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ESCAPE AND ABSORPTION PROBABILITIES FOR OBLIQUELY

REFLECTED BROWNIAN MOTION IN A QUADRANT

PHILIP A. ERNST AND SANDRO FRANCESCHI

Abstract. We consider an obliquely reflected Brownian motion Z with positive drift in a
quadrant stopped at time T , where T := inf{t > 0 : Z(t) = (0, 0)} is the first hitting time of
the origin. Such a process can be defined even in the non-standard case where the reflection
matrix is not completely-S. We show that in this case the process has two possible behaviors:
either it tends to infinity or it hits the corner (origin) in a finite time. Given an arbitrary
starting point (u, v) in the quadrant, we consider the escape (resp. absorption) probabilities
P(u,v)[T = ∞] (resp. P(u,v)[T < ∞]). We establish the partial differential equations and the
oblique Neumann boundary conditions which characterize the escape probability and provide
a functional equation satisfied by the Laplace transform of the escape probability. We then
give asymptotics for the absorption probability in the simpler case where the starting point in
the quadrant is (u, 0). We exhibit a remarkable geometric condition on the parameters which
characterizes the case where the absorption probability has a product form and is exponential.
We call this new criterion the dual skew symmetry condition due to its natural connection with
the skew symmetry condition for the stationary distribution. We then obtain an explicit integral
expression for the Laplace transform of the escape probability. We conclude by presenting exact
asymptotics for the escape probability at the origin.

1. Introduction

1.1. Model and goal. Let Z(t) = (Z1(t), Z2(t)) be a reflected Brownian motion (RBM) in the
quadrant, starting from the point (u, v), with positive drift µ = (µ1, µ2); that is, µ1 > 0, µ2 > 0.

The covariance matrix is

(
1 ρ
ρ 1

)
and the reflection matrix is

(
1 −r2

−r1 1

)
. We further

assume that
r1 > 0, r2 > 0 and 1 6 r1r2. (1)

See Figure 1 for a representation of the parameters. We define this reflected process up to the
first hitting time T of the corner, defined as

T := inf{t > 0 : Z(t) = 0}.
For t 6 T , this process may be written as{

Z1(t) := u+W1(t) + µ1t+ l1(t)− r2l2(t),

Z2(t) := v +W2(t) + µ2t− r1l1(t) + l2(t),
(2)

where l1(t) (resp. l2(t)) is a continuous non-decreasing process which increases only when
Z1(t) = 0 (resp. Z2(t) = 0). Under condition (1), when the process hits the corner, it is
immediately absorbed. Further details on the existence and uniqueness of this process will be
given in Section 1.2.

The objective of the present paper is to study the escape probability to infinity for a process
starting from (u, v). We denote this probability as

P(u,v)[T =∞].

The corresponding absorption probability at the origin is P(u,v)[T <∞] = 1− P(u,v)[T =∞].
Since its introduction in the eighties by Harrison, Reiman, Varadhan and Williams [17, 18, 30,

29, 31] reflected Brownian motion in the quarter plane has received significant attention from

Key words and phrases. Escape probability; Absorption probability; Obliquely reflected Brownian motion in
a quadrant; Functional equation; Carleman boundary value problem; Laplace transform; Neumann’s condition;
Asymptotics.
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Figure 1. Reflection vectors and drift.

probabilists. Recurrence and transience of obliquely reflecting Brownian motion were examined
in [21, 30], and the process has also been considered in planar domains [14, 19] as well as in
general dimensions in orthants [18, 28, 32]. The stationary distribution of obliquely reflecting
Brownian motion has been studied in [4, 5, 13] and its Green’s functions have been studied
in [11]. Obliquely reflecting Brownian motion has played an important role in applications
concerning heavy traffic approximations for open queueing networks ([15, 26]). It has also been
utilized in queueing models as diffusion approximations for tandem queues ([22, 23, 25]).

Previous works ([2, 7, 10, 13]) have adapted an analytic method initially developed for ran-
dom walks by Fayolle and Iasnogorodski [8] and Malyshev [24] for studying obliquely reflected
Brownian motion. This method is based on the boundary value problem theory documented by
the books of Fayolle et al. [9] and Cohen and Boxma [3]. The present article is in part inspired
by this analytic approach.

1.2. Definition of the process given in (2). Brownian motion in a quadrant with oblique
reflection is usually defined as a process which behaves as a standard Brownian motion in
the quadrant. The process reflects instantaneously on the edges with constant direction and
the amount of time spent at the origin has Lebesgue measure zero (Varadhan and Williams
[29]). Such a process is defined as a solution of a submartingale problem [29]. An interesting
case arises when the process is a semimartingale reflecting Brownian motion (SRBM). Reiman
and Williams [27] showed that a necessary condition for the process to be a SRBM is for the
reflection matrix to be completly-S1. Taylor and Williams [28] showed that this condition was
also sufficient for the existence of an SRBM, which is unique in law.

Due to condition (1), the reflection matrix of the process in (2) is not completely-S. The
process indeed is not a standard SRBM as it may be trapped at the origin. Nonetheless, it
is possible to define this absorbed process up until the stopping time T . The existence and
uniqueness as a solution of a submartingale problem is given for the absorbed process is given
in [29, §2.1, Thm 2.1]. Further, in Taylor and Williams [28, §4.2 and §4.3], the existence and
uniqueness of an SRBM absorbed at the origin are proven without assuming that the reflection
matrix is completely-S.

1.3. From the quadrant to the wedge. Franceschi and Raschel [13, Appendix] recently
showed that studying reflected Brownian motion in a quadrant is equivalent to studying reflected
Brownian motion in a wedge with angle β, with identity covariance matrix, with two reflection
angles δ and ε, and with drift angle θ (see Figure 2). The angles δ, ε, β and θ (when the drift is
nonzero) are in (0, π) and are defined by

tan δ =
sinβ

−r2 + cosβ
, tan ε =

sinβ

−r1 + cosβ
, tan θ =

sinβ

µ1/µ2 + cosβ
, cosβ = −ρ. (3)

1 A square matrix R is said to be completly-S if for each principal sub-matrix R̃ there exists x̃ > 0 such that

R̃x̃ > 0.
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Figure 2. Reflected Brownian motion with zero drift in a wedge of angle β,
reflection angles δ and ε, and drift angle θ.

Condition (1) is equivalent to δ + ε− β > π. Finally, we denote α, now a standard quantity in
the SRBM literature, to be

α :=
δ + ε− π

β
. (4)

1.4. The case of zero drift. The case of zero drift µ = 0 was treated by Varadhan and
Williams [29]. In this case the absorption probability does not depend on the starting point. We
have from [29, Thm. 2.2]

P[T <∞] =

{
1 if α > 0,

0 if α 6 0.

If α 6 0, the corner is not reached. If 0 < α < 2, the corner is reached but the amount of time
spend by the process in the corner is Lebesgue measure zero. If α > 2, the process reaches the
corner and remains there. Condition (1) is equivalent to α > 1. Under condition (1), the case
of positive drift poses a quandry, as 0 < P(u,v)[T <∞] < 1.

1.5. Escape probability and stationary distribution of the dual process. Harrison [15]
and Foddy [10] showed that the hitting time on one of the axes is intrinsically connected to the
stationary distribution of a certain dual process. As the present article was nearing completion,
it came to our attention that Harrison [16] has extended the results in his earlier work ([15]) by
introducing a dual RBM in the quadrant with drift −µ and reflection matrix(

r2 −1
−1 r1

)
when 1 < r1r2. This is depicted in Figure 3 below. This dual process has an explicit connection
with the study of the escape probability. In particular, Harrison [16, Corollary 2] states that

P(u,v)[T =∞] = π(S(u, v))

where π is the stationary distribution of the dual process and S(u, v) := {(u − r2z1 + z2, v +
z1 − r1z2) ∈ R2

+ : (z1, z2) ∈ R2
+} is a trapezoid as pictured in Figure 3.

Figure 3. Dual process parameters and trapezoid S(u, v) in brown.
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The remainder of this paper is organized as follow. In Section 2 we explore some general
properties of the process of interest given in (2). This section’s key result is Theorem 9, which
states that the process has only two possible behaviors: either T < ∞, which means that the
process is absorbed at the origin in finite time, or T =∞, in which case the process escapes to
infinity, namely Z(t) → ∞ when t → ∞ In Section 3 we present Proposition 10, which gives
a partial differential equation characterizing the escape probability. Later in this section, we
give Proposition 11, which provides a functional equation satisfied by the Laplace transform of
the escape probability. In Section 4, we study the kernel of this functional equation and obtain
asymptotics results for the absorption probability in the simpler case where the starting point
is (u, 0) (Proposition 16). In Section 5 we find a geometric condition which characterize the
cases where the absorption probability has a product form and is exponential (Theorem 18).
Such a result recall the famous skew symmetry condition studied a lot for invariant measures.
In Section 6 we establish a boundary value problem (BVP) satisfied by the Laplace transform
(Proposition 19) and conclude with Theorem 24, which gives an explicit integral formula for
the Laplace transform of the escape probability. In Section 7 we obtain exact asymptotics for
the escape probability at the origin.

