, the identity ‘0 = 0’ might be derived,
in classical logic, as an immediate consequence of the theorem ‘∀x [x = x]’. Still, if such a proof of the existence of
0 were admitted, HP would inevitably be endowed with an existential import that would be incompatible with its
alleged analyticity. This is one of the reasons why it is often advanced that the subjacent logic to FA should be
free: the matter has been firstly tackled in Shapiro & Weir (2000), §§ IV-V; but see also Payne (2013).
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– Proving—from HP plus (impredicative) comprehension—that any such object has a (unique)
successor is, then, enough to prove, by countable induction, that all the natural numbers
exist.

This pattern only allows to prove that there are objects falling under a first-level concept,
given both a way to identify these objects collectively, as values of a particular function such as
#, and a way to identify them individually, as values of this function for particular concepts as
arguments. In our case, one should, instead, prove that there are enough objects on which one can
define binary relations falling under some second-level concept complying with a certain structural
condition, where no particular way is given to identify both these objects and these relations either
individually (except for the identity relation) or collectively. Moreover, by appealing to countable
induction, this pattern can, at best, be suitable for proving the existence of countably many
objects, and—even if it were possible to show that such objects allow to define on them the
required binary relations35—the main task of the proof would just be to prove that, which is
certainly not something that might be done by following this pattern. Hence, though required
for making the very definition of real numbers sensible, the existence proof of nonempty domains
of magnitudes cannot be carried out in the theory FMR itself, and, a fortiori, in FMR′, in which
that definition is stated.

Two alternative strategies seem possible to deliver it. The first is in line with Frege’s per-
spective and looks for an alternative way to prove the existence of continuously many objects on
which continuously many permutations, forming a domain of magnitudes, can be defined. The
second departs from this perspective, and uses mathematical results unavailable to Frege. It
might be appealed to, as a sort of unhoped lifeline for Frege’s purpose, in order to avoid some
problems the former strategy suffers from. It consists of inquiring whether continuously many
permutations forming such a domain can be obtained from countably many objects, whose ex-
istence might, if needed, be proved by applying the previous proof-pattern. Let us call the first
strategy ‘inflationary’ and the second ‘non-inflationary’.

6.1 The Inflationary Strategy: Bicimal Pairs

The inflationary strategy can be implemented in at least two slightly different ways, in our setting.
One follows Frege’s own plan sketched in § II.164, and takes the existence of natural numbers
for granted. The other appeals, instead, to a restricted version of BLV, to get an ω-sequence of
objects other than Frege’s natural numbers. The structural similarity of these approaches makes
them suffer from the same difficulties. We merely consider the former. The reader might get an
idea of the latter from the way we deal with a restricted version of BLV at the beginning of § 6.2.

Taking the existence of natural numbers for granted, Frege considers the pairs < n, {mi}∞i=0 >
composed by a natural number and an infinite sequence of positive natural numbers. These pairs
are apt to code Cauchy series like

(6.1) n+

∞∑
j=1

λj
1

2j
(λj ∈ {0, 1}),

under the condition that mi is the i-th value of j such that λj = 1 and the λj are not all 0 after
a certain range. It follows that, once addition is appropriately defined on these pairs, one can

35We shall hark back on this matter in § 6.2 below.
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associate to each of them, let us say α, a binary (first-level) relation Rα such that, for any pair
of these same pairs x and y, xRαy if and only if x + α = y. It is easy to see that this allows to
define as many relations as pairs like < n, {mi}∞i=0 > , namely continuously many ones, and that
these relations are such that:

– both they and their inverses are functional, since, for any such pairs x, y and z, x + α =
y ∧ x+ α = z and y + α = x ∧ z + α = x each entails that y = z ;

– their composition mimics an addition on the pairs they are defined on, since, if β is also
such a pair, RαtRβ extensionally coincides with Rα+β , which is proved by observing that,
for any such pairs x and y, x + (α + β) = y if and only if there is such a pair z such that
x+ α = z ∧ z + β = y;

– the identity relation is not one of them, since no Cauchy series like (6.1) is equal to zero.

It is, then, easy to verify that these relations form a positive class, from which a domain of
magnitudes is obtained by merely adding their inverses and the identity relation.

Objects rendering these pairs in a formal setting are quite easy to define in any second-order
version of arithmetic. A simple way to do it (Panza, 2016 and Panza, FC3) is by adding a new
axiom, under the form of the following abstraction principle:

(FP) ∀NXY ∀Nxy [< x,X >=< y, Y >⇔ (x = y ∧ ∀z (Xz ⇔ Y z))] ,

where the index ‘N’ signals that the universal quantifiers are restricted to properties of natural
numbers and to these very numbers respectively—the acronym ‘FP’ stands fro ‘Frege’s Principle’,
and emphasizes the fact that this principle is a restricted adapted form of BLV.

Of course, to go ahead, we have to prove that FP is consistent. Assuming the consistency of
second-order arithmetic, to this purpose, it is, however, enough to observe that FP has a model
in the Vω+1 stage of ZF’s hierarchy. This is because second-order arithmetic has a model in the
Vω segment of ZF, and consequently the set ℘ω of all subsets of the set of natural numbers is at
stage Vω+1, and provides the required model.

This having been established, we can look at the pairs like < n,P >, implicitly defined by
FP, and formed by a natural number n and a property P of natural numbers, and select among
them those whose second element P is an infinite property of natural numbers—i.e. it is such
that ∀Nx [Px⇒ ∃Ny [x < y ∧Py]]. For short, call them ‘bicimal pairs’. Clearly, FP allows to
distinguish continuously many such pairs.

They can be arranged into two partitions, such that any bicimal pair < n,P > belongs to
one partition if P0, and to the other if ¬P0. A total order can, moreover, be defined on these
pairs, in such a way that the pairs in the former partition count as positive, the pair < 0,N+ >
(where ‘N+’ designates the property of being a positive natural number) counts as the zero pair,
and the other pairs in the latter partition count as negative (more details are given in Panza,
2016, p. 417; others will be found in Panza, FC3). This makes the bicimal pairs form an additive
Abelian group, that can be proved to be dense, totally ordered and Dedekind-complete (and, then,
Archimedean), and can also be extended to a field by an appropriate definition of multiplication
(details are, again, to be found in Panza, FC3). It would, then, be not only very tempting, but
also rather natural to code the real numbers by bicimal pairs, so as to avoid the very definition
of domains of magnitudes and of ratios thereof as perfectly useless.
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Still, this is certainly not what Frege’s strategy should lead us to. In order to follow his
indications, one should rather define appropriate permutations on bicimal pairs and show that
they form a domain of magnitudes. This can easily be done by associating to any such pair
< n,P > the binary relation R<n,P> such that, for any two such pairs < y, Y > and < z,Z >,
< y, Y > R<n,P> < z,Z > if and only if < y, Y > + < n,P > = < z,Z >. It would, then, be
easy to verify that the relations associated with positive bicimal pairs just behave as those Frege
suggests to associate to his pairs, and form, then, a positive class, which is easy to extend to a
domain of magnitudes.

Following this path leads, then, to an arithmetical copy of the additive (ordered) group of
the real numbers, as an intermediate step in a much more complex, supposedly non-arithmetical
definition of them. Hence, real numbers might be ipso facto identified with bicimal pairs, by so
dramatically departing, however, from Frege’s purpose. The same happens for any other way of
pursuing the inflationary strategy: it inevitably leads either to encode the real numbers by objects
other than ratios of magnitudes and thus depart from Frege, or to define real numbers twice,
structurally speaking, by accepting the idea that the second definition requires a supplementary
axiom which is not at all required by the first, namely EP∗.

