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ESCAPE AND ABSORPTION PROBABILITIES FOR OBLIQUELY

REFLECTED BROWNIAN MOTION IN A QUADRANT

PHILIP A. ERNST, SANDRO FRANCESCHI, AND DONGZHOU HUANG

Abstract. We consider an obliquely reflected Brownian motion Z with positive drift in a
quadrant stopped at time T , where T := inf{t > 0 : Z(t) = (0, 0)} is the first hitting time of
the origin. Such a process can be defined even in the non-standard case where the reflection
matrix is not completely-S. We show that in this case the process has two possible behaviors:
either it tends to infinity or it hits the corner (origin) in a finite time. Given an arbitrary
starting point (u, v) in the quadrant, we consider the escape (resp. absorption) probabilities
P(u,v)[T = ∞] (resp. P(u,v)[T < ∞]). We establish the partial differential equations and the
oblique Neumann boundary conditions which characterize the escape probability and provide
a functional equation satisfied by the Laplace transform of the escape probability. We then
give asymptotics for the absorption probability in the simpler case where the starting point in
the quadrant is (u, 0). We exhibit a remarkable geometric condition on the parameters which
characterizes the case where the absorption probability has a product form and is exponential.
We call this new criterion the dual skew symmetry condition due to its natural connection with
the skew symmetry condition for the stationary distribution. We then obtain an explicit integral
expression for the Laplace transform of the escape probability. We conclude by presenting exact
asymptotics for the escape probability at the origin.

1. Introduction

1.1. Model and goal. Let Z(t) = (Z1(t), Z2(t)) be a reflected Brownian motion (RBM) in the
quadrant, starting from the point (u, v), with positive drift µ = (µ1, µ2); that is, µ1 > 0, µ2 > 0.

The covariance matrix is
(

1 ρ
ρ 1

)
with |ρ| < 1 and the reflection matrix is

(
1 −r2
−r1 1

)
. We further

assume that
r1 > 0, r2 > 0 and 1 6 r1r2. (1)

See Figure 1 for a representation of the parameters. We define this reflected process up to the
first hitting time T of the corner, defined as

T := inf{t > 0 : Z(t) = 0}.
For t 6 T , this process may be written as{

Z1(t) := u+W1(t) + µ1t+ l1(t)− r2l2(t),

Z2(t) := v +W2(t) + µ2t− r1l1(t) + l2(t),
(2)

where l1(t) (resp. l2(t)) is a local time on the vertical (resp. horizontal) axis and is a continuous
non-decreasing process starting from 0 which increases only when Z1(t) = 0 (resp. Z2(t) = 0).
Under condition (1), when t > T , that is after that the process Z hits the corner, the process is
no longer defined by (2) for reasons of convexity. In lieu, for t > T , we define Z(t) = (0, 0) and
say that the process is absorbed when T <∞. Further details on the existence and uniqueness
of this process will be given in Section 1.2.

The objective of the present paper is to study the probability of escape to infinity for a
process starting from (u, v). We denote this probability as

P(u,v)[T =∞].

The corresponding absorption probability at the origin is P(u,v)[T <∞] = 1− P(u,v)[T =∞].

Key words and phrases. Escape probability; Absorption probability; Obliquely reflected Brownian motion in
a quadrant; Functional equation; Carleman boundary value problem; Laplace transform; Neumann’s condition;
Asymptotics.
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Figure 1. Reflection vectors and drift.

Since its introduction in the eighties by Harrison, Reiman, Varadhan and Williams [25, 26, 44,
42, 45], reflected Brownian motion in the quarter plane has received significant attention from
probabilists. Recurrence and transience of obliquely reflected Brownian motion were examined
in [29, 44], and the process has also been considered in planar domains [22, 27] as well as in
general dimensions in orthants [26, 41, 46]. The stationary distribution of obliquely reflected
Brownian motion has been studied in [9, 10, 21, 31, 12] and its Green’s functions have been
studied in [18]. The roughness of its paths has been studied in [32]. Obliquely reflected Brownian
motion has played an important role in applications concerning heavy traffic approximations
for open queueing networks ([23, 39]). It has also been utilized in queueing models as diffusion
approximations for tandem queues ([33, 34, 37]).

There are several possible interpretations in insurance risk of models involving reflected Lévy
processes in a quadrant ([1, 4, 30]). For example, suppose there are two funds, each of whose free
surplus is modelled by a Cramér-Lundberg process, and which have the following agreement:
a deficit in one fund is instantly covered by the other fund, with ruin occuring when neither
company can cover the deficit of the other. In the case of our problem, the absorption probability
could be interpreted to be the probability of ruin; the escape probability may be interpreted as
the probability of survival and infinite capital expansion. The aforementioned process also arises
in the study of queueing models as diffusion approximations for some Lévy tandem queues ([7,
17, 43]).

Previous works ([3, 13, 16, 21, 17]) have adapted an analytic method initially developed
for random walks by Fayolle and Iasnogorodski [14] and Malyshev [36] for studying obliquely
reflected Brownian motion. Above all we mention [17] which focus on a non-standard regime
where the reflected process escapes to infinity along one of the axes. The techniques and the
results employed to solve this problem are very similar to this article. This method is based on
the boundary value problem theory documented by the books of Fayolle et al. [15] and Cohen
and Boxma [8]. The present article is in part inspired by this analytic approach.

1.2. Definition of the process given in (2). Brownian motion in a quadrant with oblique
reflection is usually defined as a process which behaves as a standard Brownian motion in the
interior of the quadrant, reflects instantaneously on the edges with constant direction and the
amount of time spent at the origin has Lebesgue measure zero (Varadhan and Williams [42]).
Such a process is defined as a solution of a submartingale problem [42]. An interesting case
arises when the process is a semimartingale reflecting Brownian motion (SRBM). Reiman and
Williams [40] showed that a necessary condition for the process to be an SRBM is for the
reflection matrix to be completly-S1. Taylor and Williams [41] showed that this condition was
also sufficient for the existence of an SRBM, which is unique in law.

Due to condition (1), the reflection matrix of the process in (2) is not completely-S. The
process indeed is not a standard SRBM as it may be trapped at the origin. Nonetheless, it is

1 A square matrix R is said to be completly-S if for each principal sub-matrix R̃ there exists x̃ > 0 such that

R̃x̃ > 0.
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possible to define this absorbed process up to the stopping time T . The existence and uniqueness
as a solution of a submartingale problem for the absorbed process is given in [42, §2.1, Thm 2.1].
Further, in Taylor and Williams [41, §4.2 and §4.3], the existence and uniqueness of an SRBM
absorbed at the origin are proven without assuming that the reflection matrix is completely-S.

1.3. From the quadrant to the wedge. Franceschi and Raschel [21, Appendix] recently
showed that studying reflected Brownian motion in a quadrant is equivalent to studying reflected
Brownian motion in a wedge with angle β, with identity covariance matrix, with two reflection
angles δ and ε, and with drift angle θ (see Figure 2). The angles δ, ε, β and θ (when the drift is
nonzero) are in (0, π) and are defined by

tan δ =
sinβ

−r2 + cosβ
, tan ε =

sinβ

−r1 + cosβ
, tan θ =

sinβ

µ1/µ2 + cosβ
, cosβ = −ρ. (3)

The angles are equal to π/2 when the denominators of the tangents are equal to 0.

Figure 2. Reflected Brownian motion in a wedge of angle β, reflection angles
δ and ε, and drift angle θ.

Finally, we denote α, now a standard quantity in the SRBM literature, to be

α :=
δ + ε− π

β
. (4)

Condition (1) is equivalent to δ + ε− β > π (or equivalently α > 1) and δ > β, ε > β.

1.4. The case of zero drift. The case of zero drift µ = 0 was treated by Varadhan and
Williams [42]. In this case the absorption probability does not depend on the starting point. We
have from [42, Thm 2.2]

P[T <∞] =

{
1 if α > 0,

0 if α 6 0.

If α 6 0, the corner is not reached. If 0 < α < 2, the corner is reached but the amount of
time spent by the process in the corner is Lebesgue measure zero. If α > 2, the process reaches
the corner and remains there. The previous properties are valid in the case of zero drift. Under
condition (1), the case of positive drift poses a new challenge, as 0 < P(u,v)[T <∞] < 1. Remark
that condition (1) is equivalent to α > 1.

1.5. Escape probability and stationary distribution of the dual process. Harrison [23]
and Foddy [16] showed that the hitting time on one of the axes is intrinsically connected to the
stationary distribution of a certain dual process. As the present article was nearing completion,
it came to our attention that Harrison [24] has extended the results in his earlier work ([23]) by
introducing a dual RBM in the quadrant with drift −µ and reflection matrix(

r2 −1
−1 r1

)
when 1 < r1r2. This configuration of parameters is depicted in Figure 3 below. This dual process
has an explicit connection with the study of the escape probability. In particular, Harrison [24,
Cor. 2] states that

P(u,v)[T =∞] = π(S(u, v)),

where π is the stationary distribution of the dual process and S(u, v) := {(u − r2z1 + z2, v +
z1 − r1z2) ∈ R2

+ : (z1, z2) ∈ R2
+} is a trapezoid as pictured in Figure 3.
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Figure 3. Dual process parameters and trapezoid S(u, v) in brown.

1.6. Plan. The remainder of this paper is organized as follows. In Section 2 we explore some
general properties of the process of interest given in (2). This section’s key result is Theorem 10,
which states that the process has only two possible behaviors: either T <∞, which means that
the process is absorbed at the origin in finite time, or T =∞, in which case the process escapes
to infinity, namely Z(t)→∞ when t→∞. In Section 3 we present Proposition 11, which gives
a partial differential equation characterizing the escape probability. Later in this section, we
give Proposition 12, which provides a functional equation satisfied by the Laplace transform of
the escape probability. In Section 4, we study the kernel of this functional equation and obtain
asymptotic results for the absorption probability in the simpler case where the starting point
is (u, 0) (Proposition 17). In Section 5 we find a geometric condition which characterizes the
cases where the absorption probability has a product form and is exponential (Theorem 20).
Such a result recalls the famous skew symmetry condition studied a lot for invariant measures
([25, 28]). In Section 6 we establish a boundary value problem (BVP) satisfied by the Laplace
transform of the escape probability (Proposition 22) and conclude with Theorem 30, which gives
an explicit integral formula of this transform. In Section 7 we obtain exact asymptotics for the
escape probability at the origin.

In memory of Larry Shepp. We dedicate this article in memory of our colleague, mentor, and
friend, Professor Larry Shepp. Professor Shepp indelibly contributed to many areas of applied
probability, and one of the areas that interested him most concerned RBM in a quadrant as
well as in a strip ([22, 27]).

2. General properties of process Z

In this section we investigate a few key properties of the process given in (2). We prove three
key results. The first one is that if the starting point tends to infinity, then the probability
that the process does not hit the origin tends towards 1 (Theorem 4). The second one is that
when the starting point tends to the origin, the probability that the process hits the origin in
finite time tends towards 1 (Theorem 6). The third key result is that the process has only two
possible behaviors: either T < ∞, which means that the process is absorbed at the origin in
finite time, or T = ∞, in which case the process escapes to infinity, namely Z(t) → ∞ when
t→∞ (Theorem 10).

