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A B S T R A C T

Facing perceptual uncertainty, the brain combines information from different senses to make optimal perceptual
decisions and to guide behavior. However, decision making has been investigated mostly in unimodal contexts.
Thus, how the brain integrates multisensory information during decision making is still unclear. Two opposing,
but not mutually exclusive, scenarios are plausible: either the brain thoroughly combines the signals from
different modalities before starting to build a supramodal decision, or unimodal signals are integrated during
decision formation. To answer this question, we devised a paradigm mimicking naturalistic situations where
human participants were exposed to continuous cacophonous audiovisual inputs containing an unpredictable
signal cue in one or two modalities and had to perform a signal detection task or a cue categorization task. First,
model-based analyses of behavioral data indicated that multisensory integration takes place alongside perceptual
decision making. Next, using supervised machine learning on concurrently recorded EEG, we identified neural
signatures of two processing stages: sensory encoding and decision formation. Generalization analyses across
experimental conditions and time revealed that multisensory cues were processed faster during both stages. We
further established that acceleration of neural dynamics during sensory encoding and decision formation was
directly linked to multisensory integration. Our results were consistent across both signal detection and catego-
rization tasks. Taken together, the results revealed a continuous dynamic interplay between multisensory inte-
gration and decision making processes (mixed scenario), with integration of multimodal information taking place
both during sensory encoding as well as decision formation.
1. Introduction

Perceptual decision making has been described as a chain of
computational steps. First, sensory signals are encoded by the neurons in
sensory cortices. Thereafter, these inherently noisy (due to variability in
ongoing neuronal activity) sensory signals are accumulated over time in
parietal and frontal regions to form a decision. Lastly, if a decisional
criterion is reached, a motor response is triggered (see for reviews (Gold
and Shadlen, 2007; Heekeren et al., 2008)). Thus, formally perceptual
decision making can be divided into sensory encoding and decision for-
mation stages. So far, perceptual decision making has been studied
mostly in unimodal contexts, whereas some evidence suggests that de-
arch Center (CerCo), CNRS,
urpan Medical School Hos-

. Mercier).

0
23 March 2020; Accepted 15 M

evier Inc. This is an open access a
cision formation is supramodal1 (O’Connell et al., 2012; Romo and de
Lafuente, 2013). Moreover, the different sensory channels provide
complementary information, the integration of which leads to more ac-
curate and faster behavioral decisions (Stein and Meredith, 1993; Welch
and Warren, 1980). Consequently, multisensory integration could be an
integral part of perceptual decision making process, yet this point has
been overlooked and investigations of multisensory integration and
perceptual decision making remain two independent lines of research.

The neural basis of multisensory integration and its loci in the hierar-
chy of brain computations have been the focus of myriad of studies (see for
1 The term “supramodal” is commonly used to qualify a mechanism shared
between modalities. The prefix ‘supra’ (i.e. above) implies that it comes late in
the stimulus processing hierarchy, presumably when modalities are merged and
when information is somewhat “amodal”. Also in the literature the term
“supramodal” suggests neutrality as it does not consider integration between
sensory channels; in such case we consider the term “multimodal” to be more
accurate and thus preferable to indicate multisensory integration.
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reviews (Keil and Senkowski, 2018; Talsma et al., 2010; ten Oever et al.,
2016)). It is nowwell established that multisensory integration starts early
in the process chain (Foxe and Schroeder, 2005; Schroeder and Foxe,
2005). Both animal and human studies have demonstrated that the genesis
of multisensory integration relies on cross-modal inputs to sensory
cortices, which informs about the spatiotemporal co-occurrence of sensory
cues (Atilgan et al., 2018; Bizley et al., 2007; Cappe et al., 2010; Kayser
et al., 2008; Lakatos et al., 2007; Mercier et al., 2015, 2013). At a later
stage, the integration of information from different modalities is related to
congruency and reliability of multisensory inputs, as well as task relevance
(Kayser et al., 2017; Rohe and Noppeney, 2016, 2015). However, it is
unclear how multisensory information is processed during perceptual de-
cision making: it is still an open question whether the observed behavioral
benefits of multisensory inputs reflects a cumulative effect of multisensory
integration at both sensory encoding and decision formation stages, and
whether multisensory integration is at play during decision formation at
all (Bizley et al., 2016). This question is best instantiated by the long-
standing debate on how decision is formed in the context of redundant
signals or two alternative choices. Signal processing in these situations can
follow one of the two hypothetical paths: (1) signals from two modalities
can be treated independently and be associated with two parallel decision
formation processes (e.g. parallel race models); or (2) signals from two
modalities are combined before being fed into a single supramodal decision
formation process (Bizley et al., 2016; Bogacz, 2007; Otto and Mamassian,
2017; Smith and Ratcliff, 2004).

Given the two stages in perceptual decision making (sensory encoding
and decision formation), the effect of multisensory integration could take
place (Fig. 1 A): (1) during sensory encoding only, i.e. before a supramodal
decision formation step, (2) during a multimodal decision formation (see
note 1 for definitions), or (3) both during sensory encoding and decision
Fig. 1. (A) Hypothesized difference in perceptual decision making dynamics betwe
during decision formation (in purple). Left: Once received, sensory inputs are fully in
fuels a supramodal decision process. Middle: Information from the different senses
multisensory integration takes place only during the decision formation stage. Right: T
design: participants had to detect, or to categorize, an unpredictable cue fading in/o
Response times and d-primes plotted for audiovisual (red, AV), auditory (green, A)

2

formation. To test these alternative hypotheses, we employed behavioral
modeling and a time-resolved decoding approach on human EEG while
subjects detected or categorized an unpredictable unisensory-cue (audi-
tory/visual) or a multisensory-cue embedded within a stream of audiovi-
sual noise. To preview the results, behavior-based models alone indicated
multisensory integration at multiple stages of perceptual decision making.
This was further supported by the results from supervised machine
learning analyses of EEG data under unisensory-cue conditions, which
revealed the neural markers of sensory encoding and decision formation
processes (unisensory classifier). Application of unisensory classifier onto
multisensory-cue condition (cross-condition decoding generalized over
time) indicated an acceleration of both sensory encoding and decision
formation for multisensory-cue condition as compared to unisensory-cue
conditions. Lastly, direct decoding procedure between unisensory trials
and multisensory trials demonstrated two periods of multisensory inte-
gration intimately linked to sensory encoding and decision formation. All
the results were reproducible in both detection and categorization tasks.
Together, these findings demonstrate that early multisensory integration
accelerates sensory encoding, while later multisensory integration accel-
erates decision formation.

2. Material and method

2.1. Participants

Data were collected from 12 subjects (4 females, age range 23–35
year old, mean ¼ 26.7, mean absolute deviation (m.a.d.) ¼ 2.6) in the
EEG experiments. All participants had normal hearing and normal or
corrected-to-normal vision. The study was conducted in accordance with
the Declaration of Helsinki and approved by the Inserm (Institut National
en unisensory and multisensory signals during sensory encoding (in blue) and
tegrated to reduce uncertainty and accelerate sensory processing, which in turn
is processed in parallel during sensory encoding and the facilitatory effect of
he different modalities are combined at both processing stages. (B) Experimental
ff from a continuous stream of audio-visual noise. (C) Behavioral performance:
and visual (blue, V) cue conditions during detection and categorization tasks.
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de la Sant�e et de la Recherche m�edicale) ethical committee (Institutional
Review Board IRB00003888 - agreement n�14–156). Written informed
consent was obtained from all volunteers before the experiment.

2.2. Experimental setup

EEG was acquired from 128 electrodes and 4 additional electrodes,
placed above and below the dominant eye and on the left and the right
sides of the eyes, were used to record EOG. Signals were digitized at
2048 Hz, with a 24-bit A/D conversion BioSemi ActiveTwo system
(Netherlands). During the experiment, participants were seated
comfortably in a quiet dark room. A chin-rest (SR Research) was used to
maintain stable head position while fixating on a black cross continu-
ously displayed on a gray background. The screen, on which instructions
and visual stimuli were presented, was located 80 cm from the partici-
pant (BenQ XL2411, refresh rate: 100 Hz, resolution: 1920x1080). The
dynamic visual sequence of stimulation was presented below the central
fixation, with the image centered at 1/4 of the display height. Sounds
were delivered through earphones (Etymotic ER.4), using a dedicated
audio card (Sound Blaster Audigy 5/Rx). Responses were collected
through a numeric keypad. The experiment was programmed and
controlled using Presentation software (version 18.1 from Neuro-
Behavioral Systems, USA).

2.3. Stimuli

Stimuli were primarily from the CerCo databases (the Brain and
Cognition research Center, CerCo, UMR 5549 CNRS). They were typical
sounds and images of living or non-living categories (respectively birds,
dogs, monkeys and cars, guitars, phones). All stimuli were equated using
the following procedure. Sounds were first calibrated (11025Hz, 16 bits,
mono) and then rms-normalized. Auditory noise was added by permuting
samples with a morphed average of all sounds. Images were first cropped
(400x300 pixels) and converted to black and white. Intensity range was
normalized and image histograms equalized to the mean image. Visual
noise was created by shuffling pixels. For both sounds and images, the
signal-to-noise ratio (SNR) ranged from 0% to 100% in 5% incremental
steps.

The stimuli used for the main experiment were selected from a larger
pool of stimuli after behavioral pilot on a separate group of participants
(n¼ 8). Every selected item reached at least 50% of correct recognition at
50% of SNR in the pretests to ensure representativeness and homogeneity
of the final set of stimuli. Following the piloting, the selected set of
stimuli contained 60 sounds and 240 images with an equal number of
items per category.

