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Sufficient Field of View for the M-line Method in
Cone-beam CT

Nicolas Gindrier, Rolf Clackdoyle, Simon Rit and Laurent Desbat

Abstract—This work concerns region-of-interest reconstruction
in cone-beam CT with transverse and axial truncation. We study
two cylindrical fields of view configurations with a saddle X-ray
source trajectory. We give sufficient conditions for accurate image
reconstruction with the M-line method.

I. INTRODUCTION

IN cone beam CT, Tuy [1] and Finch [2] proved that exact
reconstruction is only possible within the convex hull of

a source trajectory S (provided S is connected and bounded,
as is usually the case), as long as the cone-beam projections
are not truncated. Truncation arises when the measured X-ray
cone beam does not cover the whole object transversely and/or
axially (Fig. 3). For a helical trajectory of the x-ray source,
Zou and Pan [3] showed that some truncation can be handled
with the differentiated backprojection (DBP) method and their
approach directly applies to certain other source trajectories.
This method can be coupled with the M-line method [4] for
more flexibility in handling truncation.

In this work, we assume that the object support is
contained in a cylindrical region called Ωo and we ad-
dress the case of simultaneous transverse and axial trun-
cation. We study the saddle trajectory, defined by S =
{(R cosλ,R sinλ,H sin(2λ)), λ ∈ [0, 2π)}, where R >
0, H > 0. The saddle trajectory is connected, bounded and
closed, see Fig. 3. It is known that the union of all its chords
(line segments that connect two points on trajectory) is the
same as the convex hull CS of the trajectory (Fig. 1)[5], so
anything outside this region cannot be reliably reconstructed.
However, feasibility of reconstruction inside the region will
depend on the pattern of truncation of the projections. For the
saddle trajectory, [5] and [6] only deal with axial truncation
whereas [7] only focuses on transverse truncation.

Each x-ray source generates a (solid) cone of line segments
determined by a corresponding detector. The FOV is defined
here as the intersection of all measured X-ray cones from all
source positions, as illustrated in Fig. 2. Note that for the same
trajectory, different patterns of truncation (different detector
geometries) will generate different FOVs. We say that a FOV
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LYON, France.

is sufficient if, relative to the (known) object support, certain
conditions to ensure an exact reconstruction are met.

Specifically, we assume that both Ωo and the FOV are
cylinders whose axes are parallel to the x3-axis, see Fig. 3
(however, in practice, it is difficult to build a FOV with a
perfect cylindrical shape). Neither of these regions are nec-
essarily contained with CS , the region of potentially feasible
reconstruction.

Fig. 1. The convex hull CS of the saddle trajectory. Each point of this convex
set is intersected by a chord.
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Fig. 2. The FOV defined as the intersection of the X-ray cones (here we
show a 2D version, with three source positions). With the saddle trajectory, it
is impossible to perfectly define a cylindrical FOV using a rectangular detector,
but for simplicity we investigate a cylinder inside this FOV.
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Fig. 3. The saddle trajectory S with a cylindrical FOV and Ωo containing the
object support. Left: Transverse truncation. Right: Axial truncation.

The DBP method allows a point x ∈ FOV∩CS ∩Ωo to be
reconstructed if it lies on a chord (a line linking two source
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positions of the trajectory, see Fig. 4) and if the intersection
of the chord and the FOV contains a non empty interval
outside the object Ωo, see [8], [9], [4], [10]. This geometrical
requirement is generated by requirements for a subsequent
inversion step using the one-endpoint Hilbert transform [10],
but we do not concern ourselves here with those details. When
the second condition fails, it might be possible to resort to
the M-line method. An M-line is a half-line from a source
position and passing through x (see Fig. 4). To reconstruct
x, the intersection between the FOV and the M-line passing
through x must contain an interval outside the object Ωo: the
M-line must intersect the region ΩF = FOV\Ωo. There can be
many possible M-line configurations satisfying this condition
(see Fig. 5). Moreover, each point on the interval of the M-line
that intersects FOV∩Ωo must lie on a chord (a different chord
for each such point). As x is in the convex-hull of S, an M-line
segment from a source-point to x is also in this convex hull,
therefore each point on this segment lies on its own chord. In
[7], cone-beam reconstruction using the M-line trajectory was
presented for the saddle trajectory with transverse truncation.
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Fig. 4. Left: Top view of a chord c and an M-line from SλM
. Right: Parts