2.1. Limits of the hitting probability. Our first key results of the section (Theorems
4 and 6) concern the probability of the process hitting the origin. We wish to show that
lim‖(u,v)‖→∞ P(u,v)[T = ∞] = 1. We shall prove this with the aid of Lemma 1 and Proposi-
tion 3.

For ease of notation, let us define τ ξ1 := inf{t : Z1(t∧T ) ≤ ξ} and τ ξ2 := inf{t : Z2(t∧T ) ≤ ξ}.
Further, let X1(t):= u+W1(t) + µ1t and let X2(t):=v +W2(t) + µ2t.

Suppose Z(t) is a one-dimensional reflected Brownian motion. The analysis of Z(t) is con-
verted to that of one-dimensional Brownian motion with a drift by the Skorokhod map. However,
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in the case of obliquely reflected Brownian motion in a quadrant, this method does not generally

work due to the presence of l1(t) and l2(t). However, on the event {τ ξ1 =∞}, note that l1(t) = 0,
the previously reflected Brownian motion becomes an obliquely reflected Brownian motion in a
half-plane. This allows the one-dimensional techniques to be applied in our case. This motivates

us to consider the event {τ ξ1} below.

Lemma 1. For u > ξ > 0, we have

P(u,v)[τ
ξ
1 =∞] = P(u,v)

[
X1(t ∧ T )− r2 sup

0≤s≤t∧T
(−X2(s))+ > ξ for every t ≥ 0

]
, (5)

where x+ equals x if x > 0 and is 0 otherwise. Hence,

P(u,v)[τ
ξ
1 =∞] ≥ P(u,v)

[
X1(t)− r2 sup

0≤s≤t
(−X2(s))+ > ξ for every t ≥ 0

]
. (6)

A symmetrical result holds for v > ξ > 0 and P(u,v)[τ
ξ
2 =∞].

Proof. On the event {τ ξ1 =∞}, for every t ≥ 0, we have l1(t) = 0, P(u,v)-a.s. Then

Z1(t ∧ T ) = X1(t ∧ T )− r2 l2(t ∧ T ),

Z2(t ∧ T ) = X2(t ∧ T ) + l2(t ∧ T ).

Note that l2(t ∧ T ) increases only when Z2(t ∧ T ) = 0. By uniqueness of the Skorokhod map
(see e.g. [38] and references therein)

l2(t ∧ T ) = sup
0≤s≤t

(−X2(s ∧ T ))+ = sup
0≤s≤t∧T

(−X2(s))+.

Thus

Z1(t ∧ T ) = X1(t ∧ T )− r2 sup
0≤s≤t∧T

(−X2(s))+.

We may then write

{τ ξ1 =∞} = {Z1(t ∧ T ) > ξ for every t ≥ 0}
= {Z1(t ∧ T ) > ξ for every t ≥ 0 and l1(T ) = 0}

=

{
X1(t ∧ T )− r2 sup

0≤s≤t∧T
(−X2(s))+ > ξ for every t ≥ 0 and l1(T ) = 0

}
, (7)

P(u,v)-a.s. We now wish to show that

P(u,v)

[
X1(t ∧ T )− r2 sup

0≤s≤t∧T
(−X2(s))+ > ξ for every t ≥ 0 and l1(T ) > 0

]
= 0. (8)

Note that there is a set N such that P(u,v)(N) = 1 and for every ω ∈ N , we have

Z1(t ∧ T ) = X1(t ∧ T ) + l1(t ∧ T )− r2 l2(t ∧ T ) ≥ 0, (9)

Z2(t ∧ T ) = X2(t ∧ T )− r1 l1(t ∧ T ) + l2(t ∧ T ) ≥ 0, (10)

l1(t ∧ T ) increases only when Z1(t ∧ T ) = 0, (11)

l2(t ∧ T ) increases only when Z2(t ∧ T ) = 0. (12)

Let ω ∈ N . We claim that the following statements

a) X1(t ∧ T )− r2 sup0≤s≤t∧T (−X2(s))+ > ξ for every t ≥ 0;
b) l1(T ) > 0,

cannot hold simultaneously. The proof is by contradiction. For sake of contradiction, assume
that statements a) and b) hold simultaneously. By (10), (12), and the uniqueness of Skorokhod
map, we have

l2(t ∧ T ) = sup
0≤s≤t

(r1 l1(s ∧ T )−X2(s ∧ T ))+
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≤ sup
0≤s≤t

(r1 l1(s ∧ T ))+ + sup
0≤s≤t

(−X2(s ∧ T ))+

= r1 l1(t ∧ T ) + sup
0≤s≤t∧T

(−X2(s))+.

Let η := inf{t : l1(t ∧ T ) ≥ ξ/(2r1r2)}. Then for every t ≥ 0,

Z1(t ∧ η ∧ T ) = X1(t ∧ η ∧ T ) + l1(t ∧ η ∧ T )− r2l2(t ∧ η ∧ T )

≥ X1(t ∧ η ∧ T )− r2 l2(t ∧ η ∧ T )

≥ X1(t ∧ η ∧ T )− r2 sup
0≤s≤t∧η∧T

(−X2(s))+ − r1r2 l1(t ∧ η ∧ T )

> ξ − ξ/2 = ξ/2,

where in the last inequality we have invoked statement a). Since l1(t ∧ T ) increases only when
Z1(t ∧ T ) = 0, we have

l1(t ∧ η ∧ T ) = 0 for every t ≥ 0,

which contradicts statement b) and the definition of η. By contradiction, (8) holds. Combining
(7) and (8), (5) follows. Note that (6) follows directly from (5). �

Remark 2. To estimate the probability of the event

{X1(t)− r2 sup
0≤s≤t

(−X2(s))+ > ξ for every t ≥ 0},

we note that the above event contains the intersection of the event {X1(t) > ξ+c for every t} and
the event {sup0≤s≤t (−X2(s))+ < c/r2 for every t} for every positive c, both of which correspond
to the first hitting problems of one-dimensional Brownian motion with a drift. We will use the
idea repeatedly in the proofs of Theorem 4 and Lemma 8.

We now turn to Proposition 3 below, which is a reformulation of the formula 1.2.4(1) on p.
252 of [5].

Proposition 3. Let B(t) be a one dimensional Brownian motion started from the origin under
P. For µ > 0 and x > 0, we have

P(B(t) + µt > −x for every t ≥ 0) = 1− e−2xµ.

With Lemma 1 and Proposition 3 in hand, we state Theorem 4 below.

Theorem 4. When the starting point tends to infinity, the probability that the process does not
hit the origin tends to one. Namely,

lim
‖(u,v)‖→∞

P(u,v)[T =∞] = 1.

Equivalently,
lim

‖(u,v)‖→∞
P(u,v)[T <∞] = 0.

Proof. Fix ξ > 0. For ‖(u, v)‖ sufficiently large, we have u > 2ξ or v > 2ξ. If u > 2ξ, by
Lemma 1, we have

P(u,v)[T =∞ ] ≥ P(u,v)[τ
ξ
1 =∞]

≥ P(u,v)

[
X1(t)− r2 sup

0≤s≤t
(−X2(s))+ > ξ for every t ≥ 0

]
≥ P(u,v)[X1(t) > ξ + u/2 for every t ≥ 0 and X2(t) > −u/(2r2) for every t ≥ 0]

≥ P(u,v)[X1(t) > ξ + u/2 for every t ≥ 0]

+P(u,v)[X2(t) > −u/(2r2) for every t ≥ 0]− 1

= P(u,v)[W1(t) + µ1t > −(u− 2ξ)/2 for every t ≥ 0]



ESCAPE AND ABSORPTION PROBABILITIES FOR BROWNIAN MOTION IN A QUADRANT 7

+P(u,v)[W2(t) + µ2t > −u/(2r2)− v for every t ≥ 0]− 1

= 1− e−(u−2ξ)µ1 + 1− e−(u/r2+2v)µ2 − 1

= 1− e−(u−2ξ)µ1 − e−(u/r2+2v)µ2 ,

where the second to last equality invokes Proposition 3. Similarly, if v > 2ξ, we have

P(u,v)[T =∞ ] ≥ 1− e−(v−2ξ)µ2 − e−(v/r1+2u)µ1 .

Hence,

P(u,v)[T =∞]

≥ max{(1− e−(u−2ξ)µ1 − e−(u/r2+2v)µ2)1{u>2ξ}, (1− e−(v−2ξ)µ2 − e−(v/r1+2u)µ1)1{v>2ξ}}.
Letting (u, v) tend to ∞, the desired result follows. �

We now turn to Proposition 5 below, which shall be needed to prove Theorem 6.

Proposition 5. We have the following subset relationship

{u+W1(t) + µ1t < 0 and v +W2(t) + µ2t < 0, for some t ∈ R+} ⊂ {T <∞}.

Proof. We prove this claim by contradiction. For the sake of contradiction, let us fix ω ∈
{u+W1(t) +µ1t < 0 and v+W2(t) +µ2t < 0, for some t ∈ R+}∩{T =∞}. Assuming T =∞,
the process can be written as{

Z1(t) = u+W1(t) + µ1t+ l1(t)− r2l2(t),

Z2(t) = v +W2(t) + µ2t− r1l1(t) + l2(t).

Solving the linear system for l1 and l2, we obtain{
(r1r2 − 1)l1(t) = (u+W1(t) + µ1t− Z1(t)) + r2(v +W2(t) + µ2t− Z2(t)),

(r1r2 − 1)l2(t) = r1(u+W1(t) + µ1t− Z1(t)) + (v +W2(t) + µ2t− Z2(t)).

For all t ∈ R+ such that
u+W1(t) + µ1t < 0,

and
v +W2(t) + µ2t < 0,

we have (r1r2 − 1)l1(t) < 0 and (r1r2 − 1)l2(t) < 0, which is not possible since l1(t) and l2(t) > 0
and as we assumed (r1r2 − 1) > 0. A contradiction has been reached. �

Theorem 6 below considers the behavior of the process when the starting point tends to the
origin.

Theorem 6. When the starting point tends to the origin, the probability that the process hits
the origin in finite time tends towards one. That is,

lim
(u,v)→(0,0)

P(u,v) [T <∞] = 1,

or equivalently,
lim

(u,v)→(0,0)
P(u,v) [T =∞] = 0.

Proof. By Proposition 5, we have that

P(u,v) [T <∞] > P [∃t ∈ R+ : u+W1(t) + µ1t < 0 and v +W2(t) + µ2t < 0] .

By the properties of planar Brownian motion, we have

P [∃t ∈ R+ : W1(t) + µ1t < 0 and W2(t) + µ2t < 0] = 1.

Let (un, vn) ∈ R2
+ be a sequence of points such that (un, vn)→ (0, 0). Note that
∞⋃
n=1

∞⋂
m=n

{∃t ∈ R+ : un +W1(t) + µ1t < 0 and vn +W2(t) + µ2t < 0}

⊃{∃t ∈ R+ : W1(t) + µ1t < 0 and W2(t) + µ2t < 0} .
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Applying Fatou’s Lemma yields

lim inf
n→∞

P [∃t ∈ R+ : un +W1(t) + µ1t < 0 and vn +W2(t) + µ2t < 0] > 1.