During the main experiment, unisensory performance accuracy was
kept at 70% using a continuous adaptive staircase procedure (adaptive
up-downmethod (Levitt, 1971), with separate staircase for each category
in each unisensory condition).

2.4. Experimental design

At the beginning of each trial, the participant was prompted to press a
button (see Fig. 1 B). Following a random SOA (250–750 ms), an audio-
visual sequence started. Each sequence lasted 4.5 s and contained dy-
namic audio-visual noise. At any random time between 1.5 s and 3 s, an
unpredictable signal cue was presented in any modality (auditory, visual
or both at the same time) on 85% of trials. The remaining 15%were trials
with audio-visual noise only (catch trials).

During the audio-visual sequence, smooth transitions between noise
and signal cue were achieved by a faint gradual increase/decrease of
signal-to-noise in the course of target presentation (300 ms cycle for
signal fading-in/off). The visual stream was constructed by displaying at
every screen refresh a random picture with a given signal-to-noise ratio.
For each visual sequence, the pictures were chosen from pre-selected
image set (with 500 versions at 0% signal-to-noise and 100 versions
3

for each signal-to-noise above 0%). Each auditory stream was con-
structed by concatenating the different noise versions of a selected sound
(either at 0% signal-to-noise or at a given signal-to-noise ratio for the
signal cue). Each participant were exposed to the entire set of stimuli,
each stimulus was used the same amount of time and audio-visual se-
quences were unique (i.e. different sequences were produced for each
stimulus and for each participant).

Every participant performed two tasks. In the detection task, partic-
ipants had to indicate whether a signal cue was presented in either or
both modalities by pressing the appropriate response button. In the
categorization task, participants had to indicate if the signal cue was an
animal or an inanimate object by pressing the corresponding response
button (counterbalanced across participants). In case of audio-visual
cues, the two modalities were congruent (e.g., the image of a bird was
presented with the sound of a bird). No specific instruction was given
regarding speed-accuracy trade-off. Participants were told that difficulty
was adjusted depending on their accuracy (online staircase procedure,
see above) and that late responses given at the end of a stimulus sequence
were not taken into account (to avoid mixing the brain signals related to
motor response with those elicited by the offset of the audiovisual
sequence). Task order was counterbalanced between participants. Each
task was divided into five consecutive blocks, during which conditions
were randomized (four blocks contained 165 sequences and one block
contained 168 sequences). To maintain vigilance, participants were
encouraged to make self-paced breaks.

2.5. Analysis of behavior

Participants’ responses were analyzed off-line to investigate perfor-
mance accuracy and response times. To take into account responses given
when no signal cue was presented (catch trials), perceptual sensitivity
was computed (d-prime). To do so we followed a conservative criterion.
First, hit rates were calculated by including hits, misses and trials with
undefined response (e.g. double button press) in the total number of trials
(plus incorrect responses in the categorization task). Second, false alarm
rates were calculated by summing response rate for catch trials (mean �
m.a.d.; detection task: 3.8% �2.7; categorization task: 3.3% �2.0) and
response rate for responses occurring before the target presentation in
any condition (detection task: 1.0% �0.8; categorization task: 0.3%
�0.3). Once computed, d-prime values were subjected to a paired
random permutation test (10 000 iterations), comparing performance
between multisensory-cue and unisensory-cue conditions. Effect sizes
were estimated using Cohen’s d for paired samples.

Mean participant’s performance accuracy and response times (RT)
were computed and subjected to the same paired random permutation
test. Performance accuracy was used to compute multisensory gain: The
difference between performance in the multisensory condition and the
best performance in one of the two unisensory conditions. Each partici-
pants RT distributions were further analyzed using the most appropriate
model for each task: (i) the race model for the detection task and (ii) the
diffusion decision model (DDM) for the categorization task.

Behavioral analysis of the Detection task. The detection task used here
required participants to give the same response despite the differences in
cue type (i.e. auditory, visual or audio-visual cue). This type of paradigm
leads to the typical redundant signal effect (RSE) characterized by RT
acceleration when both cues are presented together (i.e. audio-visual
condition) as compared to conditions with the single cue (auditory or
visual). Typically, this RSE can be explained by a simple statistical
facilitation: in the redundant condition (multisensory cue condition), the
faster of the two signals would trigger the response (Raab, 1962). To test
whether the observed RSE is merely a result of such statistical facilita-
tion, we tested the race model inequality (orMiller’s bound, (Miller, 1982),
see also for review (Gondan and Minakata, 2016)):

PAV(t) � PA(t) þ PV(t)
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With P being the cumulative probability that a response has been trig-
gered at time t following the presentation of audio-visual signal (AV),
auditory signal (A) or visual signal (V).

Under the race model inequality, the cumulative RT distribution of the
audio-visual condition cannot exceed the sum of the distributions in uni-
sensory conditions (auditory and visual conditions), and therefore as-
sumes that there are no interactions between the sensory signals. For each
participant, the cumulative distribution function (CDF) for each experi-
mental condition was calculated using 50 quantiles. To down-sample the
collected RTs to a common sample size (i.e. 50 bins) a linear interpolation
was performed. Then, we tested model violation by comparing the area
between the empirical CDF in the multisensory cue condition and the
Miller’s bound (model predicted CDF) using a one-sample t-test, with
participants as repeated measures and the area as the dependant measure
(Colonius and Diederich, 2006; Innes and Otto, 2019). If the empirically
observed and the theoretically derived cumulative audio-visual RT dis-
tributions are significantly different, it can be concluded that faster RTs in
the multisensory condition cannot be explained by a simple statistical
facilitation due to the presence of two signal cues.

The race model inequality assumes absence of correlation between
unisensory responses (i.e. the join probability is supposed to be negligible)
and context invariance (i.e. statistical independence of unisensory pro-
cesses, seeOtto et al., 2017 for an extendeddiscussion). Therefore, nextwe
applied the context variant race modelwhich includes two free parameters
to account for the aforementioned assumptions inherent to the race model
inequality. The context variant race model estimates RT distribution of the
multisensory condition using RT distributions from the unisensory con-
ditions bymeans of the LATERmodel (Linear Approach to Threshold with
Ergodic Rate), further complemented with the two free parameters. The
LATER model posits that the behavioral response is initiated when a de-
cision variable reaches a threshold, and that this decision variable is
defined as a ramp with a slope drawn from a Gaussian distribution (note
here that 1/RTs distribution follows a Gaussian distribution, also all
modeling described here are performed in the reciprocal space). The
LATER model has been shown to be effective in modeling decisions and
RTs in one-alternative tasks (e.g. signal detection task), especially when
the stimulus is unpredictable in time like in the detection task we used
(Carpenter and Williams, 1995; Noorani and Carpenter, 2016). As a first
step, the LATERmodel wasfitted to each unisensory RT distribution using
the minimum variance unbiased estimator (computed using the function
normfit in Matlab). That is, RTs were described by a reci-normal distri-
bution defined by two parameters: mu and sigma. Next, these best fitting
estimates of unisensory RT distributionwere used to fit the context variant
race model to themultisensory RT distribution, assuming that the response
in the multisensory condition is triggered by a unisensory signal with the
higher drift diffusion rate (i.e. race logic). In addition, two free parameters
were added to the model: Rho, a measure of correlation between uni-
sensory signals, and Eta, the variability of the decision variable rate (Otto
and Mamassian, 2012). These free parameters account for the context
invariance assumption (i.e. statistical independence of unisensory pro-
cesses, see above) assumed by the standard race model inequality and
therefore permit the context variant race model to violate Miller’s bound.
Following the fitting procedure (performed using theMaximum Likelihood
Estimates function from Matlab), the free parameters were obtained for
each individual and subjected to a one sample t-test. Last, to assess how
much the best-fitting model explains RT acceleration, we compared the
model-fit multisensory benefit to the empirically observed multisensory
benefit. That is, for bothRTCDFs (i.e.modelled andempirically observed),
we estimated the area (using the mean of CDFs difference) delimited by
the faster of the unisensory CDFs. Comparison between multisensory
benefit estimated by the model and empirical multisensory benefit was
then performed across participants using one-tail Pearson’s linear corre-
lation to reflect attended positive relationship.

Behavioral analysis of the Categorization task. The categorization task
used here was a two-alternative forced choice task, in which participants
had to categorize the stimuli as being living/animal or inanimate/object.
4

The Diffusion DecisionModel (DDM) was built and extensively applied to
modeling perceptual decision making for similar binary choice tasks
(Ratcliff, 1978; Ratcliff and McKoon, 2008). This approach proposes to
map different cognitive processes to different psychologically meaningful
parameters (Ratcliff et al., 2016; Voss et al., 2013):

- Drift rate (v): the mean rate with which decision process approaches
decision threshold triggering the behavioral response, which can be
interpreted as information uptake and is linked to task difficulty.

- Threshold separation (a): the distance between decision thresholds,
which reflects the amount of information considered for making a
decision (a measure of response criterion: conservative vs. liberal).

- Starting point (z): bias toward one of the two possible outcomes
(asymmetry in response criterion). Here a relative starting point (zr)
was used, such that threshold separation a can be estimated (relative
bias allow a 6¼ 1).

- Duration of non-decisional processes (t0): which includes the
encoding processes preceding the decisional period, memory access
and motor processes of the response system.

- A difference parameter (d) allows adjusting the difference in duration
of non-decisional processes between the two choices.