Though mathematically quite shocking, the former option poses no problem from a realist
perspective such as Frege’s, since the realist may argue that bicimal pairs are intrinsically not
real numbers, though they behave like them. We do not want to dig into this possibly rather odd
attitude. We merely observe that, in this perspective, the ratios on the appropriate permutations
defined on these pairs could not but be taken to be real numbers. Thus, the only way to avoid
concluding that, pace Frege, real numbers are intrinsically arithmetical objects would be to prove
that there are non-arithmetical nonempty domains of magnitudes. Insofar as EP∗ identifies the
ratios on any domain of magnitudes with the ratios on any other such domain, this would leave
room for arguing that being a real number is not intrinsically the same as being a ratio on
permutations defined on bicimal pairs, since such a ratio would merely provide one among other
possible and essentially distinct modes of presentation of such a number. But, then, how to prove
the existence of other, non-arithmetical nonempty domains of magnitudes?

6.2 The Non-Inflationary Strategy

As36 a matter of fact, also the non-inflationary strategy might be grounded on the assumption of
the existence of natural numbers. Strictly speaking, this is not necessary, however: it might also
be grounded on a consistently restricted version of BLV.

Let ‘F (X)’ be the abbreviation of a logical second-order formula stating that X is a property
satisfied at most by finitely many objects. A possibility is appealing to Dedekind-finiteness:

F (X) := ∀Y


∀x [[Y x⇒ Xx] ∧ ∃y [Xy ∧ ¬Y y]]⇒

¬∃R

[
∀z [Xz ⇒ ∃!z′ (zRz′ ∧ Y z′)]∧

∀z′ [Y z′ ⇒ ∃!z (zRz′ ∧Xz)]

]  .
The relevant restricted version of BLV, call it ‘FinBLV’, is, then, this:

(FinBLV) ∀(F)XY [εX = εY ⇔ ∀x (Xx⇔ Y x)] ,

36Both for this § and the following one, we are very much indebted to Mirna Džamonja, Andrew Moshier and,
overall, Alain Genestier who guided us in the understanding of Karrass and Solitar’s proof and annexed topics.
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where ‘εX’ and ‘εY ’ denote the extensions of X and Y , and the index ‘F ’ signals that the
universal quantifier is restricted to the (first-level) properties satisfying the formula ‘F (X)’37.

FinBLV implicitly defines a countable infinity of extensions. To see it, notice that [x : x 6= x]
is a finite property, whose existence is warranted by predicative second-order comprehension. So
FinBLV applies to it. Let � be its extension. Since it is a theorem of second-order (free)38 logic
that ∀x([x : x 6= x] ⇔ [x : x 6= x]), from FinBLV it follows that � = �, which entails that
∃x (x = �). One can, then, firstly appeal to second-order impredicative comprehension to define
a functional first-level binary relation on the whole first-order domain, by stating that

∀x, y [xSy ⇔ [∃XF [x = εX] ∧ y = ε [z : z = x]] ,

then define the weak ancestral of S, i.e. S∗=, and finally appeal to second-order predicative
comprehension to define the property E� of being an extension belonging to the S-succession
starting from �:

∀x[E�x⇔ �S∗=x].

This allows to accomplish the task by repeating, mutatis mutandis, the neologicist recursive proof
of the existence of natural numbers39.

Now, consider the symmetric group ΣN on the natural numbers, i.e. the (additive) group of
all permutations on N. We know that ΣN has cardinality 2ℵ0 . But we also know that it contains

37This principle is freely inspired by two different suggestions respectively advanced by Antonelli & May (2005,
p. 11), and by Boolos (1998a, p. 99; 1998b, p. 178), in particular by Boolos’ New V, i.e. ∀F∀G(εF = εG ↔
(Small(F )∨Small(G)→ F ≡ G)), where ‘Small ’ means ‘not equinumerous with the universal concept [x : x = x]’.
By remaining faithful to this suggestion, we should replace ‘Small ’ by ‘Fin’ (or take the former to mean ‘finite’),
and FinBLV by ‘ ∀F∀G(εF = εG ↔ (F (F ) ∨ F (G) → F ≡ G))’. Though this latter principle would not be
equivalent to FinBLV, we cannot see any relevant difference between them with respect to our purpose. We prefer
FinBLV simply because it makes immediately clear that infinite concepts do not matter, here, by ascribing to them
no extension, rather than ascribing to all of them the same extension.

38See footnote (34), above.
39The proof depends on the lemma that ∀x∃y [y = ε[z : z = x]]. Here is how this can be proved. FinBLV and
∀X∀x [Xx⇔ Xx] imply that ∀(F)X [εX = εX], and, then, ∀X(F)∃y [y = εX]. What is required is, then, to prove
that ‘[z : z = x]’ denotes a (finite) property, which is ensured by predicative comprehension with parameters, since
it entails that ∀x∃X∀z [Xz ⇔ z = x]]. Notice that this proof also holds in (negative) free logic: thanks to Ludovica
Conti for drawing our attention to this; see also Conti (2019, p. 145, fn. 426, and pp. 151-152). This lemma im-
plies, a fortiori, that ∀E�x∃y [y = ε[z : z = x]]. The very definition of the weak ancestral of S allows, then, to prove

quite easily the principle of induction for the FinBLV-abstracta having the property E� (or E�-abstracta, from now

on)—namely ‘∀X
[(
X � ∧X S−→

E�
X

)
⇒ ∀E�x [Xx]

]
’, where ‘X

S−→
E�

X’ abbreviates ‘∀E�x∀y [(Xx ∧ xSy)⇒ Xy]’.

With this principle at hand, it is, then, equally easy to prove that ∀E�x∃X [x = εX], as a consequence of the

stipulation that � = ε[x : x 6= x], from which it immediately follows that ∃X [� = εX]. By appealing to
∀E�x∃y [y = ε[z : z = x]], one gets that ∀E�x∃y [∃X [x = εX] ∧ y = ε[z : z = x]], that is, ∀E�x∃y [xSy]. Next, the

properties of the ancestral of a binary relation allow to prove that ∀E�x∀y [xSy ⇒ E�y], and so to conclude that

∀E�x∃E�y [xSy]. The existence of countably many E�-abstracta finally follows from proving by induction that