We may therefore conclude that

P(un,vn) [T <∞] −→
n→∞

1,

and the desired result follows. �

2.2. Complementarity of absorption and escape. We now turn to Theorem 10, which
states that the process has only two possible behaviors: either T < ∞, or T = ∞, in which
case Z(t) → ∞ when t → ∞. The result first requires the proofs of three auxiliary statements
which we give below.

Proposition 7. Suppose B(t) is a one dimensional Brownian motion starting from the origin
under the measure P. Let a, b be two positive numbers. Then

P(−a− bt < B(t) < a+ bt for every t ≥ 0) > 0.

Proof. Let λ = ln 2/(2b) + 1. Note that 1− 2 e−2λb > 0. Then

P(−λ− bt < B(t) < λ+ bt for every t ≥ 0)

≥ P(B(t) > −λ− bt for every t ≥ 0) + P(B(t) < λ+ bt for every t ≥ 0)− 1

= 2(1− e−2λb)− 1 = 1− 2 e−2λb > 0.

Let Ha := inf{t : |B(t)| = a}. By standard exit time properties of Brownian motion, P(Ha >
λ/b+ 1) > 0. Then

P(−a− bt < B(t) < a+ bt for every t ≥ 0)

= P(Ha > λ/b+ 1)P(−a− bt < B(t) < a+ bt for every t ≥ 0 |Ha > λ/b+ 1).

By the strong Markov property of Brownian motion,

P(−a− bt < B(t) < a+ bt,∀t |Ha > λ/b+ 1)

= P(−a− b(t+Ha) < B(t+Ha) < a+ b(t+Ha),∀t |Ha > λ/b+ 1)

= P(−a− b(t+Ha)−B(Ha) < B(t+Ha)−B(Ha) < a+ b(t+Ha)−B(Ha),∀t |Ha > λ/b+ 1)

≥ P(−λ− bt < B(t+Ha)−B(Ha) < λ+ bt,∀t |Ha > λ/b+ 1)

= P(−λ− bt < B(t) < λ+ bt,∀t )

> 0,

from which the desired result follows. �

We now turn to Lemma 8.

Lemma 8. For α a positive number,

inf
u≥α

P(u,0)[τ
0
1 =∞] > 0, (13)

inf
v≥α

P(0,v)[τ
0
2 =∞] > 0. (14)

Proof. We need only prove (13), since the proof of (14) is completely symmetric. Let us consider
ξ < α. By Lemma 1,

P(u,0)[τ
0
1 =∞] ≥ P(u,0)[τ

ξ
1 =∞]

≥ P(u,0)

[
X1(t)− r2 sup

0≤s≤t
(−X2(s))+ > ξ for every t ≥ 0

]
= P(u,0)

[
u+W1(t) + µ1t− r2 sup

0≤s≤t
(−W2(s)− µ2t)

+ > ξ for every t ≥ 0

]
≥ P(u,0)[W1(t) + µ1t > −(u− ξ)/2 for every t ≥ 0

and W2(t) + µ2t > −(u− ξ)/(2r2) for every t ≥ 0]. (15)
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Let B1(t) and B2(t) be two independent Brownian motions starting from 0 under P(u,0). Then,

under P(u,0), the process (W1(t),W2(t)) has the same law as (B1(t), ρB1(t) +
√

1− ρ2B2(t)).
We now show that (13) holds in three separate cases: ρ = 0, 0 < ρ < 1 and −1 < ρ < 0.

Case I: ρ = 0. If ρ = 0, then W1(t) and W2(t) are two independent Brownian motions. Then

(15) = P(u,0)[W1(t) + µ1t > −(u− ξ)/2 for every t ≥ 0]

×P(u,0)[W2(t) + µ2t > −(u− ξ)/(2r2) for every t ≥ 0]

=
(

1− e−(u−ξ)µ1

)
·
(

1− e−(u−ξ)µ2/r2
)
,

where the last equality invokes Proposition 3. Taking infimums yields

inf
u≥α

P(u,0)[τ
0
1 =∞] ≥

(
1− e−(α−ξ)µ1

)
·
(

1− e−(α−ξ)µ2/r2
)
> 0.

Case II: 0 < ρ < 1. If 0 < ρ < 1, then

(15) = P(u,0)[B1(t) + µ1t > −(u− ξ)/2 for every t ≥ 0

and ρB1(t) +
√

1− ρ2B2(t) + µ2t > −(u− ξ)/(2r2) for every t ≥ 0]

≥ P(u,0)[B1(t) + (µ1 ∧ µ2)t > −(u− ξ)/(2r2) for every t ≥ 0

and
√

1− ρ2B2(t) + (1− ρ)µ2t > −(1− ρ)(u− ξ)/(2r2) for every t ≥ 0].

Using the same argument in the case for ρ = 0, (13) follows.

Case III: −1 < ρ < 0. If −1 < ρ < 0, then for u ≥ α
(15) = P(u,0)[B1(t) + µ1t > −(u− ξ)/2 for every t ≥ 0

and ρB1(t) +
√

1− ρ2B2(t) + µ2t > −(u− ξ)/(2r2) for every t ≥ 0]

≥ P(u,0)[B1(t) + µ1t > −(u− ξ)/2 for every t ≥ 0,

ρB1(t)− ρ(µ1 ∧ µ2)t > −|ρ|(u− ξ)/(2r2) for every t ≥ 0

and
√

1− ρ2B2(t) + (µ2 + ρ(µ1 ∧ µ2)t > −(1− |ρ|)(u− ξ)/(2r2) for every t ≥ 0]

≥ P(u,0)[−(u− ξ)/(2r2)− (µ1 ∧ µ2)t < B1(t) < (u− ξ)/(2r2) + (µ1 ∧ µ2)t,∀t

and
√

1− ρ2B2(t) + (µ2 + ρ(µ1 ∧ µ2)t > −(1− |ρ|)(u− ξ)/(2r2), ∀t]
= P(u,0)[−(u− ξ)/(2r2)− (µ1 ∧ µ2)t < B1(t) < (u− ξ)/(2r2) + (µ1 ∧ µ2)t,∀t]

×P(u,0)[
√

1− ρ2B2(t) + (µ2 + ρ(µ1 ∧ µ2)t > −(1− |ρ|)(u− ξ)/(2r2), ∀t]
≥ P(u,0)[−(α− ξ)/(2r2)− (µ1 ∧ µ2)t < B1(t) < (α− ξ)/(2r2) + (µ1 ∧ µ2)t,∀t]

×P(u,0)[
√

1− ρ2B2(t) + (µ2 + ρ(µ1 ∧ µ2)t > −(1− |ρ|)(α− ξ)/(2r2),∀t].
Taking infimums and invoking Proposition 7, (13) follows. This concludes the proof. �

Let us denote Tr := inf{t ≥ 0 : ‖Z(t ∧ T )‖ ≤ r}.

Lemma 9. For fixed n, on the event {T1/n =∞}, we have P(u,v)-a.s.

lim
t→∞

Z(t) =∞.

That is,

P(u,v)

[
lim inf
t→∞

Z(t) <∞, T 1
n

=∞
]

= 0. (16)

Proof. We will first show (16) holds when v = 0. Then (16) will follow immediately in the case
u = 0. We conclude by showing that (16) holds when u 6= 0 and v 6= 0.

Case I: v = 0. When v = 0, let

K := sup
u≥0

P(u,0)

[
lim inf
t→∞

Z(t) <∞, T 1
n

=∞
]
.
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For u ≤ 1/n,

P(u,0)

[
lim inf
t→∞

Z(t) <∞, T 1
n

=∞
]

= 0.

Then

K = sup
u≥1/n

P(u,0)

[
lim inf
t→∞

Z(t) <∞, T 1
n

=∞
]
. (17)

We now define a stopping time

η0
1 :=

{
inf{t ≥ τ0

1 : Z2(t) = 0}, τ0
1 <∞,

∞, τ0
1 =∞.

By Lemma 8,
inf

u≥1/n
P(u,0)[η

0
1 =∞] ≥ inf

u≥1/n
P(u,0)[τ

0
1 =∞] > 0,

and hence,
sup
u≥1/n

P(u,0)[η
0
1 <∞] < 1. (18)

Note that

P(u,0)

[
lim inf
t→∞

Z(t) <∞, T 1
n

=∞
]

= P(u,0)

[
τ0

1 =∞, lim inf
t→∞

Z(t) <∞, T 1
n

=∞
]

+ P(u,0)

[
τ0

1 <∞, η0
1 =∞, lim inf

t→∞
Z(t) <∞, T 1

n
=∞

]
+ P(u,0)

[
η0

1 <∞, lim inf
t→∞

Z(t) <∞, T 1
n

=∞
]
. (19)

On the event {τ0
1 =∞}, for all t ≥ 0, T =∞ and l1(t) = 0. Then

Z2(t) = X2(t) + l2(t) ≥ X2(t) = W2(t) + µ2t→∞,
P(u,0)-a.s., by the law of the iterated logarithm for Brownian motion. Hence, the first term on
the right-hand side of (19) is 0. We now consider the second term on the right-hand side of

(19). On the event {τ0
1 <∞}, let us define η̃0

1 := inf{t ≥ 0 : Z2(t+ τ0
1 ) = 0} and T̃1/n := inf{t ≥

0 : ‖Z(t+ τ0
1 )‖ ≤ 1/n}. By the strong Markov property, we have

P(u,0)

[
τ0

1 <∞, η0
1 =∞, lim inf

t→∞
Z(t) <∞, T 1

n
=∞

]
= P(u,0)

[
τ0

1 <∞, inf
0≤s≤τ0

1

‖Z(s)‖ > 1

n
, η̃0

1 =∞, lim inf
t→∞

Z(t+ τ0
1 ) <∞, T̃ 1

n
=∞

]

= E(u,0)

[
1{τ0

1<∞,inf
0≤s≤τ0

1
‖Z(s)‖>1/n} PZ(τ0

1 )

[
η0

1 =∞, lim inf
t→∞

Z(t) <∞, T 1
n

=∞
]]

= 0.

By the same argument used to show that the first term on the right-hand side of (19) is 0, for
v > 0,

P(0,v)

[
η0

1 =∞, lim inf
t→∞

Z(t) <∞, T 1
n

=∞
]

= 0.

This proves that the second term on the right-hand side of (19) is also 0. We now consider

the third term on the right-hand side of (19). On the event {η0
1 < ∞}, let T̂1/n := inf{t ≥ 0 :

Z(t+ η0
1) ≤ 1/n}. By the strong Markov property,

P(u,0)

[
η0

1 <∞, lim inf
t→∞

Z(t) <∞, T 1
n

=∞
]

= P(u,0)

[
η0

1 <∞, inf
0≤s≤η0

1

‖Z(s)‖ > 1

n
, lim inf
t→∞

Z(t+ η0
1) <∞, T̂ 1

n
=∞

]

= E(u,0)

[
1{η0

1<∞,inf
0≤s≤η0

1
‖Z(s)‖>1/n} PZ(η0

1)

[
lim inf
t→∞

Z(t) <∞, T 1
n

=∞
]]
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≤ K · E(u,0)

[
1{η0

1<∞,inf
0≤s≤η0

1
‖Z(s)‖>1/n}

]
≤ K · P(u,0)[η

0
1 <∞].