of some M-lines (in blue) through a point x which is inside the convex hull
CS of the saddle trajectory. A chord (in black) contains x.
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Fig. 5. Top view of a saddle trajectory S and an object with support Ωo.
Here, x is on the chord c and the DBP method cannot be directly applied,
because c∩FOV is in the strict interior of c∩Ωo, see [10]. However, M-line
method can be applied here. L1 is a suitable M-line, because L1 ∩ ΩF 6= ∅
(ΩF = FOV \ Ωo is the dark grey region). Similarly for L′

1 but not for L2

(see [10] and [4]). The grey cones delimit the suitable M-lines.

When both transverse and axial truncation are present,
correct application of the M-line method requires careful
examination of the geometry of the FOV and the object ΩO.
Fig. 6 gives an example of an unsuitable FOV for the saddle
trajectory S because, for the chosen x, there is no M-line
crossing ΩF . An M-line is suitable only if its intersection with
ΩF contains an interval of finite length.

Our aim is to define FOVs such that each point of the region
of interest (ROI) Ωo ∩ FOV ∩ CS can be reconstructed with
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Fig. 6. An example FOV not suitable for the M-line method, because the
(two) cones of lines (light grey) from x which intersect FOV \ Ωo (dark
grey) do not intersect the saddle trajectory S. Therefore there can be no M-
line that intersects FOV\Ωo, and reconstruction inside all FOV∩Ωo cannot
be performed using the M-line method.

the M-line method, assuming ΩF 6= ∅. We call these FOVs
sufficient FOVs.

In this work, we focus on two sufficient FOV configurations
mixing transverse and axial truncation. They will be called type
1 and type 2.

II. SUFFICIENT FIELDS OF VIEW

We begin by considering the case of axial truncation only
(i.e., in projection on the horizontal plane (x1,x2), the object
is contained in the FOV, as illustrated in Fig. 3, right). For
simplicity, we assume that the cylinders FOV and Ωo share
the same axis. Let x ∈ Ωo ∩ FOV ∩CS , then the intersection
between ΩF and a horizontal plane containing x is an annulus.
Now x is in CS , the convex hull of S, so we denote one of these
intersections with the horizontal plane by Sλ. See Fig. 7 for an
illustration. Then, an M-line from Sλ and passing through x
intersects the annulus previously mentioned, so this M-line is
suitable and the FOV is sufficient. By convexity, the segment
connecting Sλ to x is inside CS , therefore each point of this
segment lies on some chord, as required in order for the M-
line to be suitable. The case of saddle trajectory with only axial
truncation was treated in [5] and [6], but with other methods
than the DBP method.
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Fig. 7. A saddle trajectory with only axial truncation. Considering a horizontal
plane through x ∈ Ωo ∩CS ∩ FOV , it is possible to have a suitable M-line
(in blue) from an intersection between the horizontal plane and the trajectory.
Right: top view, the dark grey annulus is ΩF .

From now on, we will work with another configuration
with transverse truncation, with in addition sometimes axial
truncation (an example is given Fig. 8). In this case, the
projections of Ωo and the FOV onto the horizontal plane
(x1,x2) intersect, such as shown in Fig. 5 i.e., if Do (resp.
DFOV) is the disk defined by the orthogonal projection of the
cylinder Ωo (resp. FOV) onto the plane (x1,x2), then we
assume DFOV ∩Do 6= ∅.
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Ωo

Fig. 8. A saddle trajectory with axial and transverse truncation.

