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Abstract

Meta-learning tackles various means of
learning from past tasks to perform new
tasks better. In this paper, we focus
on one particular statement of meta-
learning: learning to recommend algo-
rithms. We focus on a finite number
of algorithms, which can be executed
on tasks drawn i.i.d. according to a
“meta-distribution”. We are interested
in generalization performance of meta-
predict strategies, i.e., the expected
algorithm performances on new tasks
drawn from the same meta-distribution.
Assuming the perfect knowledge of the
meta-distribution (i.e., in the limit of
a very large number of training tasks),
we ask ourselves under which conditions
algorithm recommendation can benefit
from meta-learning, and thus, in some
sense, “defeat” the No-Free-Lunch the-
orem. We analyze four meta-predict
strategies: Random, Mean, Greedy and
Optimal. We identify optimality condi-
tions for such strategies. We also de-
fine a notion of meta-learning complex-
ity as the cardinal of the minimal clique
of complementary algorithms. We illus-
trate our findings on experiments con-
ducted on artificial and real data.

1. Introduction

Meta-learning Brazdil et al. (2008); Van-
schoren (2018) is an active research field that
aims at leveraging past learning experiences

to improve or accelerate the learning process
for future tasks. Inspired by Sun-Hosoya
(2019), we study a class of meta-learning
problems called zero-level meta-learning
problems, as a special case of the algorithm
selection problem introduced in Rice (1976).
We contrast it with other settings by intro-
ducing a novel meta-learning taxonomy. We
analyze the problem of “meta-learnability”
for zero-level meta-learning problems from a
theoretical standpoint, highlighting cases
that are not hampered by the No Free
Lunch (NFL) theorems Wolpert (1996);
Wolpert and Macready (1997); Wolpert
(2001); Giraud-Carrier (2005). Roughly
speaking, the NFL theorems state that all
learning algorithms have the same average
performance over all possible learning tasks,
where the average is taken with a uniform
distribution of the tasks. This sheds doubt
on the efficacy of algorithm selection. How-
ever, as stated in Giraud-Carrier (2005),
meta-learning offers a viable path to extract
commonalities between tasks encountered in
real life, which are not usually uniformly dis-
tributed. In this work, we consider assume
that tasks are drawn i.i.d. form a given
meta-distribution, but not necessarily uni-
form. We illustrate this class of problems in
practical cases.

© 2021 Z. Liu & I. Guyon.
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(a) Zero-level meta-
learning algorithms use
only previously known
performances of algo-
rithms on tasks.

(b) First-level meta-
learning algorithms
use previously known
performances plus meta-
features of tasks and/or
algorithms.

(c) Second-level meta-
learning algorithms use
full information of past
tasks and algorithms
(including all examples
in all datasets and all
code of all algorithms).

Figure 1: Categorization of meta-learning in terms of the information used in
the meta-dataset.

1.1. A taxonomy of meta-learning

In a meta-learning problem, each training
example is a dataset or task (a task
usually combines some data and performance
metric for supervised learning, but may
consist of a simulator and some rewards
for reinforcement learning). A meta-dataset
is therefore a set of tasks (or simply
datasets), characterized by information on
how well they can be resolved by a variety
of algorithms. Based on which level of
information is accessible, we categorize meta-
learning algorithms into 3 families (Figure
1): Zero-level meta-learning uses only past
performances of algorithms on tasks, as
shown in Figure 1.1. We call the performance
matrix, with tasks or Datasets in lines and
Algorithms in columns, a DA matrix. It
may contain missing values. This scenario
is that of algorithm recommendation Rice
(1976) in the “collaborative filtering” setting
(e.g., (Mısır and Sebag, 2017; Sun-Hosoya
et al., 2018; Sun-Hosoya, 2019)). First-level
meta-learning uses past performances plus

meta-features of tasks and/or algorithms, as
shown in Figure 1(b)subfigure (e.g., Feurer
et al. (2015); Muñoz et al. (2018)). Second-
level meta-learning uses full information of
past tasks and algorithms, including all
examples in all datasets and all code of all
algorithms, as shown in Figure 1(c)subfigure
(e.g., Finn et al. (2017), Franceschi et al.
(2018); Liu et al. (2019), Snell et al. (2017)).

