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Sorbonne Université, CNRS, 11 place Marcelin-Berthelot, 75005 Paris
(Dated: May 14, 2019)

Decoherence is ubiquitous in quantum physics,
from the conceptual foundations [1] to quantum
information processing or quantum technologies,
where it is a threat that must be countered.
While decoherence has been extensively studied
for simple, well-isolated systems such as single
atoms or ions [2], much less is known for many-
body systems where inter-particle correlations
and interactions can drastically alter the dissipa-
tive dynamics [3–6]. Here we report an exper-
imental study of how spontaneous emission de-
stroys the spatial coherence of a gas of strongly
interacting bosons in an optical lattice. Instead
of the standard momentum diffusion expected for
independent atoms [7], we observe an anomalous
sub-diffusive expansion, associated with a univer-
sal slowing down ∝ 1/t1/2 of the decoherence dy-
namics. This algebraic decay reflects the emer-
gence of slowly-relaxing many-body states [5],
akin to sub-radiant states of many excited emit-
ters [4]. These results, supported by theoretical
predictions, provide an important benchmark in
the understanding of open many-body systems.

Interference phenomena are a central feature of quan-
tum mechanics. However, they are easily destroyed by
uncontrolled couplings with the environment, i.e. de-
coherence. In weakly correlated systems, inter-particle
interactions are typically expected to hasten decoher-
ence. For instance, they are responsible for the colli-
sional broadening of spectral lines in hot atomic vapors.
For strongly interacting many-body systems, the theory
of non-equilibrium dynamics in general and of decoher-
ence in particular remains challenging, and experiments
can provide valuable insight. Improving our understand-
ing of such problems could also help developing novel
experimental methods harnessing dissipation to engineer
specific quantum states [8].

Ultracold atoms provide a natural experimental plat-
form to investigate these questions. Coherence of ul-
tracold quantum gases is usually easily accessible ex-
perimentally, and the sources of relaxation are often
well identified and experimentally controllable. Along
these lines, experiments with dissipative atomic quan-
tum gases have so far mainly explored the role of atom
losses, demonstrating variants of the Zeno effect [9–13],
bi-stability of transport [14] or loss cooling [15, 16]. Spon-
taneous emission provides a different dissipation mecha-
nism. An atom excited by a near-resonant laser under-

goes repeated photon absorption-spontaneous emission
cycles. The atomic momentum changes randomly after
each spontaneous emission and undergoes a random walk
in momentum space with a width asymptotically scaling
as ∆p ∝

√
t [6, 7]. This momentum diffusion, well-known

in the context of laser cooling [17, 18], suppresses interfer-
ences between different parts of the system, as observed
in the pioneering experiment of [19]. The destruction of
spatial coherence was also observed indirectly through
the inhibition of tunneling for a dilute normal gas in an
optical lattice [20], where interactions do not play any
role. In addition, the impact of spontaneous emission on
many-body localization has been recently studied exper-
imentally [21].

In this work, we study a quantum gas of strongly in-
teracting bosons confined in optical lattices and decoher-
ence is induced by applying a controlled rate of sponta-
neous emission. We observe that the presence of strong
interactions between atoms leads to a dramatic modifi-
cation of the time evolution of the momentum distribu-
tion. Whereas a normal diffusive evolution is expected for
non-interacting particles, we observe a sub-diffusive be-
havior. We relate this behavior to a slowing down of the
loss of spatial coherence which, instead of the expected
(fast) exponential decay for independent particles, shows
a (slow) algebraic decay. Anomalous diffusion processes
are common in classical statistical mechanics, describ-
ing many random walk processes with correlated or con-
strained steps [22]. In particular, systems with a distribu-
tion of lifetimes featuring a long tail usually exhibit sub-
diffusion with slower dynamics than the standard, un-
correlated random walk. The dissipative Bose-Hubbard
model shares this feature [5, 23], where slowly-relaxing
states emerge when strong interactions shift the dissipa-
tive processes out of resonance. The ensuing sub-diffusive
relaxation dynamics discovered in [5] is consistent with
the algebraic decay of the spatial coherence ∝ 1/t1/2 that
we observe experimentally.