Combining (19) and the above estimates yields

P(u,0)

[
lim inf
t→∞

Z(t) <∞, T 1
n

=∞
]
≤ K · P(u,0)[η

0
1 <∞].

Taking supremums and invoking (17), we obtain

K = sup
u≥1/n

P(u,0)

[
lim inf
t→∞

Z(t) <∞, T 1
n

=∞
]
≤ K · sup

u≥1/n
P(u,0)[η

0
1 <∞].

Together with (18), we have K = 0. Hence, for every u ≥ 0,

P(u,0)

[
lim inf
t→∞

Z(t) <∞, T 1
n

=∞
]

= 0. (20)

Similarly, for every v ≥ 0,

P(0,v)

[
lim inf
t→∞

Z(t) <∞, T 1
n

=∞
]

= 0. (21)

Case II: u 6= 0 and v 6= 0. For the case when u 6= 0 and v 6= 0, let τ := inf{t ≥ 0 : Z1(t) =
0 or Z2(t) = 0}. Then

P(u,v)

[
lim inf
t→∞

Z(t) <∞, T 1
n

=∞
]

= P(u,v)

[
τ =∞, lim inf

t→∞
Z(t) <∞, T 1

n
=∞

]
+ P(u,v)

[
τ <∞, lim inf

t→∞
Z(t) <∞, T 1

n
=∞

]
. (22)

On the event {τ =∞}, T =∞ and, for every t ≥ 0, l1(t) = l2(t) = 0. Then, as t→∞,

Z1(t) = u+W1(t) + µ1t→∞,

P(u,v)-a.s. Hence the first term on the right-hand side of (22) is 0. We now consider the second
term on the right-hand side of (22). By the strong Markov property,

P(u,v)

[
τ <∞, lim inf

t→∞
Z(t) <∞, T 1

n
=∞

]
≤ E(u,v)

[
1{τ<∞} PZ(τ)

[
lim inf
t→∞

Z(t) <∞, T 1
n

=∞
]]

= 0,

where (20) and (21) have been invoked in the last equality. Hence the second term on the
right-hand side of (22) is also 0. Thus for u 6= 0 and v 6= 0,

P(u,v)

[
lim inf
t→∞

Z(t) <∞, T 1
n

=∞
]

= 0.

The proof is now complete. �

With the above results in hand, we are now ready to state Theorem 10.

Theorem 10. On the event {T =∞}, P(u,v)-a.s. the process Z(t) tends to infinity when t→∞,
namely

P(u,v)

[
lim
t→∞

Z(t) =∞
∣∣∣T =∞

]
= 1.

Equivalently,

P(u,v)

[
lim inf
t→∞

Z(t) <∞, T =∞
]

= 0.
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Proof. We deduce from Lemma 9 that for every n ∈ N∗+

P(u,v)

[
lim inf
t→∞

Z(t) <∞, T =∞
]

= P(u,v)

[
lim inf
t→∞

Z(t) <∞, T 1
n
<∞, T =∞

]
.

Applying the strong Markov property yields

P(u,v)

[
lim inf
t→∞

Z(t) <∞, T 1
n
<∞, T =∞

]
= E(u,v)

[
1{T1/n<∞} PZ(T1/n)

[
lim inf
t→∞

Z(t) <∞, T =∞
]]

≤ sup
‖(u,v)‖=1/n

P(u,v)

[
lim inf
t→∞

Z(t) <∞, T =∞
]

≤ sup
‖(u,v)‖=1/n

P(u,v) [T =∞] .

Applying Theorem 6 and letting n→∞, the desired result follows. �

3. Partial differential equation and functional equation

We now turn to the study of the escape probability P(u,v)[T = ∞]. We begin with Proposi-
tion 11, which provides partial differential equations characterizing the escape probability. We
proceed with Proposition 12, which gives a functional equation satisfied by the Laplace trans-
form of the escape probability. Note that there is no particular difficulty in defining the process
starting from the edge (except the origin).

Let us define the infinitesimal generator of the process inside the quarter plane as

Gf(u, v) := lim
t→0

1

t
(E(u,v)[f(Z(t ∧ T )]− f(u, v)),

where f must be a bounded function in the quadrant to ensure that the above limit exists and
is uniform. For f twice differentiable, the infinitesimal generator inside the quadrant is

Gf =
1

2

(
∂2f

∂z2
1

+
∂2f

∂z2
2

+ 2ρ
∂2f

∂z1∂z2

)
+ µ1

∂f

∂z1
+ µ2

∂f

∂z2
.

This leads us to Proposition 11.

Proposition 11 (Partial differential equation). The absorption probability

f(u, v) = P(u,v)[T <∞],

is the only function which is both (i) bounded and continuous in the quarter plane and on its
boundary and (ii) continuously differentiable in the quarter plane and on its boundary (except
perhaps at the corner), and which satisfies the partial differential equation

Gf(u, v) = 0, ∀(u, v) ∈ R2
+,

with oblique Neumann boundary conditions{
∂r1f(0, v) := ∂f

∂u(0, v)− r1
∂f
∂v (0, v) = 0 ∀v > 0,

∂r2f(u, 0) := −r2
∂f
∂u(u, 0) + ∂f

∂v (u, 0) = 0 ∀u > 0,
(23)

and with limit values {
f(0, 0) = 1,

lim(u,v)→∞ f(u, v) = 0.

The same result holds for the escape probability

g(u, v) = 1− f(u, v) = P(u,v)[T =∞]

but with the following limit values{
g(0, 0) = 0,

lim‖(u,v)‖→∞ f(u, v) = 1.
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Remark that a similar partial differential equation with different limit values could be ob-
tained for the domination probability considered in [17].

Proof. This proof is inspired by Foddy [16, p. 86-89]. We assume that f satisfies the hypotheses
of the Proposition. Applying Dynkin’s formula, we obtain

E(u,v)[f(Z(t ∧ T ))] = f(u, v) + E(u,v)

∫ t∧T

0
Gf(Z(s)) ds+

2∑
i=1

E(u,v)

∫ t∧T

0
∂rif(Z(s)) dli(s)

= f(u, v).

But,

E(u,v)[f(Z(t ∧ T )] = E(u,v)[f(Z(t ∧ T ))1T6t] + E(u,v)[f(Z(t ∧ T ))1T>t]

= f(0, 0)P(u,v)[T 6 t] + E(u,v)[f(Z(t))1T>t]

−→
t→∞

P(u,v)[T <∞] + lim
t→∞

E(u,v)[f(Z(t))1T>t]

= P(u,v)[T <∞].

Note that lim
|z|→∞

f(z) = 0 and that for T > t, Z(t) →
t→∞

∞ a.s. By dominated convergence and

by Theorem 10,

lim
t→∞

E(u,v)[f(Z(t))1T>t] = E(u,v)[ lim
t→∞

f(Z(t))1T=∞] = 0.

We may thus conclude that

f(u, v) = P(u,v)[T <∞].

Conversely, denote f(u, v) := P(u,v)[T < ∞]. The function f is bounded. By the Markov prop-
erty, we have

E(u,v)[f(Z(t ∧ T ))] = f(u, v).

Since

Gf(u, v) = lim
t→0

1

t
(E(u,v)[f(Z(t ∧ T ))]− f(u, v)) = 0,

we may conclude that Gf = 0 on the quarter plane. The continuity and differentiability proper-
ties of f are immediate from [2, Thm 2.2 and Cor 2.4]. One can also refer to [35] which establishes
these properties in a greater generality. The Neumann boundary condition is satisfied by apply-
ing [2, Cor 3.3]. The desired limit values at 0 and at infinity are obtained by invoking Theorem 4
and Theorem 6. The result for g = 1− f is straightforward, and this completes the proof. �

In preparation for Proposition 12, let us define the Laplace transform of the escape probability
starting from (u, v) as

ψ(x, y) :=

∫ ∞
0

∫ ∞
0

e−xu−yvP(u,v)[T =∞] dudv.

Further, let

ψ1(x) :=

∫ ∞
0

e−xuP(u,0)[T =∞] du and ψ2(y) :=

∫ ∞
0

e−yvP(0,v)[T =∞] dv. (24)

We also define the kernel

K(x, y) :=
1

2
(x2 + y2 + 2ρxy) + µ1x+ µ2y, (25)

and let

k1(x, y) :=
1

2
(r2x+ y) + ρx+ µ2, k2(x, y) :=

1

2
(x+ r1y) + ρy + µ1. (26)

We now give a functional equation satisfied by the Laplace transform of the escape probability.
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Proposition 12 (Functional equation). For (x, y) ∈ C2 such that <x > 0 and <y > 0 we have

K(x, y)ψ(x, y) = k1(x, y)ψ1(x) + k2(x, y)ψ2(y). (27)

This functional equation recalls the one obtained in [17, (32)] to compute an escape proba-
bility along one of the axes for another range of parameters.

Proof. Recall the partial differential equation in Proposition 11 with the oblique Neumann
boundary condition and limit values satisfied by g(u, v) := P(u,v)[T =∞]. Employing integration
by parts yields

0 =

∫ ∞
0

∫ ∞
0

e−xz1−yz2Gg(z1, z2) dz1dz2

0 =

∫ ∞
0

1

2
e−yz2

(
− ∂g

∂z1
(0, z2) + x

∫ ∞
0

e−xz1
∂g

∂z1
(z1, z2) dz1

)
dz2

+

∫ ∞
0

1

2
e−xz1

(
− ∂g

∂z2
(z1, 0) + y

∫ ∞
0

e−yz2
∂g

∂z2
(z1, z2) dz2

)
dz1

+

∫ ∞
0

ρe−xz1
(
− ∂g

∂z1
(z1, 0) + y

∫ ∞
0

e−yz2
∂g

∂z1
(z1, z2) dz2

)
dz1

+

∫ ∞
0

µ1e
−yz2

(
−g(0, z2) + x

∫ ∞
0

e−xz1g(z1, z2) dz1

)
dz2

+

∫ ∞
0

µ2e
−xz1

(
−g(z1, 0) + y

∫ ∞
0

e−yz2g(z1, z2) dz2

)
dz1

0 = −1

2
r1

∫ ∞
0

e−yz2
∂g

∂z2
(0, z2) dz2 +

x

2

∫ ∞
0

e−yz2
(
−g(0, z2) + x

∫ ∞
0

e−xz1g(z1, z2) dz1

)
dz2

− 1

2
r2

∫ ∞
0

e−xz1
∂g

∂z1
(z1, 0) dz1 +

y

2

∫ ∞
0

e−xz1
(
−g(z1, 0) + y

∫ ∞
0

e−yz2g(z1, z2) dz2

)
dz1

− ρ
∫ ∞

0
e−xz1

∂g

∂z1
(z1, 0) dz1 + ρy

∫ ∞
0

e−yz2
(
−g(0, z2) + x

∫ ∞
0

e−xz1g(z1, z2) dz1

)
dz2

− µ1

∫ ∞
0

e−yz2g(0, z2) dz2 + µ1x

∫ ∞
0

∫ ∞
0

e−xz1−yz2g(z1, z2) dz1dz2

− µ2

∫ ∞
0

e−xz1g(z1, 0) dz1 + µ2y

∫ ∞
0

∫ ∞
0

e−xz1−yz2g(z1, z2) dz1dz2

0 =

(
1

2
(x2 + y2 + 2ρxy) + µ1x+ µ2y

)∫ ∞
0

∫ ∞
0

e−xz1−yz2g(z1, z2) dz1dz2

−
(

1

2
(r2x+ y) + ρx+ µ2

)∫ ∞
0

e−xz1g(z1, 0) dz1

−
(

1

2
(x+ r1y) + ρy + µ1

)∫ ∞
0

e−yz2g(0, z2) dz2

0 = K(x, y)ψ(x, y)− k1(x, y)ψ1(x)− k2(x, y)ψ2(y).