In memory of Larry Shepp We dedicate this article in memory of our colleague, mentor, and
friend, Professor Larry Shepp. Professor Shepp indelibly contributed to many areas of applied
probability, and one of the areas that interested him most concerned RBM in a quadrant as
well in a strip ([14, 19]).

2. General properties of the process in (2)

In this section we investigate a few key properties of the process given in (2). We prove three
key results. The first is that if the starting point tends to infinity, then the probability that
the process does not hit the origin tends towards 1 (Theorem 3). The second is that when the
starting point tends to the origin, the probability that the process hits the origin in finite time
tends towards 1 (Theorem 5). The third key result is that the process has only two possible
behaviors: either T <∞, which means that the process is absorbed at the origin in finite time,
or T = ∞, in which case the process escapes to infinity, namely Z(t) → ∞ when t → ∞
(Theorem 9).

2.1. Theorems 3 and 5. Our first key results of the section (Theorems 3 and 5) concern the
probability of the process hitting the origin. Before stating these results, we begin by introducing
Lemma 1 and Proposition 2.

For ease of notation, let us define τ ξ1 := inf{t : Z1(t∧T ) ≤ ξ} and τ ξ2 := inf{t : Z2(t∧T ) ≤ ξ}.
Further, let X1(t):= u+W1(t) + µ1t and let X2(t):=v +W2(t) + µ2t.

Lemma 1. For u > ξ > 0, we have

P(u,v)[τ
ξ
1 =∞] = P(u,v)

[
X1(t ∧ T )− r2 sup

0≤s≤t∧T
(−X2(s))+ > ξ for every t ≥ 0

]
, (5)

where x+ equals x if x > 0 and is 0 otherwise. Hence,

P(u,v)[τ
ξ
1 =∞] ≥ P(u,v)

[
X1(t)− r2 sup

0≤s≤t
(−X2(s))+ > ξ for every t ≥ 0

]
. (6)

A symmetrical result holds for v > ξ > 0 and P(u,v)[τ
ξ
2 =∞].

Proof. On the event {τ ξ1 =∞}, for every t ≥ 0, we have l1(t) = 0,P(u,v)-a.s.. Then

Z1(t ∧ T ) = X1(t ∧ T )− r2 l2(t ∧ T ),

Z2(t ∧ T ) = X2(t ∧ T ) + l2(t ∧ T ).

Note that l2(t ∧ T ) increases only when Z2(t ∧ T ) = 0. By uniqueness of the Skorokhod map,

l2(t ∧ T ) = sup
0≤s≤t

(−X2(s ∧ T ))+ = sup
0≤s≤t∧T

(−X2(s))+.
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Thus

Z1(t ∧ T ) = X1(t ∧ T )− r2 sup
0≤s≤t∧T

(−X2(s))+.

We may then write

{τ ξ1 =∞} = {Z1(t ∧ T ) > ξ for every t ≥ 0}
= {Z1(t ∧ T ) > ξ for every t ≥ 0 and l1(T ) = 0}

=

{
X1(t ∧ T )− r2 sup

0≤s≤t∧T
(−X2(s))+ > ξ for every t ≥ 0 and l1(T ) = 0

}
, (7)

P(u,v)-a.s. We now wish to show that

P(u,v)

[
X1(t ∧ T )− r2 sup

0≤s≤t∧T
(−X2(s))+ > ξ for every t ≥ 0 and l1(T ) > 0

]
= 0. (8)

Note that there is a set N such that P(u,v)(N) = 1 and for every ω ∈ N , we have

Z1(t ∧ T ) = X1(t ∧ T ) + l1(t ∧ T )− r2 l2(t ∧ T ) ≥ 0, (9)

Z2(t ∧ T ) = X2(t ∧ T )− r1 l1(t ∧ T ) + l2(t ∧ T ) ≥ 0, (10)

l1(t ∧ T ) increases only when Z1(t ∧ T ) = 0 , (11)

l2(t ∧ T ) increases only when Z2(t ∧ T ) = 0 . (12)

Let us ω ∈ N . We claim that the following statements

a) X1(t ∧ T )− r2 sup0≤s≤t∧T (−X2(s))+ > ξ for every t ≥ 0;
b) l1(T ) > 0,

cannot hold simultaneously. The proof is by contradiction. For sake of contradiction, assume
that statements a) and b) hold simultaneously. By (10), (12), and the uniqueness of Skorokhod
map, we have

l2(t ∧ T ) = sup
0≤s≤t

(r1 l1(s ∧ T )−X2(s ∧ T ))+

≤ sup
0≤s≤t

(r1 l1(t ∧ T ))+ + sup
0≤s≤t

(−X2(s ∧ T ))+

= r1 l1(t ∧ T ) + sup
0≤s≤t∧T

(−X2(s))+.

Let η := inf{t : l1(t ∧ T ) ≥ ξ/(2r1r2)}. Then for every t ≥ 0,

Z1(t ∧ η ∧ T ) = X1(t ∧ η ∧ T )− r2 l2(t ∧ η ∧ T )

≥ X1(t ∧ η ∧ T )− r2 sup
0≤s≤t∧η∧T

(−X2(s))+ − r1r2 l1(t ∧ η ∧ T )

> ξ − ξ/2 = ξ/2,

where in the last inequality we have invoked statement a). Since l1(t ∧ T ) increases only when
Z1(t ∧ T ) = 0, we have

l1(t ∧ η ∧ T ) = 0 for every t ≥ 0,

which contradicts statement b) and the definition of η. By contradiction, (8) holds. Combining
(7) and (8), (5) follows. Note that (6) follows directly from (5). �

We now turn to Proposition 2 below.

Proposition 2. Let B(t) be a one dimensional Brownian motion started from the origin under
P. For µ > 0 and x > 0, we have

P(B(t) + µt > −x for every t ≥ 0) = 1− e−2xµ.
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Proof. Let H−x := inf{t ≥ 0 : B(t) + µt = −x}, then H−x is the hitting time of Brownian
motion with drift. By the definition of H−x, we have

P(B(t) + µt > −x for every t ≥ 0) = P(H−x =∞) = 1− e−2xµ.

�

With Lemma 1 and Proposition 2 in hand, we state Theorem 3 below.

Theorem 3. When the starting point tends to infinity, the probability that process does not hit
the origin tends to one. Namely,

lim
(u,v)→∞

P(u,v)[T =∞] = 1.

Equivalently,

lim
(u,v)→∞

P(u,v)[T <∞] = 0.

Proof. Fix ξ > 0. For ‖(u, v)‖ is sufficiently large, we have u > 2ξ or v > 2ξ. If u > 2ξ, by
Lemma 1, we have

P(u,v)[T =∞ for some n ∈ N+] ≥ P(u,v)[τ
ξ
1 =∞]

≥ P(u,v)

[
X1(t)− r2 sup

0≤s≤t
(−X2(s))+ > ξ for every t ≥ 0

]
≥ P(u,v)[X1(t) > ξ + u/2 for every t ≥ 0 and X2(t) > −u/(2r2) for every t ≥ 0]

≥ P(u,v)[X1(t) > ξ + u/2 for every t ≥ 0]

+P(u,v)[X2(t) > −u/(2r2) for every t ≥ 0]− 1

= P(u,v)[W1(t) + µ1t > −(u− 2ξ)/2 for every t ≥ 0]

+P(u,v)[W2(t) + µ2t > −u/(2r2)− v for every t ≥ 0]− 1

= 1− e−(u−2ξ)µ1 + 1− e−(u/r2+2v)µ2 − 1

= 1− e−(u−2ξ)µ1 − e−(u/r2+2v)µ2 ,

where the second to last equality invokes Proposition 2. Similarly, if v > 2ξ, we have

P(u,v)[T =∞ for some n ∈ N+] ≥ 1− e−(v−2ξ)µ2 − e−(v/r1+2u)µ1 .

Hence,

P(u,v)[T =∞ for some n ∈ N+]

≥ max{1− e−(u−2ξ)µ1 − e−(u/r2+2v)µ2 , 1− e−(v−2ξ)µ2 − e−(v/r1+2u)µ1}.
Letting (u, v) tend to ∞, the desired result follows. �

We now turn to Proposition 4 below, which shall be needed to prove Theorem 5.

Proposition 4. We have the following subset relationship

{u+W1(t) + µ1t < 0 and v +W2(t) + µ2t < 0, for some t ∈ R+} ⊂ {T <∞}.

Proof. We prove this claim by contradiction. For the sake of contradiction, let us fix ω ∈
{u+W1(t) +µ1t < 0 and v+W2(t) +µ2t < 0, for some t ∈ R+}∩{T =∞}. Assuming T =∞,
the process can be written as{

Z1(t) = u+W1(t) + µ1t+ l1(t)− r2l2(t),

Z2(t) = v +W2(t) + µ2t− r1l1(t) + l2(t).