We now give conditions for a FOV to be sufficient, thus en-
suring the ROI can be reconstructed using the M-line method.

a) Sufficient FOV: type 1: For each extremity of the
cylindrical FOV (the base or the cap), one of the two following
conditions must be satisfied:
• the extremity is outside CS .
• the extremity is beyond the object (the FOV has a non

empty intersection with the corresponding extreme base
(or cap) of Ωo).

Such a FOV is called sufficient of type 1.
The sufficiency of a type 1 FOV can be justified by

considering any vertical plane (i.e. parallel to the x3-axis)
containing a point x of the ROI and intersecting ΩF (see
Fig. 9), or equivalently in orthogonal projection onto (x1,x2),
intersecting DFOV \Do (see Fig. 10).
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Fig. 9. Side view and cross section for a cylindrical object and a cylindrical
FOV. The dark grey part is ΩF . The horizontal plane of Fig. 10 will pass
through the dotted region because x ∈ FOV ∩ Ωo. Left: A potential but
unsuitable M-line from x to Sλ is shown. This case must be avoided. Right:
A potential and suitable M-line from x to Sλ is shown.

The point x being in CS , this vertical plane will intersect
the trajectory at two points. Let Sλ such that the projection of
the segment [x,Sλ] in the (x1,x2) plane intersects DFOV\Do

(see Fig. 10).
We consider the [x,Sλ] line segment. We must verify that

this segment of M-line intersects ΩF (with non-zero length),
i.e. that the situation of Fig. 9 does not occur. For the case
where both extremities of the FOV are beyond Ωo, then [x,Sλ]
clearly intersects ΩF . In the case where both extremities of
the FOV are outside CS , we first recall that, by convexity,
the segment [x,Sλ] is always contained in CS (because their
endpoints are). Since the extremities of the FOV are outside
CS , the segment [x,Sλ] must intersect ΩF . The remaining
case (one end outside CS and one outside the object Ωo) is
a mixture of the previous cases, and then [x,Sλ] intersects

S
Do

x

DFOV

Sλ
x2

x1

Fig. 10. Projected view from above (onto the horizontal plane (x1,x2))
showing a vertical plane containing x passing through DFOV \Do (in dark
grey). It intersects the saddle trajectory S in two points, and Sλ is the point
such as the projection of [x,Sλ] intersects DFOV \Do.

ΩF again. This last case is illustrated Fig. 11. Another way
to understand conditions for FOV of type 1 is to consider two
cases, in assuming these conditions are satisfied:
• The [x,Sλ] line segment intersects an extremity of the

cylindrical FOV: [x,Sλ] ∈ CS , thus the satisfied condition
for this case cannot be “the extremity of the FOV is
outside CS”, therefore the satisfied condition is “the
extremity of the FOV is beyond Ωo”, so [x,Sλ] intersects
ΩF .

• The [x,Sλ] line segment intersects the side of the cylin-
drical FOV: in this case both conditions can be satisfied,
and in each case it guarantees that [x,Sλ] intersects ΩF .

We have shown that an M-line coming from Sλ and passing
through x (and thus containing [x,Sλ]) intersects ΩF and is
therefore suitable, recalling that [x,Sλ] ∈ CS means that every
point on this M-line segment lies on some chord.

Sufficient FOVs of type 1 are well suited for transverse
truncation, because the constraint mainly concerns the height
of the FOV.
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Fig. 11. An example of sufficient FOV of type 1, because the top extremity
of the FOV is above CS and the bottom extremity is below Ωo. La and Lb
are suitable M-lines from Sa and Sb and can be used to reconstruct xa and
xb. Right: ΩF is the dark grey region.