This concludes the proof. �

4. Kernel and asymptotics

We begin by studying some properties of the kernel K defined in (25). Note that this kernel
is similar to that in [21] except that in the present paper the drift is positive. We define the
functions X and Y satisfying

K(X(y), y) = 0 and K(x, Y (x)) = 0.
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The branches are given by{
X±(y) := −(ρy + µ1)±

√
y2(ρ2 − 1) + 2y(µ1ρ− µ2) + µ2

1,

Y ±(x) := −(ρx+ µ2)±
√
x2(ρ2 − 1) + 2x(µ2ρ− µ1) + µ2

2,
(28)

and the branch points of X and Y (which are roots of the polynomials in the square roots of
(28)) are given, respectively, by

y± :=
µ1ρ− µ2 ±

√
(µ1ρ− µ2)2 + µ2

1(1− ρ2)

(1− ρ2)
,

x± :=
µ2ρ− µ1 ±

√
(µ2ρ− µ1)2 + µ2

2(1− ρ2)

(1− ρ2)
.

(29)

By (3) we obtain that

y+ = µ1
1− cos(β − θ)
sinβ sin(β − θ)

. (30)

The functions X± and Y ± are analytic, respectively, on the cut planes C\ ((−∞, y−]∪ [y+,∞))
and C \ ((−∞, x−] ∪ [x+,∞)). Figure 4 below depicts the functions Y ± on [x−, x+].

Recall k1 and k2 as defined in (26). Consider the intersection points between the ellipse K = 0
and the lines k1 = 0 and k2 = 0. We define

x0 := −2µ1 < 0 and y0 := −2µ2 < 0, (31)

x1 := − 2(r2µ2 + µ1)

1 + r2
2 + 2ρr2

< 0 and y2 := − 2(r1µ1 + µ2)

1 + r2
1 + 2ρr1

< 0. (32)

These points are represented on Figure 4 and satisfy the following:

• K(x0, 0) = k2(x0, 0) = 0, K(0, y0) = k1(0, y0) = 0.
• ∃y1 ∈ R such that K(x1, y1) = k2(x1, y1) = 0.
• ∃x2 ∈ R such that K(x2, y2) = k1(x2, y2) = 0.

Let us define the curve H, which is the boundary of the BVP established in Section 6.1

H = X±([y+,∞)) = {x ∈ C : K(x, y) = 0 and y ∈ [y+,∞)}. (33)

Lemma 13 (Hyperbola H). The curve H is a branch of the hyperbola of equation

(ρ2 − 1)x2 + ρ2y2 − 2(µ1 − ρµ2)x = µ1(µ1 − 2ρµ2). (34)

The curve H is symmetrical with respect to the horizontal axis and is the right branch of the
hyperbola if ρ < 0. Further, it is the left branch if ρ > 0 and it is a straight line if ρ = 0.

Proof. A similar kernel has already been studied; we refer the reader to [21, Lemma 4] and [3,
Lemma 9], where the equation of such a hyperbola is derived. �

Let H+ denote the part of the hyperbola H with positive imaginary part. We also define the
domain G bounded by H and containing x+. This is depicted in Figure 5 below.

4.1. Meromorphic continuation. This section focuses on establishing the boundary value
problem. We begin by meromorphically continuing the Laplace transform ψ1(x) (which con-
verges for x > 0).

Lemma 14 (Meromorphic continuation). By the formula

ψ1(x) =
−k2(x, Y +(x))ψ2(Y +(x))

k1(x, Y +(x))
, (35)

the Laplace transform ψ1(x) can be meromorphically continued to the set

S := {x ∈ C : <x > 0 or <Y +(x) > 0} ∪ {0}, (36)

where the domain G and its boundary H are included in the set defined in (36). Then ψ1 is
meromorphic on G and is continuous on G.
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Figure 4. The ellipse K = 0, the function Y − in blue, the function Y + in red,
the two lines k1 = 0 and k2 = 0, the branch points x± and y±, the points x0 and
y0 in green, the points x1 and y2 in orange. This figure is drawn for the following
parameters: µ1 = 2, µ2 = 3, ρ = −0.4, r1 = 2, r2 = 4.

(a) ρ < 0 (b) ρ = 0 (c) ρ > 0

Figure 5. Hyperbola H and domain G.

Proof. The Laplace transforms ψ1(x) and ψ2(y) are analytic, respectively, on {x ∈ C : <x > 0}
and {y ∈ C : <y > 0}. The functional equation (27) implies that for (x, y) in the set S̃ :=
{(x, y) ∈ C2 : <x > 0, <y > 0 and ψ(x, y) = 0}, we have

0 = k1(x, y)ψ1(x) + k2(x, y)ψ2(y). (37)

The open connected set

S1 := {x ∈ C : <Y +(x) > 0},
intersects the open set S2 := {x ∈ C : <x > 0}. For x ∈ S1 ∩ S2, (x, Y +(x)) ∈ S̃; equation (37)
implies that the continuation formula in (35) is satisfied for all x ∈ S1 ∩S2. Figure 6 represents
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these sets. With ψ1(x) defined as in (35), we invoke the principle of analytic continuation and
meromorphically extend ψ1 to S = S1 ∪ S2. Note that the inclusion of G in the set S defined
in (36) is similar to that in [21, Lemma 5]. This inclusion is depicted below in Figure 6. �

Figure 6. The complex plane of x. The red curve of equation <Y +(x) = 0
bounds the red domain S1 := {x ∈ C : <Y +(x) > 0}. The orange dotted curve
corresponds to the equation <Y −(x) = 0. The domain G is bounded on the
left by the green hyperbola H, contains x+ (see Figure 5), and is included in
S = S1 ∪ S2, where S2 := {x ∈ C : <x > 0}. This figure is drawn for the
parameters µ1 = 2, µ2 = 3, ρ = −0.4.

4.2. Poles and geometric conditions.

Lemma 15 (Poles). On the set S defined in (36), the Laplace transform ψ1 has either one or
two poles, as follows:

• (One pole:) If k1(x−, Y ±(x−)) > 0, the point 0 is the unique pole of ψ1 in S and this
pole is simple.
• (Two poles:) If k1(x−, Y ±(x−)) < 0, the points 0 and x1 (defined in (32)) are the only

possible poles of ψ1 in S and these poles are simple; x1 ∈ S if and only if x1 > x0.

In addition, limx→0 xψ1(x) = 1. Further, the point x1 is a pole of ψ1 and belongs to the domain
G if and only if k1(X±(y+), y+) < 0.

Proof. The final value theorem for the Laplace transform, together with Theorem 4, imply that

lim
x→0

xψ1(x) = lim
u→∞

P(u,0)[T =∞] = 1.

We may thus conclude that 0 is a simple pole. On the set {x ∈ C : <x > 0}, ψ1 is defined as
a Laplace transform which converges (and thus has no poles). Therefore, with the exception
of 0, the only possible poles in S are the zeros of k1(x, Y +(x)), which are the zeros of the de-
nominator of the continuation formula in (35). Straightforward calculations show that equation
k1(x, Y +(x)) = 0 has either no roots or one (simple) root, and that this depends on the sign
of k1(x−, Y ±(x−)). When the root exists, it is x1 (see (32)). The condition for the existence of
this root is depicted in Figure 7 below. It now only remains to remark that when x1 is a pole,
x1 is in G if and only if x1 > X±(y+). The latter holds if and only if k1(X±(y+), y+) < 0 (see
Figure 8). �

Before turning to Lemma 16, recall that the angles δ, β and θ were defined above in (3) and
that k1 was defined in (26).
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Figure 7. On the left, we see that k1(x−, Y ±(x−)) < 0 and x1 is a simple pole
of ψ1. On the right, we see that k1(x−, Y ±(x−)) > 0 and ψ1 has no pole in S.

Figure 8. On the left, we see that k1(X±(y+), y+) < 0 and x1 is in G. On the
right, we see that k1(X±(y+), y+) > 0 and x1 is not in G.

Lemma 16 (Geometric conditions). The condition k1(x−, Y ±(x−)) > 0 (resp. = 0 and < 0) is
equivalent to

2δ − θ < π,

(resp. = π and > π). The condition k1(X±(y+), y+) > 0 (resp. = 0 and < 0) is equivalent to

2δ − θ + β < 2π,

(resp. = 2π and > 2π).

Proof. By condition (1) and by the fact that the drift is positive, we have 0 < θ < β < δ < π.
By (3) and (29),

x−/µ2 =
1√

1− ρ2

ρ− µ1/µ2√
1− ρ2

−

√√√√(ρ− µ1/µ2√
1− ρ2

)2

+ 1

 =
− cot(θ)−

√
cot2(θ) + 1

sin(β)
. (38)

We begin by proving the first equivalence for δ > π/2. In this case we have

k1(x−, Y ±(x−)) > 0⇔ 1

2
(r2x

− + Y ±(x−)) + ρx− + µ2 > 0
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⇔ r2 + ρ < −µ2/x
− since Y ±(x−) = −ρx− − µ2 by (28) and (29)

⇔ r2 − cos(β) < sin(β)

(
cot(θ) +

√
cot2(θ) + 1

)−1

by (38)

⇔ − cot(δ)

(
cot(θ) +

√
cot2(θ) + 1

)
< 1

⇔ 0 < − cot(δ)
√

cot2(θ) + 1 < 1 + cot(δ) cot(θ) since we assumed δ > π/2

⇔ cot2(δ)(cot2(θ) + 1) < (1 + cot(δ) cot(θ))2

⇔ 2 cot(δ) cot(θ)− cot2(δ) + 1 > 0

⇔ 2 sin(δ) cos(δ) cos(θ)− (cos2(δ)− sin2(δ)) sin(θ) > 0

⇔ sin(2δ) cos(θ)− cos(2δ) sin(θ) > 0

⇔ sin(2δ − θ) > 0

⇔ 2δ − θ < π since 0 < 2δ − θ < 2π.

It is straightforward to see that if δ < π/2, then 2δ − θ < π. Further, δ < π/2 is equivalent to
r2 + ρ < 0 by (3), which implies that r2 + ρ < −µ2/x

−. Therefore, k1(X±(y+), y+) < 0. This
proves the first equivalence. The second equivalence is proved in exactly the same way, so the
details are omitted. This concludes the proof. �

4.3. Absorption asymptotics along the axes. In this section, we establish asymptotic re-
sults for the absorption probability (and escape probability) in a simpler case where the starting
point is (u, 0).

Proposition 17 (Absorption asymptotics). Let us assume that x− ∈ S. For some constant C,
the asymptotic behavior of P(u,0)[T <∞] as u→∞ is given by

P(u,0)[T <∞] ∼ C


eux1 if 2δ − θ > π,

u−
3
2 eux

−
if 2δ − θ < π,

u−
1
2 eux

−
if 2δ − θ = π.

