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I. INTRODUCTION

I N cone beam CT, Tuy [1] and Finch [2] proved that exact reconstruction is only possible within the convex hull of a source trajectory S (provided S is connected and bounded, as is usually the case), as long as the cone-beam projections are not truncated. Truncation arises when the measured X-ray cone beam does not cover the whole object transversely and/or axially (Fig. 3). For a helical trajectory of the x-ray source, Zou and Pan [START_REF] Zou | Exact image reconstruction on PI-lines from minimum data in helical cone-beam CT[END_REF] showed that some truncation can be handled with the differentiated backprojection (DBP) method and their approach directly applies to certain other source trajectories. This method can be coupled with the M-line method [START_REF] Pack | Cone-beam reconstruction using the backprojection of locally filtered projections[END_REF] for more flexibility in handling truncation.

In this work, we assume that the object support is contained in a cylindrical region called Ω o and we address the case of simultaneous transverse and axial truncation. We study the saddle trajectory, defined by S = {(R cos λ, R sin λ, H sin(2λ)), λ ∈ [0, 2π)}, where R > 0, H > 0. The saddle trajectory is connected, bounded and closed, see Fig. 3. It is known that the union of all its chords (line segments that connect two points on trajectory) is the same as the convex hull C S of the trajectory (Fig. 1) [START_REF] Pack | Investigation of saddle trajectories for cardiac CT imaging in cone-beam geometry[END_REF], so anything outside this region cannot be reliably reconstructed. However, feasibility of reconstruction inside the region will depend on the pattern of truncation of the projections. For the saddle trajectory, [START_REF] Pack | Investigation of saddle trajectories for cardiac CT imaging in cone-beam geometry[END_REF] and [START_REF] Yang | View-independent reconstruction algorithms for cone beam CT with general saddle trajectory[END_REF] only deal with axial truncation whereas [START_REF] Gindrier | Cone-beam reconstruction from n-sin trajectories with transversely-truncated projections[END_REF] only focuses on transverse truncation.

Each x-ray source generates a (solid) cone of line segments determined by a corresponding detector. The FOV is defined here as the intersection of all measured X-ray cones from all source positions, as illustrated in Fig. 2. Note that for the same trajectory, different patterns of truncation (different detector geometries) will generate different FOVs. We say that a FOV Manuscript received December 21, 2020. This work was supported by the "Fonds unique interministériel" (FUI) and the European Union FEDER in Auvergne Rhône Alpes (3D4Carm project) and by the ANR (ROIdoré project ANR-17-CE19-0006-01).
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is sufficient if, relative to the (known) object support, certain conditions to ensure an exact reconstruction are met.

Specifically, we assume that both Ω o and the FOV are cylinders whose axes are parallel to the x 3 -axis, see Fig. 3 (however, in practice, it is difficult to build a FOV with a perfect cylindrical shape). Neither of these regions are necessarily contained with C S , the region of potentially feasible reconstruction. The DBP method allows a point x ∈ FOV ∩ C S ∩ Ω o to be reconstructed if it lies on a chord (a line linking two source positions of the trajectory, see Fig. 4) and if the intersection of the chord and the FOV contains a non empty interval outside the object Ω o , see [START_REF] Pan | A unified analysis of FBP-based algorithms in helical cone-beam and circular cone-and fan-beam scans[END_REF], [START_REF] Noo | A two-step Hilbert transform method for 2D image reconstruction[END_REF], [START_REF] Pack | Cone-beam reconstruction using the backprojection of locally filtered projections[END_REF], [START_REF] Defrise | Truncated Hilbert transform and image reconstruction from limited tomographic data[END_REF]. This geometrical requirement is generated by requirements for a subsequent inversion step using the one-endpoint Hilbert transform [START_REF] Defrise | Truncated Hilbert transform and image reconstruction from limited tomographic data[END_REF], but we do not concern ourselves here with those details. When the second condition fails, it might be possible to resort to the M-line method. An M-line is a half-line from a source position and passing through x (see Fig. 4). To reconstruct x, the intersection between the FOV and the M-line passing through x must contain an interval outside the object Ω o : the M-line must intersect the region Ω F = FOV\Ω o . There can be many possible M-line configurations satisfying this condition (see Fig. 5). Moreover, each point on the interval of the M-line that intersects FOV ∩Ω o must lie on a chord (a different chord for each such point). As x is in the convex-hull of S, an M-line segment from a source-point to x is also in this convex hull, therefore each point on this segment lies on its own chord. In [START_REF] Gindrier | Cone-beam reconstruction from n-sin trajectories with transversely-truncated projections[END_REF], cone-beam reconstruction using the M-line trajectory was presented for the saddle trajectory with transverse truncation. Here, x is on the chord c and the DBP method cannot be directly applied, because c ∩ FOV is in the strict interior of c ∩ Ωo, see [START_REF] Defrise | Truncated Hilbert transform and image reconstruction from limited tomographic data[END_REF]. However, M-line method can be applied here. L 1 is a suitable M-line, because L 1 ∩ Ω F = ∅ (Ω F = FOV \ Ωo is the dark grey region). Similarly for L 1 but not for L 2 (see [START_REF] Defrise | Truncated Hilbert transform and image reconstruction from limited tomographic data[END_REF] and [START_REF] Pack | Cone-beam reconstruction using the backprojection of locally filtered projections[END_REF]). The grey cones delimit the suitable M-lines.
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When both transverse and axial truncation are present, correct application of the M-line method requires careful examination of the geometry of the FOV and the object Ω O . Fig. 6 gives an example of an unsuitable FOV for the saddle trajectory S because, for the chosen x, there is no M-line crossing Ω F . An M-line is suitable only if its intersection with Ω F contains an interval of finite length.