In this paper, we focus on zero-level
meta-learning, i.e., the collaborative filtering
algorithm recommendation setting: the sole
information available for meta-learning is a
DA matrix of dimension (m tasks/datasets
× n algorithms). At test time, the goal
is to predict the performance coefficients
of a new DA matrix, having the same
algorithms, but different tasks/datasets.
Both training and test matrices have lines
drawn i.i.d. according to the same
meta-distribution (also sometimes referred
to as mother distribution, following the
nomenclature introduced in Lopez-Paz et al.
(2015)). In experiments, we use a finite
meta-training sample (finite number of lines
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m). As in regular machine learning
problems, one can estimate the meta-
distribution of datasets/tasks with a certain
precision, depending on the size of the
available sample. However, our theoretical
analyses assume the complete knowledge of
the meta-distribution. In our setting the
meta-distribution is the joint distribution of
columns of the DA matrix, considered as
random variables, i.e., assuming that the DA
matrix can be extended infinitely. We are
thus in an asymptotic case and we will show
that, under some assumption on the meta-
distribution, certain meta-predict strategies
perform better than others, such as random
search.

2. Notations and Problem Setting

2.1. The DA Matrix

We consider the setting in which a DA
matrix is available for meta-learning, that is
a matrix of performances of algorithms on
datasets / tasks. To simplify the analysis,
we assume that scores are binary : 0 means
algorithm failure and 1 algorithm success1.
We further assume that tasks/datasets (lines
of the DA matrix) are drawn i.i.d. according
to an unknown but fixed meta-distribution.
Performances of algorithms on tasks /
datasets can be thought of as random
variables Xj , j = 1 . . . n, where n is the total
number of algorithms considered. We call X
the random vector [X1, X2, . . . , Xn].

The goal of meta-learning is to learn from
m samples of X constituting a training DA
matrix, to devise a meta-predict strategy.
After learning, this strategy is applied to find
a successful algorithm as fast as possible,
given a new task/dataset not seen before,

1. We can think of a successful algorithm as one
that beats at least 50% of all the considered
algorithms, in terms of the originally used
performance score (such as accuracy).

i.e., by querying the performance of as few
algorithms as possible.

Here we assume that we have an infinite
number of training examples, such that
the joint distribution P (X1, X2, . . . , Xn) is
known perfectly. Hence the meta-training
procedures considered search for an optimal
order of algorithms, knowing the meta-
distribution perfectly. We ask ourselves the
following questions: (i) Does the perfect
knowledge of P (X1, X2, . . . , Xn) allow us to
outperform random search. (ii) Under what
conditions (if any).

2.2. Criterion of evaluation

To evaluate the performance of any given
meta-predict strategy, we consider as metric
the area under the (meta-)learning curve. A
learning curve lc(i), i = 1 . . . n, is defined
as the performance of the best algorithm
queried so far, as a function of the number
of algorithms queried. That is:

lc(i) = max
tj ,j=1...i

{Xt1 , Xt2 , . . . , Xti} , (1)

where we denote by Xti the score of the
ith algorithm queried. Next, we adopt
a probabilistic notion of learning curve,
considering a meta-test example (new task
or dataset) as a random variable, i.e., the
expectation of lc(ti) over possible meta-test
examples (a form of meta-generalisation):

LC(i) = E
[

max
tj ,j=1...i

{Xt1 , Xt2 , . . . , Xti}
]

.

Given that scores are either 0 or 1, the
expected value of the maximum score seen
so far is the probability that at least one
algorithm was successful (score 1). This
is also one minus the probability that all
algorithms seen so far failed:

LC(i) = 1−P (Xt1 = 0, Xt2 = 0, . . . , Xti = 0) .

To evaluate the performance of meta-predict
strategies having a stochastic component, we
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define

LC(i) = E [1− P (Xt1 = 0, . . . , Xti = 0)]

where the expectation runs over possible
algorithm orderings. For strategies with a
fixed pre-determined order of algorithms to
be queried, taking this second expectation is
not necessary. It is necessary for the Random
strategy and when ties are broken at random.

Finally, we define the area under the
learning curve, which we wish to maximize
it over meta-predict strategies:

ALC(n) =
n∑

i=1

LC(i) . (2)

2.3. Meta-predict strategies

We consider four meta-predict strategies:

• Random: Query algorithms in uniformly
random order.

• Mean: Query algorithms in order of their
mean score value E[Xj ] = P (Xj = 1).