Proof. The largest singularity of the Laplace transform of P(u,0)[T <∞] determines its asymp-
totics. We proceed by invoking a classical transfer theorem, see [11, Theorem 37.1]. This theorem
says that if a is the largest singularity of order k of the Laplace transform (that is, the Laplace
transform behaves as (s−a)−k up to additive and multiplicative constants in the neighborhood
of a), then when u → ∞, the probability P(u,0)[T < ∞] is equivalent (up to a constant) to

uk−1eau. The Laplace transform of P(u,0)[T <∞] is 1/x− ψ1(x). By Lemma 15, the point 0 is
not a singularity and the point x1 is a simple pole. When that pole exists, the asymptotics are
given by Ceux1 for some constant C. When there is no pole, that is, when k1(x−, Y ±(x−)) > 0,
the largest singularity is given by the branch point x−. The definition of Y + and (35) together
imply that for some constants Ci we have

ψ1(x) =
x→x−

C1 + C2

√
x− x− + O(x− x−) if k1(x−, Y ±(x−)) > 0,

C3√
x− x−

+ O(1) if k1(x−, Y ±(x−)) = 0.

The proof is then completed by applying Lemma 16 and invoking the classical transfer theorem.
�

Remark 18 (Asymptotics along the vertical axis). Studying the singularities of φ1 we obtained
in Proposition 17 the asymptotics of the absorption probability (and then of the escape probability
which is equal to 1−P(u,0)[T <∞]) along the horizontal axis. A similar study for ψ2 would lead
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to the following asymptotics along the vertical axis. As v →∞

P(0,v)[T <∞] ∼ C


evy2 if 2ε+ θ − β > π,

v−
3
2 evy

−
if 2ε+ θ − β < π,

v−
1
2 evy

−
if 2ε+ θ − β = π.

Remark 19 (Bivariate asymptotics). The bivariate asymptotics of the absorption probability
could be derived using the saddle point method and studying the singularities, see [19] and [13].
Such a study is very technical and requires to distinguish a lot of different cases. We would obtain
some functions a, b, c depending on the parameters, such that for (u, v) = (r cos(t), r sin(t)) in
polar coordinates,

P(u,v)[T <∞] ∼
r→∞

a(t)rb(t)e−c(t)r.

Typically b would take the values 0 or −1/2.

5. Product form and exponential absorption probability

In this section, we consider a remarkable geometric condition on the parameters characterizing
the case where the absorption probability has a product form and is exponential. We call this new
criterion the dual skew symmetry condition due to its natural connection with the famous skew
symmetry condition studied by Harrison, Reiman and Williams [25, 28], which characterizes
the cases where the stationary distribution has a product form and is exponential. The dual
skew symmetry condition gives a criterion for the solution to the partial differential equation
of Proposition 11 (dual to that satisfied by the invariant measure) to be of product form. The
following Theorem states a simple geometric criterion on the parameters for the absorption
probability to be of product form; the absorption probability is then exponential.

Theorem 20 (Dual skew symmetry). Let f(u, v) = P(u,v)[T <∞] be the absorption probability.
The following statements are equivalent:

(1) The absorption probability has a product form, i.e. there exist f1 and f2 such that

f(u, v) = f1(u)f2(v);

(2) The absorption probability is exponential, i.e. there exist x and y in R such that

f(u, v) = eux+vy;

(3) The reflection vectors are in opposite directions, i.e.

r1r2 = 1;

(4) The reflection angles in the wedge satisfy α = 1, i.e.

δ + ε− β = π.

In this case we have

f(u, v) = eux1+vy2

where x1 and y2 are given in (32).

Proof. (1) ⇒ (2): Neumann boundary conditions (23) imply that f ′1(0)f2(y)− r1f1(0)f ′2(y) = 0
and −r2f

′
1(u)f2(0) + f1(u)f ′2(0) = 0. Solving these differential equations imply that f1 and f2

(and thus f) are exponential.
(2) ⇒ (1): This implication is straightforward.
(2) ⇒ (3): Neumann boundary conditions (23) imply that for all v > 0, xevy − r1ye

vy = 0 and
that for all u > 0, −r2xe

ux + yeux = 0. It follows that r1 = x/y, r2 = y/x, and thus r1r2 = 1.
(3) ⇒ (2): Let us define f(u, v) = eux1+vy2 . We need to show that f satisfies the partial
differential equation of Proposition 11. This will imply that f is the absorption probability. The
fact that r1 = 1/r2, combined with (32), gives r1 = x1/y2. This implies that f satisfies the
Neumann boundary conditions in (23). The limit values are satisfied because f(0, 0) = 1 and
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lim(u,v)→∞ f(u, v) = 0 for x1 < 0 and y2 < 0. It now only remains to show that Gf = 0. We
now only need verify that K(x1, y2) = 0, see Figure 9. By definition of y2 (see (32)), we have

K(x1, y2) = y2

(
y2

2

((
x1

y2

)2

+ 1 + 2ρ
x1

y2

)
+ µ1

x1

y2
+ µ2

)
= y2

(y2

2

(
r2

1 + 1 + 2ρr1

)
+ µ1r1 + µ2

)
= 0.

(3) ⇔ (4): The following equivalences hold:

r1r2 = 1⇔ (sin(β)/ tan(δ)− cos(β)) (sin(β)/ tan(ε)− cos(β)) = 1 by (3)

⇔ sin(β)

tan(ε
=

tan(δ)

sin(β)− cos(β) tan(δ)
+ cos(β) =

tan(δ)(1− cos2(β) + cos(β) sin(β)

sin(β)− cos(β) tan(δ)

⇔ tan(ε) =
tan(β)− tan(δ)

1 + tan(δ) tan(β)

⇔ tan(ε) = tan(β − δ)
⇔ ε = β − δ + π.

�

Remark 21 (Standard and dual skew symmetry). The standard skew symmetry condition for

the matrix

(
1 −r2

−r1 1

)
is 2ρ = −r1 − r2 or equivalently ε + δ = π. The standard skew

symmetry condition for the dual matrix

(
r2 −1
−1 r1

)
defined in Section 1.5 is 2ρ = −1/r1 −

1/r2 or equivalently ε + δ − 2β = π. Note that the dual skew symmetry condition obtained in
Theorem 20 is different from these two conditions. Further properties of the dual skew symmetry
condition will be explored in future work.

Figure 9. Dual skew symmetry: on the left, we see that K(x2, y2) = 0; on the
right, we see that condition r1r2 = 1 implies that the reflection vectors are in
opposite directions.

6. Integral expression of the Laplace transform ψ1

In this section, we establish a boundary value problem (BVP) satisfied by the Laplace trans-
form (Proposition 22). The section’s key result is Theorem 30, which gives an explicit integral
formula for the Laplace transform of the escape probability.
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6.1. Carleman boundary value problem. We state a Carleman BVP satisfied by the Laplace
transform ψ1.

Proposition 22 (Carleman BVP). The Laplace transform ψ1 satisfies the following boundary
value problem:

(i) ψ1(x) is meromorphic on G and continuous on G.
(ii) ψ1(x) admits one or two poles in G. 0 is always a simple pole and x1 is a simple pole if

and only if 2δ − θ + β > 2π.
(iii) limx→∞ xψ1(x) = 0.
(iv) ψ1 satisfies the boundary condition

ψ1(x) = G(x)ψ1(x), ∀x ∈ H,

where

G(x) :=
k1

k2
(x, Y +(x))

k2

k1
(x, Y +(x)). (39)

Proof. Statement (i) immediately follows from Lemma 14. Statement (ii) immediately follows
from Lemmas 15 and 16. Statement (iii) follows from the initial value theorem for the Laplace
transform, which implies that limx→∞ xψ1(x) = P(0,0)[T = ∞] = 0. To prove statement (iv),

we recall the functional equation (27). For x ∈ H, we evaluate this equation for (x, Y +(x)) and
(x, Y +(x)). By the definition of Y +, we have K(x, Y +(x)) = K(x, Y +(x)) = 0. By the definition
of the hyperbola H in (34), we have Y +(x) = Y +(x). This enables us to obtain the following
system of equations {

0 = k1(x, Y +(x))ψ1(x) + k2(x, Y +(x))ψ2(Y +(x)),

0 = k1(x, Y +(x))ψ1(x) + k2(x, Y +(x))ψ2(Y +(x)).

Solving this system of equations and eliminating ψ2(Y +(x)), we obtain the boundary condition
in statement (iv). �

6.2. Gluing function. To solve the BVP, we need a conformal gluing function which glues
together the upper and lower parts of the hyperbola. This conformal gluing function was intro-
duced in [20, 21]. For a > 0 and for x ∈ C \ (−∞,−1], the generalized Chebyshev polynomial
is defined by

Ta(x) := cos(a arccos(x)) =
1

2

(
(x+

√
x2 − 1)a + (x−

√
x2 − 1)a

)
.

We define the angle

β := arccos(−ρ).

We also define the functions

w(x) := Tπ
β

(
2x− (x+ + x−)

x+ − x−

)
, (40)

and

W (x) :=
w(x)− w(X±(y+))

w(x)− w(0)
.

We now recall a useful lemma from [21] for the conformal gluing function W .

Lemma 23 (Lemma 9, [21]). The function W satisfies the following properties

(i) W is holomorphic in G \ {0}, continuous in G \ {0} and bounded at infinity.
(ii) W is bijective from G \ {0} to C \ [0, 1].

(iii) W satisfies the gluing property on the hyperbola

W (x) = W (x), ∀x ∈ H.
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6.3. Index. We begin with some necessary notation. Let the angle ∆ be the variation of the
argument of G(x) when x lies on H+:

∆ := [argG(x)]H+ =

[
arg

k1

k2
(x, Y +(x))

]
H
.

Further, let d be the argument of G at the real point of the hyperbola H:

d := argG(X+(y+)) ∈ (−π, π].

We define the index κ as

κ :=

⌊
d+ ∆

2π

⌋
.

The index shall prove useful to solving the boundary value problem given in Proposition 22.

Lemma 24. We have

d =

{
0 if k1(x−, Y ±(x−)) 6= 0 i.e. 2δ − θ + β 6= 2π,

π if k1(x−, Y ±(x−)) = 0 i.e. 2δ − θ + β = 2π,

and

tan
d+ ∆

2
=

(1− (r1 + 2ρ)(r2 + 2ρ))
√

1− ρ2

r1 + r2 + 3ρ− r1r2ρ− 2(r1 + r2)ρ2 − 4ρ3
= tan(ε+ δ + β).

Note also that ε+ δ + β > 2π is equivalent to 1− (r1 + 2ρ)(r2 + 2ρ) 6 0.

Proof. The proof is in each step similar to the proof of [21, Lemma 13]. Firstly, note that
the value of d is obtained by the fact that G(X+(y+)) = 1 if k1(x−, Y ±(x−)) 6= 0 and
that G(X+(y+)) = −1 if k1(x−, Y ±(x−)) = 0. We recall that by definition we have ∆ =
lim x→∞

x∈H+
argG(x)− d and that by (39) we have

G(x) =
(1

2(r2 + Y +(x)/x) + ρ+ µ2/x)(1
2(1 + r1Y

+(x)/x) + ρY +(x)/x+ µ1/x)

(1
2(r2 + Y +(x)/x) + ρ+ µ2/x)(1

2(1 + r1Y +(x)/x) + ρY +(x)/x+ µ1/x)
.