Solving the linear system for l1 and l2, we obtain{
(r1r2 − 1)l1(t) = (u+W1(t) + µ1t− Z1(t)) + r2(v +W2(t) + µ2t− Z2(t)),

(r1r2 − 1)l2(t) = r1(u+W1(t) + µ1t− Z1(t)) + (v +W2(t) + µ2t− Z2(t)).
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For all t ∈ R+ such that
u+W1(t) + µ1t < 0,

and
v +W2(t) + µ2t < 0,

we have (r1r2 − 1)l1(t) < 0 and (r1r2 − 1)l2(t) < 0, which is not possible since l1(t) and l2(t) > 0
and as we assumed (r1r2 − 1) > 0. A contradiction has been reached. �

Theorem 5 below considers the behavior of the process when the starting point tends to the
origin.

Theorem 5. When the starting point tends to the origin, the probability that the process hits
the origin in finite time tends towards one. That is,

lim
(u,v)→(0,0)

P(u,v) [T <∞] = 1,

or equivalently,
lim

(u,v)→(0,0)
P(u,v) [T =∞] = 0.

Proof. By Proposition 4, we have that

P(u,v) [T <∞] > P [∃t ∈ R+ : u+W1(t) + µ1t < 0 and v +W2(t) + µ2t < 0] .

By the properties of planar Brownian motion, we have

P [∃t ∈ R+ : W1(t) + µ1t < 0 and W2(t) + µ2t < 0] = 1.

Let (un, vn) ∈ R2
+ be a sequence of points such that (un, vn)→ 0. Note that
∞⋃
n=1

∞⋂
m=n

{∃t ∈ R+ : un +W1(t) + µ1t < 0 and vn +W2(t) + µ2t < 0}

⊃{∃t ∈ R+ : W1(t) + µ1t < 0 and W2(t) + µ2t < 0} .
Applying Fatou’s Lemma yields

lim inf
n→∞

P [∃t ∈ R+ : un +W1(t) + µ1t < 0 and vn +W2(t) + µ2t < 0] > 1.

We may therefore conclude that

P(un,vn) [T <∞] −→
n→∞

1,

and the desired result follows. �

2.2. Proving Theorem 9. We now turn to Theorem 9, which that the process has only two
possible behaviors: either T < ∞, which means that the process is absorbed at the origin in
finite time, or T = ∞, in which case the process escapes to infinity, namely Z(t) → ∞ when
t→∞. The result first requires the proofs of Proposition 6, Lemma 7, and Lemma 8, which we
give below.

Proposition 6. Suppose B(t) is a one dimensional Brownian motion starting from the origin
under the measure P. Let a, b be two positive numbers. Then

P(−a− bt < B(t) < a+ bt for every t ≥ 0) > 0.

Proof. Let λ = ln 2/(2b) + 1. Note that 1− 2 e−2λb > 0. Then

P(−λ− bt < B(t) < λ+ bt for every t ≥ 0)

≥ P(B(t) > −λ− bt for every t ≥ 0) + P(B(t) < λ+ bt for every t ≥ 0)− 1

= 2(1− e−2λb)− 1 = 1− 2 e−2λb > 0.

Let Ha := inf{t : |B(t)| = a}. By standard exit time properties of Brownian motion, P(Ha >
λ/b+ 1) > 0. Then

P(−a− bt < B(t) < a+ bt for every t ≥ 0)

= P(Ha > λ/b+ 1)P(−a− bt < B(t) < a+ bt for every t ≥ 0 |Ha > λ/b+ 1).
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By the strong Markov property of Brownian motion,

P(−a− bt < B(t) < a+ bt,∀t |Ha > λ/b+ 1)

= P(−a− b(t+Ha) < B(t+Ha) < a+ b(t+Ha),∀t |Ha > λ/b+ 1)

= P(−a− b(t+Ha)−B(Ha) < B(t+Ha)−B(Ha) < a+ b(t+Ha)−B(Ha),∀t |Ha > λ/b+ 1)

≥ P(−λ− bt < B(t+Ha)−B(Ha) < λ+ bt,∀t |Ha > λ/b+ 1)

= P(−λ− bt < B(t) < λ+ bt,∀t )

> 0,

from which the desired result follows. �

We now turn to Lemma 7.

Lemma 7. For α a positive number,

inf
u≥α

P(u,0)[τ
0
1 =∞] > 0, (13)

inf
v≥α

P(0,v)[τ
0
2 =∞] > 0. (14)

Proof. We need only prove (13), since the proof of (14) is completely symmetric. Let us consider
ξ < α. By Lemma 1,

P(u,0)[τ
0
1 =∞] ≥ P(u,0)[τ

ξ
1 =∞]

≥ P(u,0)

[
X1(t)− r2 sup

0≤s≤t
(−X2(s))+ > ξ for every t ≥ 0

]
= P(u,0)

[
u+W1(t) + µ1t− r2 sup

0≤s≤t
(−W2(s)− µ2t)

+ > ξ for every t ≥ 0

]
≥ P(u,0)[W1(t) + µ1t > −(u− ξ)/2 for every t ≥ 0

and W2(t) + µ2t > −(u− ξ)/(2r2) for every t ≥ 0]. (15)

Let B1(t) and B2(t) be two independent Brownian motions starting from 0 under P(u,0). Then,

under P(u,0), the process (W1(t),W2(t)) has the same law as (B1(t), ρB1(t) +
√

1− ρ2B2(t)).
We now show that (13) holds in three separate cases: ρ = 0, 0 < ρ < 1 and −1 < ρ < 0.

Case I: ρ = 0. If ρ = 0, then W1(t) and W2(t) are two independent Brownian motions. Then

(15) = P(u,0)[W1(t) + µ1t > −(u− ξ)/2 for every t ≥ 0]

×P(u,0)[W2(t) + µ2t > −(u− ξ)/(2r2) for every t ≥ 0]

=
(

1− e−(u−ξ)µ1

)
·
(

1− e−(u−ξ)µ2/r2
)
,

where the last equality invokes Proposition 2. Taking infimums yields

inf
u≥α

P(u,0)[τ
0
1 =∞] ≥

(
1− e−(α−ξ)µ1

)
·
(

1− e−(α−ξ)µ2/r2
)
> 0.

Case II: 0 < ρ < 1. If 0 < ρ < 1, then

(15) = P(u,0)[B1(t) + µ1t > −(u− ξ)/2 for every t ≥ 0

and ρB1(t) +
√

1− ρ2B2(t) + µ2t > −(u− ξ)/(2r2) for every t ≥ 0]

≥ P(u,0)[B1(t) + (µ1 ∧ µ2)t > −(u− ξ)/(2r2) for every t ≥ 0

and
√

1− ρ2B2(t) + (1− ρ)µ2t > −(1− ρ)(u− ξ)/(2r2) for every t ≥ 0].

Using the same argument in the case for ρ = 0, (13) follows.

Case III: −1 < ρ < 0. If −1 < ρ < 0, then for u ≥ α

(15) = P(u,0)[B1(t) + µ1t > −(u− ξ)/2 for every t ≥ 0
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and ρB1(t) +
√

1− ρ2B2(t) + µ2t > −(u− ξ)/(2r2) for every t ≥ 0]

≥ P(u,0)[B1(t) + µ1t > −(u− ξ)/2 for every t ≥ 0,

ρB1(t)− ρ(µ1 ∧ µ2)t > −|ρ|(u− ξ)/(2r2) for every t ≥ 0

and
√

1− ρ2B2(t) + (µ2 + ρ(µ1 ∧ µ2)t > −(1− |ρ|)(u− ξ)/(2r2) for every t ≥ 0]

≥ P(u,0)[−(u− ξ)/(2r2)− (µ1 ∧ µ2)t < B1(t) < (u− ξ)/(2r2) + (µ1 ∧ µ2)t,∀t

and
√

1− ρ2B2(t) + (µ2 + ρ(µ1 ∧ µ2)t > −(1− |ρ|)(u− ξ)/(2r2), ∀t]
= P(u,0)[−(u− ξ)/(2r2)− (µ1 ∧ µ2)t < B1(t) < (u− ξ)/(2r2) + (µ1 ∧ µ2)t,∀t]

×P(u,0)[
√

1− ρ2B2(t) + (µ2 + ρ(µ1 ∧ µ2)t > −(1− |ρ|)(u− ξ)/(2r2), ∀t]
≥ P(u,0)[−(α− ξ)/(2r2)− (µ1 ∧ µ2)t < B1(t) < (α− ξ)/(2r2) + (µ1 ∧ µ2)t,∀t]

×P(u,0)[
√

1− ρ2B2(t) + (µ2 + ρ(µ1 ∧ µ2)t > −(1− |ρ|)(α− ξ)/(2r2),∀t].

Taking infimums and invoking Proposition 6, (13) follows. This concludes the proof. �

Let us denote Tr := inf{t ≥ 0 : ‖Z(t ∧ T )‖ ≤ r}.

Lemma 8. On the event {T1/n =∞}, we have P(u,v)-a.s.

lim
t→∞

Z(t) =∞.

That is,

P(u,v)

[
lim inf
t→∞

Z(t) <∞, T 1
n

=∞
]

= 0. (16)

Proof. We will first show (16) holds when v = 0. Then (16) will follow immediately in the case
that u = 0. We conclude by showing that (16) holds when u 6= 0 and v 6= 0.