• Greedy: Query first the algorithm with
largest P (Xt1 = 1). Then, query
iteratively the next algorithm having the
largest P (Xti = 1|Xt1 = 0, Xt2 =
0, . . . , Xti−1 = 0), until we find one
successful algorithm; then the order of the
remaining algorithms does not matter.

• Optimal: Query algorithms in the
optimal order, maximizing ALC(n).

For the Mean, Greedy, and Optimal strate-
gies, we assume that ties are broken at ran-
dom. When the number of training examples
is finite (as what we have in the Empirical
Results section), all above probabilities can
be empirically estimated by the correspond-
ing average.

2.4. Meta-distributions

We consider four types of meta-distributions:

• NFL: No Free Lunch distribution:

P (X1, X2, . . . , Xn) = P (X1)P (X2) . . . P (Xn)

and P (Xj) = 0.5, ∀j = 1, . . . , n.

• Indep:

P (X1, X2, . . . , Xn) = P (X1)P (X2) . . . P (Xn)

but for some j P (Xj) ̸= 0.5. To make it
more comparable to NFL, we assume that
(1/n)

∑n
j=1 P (Xj) = 0.5.

• Dep:

P (X1, X2, . . . , Xn) ̸= P (X1)P (X2) . . . P (Xn).

We keep assuming (1/n)
∑n

j=1 P (Xj) =
0.5.

• DepU: Dep with uniform marginals

P (Xj) = 0.5,∀j

.3. Theoretical Results

In what follows, we prove the following
propositions:

1. For the NFL distribution, the Random
meta-predict strategy is as good as
anything else.

2. For Indep, the Mean strategy is opti-
mum.

3. For the Dep distribution, we might
expect that the performance order should
be Random ≤ Mean ≤ Greedy ≤
Optimal, however a variety of cases can
arise:

(a) “Worst case”: All strategies per-
form at chance level.

(b) “Best case”: Greedy is optimal.
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(a) 3.a: Worst case scenario (b) 3.b: Best case scenario (c) Legend

(d) 3.d: Greedy worse than
Optimal

(e) 3.f: Greedy worse than
Mean.

(f ) 3.g: Mean worse than
Random

Figure 2: Learning curves on constructed examples. (a) 3.a: “Worst-case”
scenario: All algorithms are identical. Random search is as good as
anything else. (b) 3.b: “Best-case” scenario: Two algorithms are exactly
complementary (one succeeds when the other one fails). All other algorithms are
independent of the two first ones and of one another. Greedy is optimal. (d) 3.d:
Greedy worse than Optimal: Both mean and greedy do not choose optimally
the first point: it is the best performing algorithm by itself, but does not belong to
the best performing pair. (e) 3.f: Greedy worse than Mean: Mean provides
by coincidence the optimal order, which Greedy does not select. We use ϵ = 0.1
(see text). ALCs are shown in legend. (f) 3.g: Mean worse than Random:
Redundant versions of the best performing algorithm are included. Mean ranks
them all first rather than selecting complementary algorithm.

(c) Greedy makes best “local” deci-
sions, i.e., increasing most the learn-
ing curve at any given point.

(d) Greedy can be worse thanOptimal

(e) Greedy can be worse than Ran-
dom

(f) Greedy can be worse than Mean

(g) Mean can be worse than Random

4. For the DepU distribution, the Mean
meta-predict strategy performs no better
than Random. We define a notion of
meta-learning complexity C as the car-
dinal of the minimal clique of comple-
mentary columns (i.e., columns having

at least one successful algorithm in each
line). There exists a meta-predict strat-
egy such that LC(C) = 1, i.e., the learn-
ing curve asymptote is reached in C steps.

4. Proofs

We simplify notations using: P (Xti = 1) =
pi = 1 − qi. For NFL and Indep meta-
distributions, learning curves are:

LC(i) = 1− P (Xt1 = 0) . . . P (Xti = 0)

= 1− q1q2 . . . qi (3)
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1. For the NFL distribution, the
Random meta-predict strategy is as
good as anything else.

For the NFL meta-distributions, pi = 1 −
qi = 0.5. Thus,

LC(i) = 1− (0.5)i , (4)

for all strategies. Thus Random is as good
as anything else.

2. For Indep, Mean is optimum.

For the Indep distribution, the Mean
strategy provides a ranking such that q1 ≤
q2 ≤ · · · ≤ qi. Therefore the product
q1q2 . . . qi for the Mean strategy will be
smaller (or equal) to that obtained for any
other order of algorithms.