- Inter-trial variability of the different parameters: drift rate (sv),
starting point (sz) and time constant (st0). These parameters permit to
take into account trial-to-trial fluctuations in processing of different
stimuli. Specifically, the drift rate follows a normal distribution with
the mean v and the standard deviation sv, while starting point and
non-decision constants follow uniform distributions with the means z
and t0, and sz and st0, respectively.

We hypothesized that multisensory RT acceleration can be linked to
four DDMparameters: (1) the drift rate variability across conditions v and
(2) across trials sv; (3) the variability of non-decisional constant across
conditions t0; (4) and across trials st0. Threshold separation, a, was
allowed to vary freely, but was kept fixed between conditions, to account
for the differences in response caution across participants. Likewise,
other parameters were kept constant across conditions. We assumed that
there was no a priori bias toward (or against) any response (otherwise, it
would imply that participants had prior knowledge of the upcoming
event) and therefore we fixed the relative starting point of decision tra-
jectory at mid-point between the two decision thresholds (zr ¼ 0.5), and
set it constant across trials (szr¼ 0). Similarly we assumed that there was
no reason to expect differences in speed of response execution between
the two categories (d ¼ 0). For completeness, we also tested several
additional models, in which we varied the amount of free parameters and
verified the relevance of each parameter in predicting the RT distribu-
tions and multisensory benefit (see below).

We computed the DDM for each participants using fast-dm-30 (Voss
et al., 2015). Fast-dm-30 allows to estimate DDM parameters and to
calculate values of predicted RTCDF for a given parameter set. To optimize
the fit of all free parameter estimates, we used the Kolmogorov-Smirnov
test, which utilizes the entire RT distribution. As a consequence, it is a
robust and stable criterion that does not imply data reduction (such as
binning procedure) and is less influenced by the outliers (Voss et al., 2015,
2013).

Model was evaluated by computing a goodness of fit measure at the
population level by comparing the DDM predicted and the empirical RT
distributions. That is, we computed the integral of the absolute difference
between best-fitting CDF from the DDM (averaged for the two-categories)
and the corresponding empirical CDF (RT distributions were equated in
number of trials by down-sampling to 50 bins using linear interpolation).
The area between the curves was computed for each condition and then
averaged across subjects. The lower this goodness of fit, the better DDM
predicts empirical data. To validate the best model fit in a graphical way,
empirical and predicted RT quantiles (25, 50 and 75%) for the different
conditions were plotted for all subjects. In so-called quantile-probability
plots, a good fit can be assumed when all data points are positioned along
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the diagonal. Last, the estimated free parameters that we allowed to vary
between conditions were subjected to Kruskal-Wallis test to assess the
differences between conditions.

While the goodness of fit allows making inferences regarding the
shape of RT distribution of different experimental conditions taken
separately, it does not provide information regarding the predicted
multisensory benefit (modelled CDFs of the different conditions can be
shifted in any direction with respect to each other). Thus, to take into
account the relative position of the modelled CDFs between conditions,
we further estimated the multisensory benefit predicted by the DDM.
This procedure is similar to the one used in the detection task and con-
sists in comparing predicted and observed multisensory benefit using a
correlation analysis (see previous section).

2.6. Signal preprocessing

Electrophysiological data (EEG, EOG) were scanned using a semi-
automatic artifact detection procedure based on signal characteristic
(epochs with utmost signal variance, maximumabsolute amplitude and z-
score - computed across trials and channels separately – where rejected).
To perform a sanity check and exclude remaining artifacts, continuous
data were visually inspected leading to an average of 128 � 19 hits trials
per condition and 77� 11 catch trials (detection task: AV¼ 153� 20, A¼
116�18,V¼117�16, AVnoise¼79�11; categorization task: AV¼150
� 21, A ¼ 117 � 19, V ¼ 114 � 19, AVnoise ¼ 75 � 12). Artifacted
channels were interpolated using spline method, then average reference
was applied. Ambient noise (50 Hz and 100Hz–150Hz harmonics) was
removedbyfitting a sine and cosine at the specified frequency to the single
trial data and subsequently subtracting the estimated components. Trials
were defined from � 1.625 from stimulus onset fade-in. For audiovisual
noise trials (i.e. catch trials, no cue target), a sham onset time point was
randomlypickedbetween the1.5–3speriod (i.e.when signal cue canoccur
in the visual, auditory and audio-visual conditions). Trialswere demeaned
and high-pass filtered at 0.5Hz using a windowed Sinc FIR filter. To keep
the variance of signal cue SNR across participants in a reasonable range,
trials with extreme SNRwere discarded on the basis of two signal-to-noise
steps above and below themedian in each category (in either the visual or
the auditory condition). This threshold was chosen after scanning all the
data and led to rejection of only a few trials (2.9 � 1.7 per condition and
per subjects). Finally, to increase the spatial resolution/reduce volume
condition, we computed an estimate of the Scalp Current Density (i.e.
surface Laplacian). This spatialfilter is based on a second-order derivative
of the scalp topography using 3D-spline method (Perrin et al., 1989). The
data were processed offline by using custom-written scripts in MATLAB
(MathWorks, MA, USA), the FieldTrip Toolbox (Oostenveld et al., 2011)
and the LIBLINEAR library for large linear classification (http://www
.csie.ntu.edu.tw/~cjlin/liblinear).

2.7. Classical ERP-analysis

For each participant, after down sampling the EEG data to 512 Hz,
evoked-related potential (ERPs) were computed and baseline-corrected
(�100 msec to onset of signal cue fade-in). Multisensory effects were
assessed by mean of the additive model (Besle et al., 2004) through
cluster-based permutation tests (Maris and Oostenveld, 2007). In short,
ERPs from the multisensory condition were summed with ERPs from
catch trials and then compared to the sum of ERPs from the unisensory
conditions using non-parametric statistics and corrected for multiple
comparison by taking the maximum sum of the cluster-level statistics
(alpha level¼ 0.05, number of randomization¼ 1000, minimum number
of neighboring channels per cluster ¼ 2).

ERPs were further analyzed to highlight the topographical similarity
between conditions by calculating the spatial correlation between every
scalp maps of the multisensory condition and of the sum of unisensory
conditions. This was performed by computing the Dissimilarity index as
followed (Murray et al., 2008):
5

DISSu;v ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 �

Xn

ð ui � vi Þ2
s

n i¼1 GFPu GFPv

where: n is the number of electrodes,ui and vi are the measured potentials
at the ith electrode for conditions u and v, and the Global Field Power is
the standard deviation of all electrodes.

The Dissimilarity index was then normalized to obtain the Spatial
Correlation as followed:

SpCorru;v ¼ 1� Diss2u;v
2

Computation of this measure for every pair of topographies over time
produces a matrix of topographical similarity for every time points.
Topographical similarity range from �1, when two topographies are
perfectly reversed in polarity, to þ1, when they are identical. For each
participant, the topographical similarity matrix was computed during the
baseline period, which served as a control, and over the post fade-in onset
period (from0 to�800msand from0 to�1000mfor thedetectionand the
categorization task respectively). The values were then subjected to a
cluster based permutation paired-test, similar to the procedure described
above (here the clusters correspond to the neighboring pixels in the topo-
graphical similarity matrix). To assess the asymmetry of the topographical
similarity matrix across participants, values above and below the diagonal
were summed and then contrasted using a paired-sample t-test.
2.8. Multivariate pattern analysis

Principle: The aim of MVPA applied to EEG is to isolate activations that
are specific to a given brain operation by optimally combining the infor-
mation from all electrodes at a given time point. In the present study, to
obtain the topographicalweights thatmaximallydiscriminate experimental
conditions, we used the LIBLINEAR library (Fan et al., 2008) in a Mon-
te-Carlo stratified cross-validation procedure (hold-out method with 200
iterations). Importantly, we applied different decoder types: the first one
was used to classify conditions (binary classifier, (L2-regularized logistic
regressionmode), and the secondonewas aRT-based classifier (non-binary
classifier, L2-regularized L2-loss support vector regressionmode).Whereas
thefirst decoder type characterizes the full dynamics of activation patterns,
the second decoder type isolates brain activity that predicts RT. Thus, this
double decoding procedure permits to study processes, which may partly
overlap in time: sensory encoding and decision formation.

Decoding procedure: Data were down-sampled (128 Hz) to reduce
computation time while maintaining sufficient temporal resolution
(Grootswagers et al., 2017). Trials were defined either relative to the cue
fade-in onset (�200 to 1300 msec) or relative to the response (�1500 to
200 msec). Each trial was baselined using -200-0 msec interval (cue--
locked analysis) or the entire epoch (RT-locked analysis). On each
cross-validation iteration (CV), the data-set was randomly split into a
training set (90% of the trials) and a testing set (the remaining 10% of the
trials), each condition being equally represented by the same amount of
trials (stratified cross-validation). Last, the signal at each electrode was
normalized across trials using the estimates from the training set
(Crouzet et al., 2015; Edwards et al., 2018).

Weights projection: For each time point, a weight was assigned to each
electrode which reflects how this feature contributed to maximizing the
decoding. After the decoding procedure, and to further exploit weighting
information, the electrode weights were used in two ways. First, to
characterize brain activation that best differentiate experimental condi-
tions, topographical weights were transformed back into activation pat-
terns by multiplying them with the covariance in the data. Second, to
track the temporal course of the cognitive operation isolated by a given
classifier, topographical weights were applied to the single-trial time
series and used for additional statistical analyses (see below Link between
classifiers section).