∀E�x[¬xS∗6=x], where S∗6= is the strong ancestral of S. This last part of the proof is a little bit harder than the
previous ones, but requires no specific skills: it just parallels the analogous proof of FA, by exploiting, like this
(together with the principle of induction and some properties of the strong ancestral, also) the obvious facts that
¬ � S∗6=� and ∀x, y, z [(xSy ∧ zSy)⇒ x = z]. Though quite simple, this proof of existence of countably many
E�-abstracta directly involves most of Peano’s second-order axioms as theorems about them. The axioms that do
not enter it, i.e. ‘¬∃E�x [0Sx]’ and ‘∀x, y, z [(xSy ∧ xSz)⇒ y = z]’ (the second of which would allow replacing the

relation S by the successor function), are, moreover, even easier to prove. Hence, if impredicative comprehension
is accepted, Peano’s second-order arithmetic is interpretable on the mentioned extensions—with no appeal to set-
theoretical assumptions on them. These extensions do not comply, however, with HP, which makes them crucially
differ from natural numbers as defined in FA.
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torsion elements40, which prevents both from defining on ΣN a total order compatible with the
group structure, and from making an injective map from a (nonempty) domain of magnitudes (if
any) into it surjective. It follows that ΣN does not provide a nonempty model for our Fregean
consistent definition of such a domain. Nevertheless, by a theorem by Karrass and Solitar (1956,
p. 65), ΣN provably “contains a copy of the additive group of the reals”. In other terms, there
is a subgroup of ΣN which is isomorphic to (R,+), and is, then, not only totally ordered, but
also Abelian, dense, Archimedean and Dedekind-complete. Since any totally ordered, dense and
Dedekind-complete group of permutations is a model of our definition of domains of magnitudes41,
ΣN contains such a model. Insofar as ΣN is isomorphic to the symmetric group on whatever infinite
countable set, it is also so to the symmetric group ΣE� formed by the E�-abstracta. Hence, Karras
and Solitar’s theorem entails that admitting the existence of this latter symmetric group ensures
the existence of a nonempty domain of magnitudes. It would, then, be enough to admit that it
makes sense to speak of all permutations on an infinite countable domain D of objects42, and that
the existence of (the elements of) D ipso facto entail the existence of the group formed by these
permutations, to conclude that the existence of a nonempty domain of magnitudes is ensured by
the existence of the natural numbers or of the E�-abstracta, because of an immediate corollary of
Karrass and Solitar’s result43.

Karrass and Solitar’s proof could certainly not have been within Frege’s reach. But it is
not very entangled, as such, and, under the mentioned admission, most of it can be conducted
constructively, which is something Frege seems to require for his proof.

Let I be an infinite countable set, for example an infinite subset of N. Let σ =
∐
i∈I

Ci be a

partition of N in infinite (countable) subsets Ci (i ∈ I), which makes
⋃
i∈I

Ci = N and Ch∩Ck = ∅,

for any distinct h, k in I. Let % : N −→ I be the (surjective) application defined by this partition,
associating to any n in N, the single element i = % (n) of I such that n ∈ Ci. Such a partition, and
therefore such an application, can easily be defined constructively. To make a simple example,
take I to be the set of all prime numbers plus 0, C0 the set of all natural numbers that are not
(positive) powers of a prime number, namely {0, 1, 6, 10, . . .}, and, for any prime number p, Cp

the set of all (positive) powers of p. Though we would not be (presently) able to write a general
formula providing, for any natural number n, the value % (n) of i, such that n ∈ S%(n), there is a
finite algorithm allowing us to calculate such a value % (n) for whatever given natural number n.

For any i in I, let πi be a permutation on Ci. Define π : N −→ N by establishing that
for any n in N, π (n) = π%(n) (n). This is clearly a permutation on N, so that π ∈ ΣN. If∐
i∈I

Si and % have been defined constructively, any πi, and therefore π, can also be so defined.

Supposing % be defined as in the previous example, we might, for example, take πi to be the
permutation exchanging the (2j − 1)-th element of any set Ci, according to the usual order on
N, with the 2j-th one, and vice versa (j = 1, 2, . . .). Then π would permute any natural number
with another natural number following or preceding it in this subset, according to this order:

40A torsion element of a group G is an element g of G such that gn = e for some natural number n, where e is
the identity element of G.

41More precisely, the second-order property of being a permutation belonging to any such group satisfies the
right-hand side of (3.6′).

42As Frege himself should have admitted, in order to make his own definition of domains of magnitudes sensible.
43Notice that though the definition of S∗= allows proving that the E�-abstracta form an ω-sequence, as showed

in footnote (39) above, all that is relevant here is the cardinality of set formed by these abstracta, namely the fact
that this set is countably infinite.
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π (0) = 1, π (1) = 0, π (2) = 4, . . . Insofar as the same can be done for any permutation πi on
any Ci, the application π : N −→ N defined by stating that π (n) = π%(n) (n) provides a group
monomorphism44

∏
i∈I

ΣCi
−→ ΣN, where

∏
i∈I

ΣCi
is the product of the symmetric groups on all

sets Ci—since, if {πi}i∈I and {π′i}i∈I are two families of permutations on all the sets Ci, then
{πi}i∈I ◦ {π′i}i∈I = {πi ◦ π′i}i∈I. Under the condition mentioned above, and provided all sets Ci

be (constructively) given, this further step of the proof is, also, constructively licensed.
By Cayley’s theorem, any group G is isomorphic to a subgroup of the symmetric group ΣG

on G itself. Thus, there is a group monomorphism (Q,+) −→ ΣQ from the additive group of
the rational numbers (Q,+) into the symmetric group ΣQ on Q. Though quite general, Cayley’s
theorem can easily be proved constructively, which also makes this new step of Karrass and
Solitar’s proof admissible from Frege’s perspective. A quite usual way to prove it is, for example,
by considering the translation τy : x 7−→ y ∗ x on the domain of G (where ∗ is the composition
law of this group), since it is easy to see that τ(a∗b) = τa ◦ τb, for any a, b in such a domain. This
proof directly applies to the present case, for G is nothing but (Q,+). To this purpose, we can
take Q to play the role of the domain of G and + that of ∗, and observe that τ(q+r) = τq ◦ τr,
for any q, r in Q. Notice, moreover, that this application is perfectly akin to Frege’s suggested
definition of permutations on the pairs < n, {mi}∞i=0 > in the outline of his existence proof.45

For any i in I, let us choose a bijection ϑi : Q −→ Ci from the set Q to the set Ci. Because of
the monomorphism (Q,+) −→ ΣQ, this engenders, for any such i, a new group monomorphism
(Q,+) −→ ΣCi from (Q,+) into the symmetric group ΣCi on any Ci, and, by composition,
a further group monomorphism

∏
i∈I

(Q,+) −→
∏
i∈I

ΣCi
from the product

∏
i∈I

(Q,+) of countably

many copies of the additive group (Q,+) into the product
∏
i∈I

ΣCi
. Again, if the partition π and

the application % are defined constructively, making the choice of the bijections ϑi and so getting
these two monomorphisms require no form of the Axiom of Choice, and, under the condition
mentioned above, is unquestionably constructive. By combining the monomorphisms

∏
i∈I

ΣCi
−→

ΣN and
∏
i∈I

(Q,+) −→
∏
i∈I

ΣCi , we finally get, constructively again, a final monomorphism

(6.2)
∏
i∈I

(Q,+) −→ ΣN.

This provides a constructive ground for Karrass and Solitar’s proof. But, for its completion,
a last step is needed, which, instead, requires non-constructive means and makes, then, the
whole proof non-constructive. Both additive groups (Q,+) and (R,+), enriched with the usual
multiplication by a rational number, can be regarded as vector spaces over the field (Q,+, ·), and
this is also the case for the product

∏
i∈I

(Q,+). When
∏
i∈I

(Q,+) and (R,+) are so regarded, it is

however not plain that they have a basis, unless Zorn’s lemma is appealed to, since this lemma
allows to prove that every vectorial space has a basis46. The non-constructive step of the proof

44A group monomorphism is an injective group homomorphism, i.e. an injective map µ from a group (G, ∗) to
another group (H, ?), such that µ (x ∗ y) = µ (x) ? µ (x) for any x, y in G.