LC(i) = 1− q1q2 . . . qi ≤ 1− (0.5)i

3.a. Worse case scenario: All
strategies perform at chance level

This case arises simply when all algorithms
are identical: X1 = X2 = · · · = Xn. In that
case, by our previous assumption that on
average algorithms perform at chance level,
we have P (Xj = 1) = 0.5. For individual
tasks, the (unique) algorithm we have will
either be successful or fail, hence lc(i) = 0 of
all i or lc(i) = 1 of all i. Thus LC(i) = 0.5
for all i, regardless of the strategy chosen.

3.b. Best case scenario: Greedy is
optimal

This case arises, for example, when we have
only 2 types of algorithms: an algorithm
with scores X1, and another one with exactly
complementary scores: X2 = 1 − X1. All n
algorithms are either of the first or the second
type. We recall that by hypothesis, on
average, algorithms perform at chance level.
When we query a first algorithm, regardless
of the strategy, predictions are therefore at
chance level LC(1) = 0.5. But, as soon as
we query a second algorithm with the greedy

strategy, we get LC(i > 1) = 1 because
P (X2 = 1|X1 = 0) = 1 and P (X1 = 1|X2 =
0) = 1 , hence the Greedy strategy will pick
up one of the versions of the complementary
algorithm. The Optimal algorithm cannot
beat it because LC(1) = 0.5 regardless of
strategy.

3.c. Greedy makes the best local
decision

This can be straightforwardly proven by
the definition of Greedy and we provide
detailed computation in Appendix.

3.d. Greedy can be worse than
Optimal

In this example we exploit the fact that
the first step of the Greedy strategy is to
choose the algorithm with best mean score
(the same as the Mean strategy). But
this algorithm is not necessarily the most
informative about what second algorithm
should be chosen. Details can be found in
Appendix.

3.e. Greedy can be worse than
Random

True since Greedy can be worse that
Optimal and Random can reach Optimal
by chance. However, it is more interesting
to find out whether Greedy can perform
well in “most cases” than Random does
on average, since Greedy is a deterministic
algorithm, while Random has a lot of
variance. See Sections Empirical Results and
Computational Considerations.

3.f. Greedy can be worse than Mean

In this example, we exploit the fact that
“by chance”, Mean, which is ordering its
algorithms with the marginal probabilities,
would order them in an optimal order, while
Greedy would choose a sub-optimal order.
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This construction is possible with at least
4 algorithms that we call A,B,C, and D.
Details for this construction can be found in
Appendix.

3.g. Mean can be worse than Random

This case arises in a similar example as
example 3.b. We still have X2 = 1−X1. But
we assume that there is a small difference in
the average score of two types of algorithms
considered: P (X1) = 0.5 + ϵ and P (X2) =
0.5 − ϵ, with 0 < ϵ ≪ 1. In this case,
the Mean strategy will rank first all the
algorithms of type 1. Hence for the Mean
strategy:

LC(i ≤ n/2) ≃ 0.5, LC(i > n/2) = 1 . (5)

For the random strategy, we also have
LC(i > n/2) = 1 because half of the
algorithms are of a complementary type, so
even in case of extreme bad luck where we
draw first all the algorithms that fail on
a particular task, at n/2 + 1 we get one
that succeeds (its complement). For the
Random strategy, between at each step, we
increase our probability of getting a good
algorithm, yielding the learning curve:

LC(i ≤ n/2) ≃ 1− 0.5i, LC(i > n/2) = 1 .

4. For the DepU distribution, the
Optimal algorithm attains LC = 1 in C
steps.

First, note that, for the DepU distribution,
since all marginal distributions are identi-
cal (average performance of algorithms iden-
tical), the Mean strategy performs like the
Random strategy (since ties are broken at
random).

A set of algorithms {Xj}, j = 1 · · · p will
be called complementary if and only if
P (X1 = 0, X2 = 0, · · · , Xp = 0) = 0.
Hence, for each task, there exists at least one
successful algorithm in that set. Further, we

call a clique a minimal set of complementary
algorithms, i.e., such that removing any
of its members breaks complementarity.
Finally, we define a notion of complexity
of a meta-learning problem C as the
cardinal of the smallest clique (when
there is one), and C = n otherwise.