In our experiments, we create degenerate quantum
gases of bosonic 174Yb atoms trapped in a stack of inde-
pendent, two-dimensional optical lattices (Methods and
Fig. 1A). A (quasi-)condensate [24] forms in each plane
for small lattice depth V⊥. When V⊥ is roughly above
6ER, the quantum gases are well described by a single-
band Bose-Hubbard Hamiltonian [24],

ĤBH = −J
∑
〈i,j〉

â†i âj +
∑
i

[
U

2
n̂i(n̂i − 1) + Vi n̂i

]
. (1)
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Here, J is the tunneling energy between nearest neigh-
bors, U is the repulsive on-site interaction strength, Vi is
a harmonic potential arising from the Gaussian envelope
of the lattice lasers [24, 25], and âi and n̂i = â†i âi are the
annihilation and number operators for lattice site i. A
superfluid-to-Mott-insulator transition occurs as V⊥ and
the ratio U/J increase [24]. The Mott insulator phase,
where the atomic density is pinned at integer values, ap-
pears around 10ER for a filling of n̄ = 1 atom per site. In
this work, we explore a regime of lattice depths ranging
from zero to 13ER. The harmonic potential Vi leads to
an inhomogeneous spatial distribution with a maximum
filling n̄ ≈ 2.5 atoms per site.

We expose the atomic cloud to dissipation by shin-
ing a near-resonant laser beam for a given duration t
(Methods). Our main observable is the momentum dis-
tribution after a 20 ms time-of-flight expansion. In the
absence of dissipation, the momentum distribution cor-
responds to a multiple wave interference pattern, with
sharp peaks at the Bragg positions where the matter
waves interfere constructively [24]. As shown in Fig. 1B,
the Bragg peaks vanish rapidly (on a time-scale around
0.4 ms ∼ 0.2 γ−1sp ) when dissipation is enabled. However,
a residual structure in the momentum distribution per-
sists for much longer times up to a few milliseconds. Be-
sides the relaxation of coherence, we also observe atom
losses that we attribute to two-body, light-assisted in-
elastic collisions [26]. We focus first on the evolution of
coherence, and discuss the role of losses later below. In
the remainder, we normalize the momentum distribution
to the instantaneous atom number N(t).

In order to characterize the decay of coherence, we plot
in Fig. 1C the amplitude of the central Bragg peak ver-
sus time (Methods). The fast initial reduction is followed
by a much slower power-law (“algebraic”) decay at long
times. We show in Fig. 2A that this observation is valid
for all lattice depths V⊥ ≥ 5ER. For non-interacting
atoms, one would expect that the quasi-momentum dis-
tribution n(id) relaxes exponentially to a uniform dis-
tribution equal to the mean number of atoms per site
n̄ [6, 27] (Supplementary Information),

n(id)(k, t) ≈ n(id)(k, 0)e−γspt + n̄
(
1− e−γspt

)
. (2)

Eq. (2) predicts a faster decay at long times than exper-
imentally observed, and cannot explain the power-law.

To reveal anomalous diffusion more directly, we com-
pute the root-mean-square momentum width ∆kt =∫
BZ1

k2xn(k, t)d2k from the images, where the integration
is restricted to the first Brillouin zone BZ1. We show
in Fig. 1D the momentum growth ∆k =

√
∆k2t −∆k2t=0.

The exponential decay in Eq. (2) would lead to a nor-
mal law in ∆k ∝

√
t at short times, close to what we

observe for small lattice depths (inset of Fig. 1D). How-
ever, in the Bose-Hubbard regime V⊥ ≥ 6ER, we observe
sub-diffusion with a power-law behavior ∆k ∝ tσ. The
exponent σ < 1/2 reaches 1/4 at high lattice depths.

Figure 1. Observation of anomalous diffusion in mo-
mentum space. (A) An ultracold gas of 174Yb atoms is
trapped in a stack of two-dimensional square optical lat-
tices and exposed to dissipation by spontaneous emission.
A laser close to an atomic resonance (green arrow) induces
fluorescence cycles at a rate γsp ≈ 520 s−1. Random re-
coil of the atom destroys the initial spatial coherence. (B)
Absorption pictures showing the vertically integrated optical
density (OD) after time of flight, revealing the momentum
distribution n(k), for several dissipation times. (C) Time
evolution of the peak amplitude of the momentum distribu-
tion. The dashed line shows the exponential decay expected
for non-interacting atoms [Eq. (2)]. The solid line is a fit to
A/(1 + γit/κ)κ. (D) Time evolution of the momentum width
∆k. The observed saturation results from the finite size of the
integration area. The short-time evolution follows a power-
law (solid line) whose exponent σ varies with lattice depth (in-
set). The dashed line indicates normal diffusion with σ = 1/2.
In (C) and (D) the in-plane lattice depth is V⊥ ≈ 7.3ER. Each
point corresponds to the mean over 3 realizations of the ex-
periment. Error bars are standard deviations of the mean.