45See § 6.1, above.
46By speaking of basis of a vector space, we more precisely mean, here, a Hamel basis. Let V be a vector space

on a field F. An Hamel basis of V is a set BV of linearly independent vectors in V, such that for any vector v in
V there is a (unique) finite subset {v1,v2, . . .vk} of BV such that v = a1v1 + a2v2 + . . .+ akvk, where a1, a2,
. . . , ak are elements of F.
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just consists, then, in appealing to this lemma for proving that
∏
i∈I

(Q,+) and (R,+) have a basis.

This makes it possible to appeal to a new theorem ensuring that, if a vector space has several
distinct bases, all of them have the same cardinality—which is, then, to be regarded as the
dimension of this space. For vector spaces with finite bases, this is quite easy to prove47. For vector
spaces whose generating sets are infinite, as

∏
i∈I

(Q,+) and (R,+), the proof is more entangled, but

can still be given constructively. In this case, the theorem can indeed be viewed as an immediate
corollary of another theorem asserting that the cardinality of any generating set of a vector space
V that can be regarded as the direct sum of an infinite family {Vλ∈Λ} of non-zero vectorial
sub-spaces is greater or equal to the cardinality of the set of indices Λ (Bourbaki, Algebra I, ch.
II, prop. 23, cor. 2).

Provided that two vector spaces on the same field (both having bases) are isomorphic if (and
only if) they have the same dimension,

∏
i∈I

(Q,+) and (R,+), when regarded as vector spaces

over (Q,+, ·), have the same dimension, and thus are isomorphic. This obviously entails that the
group monomorphism (6.2) results in a new group monomorphism

(R,+) −→ ΣN,

which makes ΣN contain a copy of (R,+), as was required to be proved.
If this proof is granted, together with the existence both of an infinite countable set D—as N

or the set formed by the E�-abstracta—and of the symmetric group ΣD on this set, the conclusion
follows that there is (at least) a totally ordered, dense and Dedekind-complete subgroup of ΣD.
Let (MD, ◦, <) be such a subgroup of ΣD. Claiming that (MD, ◦, <) is a domain of magnitudes
in agreement with definition (3.6′) is the same as claiming that the triple (MD,t,PD) satisfies
the open formula ‘[P (Y ) ∧ ∀R [X R⇔ ð (Y ) (R)]]’ entering the right-hand side of this definition,
with ‘MD’ as a value of ‘X ’ and ‘PD’ as a value of ‘Y ’, provided that: any binary relation R has
the property MD if and only if it is in MD, and the property PD only if it has the property MD;
‘t’ denotes the same operation on the binary relations that are in MD as that denoted by ‘◦’; and,
for any R,S in MD, PDRtS− if and only if S < R, so that PDR if and only if 0MD

< R—where
0MD

is, of course, the neutral element of (MD, ◦, <), namely the identity relation. To make this
claim sensible, we have, of course, to grant that these conditions ensure the existence of the two
second-level properties MD and PD, which requires third-order comprehension. Supposing it
is admitted, Karrass and Solitar’s result provably establishes that, under the admission of the
existence of D and ΣD, there is a nonempty domain of magnitudes, namely the ordered group
defined by the triple (MD,t,PD), since it entails that the properties PD and MD are such that
P (PD) and ∀R [MDR⇔ ð(PD) (R)], so that M (MD).

This being granted, it is, then, easy to prove that there are as many distinct binary relations
in such a domain as distinct ratios defined on it according to EP∗, namely that these ratios are
continuously many. In other terms, the ordered pairs [R,S] of binary relations, the first of which
has MD and the second PD, form continuously many distinct equivalence classes according to
the equivalence relation on the right-hand side of EP∗, under the replacement of both ‘X ’ and

47A simple combinatorial argument allows to prove that the cardinality of any set of linearly independent vectors
is smaller or equal to the cardinality of whatever generating set. Insofar as a basis of a vector space is a set of
linearly independent vectors that generates the whole space, from this it immediately follows that two bases cannot
have different cardinality, since, if they did, there would be a set of linearly independent vectors whose cardinality
is greater than that of a generating set.
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‘Y ’ with ‘PD’48. For shortness and simplicity, let us sketch this proof with reference to EP. Its
rephrasing with respect to EP∗ is only a matter of laborious routine.

Consider the first of the three disjoints forming the right-hand side of EP. Suppose that there
be three binary relations R, S, and S′ that have PD and are such that

S <PD
S′,

∀Nx, y [xR <PD
yS⇔ xR <PD

yS′] .

If there were, then, another binary relation T such that S′ coincided with S tT, it would follow
that

∀Nx, y [xR <PD
yS⇔ xR <PD

y (S tT)] ,

which is impossible because of the Archimedeanicity of (MD, ◦, <). This proves that, for whatever
binary relation R that has PD, there are as many distinct ratios R [R, S] (where S is a binary
relation that has PD) as binary relations that have PD, namely continuously many such ratios.
Consider a binary relation R′ that has PD and is distinct from R. Because of the completeness
of positive classes, there is one and only one binary relation S that also has PD such that

∀Nx, y [xR <PD
yS⇔ xR′ <PD

yS] ,

which shows that there as many pairs of binary relations R and S that have PD, such that the
ratio R [R,S] is the same as R [R,S], as binary relations that have PD, and there is no pair of
binary relations R′ and S′ that have PD such that the ratio R [R′, S′] is distinct from all ratios
R [R, S], where S is a binary relation that has PD.

Insofar as an analogous argument also applies, mutatis mutandis, to the second of the three
disjoints forming the right-hand side of EP, and the third of these disjoints only concerns ordered
pairs of binary relations whose first element is the identity relation and makes all ratios whose
denominator is such relation identical, this is enough to conclude that the cardinality of the set
{R [R,S] : MDR ∧PDS} is the same as that of {R : MDR}, namely 2ℵ0 , as was to be proved.

Hence, defining real numbers as R-abstracta over a domain of magnitudes entails the existence
of at least 2ℵ0 such numbers, since there is just one real number for any equivalence class induced
by the right-hand side of EP or EP∗ on a single domain of magnitudes. To prove that there
are just 2ℵ0 , recall that, as observed in § 5.3 above, from EP or EP∗ it follows that, if there
were several such domains, for any R-abstractum on one of those domains, there would just be
one R-abstractum on the others that is identical with it, which entails that, if there were several
domains of magnitudes, the R-abstracta on one of them would be just the same objects as the
R-abstracta on the other.

7 Logicality and Arithmeticity

Given all the previous considerations, we can finally tackle two major questions concerning the
definition of reals in FMR or FMR′: i) Is there a strong enough sense in which this definition is
logical? ii) Is this definition independent of natural numbers and their theory? Insofar as it seems
difficult to imagine a consistent definition which is closest to Frege’s envisaged one, the answer to
these questions is relevant to assess Frege’s achievements as well: Was Frege’s plan for defining real

48Notice that from the conditions above, it immediately follows that ð (PD) (R) if and only if MDR.
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numbers as ratios of magnitudes compatible with a logicist program, inconsistency apart? Was
it in line with the basic idea that real and natural numbers are essentially independent objects?
The question is not only a historical one, it has also a contemporary philosophical relevance: Is
a neologicist program concerning real analysis, making it both logical and independent of the
arithmetic of natural numbers, envisageable along Frege’s original indications? In what follows
we will suggest a negative answer to all these questions49.