Time generalization: Classifiers that best differentiate conditions at a

http://www.csie.ntu.edu.tw/%7Ecjlin/liblinear
http://www.csie.ntu.edu.tw/%7Ecjlin/liblinear
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given time point were tested on every other time point, leading to a
“temporal generalization” matrix. This step was performed within the
cross-validation iteration which implies that trials used for training and
testing (at the same/different time point) were from different trial sets.
Such temporal generalization permits to draw the blueprint of brain pro-
cesses by distinguishing canonicalmotifs that are not accessible otherwise.
Actually, similar variation indecodingperformanceover timecanoriginate
from different scenarios that can be revealed through temporal general-
ization. For instance the reactivation of a unique process canhave the same
profile of decoding performance as a chain of different processes. In the
former case the temporal generalization would reveal a checkerboard like
motif where the process is repeated at different timemoment, while in the
second case a diagonal motif would be seen in the temporal generalization
matrices (for further instantiations see (King and Dehaene, 2014)).

Generalization across conditions:To assess the similarities anddifferences
between brain responses across conditions, the classifiers trained in one
condition (e.g., response timedecodingof unisensory-cue trials)were tested
for generalization on other conditions (e.g., response time decoding of
multisensory-cues trials). This step was performed at each iteration on
normalizeddata.Here,wealso tested for the temporal generalizationacross
conditions, following the same procedure as for within-condition temporal
generalization described above. Generalization across time and experi-
mental conditions captures the neural architecture of brain operations and
reveals how processing stages change between experimental conditions
(King et al., 2016; Marti et al., 2015; Myers et al., 2015; Salti et al., 2015).

Statistical validation: For each iteration, the classifier generated a
measure of the decoding performance (either the Area Under the Curve
or the correlation coefficient depending on the type of decoding per-
formed: between conditions or RT prediction). This measure relates to
the proportion of test trials that were correctly classified using the
topographical weights computed from the training set. Chance levels
were obtained by running the same procedure while shuffling the labels
between conditions. As within-subjects analysis, classifier performance
from each iteration were used to compute confidence intervals of the
mean using a bootstrapping procedure (95% CI from 1000 boostraps)
which was then compared with the results from shuffled data to estimate
statistically significant decoding performance. Between-subject analysis
was performed using a one-tail paired random permutation test on the
mean performance across CV iterations for real and shuffled conditions
(10 000 iterations). To control for multiple comparisons, a cluster-based
correction was applied with false alarm rate set at 0.005% cut-off (Maris
and Oostenveld, 2007).

Relationship between classifiers: We performed several different
decoding procedures to characterize distinct cognitive processes. Trials
with unisensory signal cues were classified either against audio-visual
noise or were used to predict RT (using different decoder type, see
above). These different classifiers permitted to identify activation pat-
terns corresponding to early sensory encoding and later decision for-
mation, which were next tested for generalization on multisensory trials
(generalization procedure). Direct decoding between unisensory trials
and multisensory trials revealed an early and a late period of multisen-
sory integration and corresponding activation patterns (see results sec-
tion). To relate these different cognitive processes at the single-trial level,
the co-occurrence of the activation patterns that were derived from
different decoding procedures were assessed as follows. First, for each
subject, and for each type of decoding, the classifiers showing the highest
decoding performance during the early and the later processing stage
were identified. This allowed to select the classifiers which best
discriminated conditions at the subject level. Second, the corresponding
weights were applied onto multisensory-cue trials (hits only) to obtain a
single-trial time series for each decoder type (i.e., sensory encoding, de-
cision formation and early/late multisensory integration). Third, from
each classifier-weighted single-trial time series the maximum absolute
amplitude was extracted (4 numbers per trial). This provided an estimate
of respective cognitive process strength (early sensory encoding, later
decision formation, early and late multisensory integration) at the single
6

trial level. Fourth, single-trial maximum absolute amplitudes were
correlated to evaluate the relationship between, respectively, early/late
multisensory integration and sensory encoding/decision formation.
Given the hypothesized positive relationship, one-tail Pearson correla-
tion was computed. Finally, individual correlations were subjected to a
random effects test. That is, the correlation coefficients obtained for each
participant (Fisher z-transformed) were tested at the group level using
one sample t-test (i.e. against zero).

3. Results

3.1. Behavior

Behavioral benefits of multisensory integration were investigated in
two tasks, where participants had to detect, or to categorize, a target-cue
embedded in a stream of audio-visual noise (Fig. 1 B). This signal cue was
either auditory (A), visual (V), or audio-visual (AV), and could be pre-
sented at any moment in the stream of noise or be absent (catch trials).
Signal cue consisted of an unpredictable faint gradual increase-decrease
of signal-to-noise-ratio (SNR). The amount of SNR was titrated to main-
tain performance at an accuracy level of 70% in either unisensory con-
ditions (Detection task: A ¼ 67.4 � 1.8, V ¼ 69.2 � 2.5, Categorization
task: A ¼ 70.3 � 2.9, V ¼ 69.0 � 3.4; mean % þ/�m.a.d.). As compared
to the unisensory conditions, accuracy in the multisensory condition was
higher in both tasks (89.4� 1.5 and 86.2� 2.4; mean%þ/�m.a.d in the
Detection and the Categorization task respectively). Which leads to sig-
nificant multisensory gain in both tasks (Detection: 0.2� 0.03 m.a.d, p¼
0.0006, Cohen’s d ¼ 5.2584; Categorization: 0.15 � 0.04 m.a.d, p ¼
0.0003; Cohen’s d ¼ 4.0776). Perceptual sensitivity, depicted in Fig. 1 C,
was also found to be higher in the multisensory condition as compared to
unisensory conditions (Detection task: for AV vs. A p¼ 0.0002& Cohen’s
d ¼ 5.9588, for AV vs. V p ¼ 0.0002 & Cohen’s d ¼ 5.2498; Categori-
zation task: for AV vs. A p¼ 0.0003& Cohen’s d¼ 3.2181, for AV vs. V p
¼ 0.0003 & Cohen’s d ¼ 7.3189); with false alarm rate being relatively
low (see Materials and Methods).

In both tasks, more accurate performance in multisensory condition
was accompanied by significantly faster response times (Detection task:
AV ¼ 537 ms � 46 m.a.d., A ¼ 624 � 73, V ¼ 591 � 39, for AV vs. A p ¼
0.0002 & Cohen’s d ¼ 1.7408, for AV vs. V p ¼ 0.0004 & Cohen’s d ¼
�2.1875; Categorization task: AV ¼ 776 � 52, A ¼ 838 � 45, V ¼ 857 �
55, for AV vs. A p¼ 0.0004& Cohen’s d¼ 2.334, for AV vs. V p¼ 0.0003
& Cohen’s d ¼ �3.171). To further examine the observed RT accelera-
tion, we analyzed behavioral data taking into account the entire RT
distribution. For this, we used computational models that are appropriate
for each task: the race models for the detection task and the Diffusion
Decision Model (DDM) for the categorization task.

3.2. Detection task: the race models

To assess whether RT acceleration in the multisensory condition can
be explained by statistical facilitation due to signal redundancy (i.e. both
cues providing the same information), we applied the race model
inequality (see Materials and Methods section for details). This model
relies on the assumption that if the two components of a redundant signal
are processed in separate channels, the faster channel determines the
response time (Gondan and Minakata, 2016; Miller, 1982; Otto and
Mamassian, 2017). The comparison of this so-calledMiller’s bound to the
observed cumulative distribution function (CDF) of multisensory RT
across participants demonstrates that RT distribution in the multisensory
condition cannot be fully explained by a simple statistical facilitation
(mean¼ 4.2 � 10�3 � 0.3� 10�3 s.e.; t(11) ¼ 4.22, p¼ 0.0014, Miller’s
bound violation is illustrated at the population level in Fig. 2 A with a
dark shaded area).

We next applied the context variant race model, a refined race model
recently developed by Otto and colleagues, which allows for possible in-
teractions between unisensory channels to explain multisensory benefit
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(Otto et al., 2017, 2011). This model was derived in two steps. First, we
fitted the LATERmodel (Noorani et al., 2016; Carpenter et al., 1995) to the
unisensory CDFs and estimated for each distribution mu and sigma pa-
rameters (respectively: A: 1.76� 0.20; V: 1.78� 0.12 and A: 0.45 � 0.07;
V: 0.33 � 0.06; mean � m.a.d.). Second, we combined these parameter
estimates to model multisensory RTs distribution (mean log-likelihood of
the MLEs¼ �24.7� 7.1 m.a.d.). For illustration purposes, Fig. 2 A depicts
the subject-average best-fitting context variant race model and the corre-
sponding empirically observed multisensory CDF. We compared modelled
and empirical data at the subject level by computing corresponding
multisensory benefit (i.e. the difference between the multisensory CDF,
modelled or empirical, and the faster of the two unisensory CDFs; light
shaded area in Fig. 2 A). Correlation between model-fit benefits and
empirical benefits shows that the best-fitting model almost fully explains
multisensory RT acceleration across participants (r¼ 0.99, p¼ 4.1� 10�9,
see inset Fig. 2 A). Following the validation step of the best-fitting model,
we inspected the free parameters and found that both Rho (0.44 � 0.25;
mean � m.a.d.) and Eta (0.05 � 0.04) were significantly different from
zero across participants (respectively: t(11) ¼ 4.96, p ¼ 0.0004 and t(11)
¼ 4.24, p ¼ 0.0014). Note that the values reported in Fig. 2 legend
correspond to the application of the model at the population level (i.e. RT
averaged across participants, see above). These results demonstrate that
inclusion of interactions between the unisensory features in the context
variant race model resulted in increase of explained variance as compared
to simple statistical facilitation (Miller’s bound).