b) Sufficient FOV: type 2: For a slice parallel to the
(x1,x2) plane, we denote by F1 and F2 the intersection points
of the boundaries of Ωo and the FOV, as in Fig. 12. A FOV is
called semicircular if [F1, F2] is on or below the FOV center, in
the configuration of Fig. 12 (left). We consider a semicircular
FOV and the orthogonal projection of this FOV onto a plane
parallel to the vertical plane (parallel to x3) containing F1

and F2. If the orthogonal projection of S onto this plane
intersects the orthogonal projection of the FOV, then there is



a suitable M-line for all points in the ROI and the ROI can be
reconstructed. A semicircular FOV that satisfies this orthogonal
projection criterion is called sufficient of type 2 (see Fig. 12).
Sufficient FOVs of type 2 are well suited for axial truncation.

x Ωo
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Fig. 12. Top view (left) and side view (right) for a semicircular FOV with
an M-line from Sλ and passing through x. The red dotted curve is the part
of the source trajectory S whose projection intersects the projection of the
FOV. For each point x of Ωo ∩ FOV ∩ CS , every M-line from a source
position Sλ from the red part of the source trajectory S is suitable. Right:
the dashed rectangle is the projection of the FOV onto a plane parallel to the
vertical plane containing F1 and F2. The dashed curve is the projection of
the trajectory S.

III. SIMULATIONS

We simulated cone beam projections of the Forbild thorax
phantom with a saddle trajectory (R = 250 mm and H =
100 mm) for three different FOVs (Fig. 13). Unlike to what
Fig. 13 might suggest, for the x2-coordinate, the FOV is in
fact centered on the center of rotation and the Forbild thorax
phantom is off center. Nevertheless, for visualization purposes,
we pretend that the fantom is fixed. We did not use the M-
line method but algebraic reconstruction with the conjugate
gradient method to evaluate the reconstruction quality. FOV1
is not sufficient; FOV2 is sufficient of type 1; FOV3 is sufficient
of type 2. FOV1 and FOV2 are almost interior problems. In the
following table (the unit is mm), RF and HF are respectively
the radius and the height of the cylindrical FOV, CF is the
center of its base and dim det is the dimensions of the detector
(number of lines and columns); the pixel size is 2 mm × 2
mm. We analytically simulated 200 projections. CT images
were reconstructed with 380 × 152 × 382 voxels. Finally, we
fixed γ = 100 for the conjugate gradient method from RTK
[11] (minimizes ‖(Rf − p)‖22 + γ‖∇f‖22 with R the forward
projection operator and p the measured projections).

FOV RF HF CF sufficient dim det
1 18 (0,30,78) not 92× 69
2 50 380 (0,30,-190) type 1 92× 437
3 18 (0,67,78) type 2 92× 69

Fig. 14 shows cross-sections at x3 = 84 mm for the
reconstructed images for the three FOVs, and Fig. 15 shows
corresponding line profiles at x2 = 37 mm. All FOVs yield
good reconstructions, probably because sufficient FOVs corre-
spond to sufficient but not necessary conditions. However, the
convergence for FOV1 was slower: at 40 iterations, we observe
a global shift of the pixel intensity values.

IV. CONCLUSION

In the context of cone-beam CT with a saddle trajectory
and truncation, we have presented two types of sufficient

300mm

x1

x2

380
mm

S
x1

x3

Fig. 13. Forbild thorax phantom in top view (left) and side view (right). FOV1
is represented by the blue dotted line, FOV2 is the red line and FOV3 is the
green line. The white dashed line in the image at right corresponds to the
profiles plot in Fig. 15. It can be seen on the right image that the projection
(of the top) of FOV3 on a plane orthogonal to x2 intersects the projection of
S, thus making it type 2 sufficient.

1

40 iter. 260 iter.

2

3

Fig. 14. Reconstructions at x3 = 84 mm. Left: 40 iterations. Right: 260
iterations, for FOV1 (top), FOV2 (middle), FOV3 (bottom). The circles show
the FOVs.