Our aim is to define FOVs such that each point of the region of interest (ROI)

Ω o ∩ FOV ∩ C S can be reconstructed with x Ω o FOV S x 3 x 2 S Ω o x 3
x 1 x Fig. 6. An example FOV suitable for the M-line method, because the (two) cones of lines (light grey) from x which intersect FOV \ Ωo (dark grey) do not intersect the saddle trajectory S. Therefore there can be no Mline that intersects FOV \ Ωo, and reconstruction inside all FOV ∩ Ωo cannot be performed using the M-line method. the M-line method, assuming Ω F = ∅. We call these FOVs sufficient FOVs.

In this work, we focus on two sufficient FOV configurations mixing transverse and axial truncation. They will be called type 1 and type 2.

II. SUFFICIENT FIELDS OF VIEW

We begin by considering the case of axial truncation only (i.e., in projection on the horizontal plane (x 1 , x 2 ), the object is contained in the FOV, as illustrated in Fig. 3, right). For simplicity, we assume that the cylinders FOV and Ω o share the same axis. Let x ∈ Ω o ∩ FOV ∩ C S , then the intersection between Ω F and a horizontal plane containing x is an annulus. Now x is in C S , the convex hull of S, so we denote one of these intersections with the horizontal plane by S λ . See Fig. 7 for an illustration. Then, an M-line from S λ and passing through x intersects the annulus previously mentioned, so this M-line is suitable and the FOV is sufficient. By convexity, the segment connecting S λ to x is inside C S , therefore each point of this segment lies on some chord, as required in order for the Mline to be suitable. The case of saddle trajectory with only axial truncation was treated in [START_REF] Pack | Investigation of saddle trajectories for cardiac CT imaging in cone-beam geometry[END_REF] and [START_REF] Yang | View-independent reconstruction algorithms for cone beam CT with general saddle trajectory[END_REF], but with other methods than the DBP method.

FOV From now on, we will work with another configuration with transverse truncation, with in addition sometimes axial truncation (an example is given Fig. 8). In this case, the projections of Ω o and the FOV onto the horizontal plane (x 1 , x 2 ) intersect, such as shown in Fig. 5 We now give conditions for a FOV to be sufficient, thus ensuring the ROI can be reconstructed using the M-line method.

Ω o x S λ FOV Ω o x S λ
a) Sufficient FOV: type 1: For each extremity of the cylindrical FOV (the base or the cap), one of the two following conditions must be satisfied:

• the extremity is outside C S .

• the extremity is beyond the object (the FOV has a non empty intersection with the corresponding extreme base (or cap) of Ω o ). Such a FOV is called sufficient of type 1.

The sufficiency of a type 1 FOV can be justified by considering any vertical plane (i.e. parallel to the x 3 -axis) containing a point x of the ROI and intersecting Ω F (see Fig. 9), or equivalently in orthogonal projection onto (x 1 , x 2 ), intersecting D FOV \ D o (see Fig. 10).