3.3. Categorization task: the diffusion model

The Diffusion Decision Model (DDM) is used to model performance
in two-alternative forced choice tasks, like the categorization task
employed here. The DDM models the accumulation of evidence be-
tween two threshold criterions - one for each response alternative. The
DDM allows modeling RT distributions using up to eight free param-
eters, each of which is associated with psychologically meaningful
Fig. 2. Response time modeling. (A) Detection task: race models. Circles represent
three conditions (Auditory in green, Visual in blue and Audio-Visual in red). Light gra
between the multisensory condition and the faster of the two unisensory conditions. T
the dark gray shaded area highlighting violation. The red line depicts the best-fittin
model from the unisensory conditions (green and blue line for the auditory and the
0.35) and the variance (Eta ¼ 0.065). Note that for illustration purpose the model was
the single subject level depicted as the correlation between empirical multisensory
represent a participant, the big red circle represents the population mean). The bl
diffusion models. Circles represent the cumulative distribution function of RT for the
benefit. The lines represent the best-fitting diffusion models (DDM) for each conditio
predicted RT quantiles (25, 50 and 75% respectively depicted by triangle facing ri
participant. The black lines at the extremities indicate the diagonal (i.e. perfect corr
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process (Ratcliff et al., 2016; Voss et al., 2013). Here, we reasoned that
multisensory RT acceleration could be linked to four DDM parameters
that we allowed to vary between conditions: the rate of decision for-
mation (drift rate, v), the duration of non-decisional processes (non--
decisional constant, t0) and inter-trial variability of these two
parameters (sv and st0 respectively). To account for the differences in
response caution across participants, the distance between decisional
bounds (threshold separation a) was allowed to freely vary across
participants, but was kept fixed between conditions. The last three
parameters were kept fixed.

After fitting the DDM to the data separately for each participant,
statistical analyses of the free parameters across participants revealed
significant differences between the multisensory condition and the uni-
sensory conditions (see Table 1), for t0 (i.e. non-decisional time con-
stant), indicating that the duration of non-decisional processes is reduced
in the multisensory trials as compared to unisensory trials. Critically,
there was no difference for v (i.e. drift rate). Last, for multisensory trials,
sv (i.e. inter-trial variability of the drift rate) was significantly greater,
while st0 (i.e. inter-trial variability of non-decisional time constant) was
significantly reduced. Empirical CDFs averaged across participants and
the corresponding best-fitting DDM estimates are represented in Fig. 2 B.
Inset depicts quantile probability plot, which endorses high model fit at
the level of single subjects for all three conditions.

The appropriateness of chosen free parameter was verified through
the assessment of alternative models for which we increased the number
of free parameters and/or combined them (see Supplementary Table 1).
Overall, all tested models revealed the importance of t0 for predicting RT
distribution and multisensory benefit. The predictions were further
improved when t0 was combined with sv and st0 (i.e.: inter-trial vari-
ability drift rate and non-decisional constant). Critically, in all best-fitting
models parameter estimates significantly differed between conditions:
with t0 and st0 being systematically smaller in the Audio-Visual condi-
tion, while sv being systematically greater. These analyses confirmed that
in the categorization task, faster RTs in multisensory cue trials are
the cumulative distribution function of RT averaged across participants for the
y shaded area represents the empirical multisensory benefit that is the difference
he black line represents Miller’s bound as defined by race model inequality, with
g context variant race model. This model is constrained by the fits of the LATER
visual condition respectively) and two free parameters: the correlation (Rho ¼
here computed on RT data averaged across participants. Inset: goodness of fit at

benefit and prediction from the best-fitting context variant race model (each dot
ack dotted line represents the least-square regression. (B) Categorization task:
three conditions. Light gray shaded area represents the empirical multisensory
n. Inset depicts quantile-probability plots that is the link between empirical and
ght, square and triangle facing left). Each symbol represents the quantile of a
elation).



Table 1
Comparison of the free parameters between conditions for the main DDM (mean
� mean absolute deviation). Statistical analyses show significant differences
between the multisensory condition and the unisensory conditions for t0 (i.e.
non-decisional time constant), indicating that the duration of non-decisional
processes is reduced in the multisensory trials as compared to unisensory tri-
als. While st0 (i.e. inter-trial variability of non-decisional time constant) was
significantly reduced for multisensory trials, sv (i.e. drift rate inter-trial vari-
ability) was significantly greater.

Parameters AV A V statistics

t0 578.5 � 40.9 627.7 � 31.2 638.2 � 49.5 χ2(2) ¼ 7.66
p ¼ 0.0217

v 0.12 � 0.09 0.15 � 0.07 0.16 � 0.11 χ2(2) ¼ 0.42
p ¼ 0.8122

st0 0.96 � 0.32 0.68 � 0.34 0.38 � 0.21 χ2(2) ¼ 11.37
p ¼ 0.0034

sv 0.15 � 0.04 0.29 � 0.06 0.22 � 0.08 χ2(2) ¼ 13.41
p ¼ 0.0012
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explained in the DDM by shorter and less variable non-decision time; and
by an increased variance of the drift rate.
3.4. Classical ERP-analysis

EEG data were first analyzed by means of a traditional approach using
ERPs. For each condition and each task, evoked activity was marked by a
first focal negative topography followed by the emergence of a strong
positive bilateral component extending over centro-parietal electrodes
(Fig. 3). Interestingly the location of the early negative component was
contingent on the condition. In the auditory condition, two peaks
occurred over left and right central electrodes, while in the visual con-
dition, the peak was located over posterior midline electrodes. In the
multisensory condition, the early negative topography was a combina-
tion of visual and auditory topographies. To assess if this multisensory
response was simply equivalent to the sum of unisensory responses, we
tested the additive model. Statistical comparison of the multisensory
condition to the sum of unisensory conditions revealed significant dif-
ferences already at 150 ms after the cue fading-onset, which coincided
with the early negative component. This multisensory effect lasted until
response was made. However, comparing the same time point across
conditions does not permit to determine if the later significant difference
(i.e. after 300 ms) results from a genuine amplitude difference across
conditions or if it reflects faster overall brain dynamics in the
Fig. 3. Classical ERP-analysis. Evoked responses for Audio-Visual, Auditory and Visua
rization task (B). Mean topographies are depicted every 150 ms (averaged over the cor
triangle on the time axis (AV in red, A in green and V in blue). The lower row repr
correspond to electrodes showing significant amplitude difference following statistica
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multisensory condition (i.e. temporal shift related to early multisensory
integration). To dissociate between these two possibilities, we computed
the topographical spatial correlation between unisensory and multisen-
sory conditions over time. Spatial correlation matrix revealed higher
correlation above the diagonal indicating that similar topographies are
elicited at earlier latencies in the multisensory condition as compared to
unisensory conditions (Fig. 4). This asymmetry was tested statistically by
comparing the summed spatial correlation values above and below the
diagonal. For both tasks, this analysis confirmed higher correlation above
the diagonal (Detection: t(11) ¼ 2.68, p¼ 0.021; Categorization: t(11) ¼
5.36, p ¼ 0.0002). Topographical spatial correlation analysis highlights
the difficulty to investigate later stages of multisensory integration and
therefore to establish if multisensory integration occurs during decision
formation. Therefore we turned to supervised machine learning analysis
approach which enabled us to characterize brain operations by optimally
combining information from every electrode and to compare activation
pattern across time points and conditions.
3.5. EEG decoding analysis of sensory encoding and decision formation
following unisensory signal cue

To characterize the functional processing stages at play following
unisensory cue we used a series of supervised machine learning analysis.
Firstly, a linear multivariate classifier was trained to distinguish trials
containing unisensory signal cues (auditory/visual) embedded in audio-
visual noise from trials containing only audio-visual noise. Time resolved
decoding performance gradually increased above chance level following
unisensory cue onset, peaked and returned to chance level (blue curves in
Fig. 5 A and B). Secondly, we performed a non-binary classification to
decode correct unisensory trials as a function of response times (RT) and
thus evaluate the formation of decision over time. Compared to the first
classifier, classification performance of this RT-based classifier rose later
above chance but peaked at the same latency that is before the behavioral
response was made (purple curve in Fig. 5 A and B). To facilitate the
comparison between the results from the two classifications and further
delineate the temporal extent of brain processes related to perceptual
decision making, we computed the topographical representation of
classifier weights (activation patterns) and performed temporal gener-
alization. Temporal generalization matrix is obtained by testing across all
time points a decoder trained at a given time point and thereby charac-
terizes canonical motif of neural operation (e.g. sustained, chained or
reactivated see (King and Dehaene, 2014) for a comprehensive review).
l signal cue trials (from top to bottom) in the detection task (A) and the catego-
responding window). Corresponding subject-average mean RTs are represented by
esents topographical difference between (AV þ catch) and (A þ V). Red circles
l cluster analysis.