By (28), we may compute the limit

lim
x→∞
x∈H+

Y +(x)

x
= −ρ+ i

√
1− ρ2,

from which we obtain

ei(∆+d) = lim
x→∞
x∈H+

G(x)

=
(r2 + ρ+ i

√
1− ρ2)(1− r1ρ− 2ρ2 − i(r1 + 2ρ)

√
1− ρ2)

(r2 + ρ− i
√

1− ρ2)(1− r1ρ− 2ρ2 + i(r1 + 2ρ)
√

1− ρ2)

=
(r2 + ρ)(1− r1ρ− 2ρ2) + (r1 + 2ρ)(1− ρ2) + i(1− r1r2 − 2(r1 + r2)ρ− 4ρ2)

√
1− ρ2

(r2 + ρ)(1− r1ρ− 2ρ2) + (r1 + 2ρ)(1− ρ2)− i(1− r1r2 − 2(r1 + r2)ρ− 4ρ2)
√

1− ρ2
.

We then see that

tan
d+ ∆

2
=

(1− r1r2 − 2(r1 + r2)ρ− 4ρ2)
√

1− ρ2

(r2 + ρ)(1− r1ρ− 2ρ2) + (r1 + 2ρ)(1− ρ2)
= tan(ε+ δ + β),

where the last equality follows from (3) and straightforward calculations. The proof concludes
by recalling the two following facts:

(1) For α = ε+δ−π
β > 1 and for ε, δ and β ∈ (0, π), we have that−π < 2β−π 6 ε+δ+β−2π <

π.
(2) By (3), sin(ε + δ + β) has the same sign as that (r1 + 2ρ)(r2 + 2ρ) − 1, where (r1 +

2ρ)(r2 + 2ρ)− 1 = sin(ε+ δ + β) sin(β)
sin(ε) sin(δ) .

�
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We now prepare to state Lemma 25 below. For 1− (r1 + 2ρ)(r2 + 2ρ) 6= 0, let us define

ỹ := 2
µ2 − µ1(r2 + 2ρ)

(r1 + 2ρ)(r2 + 2ρ)− 1
= 2µ1

sin(β + δ − θ) sin(ε)

sin(β − θ) sin(ε+ δ + β)
, (41)

where the last equality holds by (3).

Lemma 25. If ỹ − y+ 6 0 or if 1− (r1 + 2ρ)(r2 + 2ρ) = 0 then

(G(x) = 1 and x ∈ H)⇔ x = X±(y+),

and thus d+ ∆ ∈ (−2π, 2π). If ỹ − y+ > 0 then

(G(x) = 1 and x ∈ H)⇔ (x = X±(y+) or x = X±(ỹ)),

and thus d+ ∆ ∈ (−4π, 4π).

Proof. Assume that x ∈ H, where x = a + ib for a, b ∈ R and y = Y ±(x). Then by (39),
G(x) = 1 is equivalent to =(k1(a+ ib, y)k2(a− ib, y)) = 0. Straightforward calculations yield

=(k1(a+ ib, y)k2(a− ib, y)) =
b

4

[y
2

((r1 + 2ρ)(r2 + 2ρ)− 1)− 2µ2 + 2µ1(r2 + 2ρ)
]
,

from which we may obtain that G(x) = 1 is equivalent to b = 0 or to y = ỹ. We conclude the
proof by noting that

(1) b = 0 and x ∈ H together imply that x = X±(y+), the latter being the only real point
of the hyperbola.

(2) By the definition of (33), x ∈ H and y = ỹ imply that ỹ ∈ [y+,∞).

�

We continue with Lemma 26 below.

Lemma 26. Assume that 2δ − θ + β > 2π. Then ỹ > y+ is equivalent to ε+ δ + β < 2π.

Proof. We first note that 2δ − θ + β > 2π implies that π < δ − θ + β < 2π, and thus that
sin(δ− θ+β) < 0. Recall that we have previously seen that the conditions in (1) are equivalent
to α > 1 and δ > β, ε > β, and thus that π < ε+ δ+ β < 3π. We employ the following steps to
conclude the proof:

(1) Assume that ỹ > y+. Then for y+ > 0, we have that ỹ > 0. Then by (41) we have that
sin(ε+ δ + β) < 0 and thus ε+ δ + β < 2π.

(2) We now assume that ε + δ + β < 2π. Hence sin(ε + δ + β) < 0. By hypothesis we
have β < ε < 2π − β − δ. Using (41), we may easily see that ε 7→ ỹ is increasing for
β < ε < 2π − β − δ. Replacing ε by β in (41), we may deduce that

ỹ > yδ := 2µ1
sin(β + δ − θ) sin(β)

sin(β − θ) sin(2β + δ)
.

By hypothesis, we have that π + θ−β
2 < δ < 2π − 2β. Note that δ 7→ yδ is increasing in

this interval. We then see that

ỹ > yinf := 2µ1
sin(β + π + θ−β

2 − θ) sin(β)

sin(β − θ) sin(2β + π + θ−β
2 )

.

Employing (30) and performing straightforward calculations, we obtain

ỹ − y+ > yinf − y+ = µ1
−2 sin(β−θ2 ) sin2(β+θ

2 )

sin(β − θ) sin(ε+ δ + β) sin(β)
> 0.

�

Before stating the main lemma of this section, we introduce the following indicator variable χ,
which is associated with the results of Lemma 15 and Lemma 16.

χ :=

{
−1 if 2δ − θ + β > 2π ⇔ x1 is a pole of ψ1 in G,
0 if 2δ − θ + β 6 2π ⇔ ψ1 has no pole but 0 in G.

(42)
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Lemma 27 (Index). The index κ satisfies

κ :=

{
χ if ε+ δ + β > 2π,

χ− 1 if ε+ δ + β < 2π.

The value of the index appears below in Table 1.

ε+ δ + β > 2π ε+ δ + β < 2π

2δ − θ + β > 2π κ = −1 κ = −2

2δ − θ + β 6 2π κ = 0 κ = −1

Table 1. Value of the index κ.

Remark 28 (Index and argument principle). Notice that the index can take the values 0, −1
and −2 while in [21, Lemma 14] the index takes only the values 0 and −1. The difference comes
from the fact that ψ1 can have two distinct poles while in [21] the Laplace transform has at most
one simple pole. The index is deeply connected to number of zeros and poles of ψ1. In the case
of a closed curve, the argument principle implies that the index is equal to the number of zeros
minus the number of poles counted with multiplicity of the function of the BVP. See [17, Lemma
6.9] which presents a case where the boundary of the BVP is a circle. In our case, the boundary
is an (unbounded) hyperbola and ψ1 is not meromorphic at infinity, therefore we cannot apply
directly the argument principle and the index κ is not always equal to the opposite of the number
of poles χ.

Proof. The proof proceeds with two separate cases.

Case I: ỹ − y+ 6 0. In this case, by Lemma 25, we have that d+ ∆ ∈ (−2π, 2π) and that

G(x) 6= 1 for all x ∈ H such that x 6= X±(y+). Then κ = 0 or −1 depending on the sign of
d + ∆. This sign is given by the sign of argG(x) when x ∈ H+ and x → X±(y+). Note that
x = a+ ib ∈ H+ and y = Y +(x). We then compute

k1(a+ ib, y)k2(a+ ib, y) = k1(a, y)k2(a, y) +
b2

4
(r2 + 2ρ)− i b

4
(1− (r1 + 2ρ)(r2 + 2ρ))(y − ỹ).

Figure 10 represents the curve C := {k1
k2

(x, Y +(x)) : x ∈ H}. It is useful to remark that

arg k1
k2

(x, Y +(x)) = arg k1(x, Y +(x))/k2(x, Y +(x)). We may thus deduce that

sgn argG(x) = sgn arg(k1(a+ ib, y)k2(a− ib, y))

= sgn
−b(1− (r1 + 2ρ)(r2 + 2ρ))(y − ỹ)

k1(a, y)k2(a, y) + b2

4 (r2 + 2ρ)
.

For x ∈ H+, we have k2(X±(y+), y+) > 0, b > 0. When x→ X±(y+), we have that b→ 0 and
a→ X±(y+). Thus for x ∈ H+ and x→ X±(y+),

sgn argG(x) = −sgn(k1(X±(y+), y+)(1− (r1 + 2ρ)(r2 + 2ρ))(y − ỹ))

= −sgn(2δ − θ + β − 2π)sgn(ε+ δ + β − 2π),

where the last equality comes from Lemmas 16 and 24, as well as from the fact that in this case
y − ỹ > 0 for y > y+. This allows us to conclude the following

• If ε + δ + β > 2π and 2δ − θ + β > 2π, then for x ∈ H+ and x → X±(y+), the sign of
argG(x) is negative. We may thus deduce that κ = −1, see Figure 10a.
• If ε + δ + β > 2π and 2δ − θ + β 6 2π, then for x ∈ H+ and x → X±(y+), the sign of

argG(x) is positive. We may thus deduce that κ = 0, see Figure 10b.
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• If ε + δ + β < 2π and 2δ − θ + β 6 2π, then for x ∈ H+ and x → X±(y+), the sign of
argG(x) is positive. We may thus deduce that κ = −1, see Figure 10c.

We pause to note that by Lemma 26 it is not possible to have ε+δ+β < 2π and 2δ−θ+β > 2π.
This is because we have assumed ỹ 6 y+.

Case II: ỹ − y+ > 0. In this case by, Lemma 25 we have that d+ ∆ ∈ (−4π, 4π) and (G(x) =

1 and x ∈ H)⇔ (x = X±(y+) or x = X±(ỹ)). Then κ ∈ {−2,−1, 0, 1}. To obtain the value of

the index we study the curve C := {k1
k2

(x, Y +(x)) : x ∈ H}. By straightforward calculations we

see that Ã := k1
k2

(X±(ỹ), ỹ) is positive. The study of the sign of the real and the imaginary parts

of k1
k2

(x, Y +(x)) for x ∈ H+ and x→ X±(y+) gives the value of κ. Following the same logic as

that of Case I above, we see that the real part of k1
k2

(x, Y +(x)) for x ∈ H+ and x → X±(y+)

has the same sign as −(2δ − θ + β − 2π). Further, the imaginary part has the same sign that
−(ε+ δ + β − 2π). We may then conclude as follows:

• If ε+ δ + β < 2π and 2δ − θ + β > 2π, κ = −2, see Figure 11a.
• If ε+ δ + β > 2π and 2δ − θ + β 6 2π, κ = 0, see Figure 11b.
• If ε+ δ + β < 2π and 2δ − θ + β 6 2π, κ = −1, see Figure 11c.

Note that by Lemma 26 it is not possible to have ε+ δ + β > 2π and 2δ − θ + β > 2π. This is
because we have assumed that ỹ > y+.

�

We now state a technical lemma which shall be invoked in Section 7.

Lemma 29. The following equality holds(
−d+ ∆

2π
+ χ− 1

)
π

β
= −α− 1.

Proof. First, we recall by Lemma 24 that

tan
d+ ∆

2
= tan(ε+ δ + β).