In the algebraic regime observed in Fig. 2A, the mo-
mentum distribution is characterized by a residual mod-
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Figure 2. Decay of peak momentum amplitude and
atom losses. (A) Time evolution of the peak amplitude of
the momentum distribution. The solid lines are fits as in
Fig. 1. The dashed line shows the exponential decay expected
for non-interacting atoms [Eq. (2)]. (B) Time evolution of
the rescaled atom number N/N0 versus rescaled time x =
γ2Bt. We extract the initial atom number N0 and the two-
body light-induced loss rate γ2B (see inset) for each value
of V⊥ from a fit to N0/[1 + xβ ], with β close to 1/2 for all
lattice depths (Supplementary Information Fig. S3). The solid
line is 1/(1 +

√
x). Each point corresponds to the mean over

3 realizations of the experiment. Error bars are standard
deviations of the mean.

ulation on the scale of the first Brillouin zone, or equiv-
alently by short-range spatial coherences before time
of flight. Neglecting coherences beyond nearest neigh-
bors, the lowest-band momentum distribution is approx-
imately given by

n(k) ≈ |W (k)|2
(

1 +
∑

d=±ex/y

Cnn cos(k · d)
)
. (3)

Here, the Wannier envelope |W (k)|2 –the form factor–
reflects the on-site confinement, and the term between
brackets –the structure factor– is the residual interfer-
ence pattern. The quantity Cnn = 1/N

∑
ri
〈â†ri+δâri〉 is

a spatially-averaged correlation function of the bosonic
field between two nearest-neighbor sites at positions ri
and ri+δ, with δ = ex/y nearest-neighbor vectors of the
square lattice.

We use a multi-band expansion analogous to Eq. (3) to
fit the measured momentum distributions and extract the
fundamental band nearest-neighbor coherence Cnn. We

include the lowest excited bands to account for inter-band
transitions induced by the excitation laser or spontaneous
emission [6] (Methods). Fig. 3A shows typical momen-
tum profiles and the corresponding fits (also Supplemen-
tary Information Fig. S8). For lattice depths V⊥ ≥ 7ER,
we find that the nearest-neighbor coherence Cnn decays
algebraically ∝ 1/tα (see Fig. 3B-G). For lower lattice
depths a departure from the power-law is observed at
long times. We plot the fitted exponent α in Fig. 4 and
find a crossover from α ≈ 1 for small V⊥ to a plateau at
α ≈ 1/2 for V⊥ ≥ 5ER. This confirms the emergence
of algebraic time relaxation and anomalous momentum
diffusion in the Bose-Hubbard regime.

We now turn to the theoretical interpretation of our
results. A first-principle description of the many-boson
problem interacting with the quantized electromagnetic
field is a difficult problem [6], and solving it without ap-
proximations a considerable task. Poletti et al. [5] have
discussed a minimal single-band model where sponta-
neous light scattering is treated as a continuous, strictly
local density measurement. For non-interacting atoms,
the model reduces to the exponential relaxation described
by Eq. (2). Strong interactions drastically modify this
relaxation process. The essence of the phenomenon can
be traced back to the existence of states with low co-
herence but also low relaxation rates that dominate the
long-times dynamics.

The emergence of slowly-relaxing states is already seen
in the simplest possible case with two atoms and two
lattice sites. The ground state without dissipation is
|G〉 ∝ |1, 1〉 −

√
2ε × (|2, 0〉 + |0, 2〉) to leading order in

ε = J/U � 1. Here |n,m〉 denotes a Fock state with n
atoms in the first well and m in the second. When a weak
dissipation γsp � U is enabled, the ground state |G〉 ac-
quires a lifetime ∼ γspε

2 � γsp: The interaction energy
mismatch ∼ U between states with different occupation
numbers shifts the dissipative processes out of resonance
and strongly suppresses the relaxation. The other states
are mostly superpositions of |2, 0〉 and |0, 2〉, for which
dissipation randomizes the relative phase at the natural
rate γsp (Supplementary Information).