Ω o FOV x S λ Ω o FOV x S λ
Fig. 9. Side view and cross section for a cylindrical object and a cylindrical FOV. The dark grey part is Ω F . The horizontal plane of Fig. 10 will pass through the dotted region because x ∈ FOV ∩ Ωo. Left: A potential but unsuitable M-line from x to S λ is shown. This case must be avoided. Right: A potential and suitable M-line from x to S λ is shown.

The point x being in C S , this vertical plane will intersect the trajectory at two points. Let S λ such that the projection of the segment [x, S λ ] in the (x 1 , x 2 ) plane intersects D FOV \D o (see Fig. 10).

We consider the [x, S λ ] line segment. We must verify that this segment of M-line intersects Ω F (with non-zero length), i.e. that the situation of Fig. 9 Ω F again. This last case is illustrated Fig. 11. Another way to understand conditions for FOV of type 1 is to consider two cases, in assuming these conditions are satisfied:

• The [x, S λ ] line segment intersects an extremity of the cylindrical FOV: [x, S λ ] ∈ C S , thus the satisfied condition for this case cannot be "the extremity of the FOV is outside C S ", therefore the satisfied condition is "the extremity of the FOV is beyond Ω o ", so [x, S λ ] intersects Ω F . • The [x, S λ ] line segment intersects the side of the cylindrical FOV: in this case both conditions can be satisfied, and in each case it guarantees that [x, S λ ] intersects Ω F . We have shown that an M-line coming from S λ and passing through x (and thus containing [x, S λ ]) intersects Ω F and is therefore suitable, recalling that [x, S λ ] ∈ C S means that every point on this M-line segment lies on some chord.

Sufficient FOVs of type 1 are well suited for transverse truncation, because the constraint mainly concerns the height of the FOV. b) Sufficient FOV: type 2: For a slice parallel to the (x 1 , x 2 ) plane, we denote by F 1 and F 2 the intersection points of the boundaries of Ω o and the FOV, as in Fig. 12. A FOV is called semicircular if [F 1 , F 2 ] is on or below the FOV center, in the configuration of Fig. 12 (left). We consider a semicircular FOV and the orthogonal projection of this FOV onto a plane parallel to the vertical plane (parallel to x 3 ) containing F 1 and F 2 . If the orthogonal projection of S onto this plane intersects the orthogonal projection of the FOV, then there is a suitable M-line for all points in the ROI and the ROI can be reconstructed. A semicircular FOV that satisfies this orthogonal projection criterion is called sufficient of type 2 (see Fig. 12). Sufficient FOVs of type 2 are well suited for axial truncation.
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III. SIMULATIONS

We simulated cone beam projections of the Forbild thorax phantom with a saddle trajectory (R = 250 mm and H = 100 mm) for three different FOVs (Fig. 13). Unlike to what Fig. 13 might suggest, for the x 2 -coordinate, the FOV is in fact centered on the center of rotation and the Forbild thorax phantom is off center. Nevertheless, for visualization purposes, we pretend that the fantom is fixed. We did not use the Mline method but algebraic reconstruction with the conjugate gradient method to evaluate the reconstruction quality. FOV1 is not sufficient; FOV2 is sufficient of type 1; FOV3 is sufficient of type 2. FOV1 and FOV2 are almost interior problems. In the following table (the unit is mm), R F and H F are respectively the radius and the height of the cylindrical FOV, C F is the center of its base and dim det is the dimensions of the detector (number of lines and columns); the pixel size is 2 mm × 2 mm. We analytically simulated 200 projections. CT images were reconstructed with 380 × 152 × 382 voxels. Finally, we fixed γ = 100 for the conjugate gradient method from RTK [START_REF] Rit | The Reconstruction Toolkit (RTK), an open-source cone-beam CT reconstruction toolkit based on the Insight Toolkit (ITK)[END_REF] (minimizes (Rfp) Fig. 14 shows cross-sections at x 3 = 84 mm for the reconstructed images for the three FOVs, and Fig. 15 shows corresponding line profiles at x 2 = 37 mm. All FOVs yield good reconstructions, probably because sufficient FOVs correspond to sufficient but not necessary conditions. However, the convergence for FOV1 was slower: at 40 iterations, we observe a global shift of the pixel intensity values.