All of them boil down to two issues: whether FMR or FMR′ can be taken to be logical
systems, independent of a previous definition of natural numbers (likely got through FA); whether
an existence proof of nonempty domains of magnitudes and of real numbers as defined in FMR
or FMR′ is compatible with the logicality and arithmeticity of these definitions.

7.1 About the Definition of Domains of Magnitudes

Insofar as FMR and FMR′ are obtained by adding some new axioms to L2PCA2
∆1

0
, we will begin

by investigating whether this latter system is genuinely logical and independent from the natural
numbers. Both issues also apply to our definition of domains of magnitudes within it.

Likely, no one would question its independence from the natural numbers. The considerations
advanced in § 4 seem, moreover, to support its logicality50. Still, admitting that L2PCA2

∆1
0

indeed

has these features is not enough for concluding that our definition of domains of magnitudes is, in
turn, independent of natural numbers and logical in some more significant sense than the simple
and quite weak one of being formulated within a logical system. There are two concerns, here.

The first is that, even in a logical system, it seems possible to define items whose logical
nature is suspect. Panza (2018) and Panza (FC2) already raised the question in relation both
to natural numbers and magnitudes, as originally defined by Frege as appropriate extensions.
Surely, according to our reformulation of Frege’s definition, magnitudes are no more extensions,
but rather binary first-level relations. Still, apart from the identity relation, the relations forming
such domains are not identified as particular relations somehow precisely defined; they are rather
characterized as possible places in whatever system exemplifying a certain structure. This makes
this definition define domains of magnitudes, but not magnitudes as such, which is perfectly in
line with Frege’s remark quoted in § 2. Hence, all that the definition fixes is the structure of a
domain of magnitudes, not its content, which is to be given independently of it.

As such, this might even be taken as an argument for its logicality, if, contra Frege, it is
admitted that logic has no content. But it makes the second concern crucial. As already
claimed, whereas an existence proof of nonempty domains of magnitudes cannot be provided
within L2PCA2

∆1
0

(as well as within FMR and, a fortiori, FMR′), it is indispensable for making

our definition of real numbers sensible. So, proving, necessarily outside these systems, the ex-
istence of a nonempty domain of magnitudes is an essential part of this very definition (even if
this is not required to formulate the definition of domains of magnitudes themselves), not only
of a model-theoretical enquiry on it. This makes both the logicality and the arithmeticity of the

49Simons (1987, § 7) has stressed the crucial differences between Frege’s logicism for natural numbers and his
views on real ones. Without undermining his arguments—which take however for granted the usual reading of
Frege’s logicism for natural numbers, which we rather take as questionable under many respects: See Panza (2018)
and Panza (FC2)—we follow another strategy here: we frontally attack the idea that Frege’s envisaged definition
of real numbers might be taken as logical in any substantial sense.

50But see footnote (5), on this matter.
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definition crucially and questionably depend on the means, external to FMR and FMR′, needed
for conducting such an existence proof. Two major issues arise.

The first is that it seems plausible to require that a genuinely logical definition not be in
need of an external existence proof of the items it defines—or of other associated ones. Since
such a definition should purportedly ensure the existence of these items by merely showing that,
if there were none, some logical, or innocent enough, truths would not be true after all. This
is indeed allegedly the case of the neologicist existence proof of natural numbers51—which we
mimicked in the existence proof of the E�-abstracta, in § 6.2 above. One might argue that this
is too demanding. However, a distinction should be drawn between definitions that are logical
in this demanding sense, and others that are not or cannot be so. This would be enough for
concluding that neither our definition of real numbers in FMR or FMR′, nor that of domains of
magnitudes in L2PCA2

∆1
0
, can pretend to be logical in the same sense in which neologicists claim

their definition of natural numbers is52.
This leads to the second issue: once admitted that the neologicist’s proof-pattern does not

apply, and that this prevents our Fregean definitions of domains of magnitudes and real numbers
to be logical in the above demanding sense, the question arises whether these definitions might
nevertheless be deemed logical in some less demanding sense53. The question seems to have
different answers according to whether it concerns the former definition or the latter, and whether
domains of magnitudes are regarded as such or as tools for defining real numbers. If we look at
the definition of domains of magnitudes as such, and admit that L2PCA2

∆1
0

be a genuine logical

system, it is hard to find any other reason than that raised above to deny its logicality. But if we
look at domains of magnitudes as tools for defining real numbers, the situation changes. Insofar
as proving the existence of nonempty such domains is essential for enabling them to play this
role, the question becomes whether the proof can be so shaped as to make it logical, and, then,
part of a logical definition of these numbers. This is, then, the question we have to tackle, now.

Above we explored two different strategies for conducting this proof: an inflationary and a
non-inflationary one. In what follows, we will expand on them by considering how they score with
respect to the issue of logicality. Insofar as the question of the logicality of our definition of real
numbers has multiple interconnections with that of its arithmeticity, we will also consider in the

51To see it, consider the argument proving the existence of 0 that we have detailed at the beginning of § 6 above.
The concept [x : x 6= x] exists not only by predicative, but also by logical comprehension, as well as logic is enough
to get that [x : x 6= x] ≈ [x : x 6= x], and HP is so for getting that 0 = 0, which could not be true if 0 did not exist.
The same pattern allows to prove the existence of each natural number, provided that comprehension be extended
to formulas involving the operator ‘#’. So, 1 is proved to exist, for example, since, if it did not, it would be false
that 1 = 1, which follows, in agreement with HP, from ‘[x : x = 0] ≈ [x : x = 0]’, which follows, in turn, by logic,
from the existence of the concept [x : x = 0], ensured by comprehension applied to the formula ‘x = # [x : x 6= x]’.
On the other side, the existence of the totality of numeral numbers is proved by proving, by HP and impredictaive
comprehension, the successor axioms, which would be false, if these numbers did not exist.

52In fact, neologicists usually take their definition of natural numbers to be analytic, though not logical. Still,
we made clear from the very beginning why we do not endorse this distinction here—see § 1 above. Let us notice,
however, that the argument just advanced is emblematic of the reason we advanced to justify our attitude. Since,
if this distinction were admitted, this argument should allow to conclude also that our definition of real numbers
is no more analytic in the same sense in which neologicists take their definition of natural numbers to be so.

53We leave here apart the question of whether the neologicist definition of natural numbers or our definition
of the E�-abstracta are actually logical or analytical. In Panza (2016), pp. 420-423, the point is made that the
former definition might be deemed so in a quite peculiar sense, quite different than those that are current in the
discussion on logicism and neologism, and because of a completely different argument than the neologicist’s. There
is no need to come back on this point, here. It is only important to observe that it does in no way apply to our
definition of domains of magnitudes and real numbers.
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meantime whether these strategies can make this definition non-arithmetical.

7.1.1 About the Inflationary Strategy

A proof following the inflationary strategy may be deemed non-logical just because of its infla-
tionary nature. The reason is obvious: insofar as no proof by countable induction is possible here,
such a proof cannot but grant that the abstraction principle introducing the continuously many
objects it concerns (FP, in our case) eo ipso entails the existence of these objects, which appears
to be incompatible with its being logical, and, then, part of a logical proof.