Poletti et al. [5] have shown that such “interaction-
impeded decoherence” persists with many atoms and
many sites. Here a large number of slowly-relaxing states
participate in the long-time dynamics when h̄γsp � U ,
leading to an algebraic regime with power-law decay for
many observables. This dynamics is captured by a non-
linear master equation governing the probability p(n) to
find n atoms at a particular site. The transition rates
become highly suppressed for configurations with a large
interaction energy offset, and the distribution p(n) obeys
a scaling form underlying the algebraic behavior for small
dissipation γsp → 0. From this scaling form derived in
[5], one can show that Cnn obeys a universal law (Sup-
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Figure 3. Decay of nearest-neighbour coherence. (A) One-dimensional momentum profiles n(k) for k = (kx, 0) versus
dissipation time for a lattice depth V⊥ ≈ 7.3ER. The dissipation time t increases from bottom to top. Solid lines are fits to
a multi-band function from which we obtain the nearest-neighbor coherence Cnn. (B to G) Time evolution of Cnn for various
lattice depths V⊥. Solid lines are a fit to a power-law decay with exponent α, extracted in a chosen time window (Supplementary
Information). The dots show an extrapolation of the fit outside this window. The dashed lines show the prediction of the
model described in the main text, including dissipation due to spontaneous emission and two-body light-induced losses. Error
bars are 1-sigma confidence intervals derived from a χ2 fitting procedure.
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Figure 4. Decay exponent α of the nearest-neighbor co-
herence Cnn. Exponents are extracted from fits Cnn ∝ 1/tα,
as shown in Fig. 3B-G, and error bars are 1-sigma confidence
interval derived from statistical analysis of the fits. We ob-
serve a crossover from normal diffusion (α ≈ 1) to anomalous
sub-diffusion with α ≈ 1/2.

plementary Information),

Cnn ≈
η

√
zγspt

, (4)

with η ≈ 0.478 a numerical factor and z = 4 the num-
ber of nearest neighbors of a square lattice. The time
evolution ∝ 1/t1/2 in Eq. (4) agrees well with our ob-
servations in Fig. 4, even though the system is inhomo-
geneous due to the auxiliary trapping potential. A nu-
merical calculation using Gutzwiller theory and the local
density approximation also confirms the survival of the
Cnn ∝ 1/t1/2 behavior in a trapped gas for high enough

lattice depths (Supplementary Information).

We finally discuss the role of atom losses in more de-
tails. In Fig. 2B, we show the time evolution of the
normalized atom number N(t)/N(0) for different lattice
depths. We find that the data collapse onto the same
curve 1/(1 + xβ) with a scaling variable x = γ2Bt (inset
of Fig. 2B) and an exponent β close to 1/2. This asymp-
totic scaling reflects the behavior of the two-body corre-
lation function 〈n̂(n̂− 1)〉/n̄2 ∝ 1/tβ (Supplementary In-
formation). At long times, we expect that inelastic losses
generate a gas of hardcore bosons with 〈n̂(n̂ − 1)〉 = 0,
consistent with our measurements and reminiscent of the
inhibition of losses in a 1D gas of molecules [9].

We have extended phenomenologically the theory of [5]
by adding a two-body loss term to the master equation
for p(n) (Supplementary Information). The characteris-
tic two-body loss rate γ2B is a free parameter adjusted to
best match the atom number decay (Methods). We find a
fair agreement with our data for the correlation function
Cnn (Fig. 3, black dashed lines) and for the atom number
decay up to γ−1sp . We conclude that the lossy dynamics
preserves the anomalous slowing down, only suppressing
it when the fraction of lost atoms becomes large [28]. At
long times, the model fails to capture the observed dy-
namics. This could be explained by additional effects
neglected in the theory, such as inter-band transitions,
the dynamical creation of correlations between different
sites or collective effects in light-matter interaction. For
lattice depths V⊥ ≥ 10ER, the model also overestimates
the initial coherence, which could be due to a finite tem-
perature of the sample.
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Our experimental results can be summarized as the
emergence of an algebraic decay law in a strongly-
correlated quantum gas. Such power-law decay has been
reported in several theoretical works exploring the de-
phasing of XY-spin chains [3] or the influence of dipole-
dipole interactions on optical clocks performances [4]. In
all instances the power-law dynamics can be related to a
slowly decaying, “sub-radiant” subspace dominating the
long-time dynamics. Finding a common framework to
describe this non-equilibrium dynamics, reminiscent of
the classification of equilibrium phases into universality
classes, provides an interesting, and to our knowledge
open, question for future work.