Case I: v = 0. When v = 0, let

K := sup
u≥0

P(u,0)

[
lim inf
t→∞

Z(t) <∞, T 1
n

=∞
]
.

For u ≤ 1/n,

P(u,0)

[
lim inf
t→∞

Z(t) <∞, T 1
n

=∞
]

= 0.

Then

K = sup
u≥1/n

P(u,0)

[
lim inf
t→∞

Z(t) <∞, T 1
n

=∞
]
. (17)

We now define a stopping time

η0
1 :=

{
inf{t ≥ τ0

1 : Z2(t) = 0}, τ0
1 <∞,

∞, τ0
1 =∞.

By Lemma 7,

inf
u≥1/n

P(u,0)[η
0
1 =∞] ≥ inf

u≥1/n
P(u,0)[τ

0
1 =∞] > 0,

and hence,

sup
u≥1/n

P(u,0)[η
0
1 <∞] < 1. (18)

Note that

P(u,0)

[
lim inf
t→∞

Z(t) <∞, T 1
n

=∞
]

= P(u,0)

[
τ0

1 =∞, lim inf
t→∞

Z(t) <∞, T 1
n

=∞
]

+ P(u,0)

[
τ0

1 <∞, η0
1 =∞, lim inf

t→∞
Z(t) <∞, T 1

n
=∞

]
+ P(u,0)

[
η0

1 <∞, lim inf
t→∞

Z(t) <∞, T 1
n

=∞
]
. (19)



10 PHILIP A. ERNST AND SANDRO FRANCESCHI

On the event {τ0
1 =∞}, for all t ≥ 0, T =∞ and l1(t) = 0. Then

Z2(t) = X2(t) + l2(t) ≥ X2(t) = W2(t) + µ2t→∞,
P(u,0)-a.s., by the law of the iterated logarithm for Brownian motion. Hence, the first term on
the right-hand side of (19) is 0. We now consider the second term on the right-hand side of

(19). On the event {τ0
1 <∞}, let us define η̃0

1 := inf{t ≥ 0 : Z2(t+ τ0
1 ) = 0} and T̃1/n := inf{t ≥

0 : ‖Z(t+ τ0
1 )‖ ≤ 1/n}. By the strong Markov property, we have

P(u,0)

[
τ0

1 <∞, η0
1 =∞, lim inf

t→∞
Z(t) <∞, T 1

n
=∞

]
= P(u,0)

[
τ0

1 <∞, inf
0≤s≤τ0

1

‖Z(s)‖ > 1

n
, η̃0

1 =∞, lim inf
t→∞

Z(t+ τ0
1 ) <∞, T̃ 1

n
=∞

]

= E(u,0)

[
1{τ0

1<∞,inf
0≤s≤τ0

1
‖Z(s)‖>1/n} PZ(τ0

1 )

[
η0

1 =∞, lim inf
t→∞

Z(t) <∞, T 1
n

=∞
]]

= 0.

By the same argument used to show that the first term on the right-hand side of (19) is 0, for
v > 0,

P(0,v)

[
η0

1 =∞, lim inf
t→∞

Z(t) <∞, T 1
n

=∞
]

= 0.

This proves that the second term on the right-hand side of (19) is also 0. We now consider

the third term on the right-hand side of (19). On the event {η0
1 < ∞}, let T̂1/n := inf{t ≥ 0 :

Z(t+ η0
1) ≤ 1/n}. By the strong Markov property,

P(u,0)

[
η0

1 <∞, lim inf
t→∞

Z(t) <∞, T 1
n

=∞
]

= P(u,0)

[
η0

1 <∞, inf
0≤s≤η0

1

‖Z(s)‖ > 1

n
, lim inf
t→∞

Z(t+ η0
1) <∞, T̂ 1

n
=∞

]

= E(u,0)

[
1{η0

1<∞,inf
0≤s≤η0

1
‖Z(s)‖>1/n} PZ(η0

1)

[
lim inf
t→∞

Z(t) <∞, T 1
n

=∞
]]

≤ K · E(u,0)

[
1{η0

1<∞,inf
0≤s≤η0

1
‖Z(s)‖>1/n}

]
≤ K · P(u,0)[η

0
1 <∞].

Combining (19) and the above estimates yields

P(u,0)

[
lim inf
t→∞

Z(t) <∞, T 1
n

=∞
]
≤ K · P(u,0)[η

0
1 <∞].

Taking supremums and invoking (17), we obtain

K = sup
u≥1/n

P(u,0)

[
lim inf
t→∞

Z(t) <∞, T 1
n

=∞
]
≤ K · sup

u≥1/n
P(u,0)[η

0
1 <∞].

Together with (18), we have K = 0. Hence, for every u ≥ 0,

P(u,0)

[
lim inf
t→∞

Z(t) <∞, T 1
n

=∞
]

= 0. (20)

Similarly, for every v ≥ 0,

P(0,v)

[
lim inf
t→∞

Z(t) <∞, T 1
n

=∞
]

= 0. (21)

Case II: u 6= 0 and v 6= 0. For the case when u 6= 0 and v 6= 0, let τ := inf{t ≥ 0 : Z1(t) =
0 or Z2(t) = 0}. Then

P(u,v)

[
lim inf
t→∞

Z(t) <∞, T 1
n

=∞
]

= P(u,v)

[
τ =∞, lim inf

t→∞
Z(t) <∞, T 1

n
=∞

]
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+ P(u,v)

[
τ <∞, lim inf

t→∞
Z(t) <∞, T 1

n
=∞

]
. (22)

On the event {τ =∞}, T =∞ and, for every t ≥ 0, l1(t) = l2(t) = 0. Then, as t→∞,

Z1(t) = u+W1(t) + µ1t→∞,

P(u,v)-a.s. Hence the first term on the right-hand side of (22) is 0. We now consider the second
term on the right-hand side of (22). By the strong Markov property,

P(u,v)

[
τ <∞, lim inf

t→∞
Z(t) <∞, T 1

n
=∞

]
≤ E(u,v)

[
1{τ<∞} PZ(τ)

[
lim inf
t→∞

Z(t) <∞, T 1
n

=∞
]]

= 0,

where (20) and (21) have been invoked in the last equality. Hence the second term on the
right-hand side of (22) is also 0. Thus for u 6= 0 and v 6= 0,

P(u,v)

[
lim inf
t→∞

Z(t) <∞, T 1
n

=∞
]

= 0.

The proof is now complete. �

With the above results in hand, we are now ready to state Theorem 9.

Theorem 9. On the event {T =∞}, P(u,v)-a.s. the process Z(t) tends to infinity when t→∞,
namely

P(u,v)

[
lim
t→∞

Z(t) =∞
∣∣∣T =∞

]
= 1.

Equivalently,

P(u,v)

[
lim inf
t→∞

Z(t) <∞, T =∞
]

= 0.

Proof. We deduce from Lemma 8 that for every n ∈ N+

P(u,v)

[
lim inf
t→∞

Z(t) <∞, T =∞
]

= P(u,v)

[
lim inf
t→∞

Z(t) <∞, T 1
n
<∞, T =∞

]
.

Applying the strong Markov property yields

P(u,v)

[
lim inf
t→∞

Z(t) <∞, T 1
n
<∞, T =∞

]
= E(u,v)

[
1{T1/n<∞} PZ(T1/n)

[
lim inf
t→∞

Z(t) <∞, T =∞
]]

≤ sup
‖(u,v)‖=1/n

P(u,v)

[
lim inf
t→∞

Z(t) <∞, T =∞
]

≤ sup
‖(u,v)‖=1/n

P(u,v) [T =∞] .

Applying Theorem 5 and letting n→∞, the desired result follows. �

3. Partial differential equation and functional equation

We now turn to the study of the escape probability P(u,v)[T = ∞]. We begin with Propo-
sition 10, which provides partial differential equations characterizing the escape probability.
We proceed with Proposition 11, which gives a functional equation satisfied by the Laplace
transform of the escape probability.

Let us define the infinitesimal generator of the process inside the quarter plane as

Gf(u, v) := lim
t→0

1

t
(E(u,v)[f(Z(t ∧ T )]− f(u, v)),
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where f must be a bounded function in the quadrant to ensure that the above limit exists and
is uniform. For f twice differentiable, the infinitesimal generator inside the quadrant is

Gf =
1

2

(
∂2f

∂2z1
+
∂2f

∂2z2
+ 2ρ

∂2f

∂z1∂z2

)
+ µ1

∂f

∂z1
+ µ2

∂f

∂z2
.

This leads us to Proposition 10.

Proposition 10 (Partial differential equation). The absorption probability

f(u, v) = P(u,v)[T <∞],

is the only function which is both (i) bounded and continuous in the quarter plane and on its
boundary and (ii) continuously differentiable in the quarter plane and on its boundary (except
perhaps at the corner), and which satisfies the partial differential equation

Gf(u, v) = 0, ∀(u, v) ∈ R2
+,

with oblique Neumann boundary conditions{
∂r1f(0, v) := ∂f

∂u(0, v)− r1
∂f
∂v (0, v) = 0 ∀v > 0,

∂r2f(u, 0) := −r2
∂f
∂u(u, 0) + ∂f

∂v (u, 0) = 0 ∀u > 0,
(23)

and with limit values {
f(0, 0) = 1,

lim(u,v)→∞ f(u, v) = 0.