One could object that the argument merely points out that the proof is not logical, because
it requires means other than countable induction to prove the existence of continuously many
objects, which is unfair, at best. After all, real numbers must be continuously many, so that
accepting this argument would amount to principledly excluding the possibility of a logical def-
inition of real numbers ensuring their existence. The objection is not convincing. It is entirely
possible that no such definition be logical. Still, if a definition of these numbers is offered with
the aim of being so, it should, at least, avoid requiring an existence proof for continuously many
objects other than the reals. This would leave room for arguing that proving the existence of
continuously many objects is not part of its job, but should be left for further meta-theoretical
considerations. The point is, then, that the inflationary strategy is not suitable for entering a
logical definition of real numbers because it requires an existence proof of continuously many
objects other than the reals: a proof which cannot but appeal to independent resources from
those involved in the definition itself.

Another essential feature of the inflationary strategy is also relevant for the present discussion:
its delivering an arithmetical copy of the additive group of the reals as a condition for making
their definition appropriate. This makes clear both its arithmetical nature, and its essential
mathematical circularity. Let us consider the two allegations in turn.

To reply to the arithmeticity allegation, it is not enough to argue that proving the existence
of a nonempty domain of magnitudes arithmetically does not make a definition of real numbers
as ratios of magnitudes arithmetical. The fact that an existence proof of such a domain is an
indispensable part of the definition immediately entails, indeed, that this definition can be deemed
non-arithmetical only in the presence of an existence proof of a non-arithmetical nonempty domain
of magnitudes. Since, if one could only prove the existence of arithmetical such domains, defining
real numbers as ratios on them would make them arithmetical items, after all54.

54The point might be softened by observing that our Fregean definition of domains of magnitudes differs from
other possibly arithmetical ones for not appealing to any specific property of the objects on which the relevant
binary relations are defined. To better see this, we can compare this definition to one mimicking Dedekind’s
definition by cuts in terms of binary relations (we thank Andrew Moshier for his suggestion). Let (O, <O) be a
totally ordered set without endpoints, whose elements count as objects. By adopting a third-order logical system
with third-order predicative comprehension, the following explicit definition can be provided, where the index ‘O’
restricts the quantifiers to binary O-relations (i.e. binary relations among the elements of O) and to these very
elements, respectively:

∀OR


COR⇔



∀Ox, y [xRy ⇒ x <O y]∧

∀Ox, y, z, w [(xRy ∧ z <O x ∧ y <O w)⇒ zRw]∧

∀Ox, y [xRy ⇒ ∃Oz, w [zRw ∧ x <O z ∧ w <O y]]∧

∀Ox, y [x <O y ⇒ (∃Oz [xRz] ∨ ∃Ow [wRy])]∧

∀Ox, y, z, w [(xRy ∧ zRw)⇒ xRw]




.
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To reply to the circularity allegation, one should argue that the copy of the additive group
of the reals is just a copy, since, though structurally coincident with real numbers, its elements
intrinsically differ from them. We can imagine Frege advancing this argument. But we can hardly
follow him in this without making any working mathematician sarcastically smile.

Let us recap. The inflationary strategy suffers from two problems: in absence of a further
existence proof of non-arithmetical domains of magnitudes, it makes real numbers themselves
arithmetical objects, after all; it requires a preliminary structural definition of the real numbers,
in order to make the planned definition of these same numbers suitable55.

7.1.2 About the Non-Inflationary Strategy

At least four reasons might be advanced to argue that, in the light of the existence proof in § 6.2
above, our Fregean definition of real numbers is hardly both logical and non-arithmetical: i) that
proof is based on the symmetric group ΣN on the natural numbers; ii) it allows to conclude that
a nonempty domain of magnitudes exists only if it is admitted that the symmetric group on an
infinite countable set exists if this set exists; iii) it essentially appeals to the additive group (R,+)
of the real numbers themselves; iv) it appeals to Zorn’s lemma, and is, then, not constructive.

The first reason cannot be dismissed by merely observing that, in our reconstruction of the
proof, ΣN has been replaced by the symmetric group on the set of E�-abstracta. Since, once ΣN is

The third conjunct of the right-hand side entails that no binary O-relation has the property CO if (O, <O) is not
dense. Let us suppose that it be so. Call a relation ‘CO-relation’ if it is a binary relation having CO. We can
say that any CO-relation defines a cut on (O, <O). The collection of the CO-relations does not form a domain of
magnitudes, in the sense established above, since the CO-relations are not permutations. Still, we might weaken
Frege’s requirement on domains of magnitudes, and take such domains as constituted by totally ordered, dense
and Dedekind-complete groups of first-level binary relations, independently of their being permutations. The
CO-relations might, then, form a domain of magnitudes if a commutative (and associative) addition admitting a
neutral element be defined on them. To this purpose, let us suppose that an addition +O be defined on (O, <O),
so as to make (O, <O,+O) a totally ordered, Abelian and dense additive group. We can easily define an addition
+CO

on the CO-relations, by stating that

∀CO
R,S∀Ox, y

[
x
(
R+CO

S
)
y ⇔ ∀Oz, w, v, u [(zRv ∧ wSu)⇒ (x <O z + w ∧ v + u <O y)]

]
,

where the index ‘CO’ to the first universal quantifier restricts it to these relations. The CO-relation ZO defined by

∀Ox, y [xZOy ⇔ x <O 0O <O y]

is the neutral element of +CO
, and another CO-relation R, is deemed positive if and only if

∃Ox, y [xRy ∧ 0O <O x <O y] ,

and negative otherwise. One could, then, define an order relation <CO
on the CO-relations by stating that

∀CO
R,S

[
R <CO

S ⇔ ∃
C+

O
T
[
R+CO

T = S
]]
,

where the index ‘C +
O ’ restricts the existential quantifier to positive CO-relations. These would form a totally

ordered, dense and Dedekind-complete group under +CO
and <CO

, and, then, a domain of magnitudes, in the
previous weakened sense. One might, then, define real numbers as ratios on such a group. Still, so defined, real
numbers would be, structurally speaking, nothing more than ratios on cuts-relations on the additive group of the
rational numbers, and this would make them intrinsically arithmetical items, in a much stronger sense than the
real numbers defined in FMR or FMR′, under the condition that the only nonempty domains of magnitudes whose
existence can be proved were arithmetical.

55Both problems also arise if the inflationary strategy is implemented by E�-abstracta. As for the first, this
is obvious. As for the second, notice that these abstracta could enter the existence proof only because of their
features that make them structurally coincide with the natural numbers.
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replaced in Karras and Solitar’s proof by any other symmetric group over any infinite countable
set, the problem becomes that of justifying the existence of this set, and even its cardinality, by no
appeal to N itself. That ΣN is isomorphic with the symmetric group over any infinite countable
set is, indeed, simply because any such set can be put into a bijection with N, so that its elements
can be taken either to count as natural numbers or, at least, to be encoded by them.

The second reason is similar to one discussed above as for the inflationary strategy: on what
logical ground can we argue that the existence of a countable infinite set entails the existence of
the symmetric group over this set—or, more in general, of an uncountable set somehow generated
by it by considering at once some totality of properties, relations or functions defined on the
elements of this set? The fact that Frege himself suggests making a similar admission, in order to
prove the existence of a nonempty domain of magnitudes, in no way makes it logically licensed.
Rather, it seems to show that the very proof Frege suggested would have actually been not logical.

The third and fourth reasons are by far more delicate, and somehow interconnected. Since, if
a constructive proof of Karrass and Solitar’s theorem were available, one could hope to rely on
it in order to constructively define a totally ordered, dense and Dedekind-complete subgroup of
ΣN, without recurring to (R,+).