METHODS

Optical lattices

Our experiments are performed with a degenerate
bosonic 174Yb gas of 7 × 104 atoms in a cubic optical
lattice with spacing d = λlat/2. The vertical confine-
ment along gravity Vz ≈ 27ER is much stronger than the
horizontal one, essentially freezing motion along z and re-
alizing a stack of independent two-dimensional quantum
gases (see Fig. 1A). Here, λlat = 2π/klat ≈ 760 nm is the
wavelength of the lattice lasers, ER = h2/(2Mλ2lat) ≈
h × 1980 Hz the recoil energy, and M the atomic mass.
We calibrate the lattice depths along each axis indepen-
dently using Kapitza-Dirac diffraction [29].

Resonant excitation

The dissipation laser operates near the so-called in-
tercombination transition 1S0 − 3P1, of frequency ω0 =
2π/λ0 and wavelength λ0 ≈ 556 nm. The dissipation
laser has wavevector kL and frequency ωL = ckL (c is the
speed of light in vacuum), propagates vertically and is
detuned by δL = ωL − ω0 = +15Γ0 from resonance, with
Γ0 = 2π× 180 kHz the excited state linewidth. The laser
polarization εL is parallel to the uniform bias magnetic
field |B| ≈ 1 G (see Fig. 1A). The saturation parameter is
s ≈ Ω2

L/(2δ
2
L) ≈ 10−3, with ΩL the Rabi frequency. The

rate of spontaneous emission for a single atom in free
space is then well-approximated by γsp ≈ sΓ0/2, we cal-
ibrated its value using Rabi oscillations (Supplementary
Information Fig. S1).

Analysis of peak amplitude and momentum width

We estimate the peak amplitude in Figs. 1 and 2
from npeak ≡ Npeak/N , where the total atom number
N (respectively, population Npeak of the central peak)
is evaluated by counting the signal in a 480-µm-wide

square region around the atomic cloud (resp., 25-µm-
wide square in the centre of the image). For each V⊥,
we perform a fit using the phenomenological function
npeak = A/(1 + γit/κ)κ, with A the initial amplitude,
γi the initial decay rate and κ a decay exponent char-
acterizing the long-time dynamics (Supplementary Infor-
mation Fig. S6). The fit function interpolates between a
linear decrease at short times and an algebraic decay at
long times. The crossover time between the two regimes
∼ κ/γi, typically ∼ 0.1− 0.2 γ−1sp , is related to the disap-
pearance of long-ranged spatial coherence.

Extraction of coherence from the momentum profiles

Assuming negligible interactions and a far-field
regime [30, 31], the time-of-flight distribution of a quan-
tum gas released from an optical lattice mirrors the mo-
mentum distribution

n(k) =
∑

bands ν

Sν(k)Wν(k). (5)

Here, the envelope function Wν(k) is related to the
Fourier transform of the Wannier function for each en-
ergy band labeled by ν. The normalized structure fac-
tor Sν for band ν is related to the correlation function
〈â†ν,iâν,j〉,

Sν(k) =
1

N

∑
i,j

eik·(ri−rj)〈â†ν,iâν,j〉. (6)

We truncate this expansion to the lowest band and the
first few excited bands to model our experimental sig-
nal (see Supplementary Information for a more detailed
account). We verified that including more terms in the
expansion leads to negligible corrections. For the funda-
mental band, we write the structure factor as the sum of
a “coherent” component S0,BEC(k) describing the con-
densate, and of an “incoherent” component S0(k) with
only short-ranged coherence modelled by Eq. (3). For the
excited bands, which can be gradually populated by light
scattering, we neglect coherence and take Sν 6=0(k) = 1.

Theoretical model

The calculations shown in Fig. 3B-G are performed us-
ing the master equation of [5] for the on-site distribu-
tion p(n), with an additional two-body loss term as dis-
cussed in the text (see Supplementary Information for
more details). We compute the initial condition p(n, ri)
at each lattice site ri by calculating the ground state
of the Bose-Hubbard Hamiltonian using Gutzwiller the-
ory [32, 33] and a local density approximation to account
for the harmonic potential Vi [24, 25]. We then evolve
p(n, ri) using the master equation and finally average
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over the cloud to obtain the black dashed curves shown
in Fig. 3B-G (also in Supplementary Information Figs. S4
and S5).
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