IV. CONCLUSION

In the context of cone-beam CT with a saddle trajectory and truncation, we have presented two types of sufficient FOVs, corresponding to two sufficient geometric conditions for accurate reconstruction of the ROI, defined as FOV ∩ C S ∩ Ω o . The conditions of type 1 are well suited to transverse truncation whereas the conditions of type 2 are well suited to axial truncation (there is also transverse truncation, but constraints are stronger than for type 1). It is interesting to note that fairly large truncation can be accommodated, even with an exact reconstruction. This is encouraging for reconstructing projections obtained with small detectors. However, the FOV must always be at the edge of the object support to avoid the interior problem. Note that the proposed conditions are sufficient but not necessary. FOVs that do not meet the sufficient conditions presented in this work might still admit perfect reconstructions even though no verifying theory currently exists; apparently FOV1 is an example of such a case. For FOV1, there is probably less data redundancy and information. It may be the reason why the reconstruction of such FOVs converges but is slower than with sufficient FOVs. 
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 12 Fig. 1. The convex hull C S of the saddle trajectory. Each point of this convex set is intersected by a chord.

Fig. 3 .

 3 Fig. 3. The saddle trajectory S with a cylindrical FOV and Ωo containing the object support. Left: Transverse truncation. Right: Axial truncation.

Fig. 4 . 2 Fig. 5 .

 425 Fig. 4. Left: Top view of a chord c and an M-line from S λ M . Right: Parts of some M-lines (in blue) through a point x which is inside the convex hull C S of the saddle trajectory. A chord (in black) contains x.

Fig. 7 .

 7 Fig. 7. A saddle trajectory with only axial truncation. Considering a horizontal plane through x ∈ Ωo ∩ C S ∩ F OV , it is possible to have a suitable M-line (in blue) from an intersection between the horizontal plane and the trajectory. Right: top view, the dark grey annulus is Ω F .

Fig. 8 .

 8 Fig. 8. A saddle trajectory with axial and transverse truncation.

1 Fig. 10 .

 110 Fig. 10. Projected view from above (onto the horizontal plane (x 1 , x 2 )) showing a vertical plane containing x passing through D FOV \ Do (in dark grey). It intersects the saddle trajectory S in two points, and S λ is the point such as the projection of [x, S λ ] intersects D FOV \ Do.

Fig. 11 .

 11 Fig. 11. An example of sufficient FOV of type 1, because the top extremity of the FOV is above C S and the bottom extremity is below Ωo. La and L b are suitable M-lines from Sa and S b and can be used to reconstruct xa and x b . Right: Ω F is the dark grey region.

Fig. 12 .

 12 Fig. 12. Top view (left) and side view (right) for a semicircular FOV with an M-line from S λ and passing through x. The red dotted curve is the part of the source trajectory S whose projection intersects the projection of the FOV. For each point x of Ωo ∩ F OV ∩ C S , every M-line from a source position S λ from the red part of the source trajectory S is suitable. Right: the dashed rectangle is the projection of the FOV onto a plane parallel to the vertical plane containing F 1 and F 2 . The dashed curve is the projection of the trajectory S.

3 Fig. 13 .Fig. 14 .

 31314 Fig. 13. Forbild thorax phantom in top view (left) and side view (right). FOV1 is represented by the blue dotted line, FOV2 is the red line and FOV3 is the green line. The white dashed line in the image at right corresponds to the profiles plot in Fig. 15. It can be seen on the right image that the projection (of the top) of FOV3 on a plane orthogonal to x 2 intersects the projection of S, thus making it type 2 sufficient.

  Fig. 15. Profiles (phantom in blue, reconstruction in orange) from the reconstructions after 260 iterations at x 2 = 37 mm and x 3 = 84 mm (see Fig. 13 right) for FOV1 (top), FOV2 (middle), FOV3 (bottom). The black dashed lines define the limits of the FOV.

  2 2 + γ ∇f2 2 with R the forward projection operator and p the measured projections).

	FOV R F H F	C F	sufficient dim det
	1	18	(0,30,78)	not	92 × 69
	2	50 380 (0,30,-190)	type 1	92 × 437
	3	18	(0,67,78)	type 2	92 × 69
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