To dismiss the third reason, and the circularity allegation that goes with it, one might replace
Karrass and Solitar’s theorem with a more general result not involving (R,+). A natural candidate
is a result by de Bruijn (1964, p. 594), according to which, for any infinite cardinal κ, every Abelian
group of order 2κ can be “embedded into” the symmetric group of a set of cardinality κ56. Still,
the basic idea of de Bruijn’s proof is not so different from Karrass and Solitar’s and makes this
proof also depend on the axiom of Choice, though avoiding appealing to vector spaces. The fact
that the theorem does not specifically involve (R,+) is, moreover, far from being an advantage
in our perspective. Since it makes this theorem unable to provide a ground for the required
existence proof. For the purpose of this latter proof is establishing that ΣN (or, more generally,
the group of permutations on a countable set) actually includes a subgroup complying with the
relevant structure, while this theorem merely ensures that, if there is such a group, then it can be
embedded into ΣN, and can be regarded as a subgroup of it. This makes, of course, de Bruijn’s
theorem immediately entail that (R,+) can be embedded into ΣN. This cannot but make the
circularity even more evident, since it is only the existence of R that can ensure that a subgroup
of ΣN complying with the relevant structure exists. In order to solve the issue, one should prove
that ΣN includes a totally ordered, dense and Dedekind-complete subgroup, without assuming
the existence of this group. To the best of our knowledge, this has not yet been done.

This does not mean, of course, that this result, or any other entailing it, has not actually been
proved or, even less so, that this cannot be done. The fourth reason suggests, however, that the
relevant question is not whether this has been or might be done, but, rather, whether this can be
done constructively, i.e. without appealing to a form of the Axiom of Choice, which might hardly
be taken as a logical principle. When put in a clear mathematical form, the question is whether
it is provable in ZF alone (or in some other appropriate setting that neither presupposes nor
entails the Axiom of Choice) that ΣN contains a totally ordered, dense and Dedekind-complete
subgroup, and whether, moreover, this can be done without assuming the existence of (R,+). To
the best of our knowledge, this question also has not been answered yet.

56This theorem was firstly published one year later than Karrass and Solitar’s (de Bruijn 1957, pp. 560-61 and
566), but it was then erroneously proved. The error lied with a lemma proved by erroneously supposing that
a certain arbitrary group could be non-Abelian. The proof was later corrected and made independent of this
lemma—and in fact simplified.

35



To begin enquiring about it, one might wonder whether Karrass and Solitar’s proof can be freed
from Zorn’s lemma or any equivalent assumption. Such an assumption enters the proof to ensure
that any vector space has a basis—i.e. that such a basis exists though it cannot be constructively
displayed. This makes it relevant to observe that Blass (1984) proves that the assumption that
any vector space has a basis is (ZF-)equivalent to the Axiom of Choice. This is still not enough
to ensure that the appeal to a form of the Axiom of Choice cannot be avoided in Karrass and
Solitar’s proof, and that this proof is, then, both non-constructive and intrinsically dependent on
such an axiom. Since what is required for this proof to work is not, properly, that any vector
space has a basis, but rather that this is so for the two relevant such spaces, i.e.

∏
i∈I

(Q,+) and

(R,+). The issue becomes, then, whether one can prove that these very vector spaces have a basis
without appealing to a form of the Axiom of Choice or to any other non-constructive means. To
the best of our knowledge, anew, this is still unknown.

Still, even if this could not be done, it would not follow that Karrass and Solitar’s theorem
cannot be proved without appealing to a form of this axiom. The only occurrence of Zorn’s lemma
in the previous proof is, indeed, in its very last step, which is the only one involving vector spaces.
It is, then, natural to wonder whether the theorem could be proved by avoiding this step (and,
then, presumably any reference to vector spaces), by replacing it with another step not depending
on the Axiom of Choice or some other non-constructive assumptions.

We could imagine two scenarios. In the first, the question is whether ZF alone is capable of
proving Karrass and Solitar’s theorem: to this extent, either it is, or the theorem is undecidable
there. In the second scenario, the question is whether ZF augmented with some axioms incom-
patible with the Axiom of Choice, such as the Axiom of Determinateness,57 is capable of proving
this theorem. To the best of our knowledge, these issues have also not been settled yet58 .

The conclusion to be drawn from all these remarks cannot be but prudent. Still, it can certainly
no more suggest that Karrass and Solitar’s theorem provide a basis to argue that our Fregean
definition of real numbers is logical. Since, circularity issues aside, arguing that this theorem
can enter a non-inflationary existence proof for a nonempty domain of magnitudes, suitable for
making our definition logical, would be quite premature, at best. And it would be even more so
to argue that a more general theorem, asserting that ΣN includes an appropriate group identified
without appealing to R, can enter such a non-inflationary existence proof.

7.2 Might the Existence Proof be Avoided?

The previous considerations suggest that there is no way to prove the existence of nonempty do-
mains of magnitudes without wiping out both the logicality and non-arithmeticity of our Fregean
definition of real numbers. In light of this conclusion, one might suggest changing the rules of the
game. Even if there is no way to prove, by (higher-order) logic, suitable existentially innocent
abstraction principles and appropriate algebraic and/or set-theoretical constructive arguments,
that nonempty domains of magnitudes exist, still we know they do. For we can show or prove it,

57First introduced by Mycielski & Steinhaus (1962), this axiom asserts that “certain infinite, deterministic 2-
person games with complete information [. . . ] are determinate, i.e., that one of the players has a winning strategy”.
See also Herrlich (2006, p. 151), which also provides a proof of the incompatibility between the Axiom of Choice
and the Axiom of Determinateness.

58There still might be clues on the second issue: while the Axiom of Choice entails that R, as a vector space
over (Q,+, ·), has bases, the Axiom of Determinateness entails that it has not (Herrlich 2006, Theorem 4.44 and
Corollary 7.20)—and one might even guess that it be the same for an infinite product of copies of (Q,+).
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for example, by empirically-tied geometric or mechanical considerations; or, as above, by trusting
non-constructive set-theoretical principles; or by assuming that natural numbers exist and grant-
ing the previous abstraction principles an existential import. Hence, one could argue, defining
the real numbers á la Frege within FMR or FMR′, even with no existential proof, allows one to
show that ratios on any externally given domain of magnitudes, whether intrinsically arithmetical
or not, are real numbers. Since, as we have already seen, taking a real number to be a ratio on
distinct domains of magnitudes is nothing but describing the same object in different ways—or
giving different names to it.

The problem with this move is that applying our definition to whatever externally given do-
main of magnitudes would certainly warrant that the ratios on it are real numbers, but not that
real numbers are intrinsically such ratios, let alone that they are non-arithmetical items. If we
reasoned this way, we would do nothing essentially different from appealing to a representation
theorem to draw the conclusion that real numbers measure the magnitudes in the relevant do-
mains, in the spirit of the measurement theory59. In both cases, all we do is recognize that some
externally given systems (arithmetical or not) comply with some fixed structural conditions. The
fact that these structural conditions are fixed by our definition in FMR or FMR′, or by recurring
to algebraic axioms as those of a totally-ordered complete Abelian field (as usually supposed
in measurement theory), or, again, by alternative definitions (as Cantor’s and Dedekind’s, by
Cauchy’s sequence and cuts on rationals, respectively, or even as the one grounded on FP) makes
no essential difference on this matter.