Fig. 4. Topographical spatial correla-
tion. For both the detection task (A) and
the categorization task (B), the matrices
depict the spatial correlation computed
for every time point between multisen-
sory (x-axis) and unisensory topogra-
phies (y-axis), that is Audio-Visual versus
Auditory plus Visual signal cue trials.
Dotted lines represent mean RTs for
Audio-Visual (in red), Auditory (in
green) and Visual (in blue) conditions.
Orange contours represent significant
topographical correlation following sta-
tistical cluster analysis.
Below the matrices is depicted the

number of significant voxels above the
diagonal minus the number of voxels
below the diagonal at the same latency
(i.e. axis perpendicular to the diagonal).
The overall higher correlation above the
diagonal indicates that similar topogra-
phies are elicited earlier in the multi-
sensory condition.
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In both tasks, temporal generalization matrix captured by the unisensory
signal cue vs. noise classifier revealed two islands of significant decoding,
an early and a late, each being associated with a specific activation
pattern (Supplementary Figure. 1 A and C). The first one consisted in
three prominent negativities, similar to the modality specific components
found in the classical-ERP analyses (see Fig. 3). The second stage con-
sisted in a positive centro-parietal topography similar to the second
component rising before response time in the classical-ERP analyses. This
second stage was also isolated by the RT-based classifier, where only one
late island of significant decoding was found and peaked about hundreds
of milliseconds before behavioral response indicating its role in the
preceding decision process (Supplementary Figure. 1 B and D). In sum-
mary, our dual decoding procedure was employed: firstly, to characterize
the full dynamics of activation patterns; and secondly, to highlight the
Fig. 5. Time-resolved pattern classification of unisensory signal cue encoding and de
decodingperformance as a functionof time relative to cue onset for the twodifferent deco
cue trials against noise trials. In purple: decoding based on response times. For both, chan
Color-coded shapes below the x-axis signify statistically significant decoding performanc
.005). Topographical plots underneath depict activation patterns corresponding to the c
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brain activity predicting RT. This twofold approach permitted to draw a
chain of two processes, partly overlapping, from sensory encoding to
decision formation.

3.6. Decoding generalization to multisensory signal cues reveals
acceleration at both sensory and decision stages

Next, we sought to uncover the neural mechanisms underlying
behavioral performance benefit following multisensory cues by applying
a cross-condition decoding approach. Classifiers derived from unisensory
trials were used to discriminate trials containing multisensory signal cues
versus trials containing only audio-visual noise. Moreover, to account for
possible temporal differences across conditions and thus accommodate
the decoding of brain operations happening at different latencies we
cision formation for the detection task (A) and the categorization task (B). Mean
ders (�95%mean confidence intervals). In dark blue: decodingof unisensory signal
ce levels are depicted in gray. Vertical line represents subject-average response time.
e compared to the chance level (corrected formultiple comparisons across time, p<
lassifier weights (mean over 200 ms time window).



Fig. 6. Generalization from unisensory to multisensory condition for the detection task (left panels) and the categorization task (right panels). Classifiers trained on
unisensory trials were tested either to distinguish multisensory signal cue trials vs. trials containing audio-visual noise only (A and C), or to decode response times of
multisensory-cue trials (B and D). For each panel the right-side plot shows the temporal generalization in time across conditions (i.e. a classifier trained at a given time
(y-axis) is tested at every other time moment (x-axis)). Blue horizontal and red vertical lines represent mean response times for unisensory trials and multisensory trials
respectively. The left-side plot of each panel shows at every 100 ms of the training time (with 0 ms on the bottom) the activation pattern and corresponding decoding
performance of the classifier trained-tested on unisensory trials (in blue) and then tested on multisensory trials (in red). Thicker line corresponds to decoding per-
formance higher than chance. Orange areas indicate periods of significant process acceleration in the multisensory condition as to compare to unisensory condition.
The gray lines represent decoding performance for unisensory trials along the diagonal of the unisensory temporal generalization matrix (dotted line along the di-
agonal in Supplementary Figure 1).
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further tested the capacity of classifiers to generalize across time. This
approach revealed that classifiers trained on unisensory trials were able
to decode multisensory trials effectively, indicating that unisensory and
multisensory decision making follows a similar chain of events.
Furthermore, matrix generalization unveiled an off-diagonal pattern:
unisensory classifiers led to higher decoding performance at earlier la-
tencies for multisensory trials (Fig. 6, right column of each panel). As
evidenced by classification against audio-visual noise (Fig. 6 A and C)
and RT-based decoding (Fig. 6 B and D), this acceleration pattern
occurred during both sensory encoding and decision formation stages. In
order to verify that the acceleration significantly increased with time we
calculated the distance between the multisensory and unisensory
decoding time courses every 100 ms (see orange areas in Fig. 6, middle
column of each panel). This integral between significant decoding per-
formances was found to increase linearly with time (Pearson correlation:
detection task: p¼ 0.027, rho¼ 0.74; categorization task: p¼ 0.023, rho
¼ 0.72). This measure is equivalent to estimating the difference between
decoding performance of multisensory versus unisensory generalization
matrix and to show that this difference increases over time (i.e. distance
10
to the diagonal increases along time). Thus, the present results demon-
strate that combination of multisensory-cues speeds-up neural dynamic
all along the course of processing and thereby strongly supports the view
that multisensory integration processes are at play during sensory
encoding and during decision formation (third hypothesis depicted in
Fig. 1 A).

To verify that pooling unisensory trials in the decoding procedure
does not undermine early sensory processing, we performed an alterna-
tive decoding procedure, in which auditory and visual trials were deco-
ded separately (either against catch trials or to decode RT). Then the
weights obtained from the two unisensory conditions were summed to
decode multisensory trials (time generalization across conditions).
Combining unisensory decoding led to equivalent results (see Supple-
mentary Figure 3).

Temporal generalization across conditions illustrates the chain of
processes common to unisensory and multisensory conditions. How-
ever, neural activity specific to multisensory processing (i.e., multi-
sensory integration) was not targeted using this approach. To examine if
the acceleration of brain network activation in multisensory-cues



Fig. 7. Time resolved decoding of multisensory integration for the detection task (left panels) and the categorization task (right panels). Mean classification performance
(orange line) as a function of time (þ/� CI mean; chance levels in gray), with the black shape under the x-axis indicating statistically significant decoding performance
compared to the chance level (corrected formultiple comparisons across time, p< .005). Topographicalmapsunderneath depict the activationpatterns from time-resolved
classification procedure (mean over 200 ms time window). Vertical lines represent mean response times for multisensory trials (in red), and unisensory trials (in purple).
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condition is the only difference with unisensory-cue condition, we
compared the temporal generalization across conditions with direct
decoding of multisensory-cues condition. That is, we trained classifiers
to distinguish multisensory signal cues trials from audio-visual noise
only (multisensory classifiers). Thereafter, we compared decoding
performance of multisensory classifiers with the highest off-diagonal
performance from the generalization matrix across time and condition
(depicted in Fig. 6). Comparison of indirect and direct decoding showed
a similar time-course (Supplementary Figure 2). However, during an
early and a later time period, decoding performance of multisensory
classifiers (direct approach) was significantly higher than that obtained
from temporal generalization across condition (indirect approach);
even though temporal differences between conditions were accounted
for. This result indicates that decoders built from multisensory trials
extracted neural activity which could not be captured by the decoders
build from unisensory trials alone, neural activity likely related to the
integration of multisensory-cues (i.e., related to multisensory integra-
tion processes). Conversely, it can be argued that the higher decoding
accuracy obtained from the direct multisensory classifiers as compared
to the indirect ones (i.e. trained on unisensory conditions) provides only
partial evidence that the direct classifier captured genuine multisensory
integration processes. It could be the case that the direct approach gave
better decoding performance even though the EEG patterns in the
multisensory condition is purely additive (i.e. not integrative). To
address this issue we performed a direct comparison between uni-
sensory and multisensory conditions.
3.7. Time-resolved decoding of multisensory integration and links to
sensory and decision stages

To directly tackle multisensory integration, we trained classifiers to
differentiate between correct multisensory-cues trials and correct
unisensory-cue trials. Time-resolved pattern classification showed above
chance performance starting about 200 ms after the cue fade-in onset,
characterized by two main activation patterns (Fig. 7). The earliest
period presented three negative peaks while the later period showed a
bilateral parietal positivity. To assess if the late period, showing the
highest decoding performance, was caused by a time lag between con-
ditions (due to the acceleration revealed by the temporal generalization
across conditions, see above), we ran the same analysis using trials time-
locked to the response. This second analysis confirmed the significance of
the latest period characterized by the bilateral parietal positivity
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(Supplementary Figure 4). As a control analysis, we tried to decode
missed multisensory-cues trials versus missed unisensory-cue trials and
did not find above chance performance. Such null result sets a parallel
between classifier efficiency in decoding multisensory signal and the
possible absence of multisensory integration when signal cues were not
integrated effectively.

We then aimed at evaluating how much the late multisensory process
depends on the early multisensory process. For each participant, we
identified the classifier weights leading to the highest decoding perfor-
mance between correct multisensory-cues trials and correct unisensory-
cue trials, during the early (0–300 ms) and the late period (300 ms to
the response) and applied these weights to the multisensory-cue trials.
This procedure provided us with single-trial estimates of the early and
late multisensory classifier over time, which in turn, allowed us to
evaluate the relationship between their maximum strength. This corre-
lation, computed at the single trial level, revealed at the group level a link
between the strength of early and late multisensory integration classifiers
(detection task: t(11) ¼ 4.64, p ¼ 7.2 � 10–4; categorization task: t(11)
¼ 2.02, p ¼ 0.068). In summary, the first multisensory processing stage
fosters the later multisensory processing stage.