FOVs, corresponding to two sufficient geometric conditions for
accurate reconstruction of the ROI, defined as FOV∩CS∩Ωo.
The conditions of type 1 are well suited to transverse truncation
whereas the conditions of type 2 are well suited to axial
truncation (there is also transverse truncation, but constraints
are stronger than for type 1). It is interesting to note that
fairly large truncation can be accommodated, even with an
exact reconstruction. This is encouraging for reconstructing
projections obtained with small detectors. However, the FOV
must always be at the edge of the object support to avoid the
interior problem.

Note that the proposed conditions are sufficient but not
necessary. FOVs that do not meet the sufficient conditions
presented in this work might still admit perfect reconstructions
even though no verifying theory currently exists; apparently
FOV1 is an example of such a case. For FOV1, there is
probably less data redundancy and information. It may be the
reason why the reconstruction of such FOVs converges but is
slower than with sufficient FOVs.
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Fig. 15. Profiles (phantom in blue, reconstruction in orange) from the
reconstructions after 260 iterations at x2 = 37 mm and x3 = 84 mm (see
Fig. 13 right) for FOV1 (top), FOV2 (middle), FOV3 (bottom). The black
dashed lines define the limits of the FOV.

REFERENCES

[1] H. K. Tuy, “Inversion Formula For Cone-Beam Reconstruction,” SIAM
Journal on Applied Mathematics, vol. 43, no. 3, pp. 546–552, 1983.

[2] D. V. Finch, “Cone Beam Reconstruction with Sources on a Curve,”
SIAM Journal on Applied Mathematics, vol. 45, no. 4, pp. 665–673,
1985.

[3] Y. Zou and X. Pan, “Exact image reconstruction on PI-lines from
minimum data in helical cone-beam CT,” Physics in Medicine and
Biology, vol. 49, no. 6, pp. 941–959, 2004.

[4] J. D. Pack, F. Noo, and R. Clackdoyle, “Cone-beam reconstruction using
the backprojection of locally filtered projections,” IEEE Transactions on
Medical Imaging, vol. 24, no. 1, pp. 70–85, 2005.

[5] J. D. Pack, F. Noo, and H. Kudo, “Investigation of saddle trajectories for
cardiac CT imaging in cone-beam geometry,” Physics in Medicine and
Biology, vol. 49, no. 11, pp. 2317–2336, 2004.

[6] H. Yang, M. Li, K. Koizumi, and H. Kudo, “View-independent recon-
struction algorithms for cone beam CT with general saddle trajectory,”
Physics in Medicine and Biology, vol. 51, no. 15, pp. 3865–3884, 2006.

[7] N. Gindrier, R. Clackdoyle, S. Rit, and L. Desbat, “Cone-beam recon-
struction from n-sin trajectories with transversely-truncated projections,”
in 6th International Conference on Image Formation in X-Ray Computed
Tomography, (Regensburg), pp. 46–49, 2020.

[8] X. Pan, D. Xia, Y. Zou, and L. Yu, “A unified analysis of FBP-based
algorithms in helical cone-beam and circular cone- and fan-beam scans,”
Physics in Medicine & Biology, vol. 4349, 2004.

[9] F. Noo, R. Clackdoyle, and J. D. Pack, “A two-step Hilbert transform
method for 2D image reconstruction,” Physics in Medicine and Biology,
vol. 49, no. 17, pp. 3903–3923, 2004.

[10] M. Defrise, F. Noo, R. Clackdoyle, and H. Kudo, “Truncated Hilbert
transform and image reconstruction from limited tomographic data,”
Inverse Problems, vol. 22, no. 3, pp. 1037–1053, 2006.

[11] S. Rit, M. Vila Oliva, S. Brousmiche, R. Labarbe, D. Sarrut, and G. C.
Sharp, “The Reconstruction Toolkit (RTK), an open-source cone-beam

CT reconstruction toolkit based on the Insight Toolkit (ITK),” Journal
of Physics: Conference Series, vol. 489, no. 1, 2014.