The same result holds for the escape probability

g(u, v) = 1− f(u, v) = P(u,v)[T =∞]

but with the following limit values {
g(0, 0) = 0,

lim|z|→∞ f(z) = 1.

Proof. This proof is inspired by Foddy [10, p. 86-89]. We assume that f satisfies the hypotheses
of the Proposition. Applying Dynkin’s formula, we obtain

E(u,v)[f(Z(t ∧ T ))] = f(u, v) + E(u,v)

∫ t∧T

0
Gf(Z(s)) ds+

2∑
i=1

E(u,v)

∫ t∧T

0
∂rif(Z(s)) dli(s)

= f(u, v).

But,

E(u,v)[f(Z(t ∧ T )] = E(u,v)[f(Z(t ∧ T ))1T6t] + E(u,v)[f(Z(t ∧ T ))1T>t]

= f(0, 0)P(u,v)[T 6 t] + E(u,v)[f(Z(t))1T>t]

−→
t→∞

P(u,v)[T <∞] + lim
t→∞

E(u,v)[f(Z(t))1T>t]

= P(u,v)[T <∞].

Note that lim
|z|→∞

f(z) = 0 and that for T > t, Z(t) →
t→∞

∞ a.s. By dominated convergence and

by Theorem 9,
lim
t→∞

E(u,v)[f(Z(t))1T>t] = E(u,v)[ lim
t→∞

f(Z(t))1T=∞] = 0.

We may thus conclude that
f(u, v) = P(u,v)[T <∞].

Conversely, denote f(u, v) := P(u,v)[T < ∞]. The function f is bounded. By the Markov prop-
erty, we have

E(u,v)[f(Z(t ∧ T )] = f(u, v).

Since

Gf(, u) = lim
t→0

1

t
(E(u,v)[f(Z(t ∧ T )]− f(u, v)) = 0,
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we may conclude that Gf = 0 on the quarter plane. The continuity and differentiability prop-
erties of f are immediate from [1, Thm 2.2 and Cor 2.4]. The Neumann boundary condition
is satisfied by applying [1, Cor 3.3]. The desired limit values at 0 and at infinity are obtained
by invoking Theorem 3 and Theorem 5. The result for g = 1 − f is straightforward, and this
completes the proof. �

In preparation for Proposition 11, let us define the Laplace transform of the escape probability
starting from (u, v) as

ψ(x, y) :=

∫ ∞
0

∫ ∞
0

e−xu−yvP(u,v)[T =∞] dudv.

Further, let

ψ1(x) :=

∫ ∞
0

e−xuP(u,0)[T =∞] du and ψ2(y) :=

∫ ∞
0

e−yvP(0,v)[T =∞] dv. (24)

We also define the kernel

K(x, y) :=
1

2
(x2 + y2 + 2ρxy) + µ1x+ µ2y. (25)

and let

k1(x, y) :=
1

2
(r2x+ y) + ρx+ µ2, k2(x, y) :=

1

2
(x+ r1y) + ρy + µ1. (26)

We now give a functional equation satisfied by the Laplace transform of the escape probability.

Proposition 11 (Functional equation). For (x, y) ∈ C2 such that <x > 0 and <y > 0 we have

K(x, y)ψ(x, y) = k1(x, y)ψ1(x) + k2(x, y)ψ2(y). (27)

Proof. Recall the partial differential equation in Proposition 10 with the oblique Neumann
boundary condition and limit values satisfied by g(u, v) := P(u,v)[T =∞]. Employing integration
by parts yields

0 =

∫ ∞
0

∫ ∞
0

e−xz1−yz2Gg(z1, z2) dz1dz2

0 =

∫ ∞
0

1

2
e−yz2

(
− ∂g

∂z1
(0, z2) + x

∫ ∞
0

e−xz1
∂g

∂z1
(z1, z2) dz1

)
dz2

+

∫ ∞
0

1

2
e−xz1

(
− ∂g

∂z2
(z1, 0) + y

∫ ∞
0

e−yz2
∂g

∂z2
(z1, z2) dz2

)
dz1

+

∫ ∞
0

ρe−xz1
(
− ∂g

∂z1
(z1, 0) + y

∫ ∞
0

e−yz2
∂g

∂z1
(z1, z2) dz2

)
dz1

+

∫ ∞
0

µ1e
−yz2

(
−g(0, z2) + x

∫ ∞
0

e−xz1g(z1, z2) dz1

)
dz2

+

∫ ∞
0

µ2e
−xz1

(
−g(z1, 0) + y

∫ ∞
0

e−yz2g(z1, z2) dz2

)
dz1

0 = −1

2
r1

∫ ∞
0

e−yz2
∂g

∂z2
(0, z2) dz2 +

x

2

∫ ∞
0

e−yz2
(
−g(0, z2) + x

∫ ∞
0

e−xz1g(z1, z2) dz1

)
dz2

− 1

2
r2

∫ ∞
0

e−xz1
∂g

∂z1
(z1, 0) dz1 +

y

2

∫ ∞
0

e−xz1
(
−g(z1, 0) + y

∫ ∞
0

e−yz2g(z1, z2) dz2

)
dz1

− ρ
∫ ∞

0
e−xz1

∂g

∂z1
(z1, 0) dz1 + ρy

∫ ∞
0

e−yz2
(
−g(0, z2) + x

∫ ∞
0

e−xz1g(z1, z2) dz1

)
dz2

− µ1

∫ ∞
0

e−yz2g(0, z2) dz2 + µ1x

∫ ∞
0

∫ ∞
0

e−xz1−yz2g(z1, z2) dz1dz2

− µ2

∫ ∞
0

e−xz1g(z1, 0) dz1 + µ2y

∫ ∞
0

∫ ∞
0

e−xz1−yz2g(z1, z2) dz1dz2
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0 =

(
1

2
(x2 + y2 + 2ρxy) + µ1x+ µ2y

)∫ ∞
0

∫ ∞
0

e−xz1−yz2g(z1, z2) dz1dz2

−
(

1

2
(r2x+ y) + ρx+ µ2

)∫ ∞
0

e−xz1g(z1, 0) dz1

−
(

1

2
(x+ r1y) + ρy + µ1

)∫ ∞
0

e−yz2g(0, z2) dz2

0 = K(x, y)ψ(x, y)− k1(x, y)ψ1(x)− k2(x, y)ψ2(y).

This concludes the proof. �

4. Kernel and asymptotics

We begin by studying some properties of the kernel K defined in (25). Note that this kernel
is similar to that in [13] except that in the present paper the drift is positive. We define the
functions X and Y satisfying

K(X(y), y) = 0 and K(x, Y (x)) = 0.

The branches are given by{
X±(y) = −(ρy + µ1)±

√
y2(ρ2 − 1) + 2y(µ1ρ− µ2) + µ2

1,

Y ±(x) = −(ρx+ µ2)±
√
x2(ρ2 − 1) + 2x(µ2ρ− µ1) + µ2

2.
(28)

and the branch points of X and Y are given, respectively, by
y± =

µ1ρ− µ2 ±
√

(µ1ρ− µ2)2 + µ2
1(1− ρ2)

(1− ρ2)
,

x± =
µ2ρ− µ1 ±

√
(µ2ρ− µ1)2 + µ2

2(1− ρ2)

(1− ρ2)
.

(29)

The functions X± and Y ± are analytic, respectively, on the cut planes C\ ((−∞, y−]∪ [y+,∞))
and C \ ((−∞, x−] ∪ [x+,∞). Figure 4 below depicts the functions Y ± on [x−, x+].

Recall k1 and k2 as defined in (26). Consider the intersection points between the ellipse K = 0
and the lines k1 = 0 and k2 = 0. We define

x0 := −2µ1 < 0 and y0 := −2µ2 < 0, (30)

x1 := − 2(r2µ2 + µ1)

1 + r2
2 + 2ρr2

< 0 and y2 := − 2(r1µ1 + µ2)

1 + r2
1 + 2ρr1

< 0. (31)

These points are represented on Figure 4 and satisfy the following:

• K(x0, 0) = k2(x0, 0) = 0, K(0, y0) = k1(0, y0) = 0.
• ∃y1 ∈ R such that K(x1, y1) = k2(x1, y1) = 0
• ∃x2 ∈ R such that K(x2, y2) = k1(x2, y2) = 0.

Let us define the curve H, which is the boundary of the BVP established in Section 6.1

H = X±([y+,∞)) = {x ∈ C : K(x, y) = 0 and y ∈ [y+,∞)}.

Lemma 12 (Hyperbola H). The curve H is a branch of the hyperbola of equation

(ρ2 − 1)x2 + ρ2y2 − 2(µ1 − ρµ2)x = µ1(µ1 − 2ρµ2). (32)

The curve H is symmetrical with respect to the horizontal axis and is the right branch of the
hyperbola if ρ < 0. Further, it is the left branch if ρ > 0 and it is a straight line if ρ = 0.

