Production and characterization of a fragmented spinor Bose-Einstein condensate
Résumé
Understanding the ground state of many-body fluids is a central question of statistical physics. Usually for weakly interacting Bose gases, most particles occupy the same state, corresponding to a Bose--Einstein condensate. However, another scenario may occur with the emergence of several, macroscopically populated single-particle states. The observation of such fragmented states remained elusive so far, due to their fragility to external perturbations. Here we produce a 3-fragment condensate for a spin 1 gas of $\sim 100$ atoms, with anti-ferromagnetic interactions and vanishing collective spin. Using a spin-resolved detection approaching single-atom resolution, we show that the reconstructed many-body state is quasi-pure, while one-body observables correspond to a mixed state. Our results highlight the interplay between symmetry and interaction to develop entanglement in a quantum system.