For α = ε+δ−π
β > 1 and ε, δ and β ∈ (0, π),

2β − π 6 ε+ δ + β − 2π < π.

Further, recall that by definition, κ = bd+∆
2π c.

We now consider two cases for the value of ε+δ+β−2π. The first case considers ε+δ+β−2π >
0. In this case,

d+ ∆

2
=

{
ε+ δ + β − 2π if d+∆

2π > 0 i.e. κ = 0,

ε+ δ + β − 3π if d+∆
2π < 0 i.e. κ = −1.

By Lemma 27, we have κ = χ. We may thus deduce that

d+ ∆

2
= ε+ δ + β + (χ− 2)π.

The second case considers ε+ δ + β − 2π < 0. In this case,

d+ ∆

2
=

{
ε+ δ + β − 2π if − π 6 d+∆

2π < 0 i.e. κ = −1,

ε+ δ + β − 3π if − 2π 6 d+∆
2π < −π i.e. κ = −2.

By Lemma 27, we have κ = χ− 1. We may thus deduce that

d+ ∆

2
= ε+ δ + β + (χ− 2)π.

Thus, in both cases we have(
−d+ ∆

2π
+ χ− 1

)
π

β
= (−ε− δ − β − (χ− 2)π + χπ − π)

1

β
= −α− 1.

This concludes the proof. �
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(a) If ε+ δ + β > 2π and 2δ −
θ + β > 2π, then κ = −1.

(b) If ε+ δ + β > 2π and 2δ −
θ + β 6 2π, then κ = 0.

(c) If ε+ δ + β < 2π and 2δ −
θ + β 6 2π, then κ = −1.

Figure 10. When ỹ − y+ 6 0: a plot of the curve C := {k1
k2

(x, Y +(x)) : x ∈ H}
and the point A+ := k1

k2
(X+(y+), y+).

(a) If ε+ δ + β < 2π and 2δ − θ + β > 2π,
then κ = −2.

(b) If ε+ δ + β > 2π and 2δ − θ + β 6 2π,
then κ = 0.

(c) If ε+ δ + β < 2π and 2δ − θ + β 6 2π,
then κ = −1.

Figure 11. When ỹ− y+ > 0: a plot of the curve C := {k1
k2

(x, Y +(x)) : x ∈ H},
the point A+ := k1

k2
(X+(y+), y+), and the point Ã := k1

k2
(X+(ỹ), ỹ).
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6.4. Solution of the BVP. The following theorem gives an explicit integral formula for the
Laplace transform of the escape probability ψ1.

Theorem 30 (Explicit expression for ψ1). The Laplace transform ψ1 is given for x ∈ G by

ψ1(x) =
w′(0)

w(x)− w(0)

(
w(0)− w(x1)

w(x)− w(x1)

)−χ
exp

(
1

2iπ

∫
H+

logG(t)

[
w′(t)

w(t)− w(x)
− w′(t)

w(t)− w(0)

]
dt

)
,

(43)
where x1 is defined in (32), G is defined (39), w is defined (40), χ is defined in (42) and H is
defined in (34).

Remark 31. Let us now give some remarks about Theorem 30.

• The poles 0 and x1 found in Lemma 15 can be easily visualized in the formula of Theo-
rem 30. The indicator variable χ defined in (42) indicates clearly on the formula if the
pole x1 is in G or not.
• A symmetrical result holds for ψ2. Using the functional equation (27) we obtain an ex-

plicit formula for ψ. By inverting this Laplace transform we obtain the escape probability
which is the main motivation of our work. But such an inversion is not easy neither
very explicit except in some special cases.
• But it is still possible to deduce some concrete results from the integral formula obtained

in Theorem 30. In Section 7 we derive thanks to this explicit expression a very explicit
and simple expression for the asymptotics of the escape probability at the origin.
• It can also be used to show some differential properties of the Laplace transform. More

precisely, similarly to [6, Thm 2.3, §9.1] we can show that ψ1 is differentially algebraic if
β ∈ πQ. Such results on the algebraic nature of a generating function are very classical in
analytic combinatorics to obtain concrete results. When ψ1 is differentially algebraic, it
satisfies a differential equation from which it is possible to deduce a polynomial recurrence
relation for the moments of the escape/absorption probability. See [6, §6.3] which gives
an explicit example for the SRBM stationary distribution in the recurrent case.
• The methods and techniques employed to prove this theorem are inspired by the one used

to study random walks in the quarter plane [15].

Proof. Let

ψ̃1(y) :=
(y −W (x1))−χ

(y − 1)1+κ−χ ψ1 ◦W−1(y).

Proposition 22, Lemma 23 and Lemma 27 together imply that

• ψ̃1 is analytic on C \ [0, 1].

• ψ̃1(y) ∼∞ cy−κ for some constant c.

• ψ̃1(1) = 0.

• For y ∈ [0, 1], ψ̃1 satisfies the boundary condition

ψ̃+
1 (y) = G̃(y)ψ̃−1 (y),

where ψ̃+
1 (y) is the left limit and ψ̃−1 (y) is the right limit of ψ̃1 on [0, 1], (W−1)− is the

right limit of W−1 on [0, 1], and G̃(y) = G ◦ (W−1)−(y).

We now define

S̃(y) := (y − 1)−κ exp

(
1

2iπ

∫ 1

0

log G̃(u)

u− y

)
.

Following the classical boundary theory results in [15, (5.2.24) and Theorem 5.2.3], the above

function is analytic and does not cancel on C \ [0, 1] and is such that S̃(y) ∼∞ c′y−κ for some
constant c′. Furthermore, for y ∈ [0, 1], it satisfies the boundary condition

S̃+(y) = G̃(y)S̃−(y),
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where S̃+(y) is the left limit and S̃−(y) is the right limit of S̃ on [0, 1]. By the properties of ψ̃1

and S̃ detailed above, the function ψ̃1/S̃ is analytic on C and bounded at infinity. Therefore
there must exist a constant C such that

ψ̃1(y) = CS̃(y).

Invoking the definition of ψ̃1, we have that

(W (x)−W (x1))−χ

(W (x)− 1)1+κ−χ ψ1(x) = C(W (x)− 1)−κ exp

(
1

2iπ

∫ 1

0

log G̃(u)

u−W (x)

)
. (44)

Noting that

W (x)− 1 =
w(0)− w(X±(y+))

w(x)− w(0)
and W (x)−W (x1) =

w(x)− w(x1)

w(x)− w(0)

w(X±(y+))− w(0)

w(x1)− w(0)
,

and making a change of variable u = w(t) in the integral in (44), we obtain for some constant
C ′

ψ1(x) = C ′
(

1

w(x)− w(0)

)(
1

w(x)− w(x1)

)−χ
exp

(
1

2iπ

∫
H+

logG(t)
w′(t)

w(t)− w(x)
dt

)
.

The final value theorem for the Laplace transform gives

lim
x→0

xψ1(x) = lim
u→∞

P(u,0)[T =∞] = 1.

This enables us to compute the constant

C ′ = w′(0) (w(0)− w(x1))−χ exp

(
−1

2iπ

∫
H+

logG(t)
w′(t)

w(t)− w(0)
dt

)
,

which gives us (43), completing the proof. �

7. Asymptotics of the escape probability at the origin

In this section we use the explicit expression in Theorem 30 to obtain the asymptotics of the
escape probability at the origin. We begin with computing the asymptotics of ψ1 at infinity.

Lemma 32 (Asymptotics of ψ1). Let α be defined as in (4). For ease of notation, allow C to
be a constant which may change from one line to the next. For some positive constant C,

ψ1(x) ∼
x→∞

Cx−α−1.

A symmetrical result holds for ψ2. That is, for some positive constant C,

ψ2(y) ∼
y→∞

Cy−α−1.

Proof. This proof follows the same steps as those of [21, Prop 19]. The key is to invoke [15,
(5.2.20)], which states that

exp

(
1

2iπ

∫ 1

0

log G̃(u)

u− y

)
∼
y→1

C(y − 1)
d+∆
2π .

Recall that w(x) ∼
x→∞

Cx
π
β and that W (x) − 1 ∼

x→∞
Cx
−π
β . The explicit expressions of ψ1

obtained in (43) and in (44) imply that

ψ1(x) ∼
x→∞

Cx
(− d+∆

2π
+χ−1)π

β .

The proof concludes by invoking Lemma 29, which states that
(
−d+∆

2π + χ− 1
)
π
β = −α−1. �

Lemma 33 (Asymptotics of ψ). Let α defined as in (4). For t ∈ [0, π2 ] and some positive
constant Ct,

ψ(r cos t, r sin t) ∼
r→∞

Ctr
−α−2.
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Proof. The result is immediate from the functional equation (27) and Lemma 32. �

Proposition 34 (Asymptotics at the origin). For positive constants c0 and c1 we have the
following asymptotics

P(u,0)[T =∞] ∼
u→0

c0u
α and P(0,v)[T =∞] ∼

v→0
c1v

α.

Proof. The result follows by combining the asymptotic results of ψ1 and ψ2 at infinity that
we computed in Lemma 32 with the reciprocal of the result in [11, Thm 33.3]2. We begin by
denoting g(u) := P(u,0)[T =∞]. Then, by definition, ψ1(x) =

∫∞
0 e−xug(u)du. As ψ1(x) has no

singularities greater than 0, for every A > 0, the inverse Laplace transform gives

g(u) =
1

2iπ

∫ A+i∞

A−i∞
euxψ1(x)dx.

By Lemma 32, we have ψ1(x) = C+η(x)
xα+1 , where η is a function such that lim∞ η = 0. Recalling

that the Laplace transform of uα/Γ(α+1) is x−α−1 and performing a change of variables s = ux,
we obtain

g(u) =
1

2iπ

∫ A+i∞

A−i∞
eux

C + η(x)

xα+1
dx

= uα
(

C

Γ(α+ 1)
+

1

2iπ

∫ Au+i∞

Au−i∞
es
η(s/u)

sα+1
ds

)
.

It remains to show that the last integral tends to 0 when u → 0. To do so, consider ε > 0
arbitrarily small. Then there exists B > 0 sufficiently large such that η(x) < ε for all |x| > B.
For all u such that u < 1/B, let us consider A := 1/u. This gives∣∣∣∣ 1

2iπ

∫ Au+i∞

Au−i∞
es
η(s/u)

sα+1
ds

∣∣∣∣ < ε

2iπ

∫ 1+i∞

1−i∞

1

sα+1
ds,

where the last integral converges for α > 1. The proof concludes by letting ε tend towards 0. �

Theorem 35 (Asymptotics at the origin). For t ∈ (0, π2 ) and some positive constant ct we have

P(r cos t,r sin t)[T =∞] ∼
r→0

ctr
α.

Proof. This proof follows directly from the asymptotics of the double Laplace transform ψ com-
puted in Lemma 33. Recall the result used in the proof of Proposition 34 linking the asymptotics
of a function at 0 to the asymptotics of its Laplace transform at infinity. The only necessary
modification is to apply this result with a polar coordinate transformation. The desired asymp-
totics then follows with nearly identical calculations. �
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2Doetsch [11, Thm 33.3] establishes that if for some constant a a function is equivalent to ua at 0, then at
infinity, its Laplace transform is equivalent (up to a multiplicative constant) to x−a−1.
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