Proof. A similar kernel has already been studied; we refer the reader to [13, Lemma 4] and [2,
Lemma 9], where the equation of such a hyperbola is derived. �

Let H− denote the part of the hyperbola H with imaginary part negative. We also define the
domain G bounded by H and containing x+. This is depicted in Figure 5 below.
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Figure 4. The ellipse K = 0, the function Y − in blue, the function Y + in red,
the two lines k1 = 0 and k2 = 0, the branch points x± and y±, the points x0 and
y0 in green, the points x1 and y2 in orange. This figure is drawn for the following
parameters: µ1 = 2, µ2 = 3, ρ = −0.4, r1 = 2, r2 = 4.

(a) ρ < 0 (b) ρ = 0 (c) ρ > 0

Figure 5. Hyperbola H and domain G.

4.1. Meromorphic continuation. This section focuses on establishing the boundary value
problem. We begin by meromorphically continuing the Laplace transform ψ1(x) (which con-
verges for x > 0).

Lemma 13 (Meromorphic continuation). By the formula

ψ1(x) =
−k2(x, Y +(x))ψ2(Y +(x))

k1(x, Y +(x))
, (33)

the Laplace transform ψ1(x) can be meromorphically continued to the set

S := {x ∈ C : <x > 0 or <Y +(x) > 0} ∪ {0}, (34)
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where the domain G and its boundary H are included in the set defined in (34). Then ψ1 is
meromorphic on G and is continuous on G.

Proof. The Laplace transforms ψ1(x) and ψ2(y) are analytic, respectively, on {x ∈ C : <x > 0}
and {y ∈ C : <y > 0}. The functional equation (27) implies that for (x, y) in the set S̃ :=
{(x, y) ∈ C2 : <x > 0, <y > 0 and ψ(x, y) = 0}, we have

0 = k1(x, y)ψ1(x) + k2(x, y)ψ2(y). (35)

The open connected set

S1 := {x ∈ C : <Y +(x) > 0},

intersects the open set S2 := {x ∈ C : <x > 0}. For x ∈ S1 ∩ S2, (x, Y +(x)) ∈ S̃; equation (35)
implies that the continuation formula in (33) is satisfied for all x ∈ S1 ∩ S2. Figure 6 represent
these sets. With ψ1(x) defined as in (33), we invoke the principle of analytic continuation and
meromorphically extend ψ1 to S = S1 ∪ S2. Note that the inclusion of G in the set S defined
in (34) is similar to that in[13, Lemma 5]. This inclusion is depicted below in Figure 6. �

Figure 6. The complex plane of x. The red curve of equation <Y +(x) = 0
bounds the red domain S1 := {x ∈ C : <Y +(x) > 0}. The orange dotted curve
corresponds to the equation <Y −(x) = 0. The domain G is bounded on the
left by the green hyperbola H, contains x+ (see Figure 5), and is included in
S = S1 ∪ S2, where S2 := {x ∈ C : <x > 0}. This figure is drawn for the
parameters µ1 = 2, µ2 = 3, ρ = −0.4.

4.2. Poles and geometric conditions.

Lemma 14 (Poles). On the set S defined in (34), the Laplace transform ψ1 has either one or
two poles, as follows:

• (One pole): If k1(x−, Y ±(x−)) > 0, the point 0 is the unique pole of ψ1 in S and this
pole is simple.
• (Two poles): If k1(x−, Y ±(x−)) < 0, the points 0 and x1 (defined in (31)) are the only

poles of ψ1 in S and these poles are simple.

In addition, limx→0 xψ1(x) = 1. Further, the point x1 is a pole of ψ1 and belongs to the domain
G if and only if k1(X±(y+), y+) < 0.
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Proof. The final value theorem for the Laplace transform, together with Theorem 3, imply that

lim
x→0

xψ1(x) = lim
u→∞

P(u,0)[T =∞] = 1.

We may thus conclude that 0 is a simple pole. On the set {x ∈ C : <x > 0}, ψ1 is defined as
a Laplace transform which converges (and thus has no poles). Therefore, with the exception
of 0, the only possible poles in S are the zeros of k1(x, Y +(x)), which are the zeros of the de-
nominator of the continuation formula in (33). Straightforward calculations show that equation
k1(x, Y +(x)) = 0 has either no roots or one (simple) root, and that this depends on the sign
of k1(x−, Y ±(x−)). When the root exists, it is x1 (see (31)). The condition for the existence of
this root is depicted in Figure 7 below. It now only remains to remark that when x1 is a pole,
x1 is in G if and only if x1 > X±(y+). The latter holds if and only if k1(X±(y+), y+) < 0 (see
Figure 8). �

Figure 7. On the left, we see that k1(x−, Y ±(x−)) < 0 and x1 is a simple pole
of ψ1. On the right, we see that k1(x−, Y ±(x−)) > 0 and ψ1 has no pole in S.

Figure 8. On the left, we see that k1(X±(y+), y+) < 0 and x1 is in G. On the
right, we see that k1(X±(y+), y+) > 0 and x1 is not in G.

Before turning to Lemma 15, recall that the angles δ, β and θ were defined above in (3) and
that k1 was defined in (26).
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Lemma 15 (Geometric conditions). The condition k1(x−, Y ±(x−)) > 0 (resp. = 0 and < 0) is
equivalent to

2δ − θ < π.

(resp. = π and > π). The condition k1(X±(y+), y+) > 0 (resp. = 0 and < 0) is equivalent to

2δ − θ + β < 2π.

(resp. = 2π and > 2π).

Proof. By condition (1) and by the fact that the drift is positive, we have 0 < θ < β < δ < π.
By (3) and (29),

x−/µ2 =
1√

1− ρ2

ρ− µ1/µ2√
1− ρ2

−

√√√√(ρ− µ1/µ2√
1− ρ2

)2

+ 1

 =
− cot(θ)−

√
cot2(θ) + 1

sin(β)
. (36)

We begin by proving the first equivalence for δ > π/2. In this case we have

k1(x−, Y ±(x−)) > 0⇔ 1

2
(r2x

− + Y ±(x−)) + ρx− + µ2 > 0

⇔ r2 + ρ < −µ2/x
− since Y ±(x−) = −ρx− − µ2 by (28) and (29)

⇔ r2 − cos(β) < sin(β)

(
cot(θ) +

√
cot2(θ) + 1

)−1

by (36)

⇔ − cot(δ)

(
cot(θ) +

√
cot2(θ) + 1

)
< 1

⇔ 0 < − cot(δ)
√

cot2(θ) + 1 < 1 + cot(δ) cot(θ) since we assumed δ > π/2

⇔ cot2(δ)(cot2(θ) + 1) < (1 + cot(δ) cot(θ))2

⇔ 2 cot(δ) cot(θ)− cot2(δ) + 1 > 0

⇔ 2 sin(δ) cos(δ) cos(θ)− (cos2(δ)− sin2(δ)) sin(θ) > 0

⇔ sin(2δ) cos(θ)− cos(2δ) sin(θ) > 0

⇔ sin(2δ − θ) > 0

⇔ 2δ − θ < π since 0 < 2δ − θ < 2π.

It is straightforward to see that if δ < π/2, then 2δ − θ < π. Further, δ < π/2 is equivalent to
r2 + ρ < 0 by (3), which implies that r2 + ρ < −µ2/x

−. Therefore, k1(X±(y+), y+) < 0. This
proves the first equivalence. The second equivalence is proved in exactly the same way, so the
details are omitted. This concludes the proof. �

4.3. Absorption Asymptotics along the axes. In this section, we establish asymptotics
results for the absorption probability (and escape probability) in a simpler case where the
starting point is (u, 0).

Proposition 16 (Absorption asymptotics). Let us assume that x− ∈ S. For some constant C,
the asymptotic behavior of P(u,0)[T <∞] as u→∞ is given by

P(u,0)[T <∞] ∼ C


eux1 if 2δ − θ > π,

u−
3
2 eux

−
if 2δ − θ < π,

u−
1
2 eux

−
if 2δ − θ = π.

Proof. The largest singularity of the Laplace transform of P(u,0)[T <∞] determines its asymp-
totics. We proceed by invoking a classical transfer theorem, see [6, Theorem 37.1]. This theorem
says that if a is the largest singularity of order k of the Laplace transform (that is, the Laplace
transform behaves as (s−a)−k up to additive and multiplicative constants in the neighborhood
of a), then when u → ∞, the probability P(u,0)[T < ∞] is equivalent (up to a constant) to

uk−1eau. The Laplace transform of P(u,0)[T <∞] is 1/x− ψ1(x). By Lemma 14. the point 0 is
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not a singularity and the point x1 is a simple pole. When that pole exists, the asymptotics are
given by Ceux1 for some constant C. When there is no pole, that is, when k1(x−, Y ±(x−)) > 0,
the largest singularity is given by the branch point x−. The definition of Y + and (33) together
imply that for some constants Ci we have

ψ1(x) =
x→x−

C1 + C2

√
x− x− + O(x− x−) if k1(x−, Y ±(x−)) > 0,

C3√
x− x−

+ O(1) if k1(x−, Y ±(x−)) = 0.