After characterizing two main activation patterns related to multi-
sensory integration (Fig. 7), we assessed how they were associated with
the identified processing stages of perceptual decision making from
decoding unisensory trials: sensory encoding and decision formation
stages. For each participant, and each type of decoding (i.e., decoding
sensory encoding, decision formation and early/late multisensory
integration), we identified the classifier weights leading to the highest
decoding performance of the multisensory trials, during an early
(0–400 ms) and a late period (200 ms to the response) and applied these
weights to the multisensory-cues trials. Note that here we allowed for
an overlap between stages to avoid a strict sequential perspective over
processing stages. This procedure provided us with single-trial esti-
mates of each decoder type over time, which in turn allowed us to
evaluate the relationship between the corresponding cognitive pro-
cesses (early/late multisensory integration and sensory encoding/de-
cision formation). That is if the signal strength of sensory encoding and
the signal strength of decision formation were linked to the strength of
multisensory integration. This comparison performed for each subject
at the group level revealed a significant linear relationship between
early multisensory integration and sensory encoding (detection task:
t(11) ¼ 7.68, p ¼ 9.6 � 10–6; categorization task: t(11) ¼ 5.35, p ¼ 2.3
� 10–4), and late multisensory integration and decision formation
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(detection task: t(11) ¼ 5.61, p ¼ 1.6 � 10–4; categorization task: t(11)
¼ 5.12, p ¼ 3.3 � 10–4). Overall these results revealed a link between
the cognitive processes isolated by the different classifiers: the strength
of early multisensory integration was related to the strength of sensory
encoding, while the strength of later multisensory integration was
related the strength of decision formation and to response time
variations.

4. Discussion

Sensory uncertainty is resolved faster and more accurately using
multisensory cues as compared to unisensory cues. However, the origin
of such benefit is still unclear and could arise from multisensory inte-
gration during sensory encoding and/or during decision formation. In the
present study, we aimed to pinpoint the critical processing stages during
which multisensory integration influences perceptual decision making.
First, modeling of behavioral data revealed the influence of multisensory
integration on decision formation process. Next, using a supervised ma-
chine learning approach on EEG data, we identified specific patterns
associated with two functional stages of perceptual decision making.
Then, we demonstrated that multisensory benefit originates from the
acceleration of both processing stages: sensory encoding and decision
formation. Finally, we uncovered that the acceleration of these processes
was not simply related to the speed-up of the unisensory dynamics but
tightly linked to distinct multisensory integration processes, which were
at play both during sensory encoding and decision formation.

4.1. Multisensory integration at play during perceptual decisional making,
evidences at the behavioral level

The hallmark of multisensory integration is behavioral outcome,
which typically translates in higher accuracy and faster response times. In
the present study, we observed multisensory benefits in two tasks: when
participants were asked to detect or to categorize multisensory cues their
accuracy and sensitivity were higher in the context of multisensory as
compared to unisensory cues; andmultisensory gain was accompanied by
faster RTs (Fig. 1). To account for behavioral response variability in
unisensory contexts, research on perceptual decision making has
converged on an elemental computational architecture (Bogacz, 2007;
Smith and Ratcliff, 2004). In this framework, ongoing noisy activity at
the sensory level is minimized by the accumulation of evidence over
time, which leads to appropriate motor response execution when a
response criterion is reached. Within this framework a key question re-
sides in determining the origin of multisensory RT speed-up.

In detection tasks, multisensory integration has been formulated as
follows. Either sensory evidence originating from two modalities is
accumulated by two ‘racing’ parallel decision processes: the fastest
reaching the threshold criterion triggers the response (i.e. race model
statistical facilitation). Alternatively, sensory evidence originating from
two modalities could be integrated in a single decision process, resulting
in a more rapid accumulation of evidence towards the threshold criterion
(i.e. co-activation model). The former hypothesis, so-called race model,
has been extensively applied in multisensory research to estimate if
multisensory RT acceleration can be explained by a simple statistical
facilitation (Miller, 1982, see for review Godan et al., 2016).

On that base, we first compared RT distribution from themultisensory
condition to Miller’s bound and found that RT acceleration cannot be
explained by a simple statistical facilitation (see Miller’s bound violation
in Fig. 2). This result suggested that either there is a unique decision
process which integrates the two sensory signals (i.e. co-activation
model), or the race model does not extend well to multisensory contexts
and requires amendments to explain multisensory acceleration. There-
fore, we next applied the context variant race model which introduces two
interactions parameters to account for possible change(s) when multi-
sensory cues are present (Otto and Mamassian, 2017). Best-fitting esti-
mates obtained from the context variant race model demonstrated the
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relevance of both interaction parameters for accurate fit of the entire
multisensory RT distribution and almost perfectly explained the empir-
ical behavioral benefit (see Fig. 2 A inset). The first interaction parameter
Rho, a correlation parameter, was significantly greater than zero, sug-
gesting that a common source of variability contributed to the overall
variability of latencies (e.g. vigilance fluctuation or motor act). The sec-
ond interaction parameter, Eta, characterized a change in decision for-
mation following multisensory cues. That is additional variability in the
rate of evidence accumulation process was needed to accurately model
multisensory RT distribution. This finding directly challenges the context
invariance assumption of the classic race model, which states that the
decision process related to one sensory signal is not affected by the de-
cision process of the other sensory signal (see (Otto and Mamassian,
2017) for a thorough review). Therefore, when two parallel unisensory
decision processes are assumed to take place, some interaction between
them must be considered to model multisensory benefit. To summarize,
our analyses of RT distribution in the detection task revealed that sta-
tistical facilitation alone cannot account for multisensory RT accelera-
tion. Multisensory benefit can be explained by either a unique decision
process that integrates the two sensory signals, or by two decision pro-
cesses that interact. Critically, in either case multisensory integration is at
play during decision formation.

Two alternative forced choice tasks have been widely utilized to
investigate perceptual decision making in unisensory contexts (Gold and
Shadlen, 2007; Ratcliff et al., 2016). The prominent Diffusion Decision
Model (DDM) sketches binary choice as the accumulation of evidence
evolving between two threshold criterions, one for each choice. The DDM
parameters have been proposed to be psychologically meaningful and
map onto different cognitive processes (Ratcliff and McKoon, 2008; Voss
et al., 2013). We computed the DDM in unisensory and multisensory
contexts and compared the derived parameters to investigate which of
the cognitive processes are modulated by multisensory cues. We found
that non-decisional time and its variability were significantly reduced in
the multisensory condition. This result indicates that acceleration of re-
sponses originated from acceleration of non-decisional time(s) that is/are
sensory encoding and/or motor preparation. Here, we cannot fully
exclude that multisensory integration process could occur during motor
preparation and this hypothesis merits to be tested in a dedicated para-
digm – an important test by itself. Nonetheless, in light of our electro-
physiological results (i.e. showing that early multisensory integration
speeds-up sensory encoding), it is more likely that acceleration of
behavioral multisensory responses stems largely from acceleration of
sensory encoding. We further found that, while the DDM did not show
differences for the mean accumulation rate between conditions, the
variance of accumulation rate was greater in the multisensory condition
as compared to unisensory conditions, and thus contributed to faster RT
when sensory evidences can be gathered from multisensory cues (see
below). Lastly, the analysis of RT distribution in the categorization task
using the DDM model explained multisensory benefit by multisensory
integration effect at different cognitive processes of perceptual decision
making: during sensory encoding and during decision formation.

In summary, our investigation of individual RT distribution in both
tasks revealed that inter-trial variability is a key component of RT speed-
up in the multisensory condition. It appears that in the presence of two
sensory cues, decision formation process presents a greater variability,
which leads the accumulation of evidence to reach the decisional crite-
rion earlier than when a single signal cue is available. This greater
variability can be directly caused by the multiple sources of sensory ev-
idence (from one or two sensory channels), and/or related to additional
fluctuations within each sensory channel due to cross-modal modulation
(i.e. the fact that early sensory cortex is modulated by signals from the
non-preferred modality, see for instance: (Lemus et al., 2010)).

4.2. The course of perceptive decision making following unisensory-cue

Pioneering single-unit animal studies revealed that decision-related
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activity recorded in the lateral intraparietal cortex and frontal eye fields
paralleled temporal accumulation of sensory evidence leading to the
behavioral response (Gold and Shadlen, 2007; Heekeren et al., 2008).
Neural correlates of perceptual decision making have since been identi-
fied in multiple brain areas, with neural code of decision making process
spanning across the cortical hierarchy: from sensory areas to parietal and
frontal regions (de Lafuente and Romo, 2006; Siegel et al., 2015; Tsunada
et al., 2016). In humans, a series of seminal EEG studies identified a brain
signal, the centro parietal positivity (CPP), presenting many character-
istics of a neural signature of decision formation (O’Connell et al., 2012;
Twomey et al., 2016). In our study, the activation pattern and the
time-course of decoding performance of the RT-based classifier (Fig. 5)
highly resembles the topography and the temporal characteristics of the
CPP: positive topography emerging in parietal regions and evolving to-
wards the central regions, and progressive increase in amplitude peaking
before the behavioral responses. These analogies further support the
view that the RT-based classifier characterized the neural signal coding
for decision formation.

Decoding of unisensory signal cues from noise unveiled two pro-
cessing stages: sensory encoding and decision formation. The latter stage
was equivalent to the decision formation stage characterized by the RT-
based classifier, with a CPP-like activation pattern. In the early stage, the
neural signal peaked about 150–200 ms after cue fade-in onset, when
signal-to-noise was the largest in the stimulus sequence (Fig. 5). Its
topography was dominated by three negative peaks comparable to the
modality specific early activity observed in the classical ERP analysis
(Fig. 3). To that regard, it is reminiscent of the well described N2
component typically related to sensory encoding process and modulated
by attention when a target selection has to be performed (Gamble and
Woldorff, 2015; Loughnane et al., 2016; Luck and Hillyard, 1994).
Importantly, an early target selection component has been recently found
to modulate the onset and the rise of CPP (Loughnane et al., 2016) and
thereby appears as a processing step mediating decision formation in the
context of unpredictable cues. It is important to note that while the
decoding procedure highlighted the existence of two processing stages, it
does not demonstrate that their relationship is purely serial, that is de-
cision formation would not start until sensory encoding is completed.
Rather the decoding time-courses from the two decoding approaches
shows a transition period between the two stages where activation pat-
terns differ: each classifier (against audio-visual noise and RT-based)
captured the co-existent activities related to different cognitive pro-
cesses. Thus, sensory encoding and decision formation are partly over-
lapping processes. Altogether, decoding analyses of unisensory-cue trials
(i.e., against audio-visual noise and RT-based) are concordant and trace
the temporal trajectory of neural processes from sensory encoding to
decision-related signal gradually building-up before the response.
Finally, our results demonstrate that this chain of processes is similar
across modalities, and thus complement the findings from human
EEG/MEG studies in the visual domain (Mostert et al., 2016; Ratcliff
et al., 2009; Wyart et al., 2012).