In the eyes of a Frege partisan, there would be a crucial difference only if the existence proof
were deemed an essential, though supplementary, part of the definition itself, as we did above.
Since this would make the numbers so defined intrinsically ratios on domains of magnitudes, and
their application to measurement “built into” their nature and/or their very definition, as required
by the application constraint (Wright, 2000, p. 325). In this respect, the previous remarks on
the arithmeticity and logicality of our definition in FMR or FMR′ should be intended to suggest
that compliance with this constraint is incompatible not only with offering a logical definition
of real numbers, as already argued in Panza & Sereni (2019), but also with defining them non-
arithmetically, despite Frege’s adhesion to the same constraint as the main source of his quest for
a non-arithmetical definition of these numbers.

7.3 About Euclid’s Principle

Up to now, we have only considered the existence proof of nonempty domains of magnitudes.
Still, the indispensability and the nature of this proof are not the only reasons suggesting that our
Fregean definition of real numbers is neither logical nor non-arithmetical. Since, once domains of
magnitudes have been defined and somehow proved to exist, the question remains open of defining
real numbers as ratios on them. In our setting, this is done by means of EP∗60. The questions

59About the tension between considering applications of real numbers in agreement with the measurement theory
and taking them to be ratios on domains of magnitudes, see the Hale-Batitsky discussion in Hale (2000, 2002) and
Batitsky (2002). On this matter see also Panza & Sereni (2019, pp. 122-123 and 126-130).

60Possibly with the help of (CA2
Σ2

1
), if an explicit definition like (5.2) is required. We do not want to enter

here a discussion about the logicality of (the different sorts of) comprehension. We merely remark that the high
impredicativity of (CA2

Σ2
1
) might make many doubt not only its logicality, but also its licitness. Who doubts both

has no other choice but rejecting definition (5.2) and rest content with (5.2′). Who doubts only the former can
either admit definition (5.2), but take it as non-logical, or rejecting, again, this definition in favor of (5.2′).
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are, then, obvious: is this principle logical? Is it actually independent of natural numbers?
Let us start from the latter. Undoubtedly, EP depends on natural numbers, as it explicitly

quantifies over them. Still, this principle also depends on the use of other linguistic means foreign
to L2PCA2

∆1
0
, by involving a piece of informal language allowing for predicate variables like ‘xR’.

The two features are connected, since the quantification over natural numbers just operates on the
individual variables occurring in these predicate variables. Replacing EP with EP∗ allows avoiding
both the quantification over natural numbers and the appeal to informal language at once. Surely,
EP∗ involves no second-order predicate constant supposedly designating the property of being a
natural number. Still, this does not ensure, yet, its independence from natural numbers, since
it is far from clear that the trick used to avoid the quantification on these numbers is actually
independent of them. What might make one suspect it is not that the right-hand side of (5.1)
is just an appropriate third-order rephrasing of the right-hand side of HP. Hence, if it were
admitted that, when applied to finite concepts, HP is intrinsically inherent to natural numbers—
not only because the objects not complying with it are not natural numbers, but also because its
assumption ipso facto brings these latter about—, one should infer that, in spite of appearance,
also EP∗ depends on these numbers. As a matter of fact, this is a strong assumption, but one that
can be made in a Fregean vein, and which might bring, then, ipso facto—that is, independently of
any consideration on the existence proof of nonempty domain of magnitudes—, to the conclusion
that our definition of real numbers, whether in FMR or FMR′, is essentially arithmetical.

Someone admitting this assumption might still argue against this conclusion by observing that
(5.1) essentially differs from HP for being a (metalinguistic) abbreviation stipulation, rather than
an axiom providing an implicit definition of a functional constant. This is enough, one might
continue, to make EP∗ appeal to no variable ranging on objects that might count as the natural
numbers. This is unquestionably so. However, any instance of ‘(X ,X ′)E (R, T,R′, T ′)’ asserts that
a certain first-level binary relation is the same multiple of another such relation over a certain
positive class as a third such relation of a fourth one, over the same or another positive class.
This is, in turn, the same as asserting that the iterations of the composition operation on such
a relation within the former class are into a bijection with the iterations of composition on such
a relation within the latter class. If this is not the same as making natural numbers enter into
play, it is, at least, the same as making the equinumerosity relation so. Hence, if EP∗ is not
dependent on natural numbers, it seems to be, at least, dependent on counting. There is no easy
way to settle whether this is enough to make EP∗ an arithmetical principle. Here, we just observe
that this makes our Fregean definition of real numbers, whether in FMR or FMR′, dependent on
an essential ingredient of any Fregean definition of natural numbers. Even if this, as such, does
not make our definition arithmetical, it is plausibly enough for making it much more related to
natural numbers than Frege might have desired his definition be.

Let us come, now, to the first question: can EP∗ be deemed logical? A simple way to tackle
the question might be that of choosing between two quite natural options: either any abstraction
principle is logical if it is stated through a logical language, or it is so only because of the peculiar
nature of its right-hand side. In the former case, EP∗ is logical if L2PCA2

∆1
0

is so. In the latter

case, EP∗ cannot be logical on the same grounds on which HP or a consistent version of BLV
might be so. If this simple alternative is rejected, if only for argument’s sake, what criterion
might be provided to distinguish logical abstraction principles stated in a logical language from
non-logical ones? Consistency is surely not enough. But, then, what? We cannot dwell on this
issue here. We simply contend that the burden of the proof seems to be on anyone arguing that

38



EP∗ is logical, despite its being essentially akin to Euclid’s definition of proportionality, which has
been considered for centuries as the cornerstone of the most fundamental mathematical theory
on which classical geometry was crucially grounded.

8 Concluding Remarks

Though some of them are certainly far from knock down ones, we think we advanced enough
arguments in favor of the claim that our rendering of Frege’s envisaged definition of real numbers
is neither logical nor non-arithmetical. As our rendering is arguably the closest possible to it, this
conclusion questions the possibility that Frege’s own definition could be achieved logically and
non-arithmetically. It remains to establish whether this was actually Frege’s intent.

That Frege was aiming at a logical definition of real numbers as his main goal for the foundation
of real analysis might be questioned for several reasons61. One of them might be the following.

From our reconstruction, it seems to emerge that arguing for the logicality of a definition
of real numbers following Frege’s indications requires arguing that FP, or any akin principle, is
both logical and capable of delivering continuously many objects without the assistance of any
independent existence proof. But if so, then FP would also be enough for delivering real numbers,
if not as logical objects, at least as objects defined in a logical setting. But, then, why did Frege
venture himself in a so entangled definition whose logical nature is as suspect as that of real
numbers as ratios of magnitudes?

Possibly, far from considering logicality as his ultimate aim, he overall wanted to link real
analysis to a general theory of magnitudes. This has been argued for in Panza & Sereni (2019).
Or, possibly, he merely wanted to distinguish real from natural numbers, making the former
essentially independent of the latter, for their being objects of an essentially different kind.
Though the two possibilities are not incompatible with each other, our conclusion might be
taken as a piece of evidence that he could not have reached this second aim by following the
route envisaged in the Grundgesetze. The first aim remains, which is certainly paramount from
a purely mathematical perspective. If we admit that this was, after all, his prominent goal, then
our rendering of his definition might be taken as an indication of a simple way to accomplish it.
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