The proof is then completed by applying Lemma 15 and invoking the classical transfer theorem.
�

Remark 17 (Asymptotics along the vertical axis). Studying the singularities of φ1 we obtained
in Proposition 16 the asymptotics of the absorption probability (and then of the escape probability
which is equal to 1−P(u,0)[T <∞]) along the horizontal axis. A similar study for ψ2 would lead
to the following asymptotics along the vertical axis. As v →∞

P(0,v)[T <∞] ∼ C


evy2 if 2ε+ θ − β > π,

v−
3
2 evy

−
if 2ε+ θ − β < π,

v−
1
2 evy

−
if 2ε+ θ − β = π.

5. Product form and exponential absorption probability

In this section, we consider a remarkable geometric condition on the parameters characterizing
the case where the absorption probability has a product form and is exponential. We call this new
criterion the dual skew symmetry condition due to its natural connection with the famous skew
symmetry condition studied by Harrison, Reiman and Williams [17, 20], which characterizes
the cases where the stationary distribution has a product form and is exponential. The dual
skew symmetry condition gives a criterion for the solution to the partial differential equation
of Proposition 10 (dual to that satisfied by the invariant measure) to be of product form. The
following Theorem state a simple geometric criterion on the parameters for the absorption
probability to be of product form; the absorption probability is then exponential.

Theorem 18 (Dual skew symmetry). Let f(u, v) = P(u,v)[T <∞] be the absorption probability.
The following statement are equivalent:

(1) The absorption probability has a product form, i.e. it exits f1 and f2 such that

f(u, v) = f1(u)f2(v);

(2) The absorption probability is exponential, i.e. there exists x and y in R such that

f(u, v) = eux+vy;

(3) The reflection vectors are in opposite direction, i.e.

r1r2 = 1;

(4) The reflection angles in the wedge satisfy α = 1, i.e.

δ + ε− β = π.

In this case we have
f(u, v) = eux1+vy2

where x1 and y2 are given in (31).

Proof. (1) ⇒ (2): Neumann boundary conditions (23) imply that f ′1(0)f2(y)− r1f1(0)f ′2(y) = 0
and −r2f

′
1(u)f2(0) + f1(u)f ′2(0) = 0. Solving these differential equation imply that f1 and f2

(and thus f) are exponential.
(2) ⇒ (1): This implication is straightforward.
(2) ⇒ (3): Neumann boundary conditions (23) imply that for all v > 0, xevy − r1ye

vy = 0 and
that for all u > 0, −r2xe

ux + yeux = 0. It follows that r1 = x/y, r2 = y/x, and thus r1r2 = 1.
(3) ⇒ (2): Let us define f(u, v) = eux1+vy2 . We need to show that f satisfies the partial
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differential equation of Proposition 10. This will imply that f is the absorption probability. The
fact that r1 = 1/r2, combined with (31), gives r1 = x1/y2. This implies that f satisfies the
Neumann boundary conditions in (23). The limit values are satisfied because f(0, 0) = 1 and
lim(u,v)→∞ f(u, v) = 0 for x1 < 0 and y2 < 0. It now only remains to show that Gf = 0. We
now only need verify that K(x1, y2) = 0, see Figure 9. By definition of y2 (see (31)), we have

K(x1, y2) = y2

(
y2

2

((
x1

y2

)2

+ 1 + 2ρ
x1

y2

)
+ µ1

x1

y2
+ µ2

)
= y2

(y2

2

(
r2

1 + 1 + 2ρr1

)
+ µ1r1 + µ2

)
= 0.

(3) ⇔ (4): The following equivalences hold:

r1r2 = 1⇔ (sin(β)/ tan(δ)− cos(β)) (sin(β)/ tan(ε)− cos(β)) = 1 by (3)

⇔ sin(β)

tan(ε
=

tan(δ)

sin(β)− cos(β) tan(δ)
+ cos(β) =

tan(δ)(1− cos2(β) + cos(β) sin(β)

sin(β)− cos(β) tan(δ)

⇔ tan(ε) =
tan(β)− tan(δ)

1 + tan(δ) tan(β)

⇔ tan(ε) = tan(β − δ)
⇔ ε = β − δ + π.

�

The skew symmetry condition is 2ρ = −r1 − r2 and ε + δ = π. Note that the condition
r1r2 = 1 is independent of the covariance ρ; however, the condition δ + ε − β = π involves
the wedge angle β. Further properties of the dual skew symmetry condition will be explored in
future work.

Figure 9. Dual skew symmetry: on the left, we see that K(x2, y2) = 0; on the
right, we see that condition r1r2 = 1 imply that the reflection vectors are in
opposite direction.

6. Integral expression of the Laplace transform ψ1

In this section, we establish a boundary value problem (BVP) satisfied by the Laplace trans-
form (Proposition 19). The section’s key result is Theorem 24, which gives an explicit integral
formula for the Laplace transform of the escape probability.
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6.1. Carleman boundary value problem. We state a Carleman BVP satisfied by the Laplace
transform ψ1.

Proposition 19 (Carleman BVP). The Laplace transform ψ1 satisfies the following boundary
value problem:

(i) ψ1(x) is meromorphic on G and continuous on G.
(ii) ψ1(x) admits one or two poles in G. 0 is always a simple pole and x1 is a simple pole if

and only if 2δ − θ + β > 2π.
(iii) limx→∞ xψ1(x) = 0.
(iv) ψ1 satisfies the boundary condition

ψ1(x) = G(x)ψ1(x), ∀x ∈ H,

where

G(x) :=
k1

k2
(x, Y +(x))

k2

k1
(x, Y +(x)). (37)

Proof. Statement (i) immediately follows from Lemma 13. Statement (ii) immediately follows
from Lemmas 14 and 15. Statement (iii) follows from the initial value theorem for the Laplace
transform, which implies that limx→∞ xψ1(x) = P(0,0)[T = ∞] = 0. To prove statement (iv),

we recall the functional equation (27). For x ∈ H, we evaluate this equation for (x, Y +(x)) and
(x, Y +(x)). By the definition of Y +, we have K(x, Y +(x)) = K(x, Y +(x)) = 0. By the definition
of the hyperbola H in (32), we have Y +(x) = Y +(x). This enables us to obtain the following
system of equations {

0 = k1(x, Y +(x))ψ1(x) + k2(x, Y +(x))ψ2(Y +(x)),

0 = k1(x, Y +(x))ψ1(x) + k2(x, Y +(x))ψ2(Y +(x)).

Solving this system of equations and eliminating ψ2(Y +(x)), we obtain the boundary condition
in statement (iv). �

6.2. Gluing function. To solve the BVP, we need a conformal gluing function which glues
together the upper and lower parts of the hyperbola. This conformal gluing function was intro-
duced in [12, 13]. For a > 0 and for x ∈ C \ (−∞,−1], the generalized Chebyshev polynomial
is defined by

Ta(x) := cos(a arccos(x)) =
1

2

(
(x+

√
x2 − 1)a + (x−

√
x2 − 1)a

)
.

We define the angle

β := arccos(−ρ).

We also define the functions

w(x) := Tπ
β

(
2x− (x+ + x−)

x+ − x−

)
, (38)

and

W (x) :=
w(x)− w(X±(y+))

w(x)− w(0)
.

We now recall a useful Lemma from [13] for the conformal gluing function W .

Lemma 20 (Lemma 9, [13]). The function W satisfies the following properties

(i) W is holomorphic in G \ {0}, continuous in G \ {0} and bounded at infinity.
(ii) W is bijective from G \ {0} to C \ [0, 1].

(iii) W satisfies the gluing property on the hyperbola

W (x) = W (x), ∀x ∈ H.
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6.3. Index. We introduce the ∆ which is the variation of the argument of G(x) when x lies on
H− and d which is the argument of G at the real point of the hyperbola H. Let

∆ := [argG(x)]H− =

[
arg

k1

k2
(x, Y +(x))

]
H

and d := argG(X+(y+)).

We now define the index κ such as

κ :=

⌊
d+ ∆

2π

⌋
.

The index will prove to be useful in solving the boundary value problem given in Proposition 19.

Lemma 21. We have

d =

{
0 if k1(x−, Y ±(x−)) 6= 0 i.e. 2δ − θ + β 6= 2π,

π if k1(x−, Y ±(x−)) = 0 i.e. 2δ − θ + β = 2π,

and the angle d+ ∆ ∈ (−4π, 2π) and satisfy

tan
d+ ∆

2
= tan(ε+ δ + β).

Proof. The proof is in each step similar to the proof of [13, Lemma 13]. �

Before to state the main Lemma of this section, combining Lemma 14 and Lemma 15 we
define

χ :=

{
−1 if 2δ − θ + β > 2π ⇔ x1 is a pole of ψ1 in G,
0 if 2δ − θ + β 6 2π ⇔ ψ1 has no pole but 0 in G.

(39)

Lemma 22 (Index). The index κ satisfies

κ :=

{
χ if ε+ δ + β > 2π,

χ− 1 if ε+ δ + β < 2π.