The topographical dynamics isolated by the two decoding approaches
are complex, and we here focused on the topographies that were strongest
and similar across detection and discrimination tasks. However, it is
possible that our experimental design elicited additional activity, such as
the Contingent Negativity Variation (CNV). This expectancy-based evoked
activity is present when a warning signal precedes an imperative stimulus,
which would correspond in our task design to the onset of the audio-visual
stream and to the unpredictable signal cue respectively. CNV sustained
activity is thought to be supramodal (Pasinski et al., 2016; Walter et al.,
1964) and localized in anterior regions (G�omez et al., 2003; Hultin et al.,
1996; Lamarche et al., 1995; Nagai et al., 2004; Rosahl and Knight, 1995).
While it is possible that aCNVevolvedalongside themain activities isolated
by the classifiers, it is unlikely to drive all the findings reported here
because: (1) we applied SCD transformation, which attenuates the volume
conduction effects and thusminimizes the possible influence of CNV that is
prominent over the frontal electrodes (as in (Kelly and O’Connell, 2013));
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(2) we demeaned and baseline-corrected the data, which reduces the CNV
activity that could be present before the cue fade-in onset (i.e. the fore-
period). Most importantly, the effect of CNV, if any, should be most
prominent in the target absent condition (i.e. catch trial with only
audio-visual noise condition), which was not observed in our data.

4.3. Multisensory signal cues accelerate both sensory and decision
processes

To portray the dynamic of brain processes following the presentation
of multisensory-cues as compared to unisensory-cues, we performed a
temporal generalization across conditions. The critical advantage of
generalizing in time relies on the fact that unlike classical approach
comparing the same time points between conditions, temporal general-
ization matrix provides comparisons between all time-points allowing to
relate brain operations occurring at different latencies. Cross-condition
decoding revealed that classifiers trained on unisensory trials were able
to decode multisensory trials successfully: They were effective in both
processing stages (i.e., sensory encoding and decision formation) and
their performance was high for the two types of decoding procedures
(i.e., against audio-visual noise trials and based on RT). This cross-
condition decoding demonstrated that unisensory and multisensory de-
cision making share the same trajectory. However, time generalization
revealed that decoding performance of multisensory trials was more
accurate and reached significance earlier than the ones they were trained
on (i.e., unisensory trials). Critically, this acceleration was not limited to a
given period but increased with time. Thus, our results demonstrate for
the first time that multisensory-cues accelerate neural processing dy-
namics during sensory encoding as well as during decision formation (as
depicted in the third hypothesis depicted in Fig. 1 A).

Acceleration during sensory encoding was suggested by a body of
work describing how multisensory integration influences early sensory
processing (Cappe et al., 2012; Foxe and Schroeder, 2005; Kayser et al.,
2008; Lakatos et al., 2007; Mercier et al., 2015, 2013; Romei et al., 2009;
van Wassenhove et al., 2005). Based on this research, it could be hy-
pothesized that in the case of congruent multisensory source of infor-
mation, a speed-up at the sensory stage caused by multisensory
integrationwould pass onto the decision formation stage (first hypothesis
depicted in Fig. 1 A). This hypothesis is supported by a recent study that
established a link between the N2 and the CPP: in the context of un-
predictable source of information, the latency of early target selection
signal (i.e. N2) preludes to faster RTs through earlier evidence accumu-
lation as measured by the CPP (Loughnane et al., 2016).

Alternatively, RT acceleration in multisensory-cue context could
result from a faster decision rate: either by a higher mean rate or a greater
variance (see behavioral modeling results and second hypothesis depic-
ted in Fig. 1 A). Acceleration during decision formation was also sug-
gested by works on perceptual decision making, in which decision
formation rate, or variability, has been shown to vary with the amount of
sensory evidence (Hanks and Summerfield, 2017; Heekeren et al., 2008;
O’Connell et al., 2018; Romo and de Lafuente, 2013). Our study recon-
ciles these two non-mutually exclusive hypotheses by showing that
multimodal cues speedup sensory encoding (which leads to an earlier
decision formation) and decision formation is further accelerated by
multisensory evidence (third hypothesis depicted in Fig. 1 A). This ac-
celeration of neural processes during both sensory encoding and decision
formation highly suggests that multisensory integration is at play during
each processing stage.

4.4. Multisensory integration arises during sensory encoding and decision
formation

Multisensory interactions are pervasive in human brain and complete
different processes along the cortical hierarchy (Ghazanfar and Schroeder,
2006; Rohe and Noppeney, 2015; Werner and Noppeney, 2010). Sensory
regions are the earliest cortical stages of multisensory convergence (Cappe
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et al., 2009; Foxe and Schroeder, 2005). In these areas, neural activity is
modulated by cross-modal inputs (Kayser et al., 2008; Lakatos et al., 2007;
Mercier et al., 2015, 2013). These early modulations mainly relate to low
level features of the different sensory inputs, such as their co-occurrence in
a short temporal window and/or in a small region of space. Sensory re-
gions also closely interact with higher order areas (e.g., temporal, parietal
and frontal associative cortex) which mediate integration processes at a
higher level; for instance, the congruency of multisensory signals, their
reliability or task relevance (Kayser et al., 2017; Noppeney et al., 2010;
Rohe and Noppeney, 2016). Critically, while associative cortices are
largely multisensory, at the same time they play an important role in de-
cision making (Bizley et al., 2016; Ghazanfar and Schroeder, 2006; Romo
and de Lafuente, 2013).

To examine neural activity that was specific to the integration of
multisensory-cues leading to behavioral benefit, we used a linear clas-
sifier to decode multisensory-cues trials from unisensory-cue trials. We
found that the temporal and spatial neural signatures of multisensory
integration were concomitant with sensory encoding and decision for-
mation stages as identified by decoding unisensory signal cues. The
earliest period of multisensory integration was characterized by a
topography consisting of three negative peaks – a topography compara-
ble to early sensory encoding signal (i.e., N2 see above), while the later
multisensory integration period was characterized by a centro-parietal
positivity akin to decision formation signal (i.e., CPP see above). More-
over, the strength of early and late activation patterns were correlated
respectively with the strength of sensory encoding and decision forma-
tion (see Results section 3.7), implying a functional link between these
processing steps and multisensory integration.

Our finding of distinct temporally unfolding multisensory integration
processes are complementary to two recent studies investigating a causal
inference during multisensory perception (Cao et al., 2019; Rohe et al.,
2019). These studies dissected the neural dynamics of hierarchical causal
inference and uncovered different multisensory computations taking
place at multiple timescales within distinctive brain networks. They
suggested that, at first, a forced-fused representation is built, which
corresponds to early, non-specific, multisensory interaction during the
encoding process of sensory signals. Next, this fused representation and
the primary segregated representations are weighted, as a function of
reliability and/or disparity, to account for context-dependent multisen-
sory integration. This strategy gives more flexibility, as it allows differ-
entiating common and independent sensory sources through co-existing
computational solutions: fusion and segregation. In the context of the
present study, signal cues are embedded in a continuous flow of
audio-visual noise from which they must be segregated. It follows that
the early period of multisensory integration (i.e. occurring during sensory
encoding) may correspond to the aforementioned fused representation,
which is then evaluated in a context dependent manner during the later
period of multisensory integration that is happening during decision
formation. This perspective further implies a causal link between initial
representations and their subsequent context-dependent weighting, as
the later relies on the former. We verified this implication using
single-trial based correlations between the initial multisensory encoding
process and the later multisensory decision process; the result shows a
degree of dependency, and therefore advocates for the hierarchical na-
ture of multisensory integration.

Accordingly, our result substantiates the existence of distinct multi-
sensory processes shaping distinct computational stages and demon-
strates for the first time an interplay between multisensory integration
and decision making, not only by accelerating sensory processing and
thereby advancing the onset of decision formation, but also by concur-
rently fostering decision formation. As such, multisensory integration
appears as a crucial factor in perceptual decisionmaking which should be
taken into account for building a complete understanding of this multi-
faceted process.
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5. Conclusion

In the present study we employed behavioral modeling and super-
vised machine learning to demonstrate that multisensory integration and
perceptual decision making are nested, and not sequential processes. By
applying diffusion models appropriate for each task (i.e. detection and
categorization), we found consistent indications that multisensory
interaction occurs during both perceptual decision making stages. Next,
using EEG decoding, we tracked the processing stages (i.e., sensory
encoding and decision formation) of perceptual decision making
following unisensory-cues. From there, we applied cross-condition tem-
poral generalization decoding and demonstrated that both sensory
encoding and decision formation stages were accelerated. Finally, we
characterized multisensory integration and revealed that early and late
periods of multisensory integration were tightly linked to sensory
encoding and decision formation, respectively, with the later period
relying on the former. These results were reproducible across both
detection and discrimination tasks. In conclusion, our study demon-
strates that multisensory signals foster decision making by accelerating
both sensory encoding stage and decision formation stages.
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