Proof. The proof follows immediately by combining Lemma 14, Lemma 15, and [13, Lemma 14]
(which studies a similar quantity). �

Lemma 23. We have (
−d+ ∆

2π
+ χ− 1

)
π

β
= −α− 1

Proof. Recall that by Lemma 21 we have

tan
d+ ∆

2
= tan(ε+ δ + β)

and as α = ε+δ−π
β > 1 and that ε, δ and β ∈ (0, π) we have

2β − π 6 ε+ δ + β − 2π < π.

Recall also that by definition κ = bd+∆
2π c. First case, ε+ δ + β − 2π > 0 then

d+ ∆

2
=

{
ε+ δ + β − 2π if d+∆

2π > 0 i.e. κ = 0,

ε+ δ + β − 3π if d+∆
2π < 0 i.e. κ = −1.

Furthermore by Lemma 22 we have κ = χ. We deduce that

d+ ∆

2
= ε+ δ + β + (χ− 2)π.

Second case ε+ δ + β − 2π < 0 then

d+ ∆

2
=

{
ε+ δ + β − 2π if − π 6 d+∆

2π < 0 i.e. κ = −1,

ε+ δ + β − 3π if − 2π 6 d+∆
2π < −π i.e. κ = −2.
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Furthermore by Lemma 22 we have κ = χ− 1. We deduce again that we have

d+ ∆

2
= ε+ δ + β + (χ− 2)π.

Then, in both cases we have(
−d+ ∆

2π
+ χ− 1

)
π

β
= (−ε− δ − β − (χ− 2)π + χπ − π)

1

β

= −α− 1.

�

6.4. Solution of the BVP.

Theorem 24 (Explicit expression for ψ1). The Laplace transform ψ1 is given for x ∈ G by

ψ1(x) =
w′(0)

w(x)− w(0)

(
w(0)− w(x1)

w(x)− w(x1)

)−χ
exp

(
1

2iπ

∫
H−

logG(t)

[
w′(t)

w(t)− w(x)
− w′(t)

w(t)− w(0)

]
dt

)
,

(40)
where x1 is defined in (31), G is defined (37), w is defined (38), χ is defined in (39) and H is
defined in (32).

Proof. Let

ψ̃1(y) :=
(y −W (x1))−χ

(y − 1)1+κ−χ ψ1 ◦W−1(y).

Proposition 19 and Lemma 20 together imply that

• ψ̃1 is analytic on C \ [0, 1].

• ψ̃1(y) ∼∞ cy−κ for some constant c.

• ψ̃1(1) = 0.

• For y ∈ [0, 1], ψ̃1 satisfies the boundary condition

ψ̃+
1 (y) = G̃(y)ψ̃−1 (y),

where ψ̃+
1 (y) is the left limit and ψ̃−1 (y) is the right limit of ψ̃1 on [0, 1], (W−1)− is the

right limit of W−1 on [0, 1], and G̃(y) = G ◦ (W−1)−(y).

We now define

S̃(y) := (y − 1)−κ exp

(
1

2iπ

∫ 1

0

log G̃(u)

u− y

)
.

Following the classical boundary theory results in [9, (5.2.24) and Theorem 5.2.3], the above

function is analytic and does not cancel on C \ [0, 1] and is such that S̃(y) ∼∞ c′y−κ for some
constant c′. Furthermore, for y ∈ [0, 1], it satisfies the boundary condition

S̃+(y) = G̃(y)S̃−(y),

where S̃+(y) is the left limit and S̃−(y) is the right limit of S̃ on [0, 1]. By the properties of ψ̃1

and S̃ detailed above, the function ψ̃1/S̃ is analytic on C and bounded at infinity. Therefore
there must exist a constant C such that

ψ̃1(y) = CS̃(y).

Invoking the definition of ψ̃1, we have that

(W (x)−W (x1))−χ

(W (x)− 1)1+κ−χ ψ1(x) = C(W (x)− 1)−κ exp

(
1

2iπ

∫ 1

0

log G̃(u)

u−W (x)

)
. (41)

Noting that

W (x)− 1 =
w(0)− w(X±(y+))

w(x)− w(0)
and W (x)−W (x1) =

w(x)− w(x1)

w(x)− w(0)

w(X±(y+))− w(0)

w(x1)− w(0)
,
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and making a change of variable u = w(t) in the integral in (41), we obtain for some constant
C ′

ψ1(x) = C ′
(

1

w(x)− w(0)

)(
1

w(x)− w(x1)

)−χ
exp

(
1

2iπ

∫
H−

logG(t)
w′(t)

w(t)− w(x)
dt

)
.

The final value theorem for the Laplace transform gives

lim
x→0

xψ1(x) = lim
u→∞

P(u,0)[T =∞] = 1.

This enables us to compute the constant

C ′ = w′(0) (w(0)− w(x1))−χ exp

(
−1

2iπ

∫
H−

logG(t)
w′(t)

w(t)− w(0)
dt

)
.

which gives us (40), completing the proof. �

7. Asymptotics of the escape probability at the origin

In this section we use the explicit expression in Theorem 24 to obtain the asymptotics of the
escape probability at the origin. We begin with computing the asymptotics of ψ1 at infinity.

Lemma 25 (Asymptotics of ψ1). Let α be defined as in (4). For ease of notation, allow C to
be a constant which may change from one line to the next. For some positive constant C,

ψ1(x) ∼
x→∞

Cx−α−1.

A symmtrical result holds for ψ2. That is, for some positive constant C,

ψ2(y) ∼
y→∞

Cy−α−1.

Proof. This proof follows the same steps as those of [13, Prop 19]. The key is to invoke [9,
(5.2.20)], which states that

exp

(
1

2iπ

∫ 1

0

log G̃(u)

u− y

)
∼
y→1

C(y − 1)
∆
2π .

Recall that w(x) ∼
x→∞

Cx
π
β and that W (x) − 1 ∼

x→∞
Cx
−π
β . The explicit expressions of ψ1

obtained in (40) and in (41) imply that

ψ1(x) ∼
x→∞

Cx
(− ∆

2π
+χ−1)π

β .

The proof concludes by invoking Lemma 23, which states that
(
− ∆

2π + χ− 1
)
π
β = −α− 1. �

Lemma 26 (Asymptotics of ψ). Let α defined as in (4). For t ∈ [0, π2 ] and some positive
constant Ct,

ψ(r cos t, r sin t) ∼
r→∞

Ctr
−α−2.

Proof. The result is immediate from the functional equation (27) and Lemma 25. �

Proposition 27 (Asymptotics at the origin). For positive constants c0 and c1 we have the
following asymptotics

P(u,0)[T =∞] ∼
u→0

c0u
α and P(0,v)[T =∞] ∼

v→0
c1v

α.
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Proof. The result follows by combining the asymptotic results of ψ1 and ψ2 at infinity that we
computed in Lemma 25 with the reciprocal of the result in Theorem [6, Thm 33.3]2. We begin
by denoting g(u) := P(u,0)[T =∞]. Then, by definition, ψ1(x) =

∫∞
0 e−xug(u)du. As ψ1(x) has

no singularities greater than 0, for every A > 0, the inverse Laplace transform gives

g(u) =
1

2iπ

∫ A+i∞

A−i∞
euxψ1(x)dx.

By Lemma 25, we have ψ1(x) = C+η(x)
xα+1 , where η is a function such that lim∞ η = 0. Recalling

that the Laplace transform of uα/Γ(α+1) is x−α−1 and performing a change of variables s = ux,
we obtain

g(u) =
1

2iπ

∫ A+i∞

A−i∞
eux

C + η(x)

xα+1
dx

= uα
(

C

Γ(α+ 1)
+

1

2iπ

∫ Au+i∞

Au−i∞
es
η(s/u)

sα+1
ds

)
.

It remains to show that the last integral tends to 0 when u → 0. To do so, consider ε > 0
arbitrarily small. Then there exists B > 0 sufficiently large such that η(x) < ε for all |x| > B.
For all u such that u < 1/B, let us consider A := 1/u. This gives∣∣∣∣ 1

2iπ

∫ Au+i∞

Au−i∞
es
η(s/u)

sα+1
ds

∣∣∣∣ < ε

2iπ

∫ 1+i∞

1−i∞

1

sα+1
ds,

where the last integral converges for α > 1. The proof concludes by letting ε tend towards 0. �

Theorem 28 (Asymptotics at the origin). For t ∈ (0, π2 ) and some positive constant ct we have

P(r cos t,r sin t)[T =∞] ∼
r→0

ctr
α.

Proof. This proof follows directly from the asymptotics of the double Laplace transform ψ com-
puted in Lemma 26. Recall the result used in the proof of Proposition 27 linking the asymptotics
of a function at 0 to the asymptotics of its Laplace transform at infinity. The only necessary
modification is to apply this result with a polar coordinate transformation. The desired asymp-
totics then follow with nearly identical calculations. �
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2Doetsch [6, Thm 33.3] establishes that if for some constant a a function is equivalent to ua at 0, then at
infinity, its Laplace transform is equivalent (up to a multiplicative constant) to x−a−1.
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