For a meta-learning problem of complex-
ity C, there exists an meta-predict strategy
such that LC(C) = 1. Indeed, it suffices
to rank first the algorithms of the smallest
clique. Note however that neither the Greedy
not the Optimal strategies attain necessarily
LC(C) = 1. Nonetheless, we will see in the
experimental section (Section Empirical Re-
sutls) that the smaller C, the larger the ALC
of Greedy and Optimal.

5. Empirical Results

In this section, we compare the four meta-
predict strategies considered on various
meta-distributions. The theoretical results
offer no guarantee of optimality of the
Greedy method. But we offer empirical
evidence of its effectiveness.

First we report results on synthetic data
constructed such that the meta-distribution
includes a single clique, and we vary
the complexity C (size of the clique).
Specifically, a DA matrix is constructed as
follows: All values are initialized with −1
(missing); for C of its columns, a 1 is
randomly placed in each line; the remaining
-1 values are replaced by 0 or 1 randomly,
such that the average values of each column
is 0.5. In these experiments we use n = 5 and
m = 10000 both for training and testing.

Figure 3 shows the learning curves for
the various meta-predict strategies when
C varies. We see that ALC performance
does not change with C for the Random,
Mean, and vanilla Greedy algorithms. It
does improve for smaller C for the optimal
strategy. We introduce a variant of the
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Greedy strategy called Greedy+ in which,
at meta-training time, all algorithms are
tried for the first position, then greedy
search is performed. This algorithm
is more computationally costly at meta-
training time, but it results in a single
algorithm ordering, hence is not more costly
at meta-predict time. Greedy+ performs
nearly as well as Optimal.

Figure 4 shows the relationship between
the ALC (Area under Learning Curve) and
complexity C.

To illustrate the behavior of the meta-
predict strategies considered, we also report
results on benchmark meta-datasets used in
(Sun-Hosoya et al., 2018). These meta-
datasets are Statlog (Australian Credit Ap-
proval) Data Set (21 tasks 24 algorithms),
AutoML challenge dataset Guyon et al.
(2015, 2018) (30 tasks 17 algorithms), a sub-
set of OpenML (Van Rijn et al., 2013; Van-
schoren et al., 2014) (76 datasets 292 algo-
rithms) and an artificially generated dataset
by (Sun-Hosoya et al., 2018) (50 tasks 20 al-
gorithms). Since our setting considers only
binary algorithm scores (failure or success),
we binarized the meta-datasets (using the
median value as threshold). We omit the Op-
timal strategy due to its prohibitive compu-
tational requirement, with a time complex-
ity of O(n!) (where n is the number of al-
gorithms). Meta-predict performances are
evaluated using the leave-one-dataset out es-
timator, as in the original paper.

The learning curves, shown in Figure
2, are qualitatively similar to those of the
original paper (Sun-Hosoya et al., 2018),
which we include in supplementary material,
for convenience (Figure 6). Remarkably, for
the first dataset (Figure 5(a)subfigure), the
performance of Mean is worse than others
both in the original and the binarized data.
Notably, the Greedy algorithm generally
performs best (or closely as well as the best),

and always better than the Random strategy
does on average.

6. Computational Considerations

Although this paper focuses on asymptotic
analyses (infinite sample limit), for all
practical purposes, we must evaluate the
conditional probabilities from data, i.e., a
finite set of m training tasks. We provide
a brief comparison of meta-predict strategies
in that respect.

Unlike all the other strategies, which
are deterministic and advocate one given
ranking of algorithms, theRandom strategy
has a large variance. At the first step,
for instance, the variance of LC(1) is p1q1.
To beat this variance, one would need to
repeat random search many times, which
defeats the purpose because after trying all n
algorithms one is certain of finding the best
one. Hence, although it may perform well
on average, it is only useful as a theoretical
baseline.

The three other strategies differ greatly
in computational complexity at meta-
training time:

• Optimal: To determine the optimal order
of algorithms of the Optimal strategy,
we need to conduct a search in a search
space of n! permutations, to find the
permutation that maximize ALC(n). For
each permutation, we need to evaluate n
conditional probabilities.

• Greedy: In contrast, the Greedy strategy
evaluates only n(n + 1)/2 conditional
probabilities. The Greedy+ strategy
requires repeating the search n times.

• Mean: The Mean strategy is much faster,
since it requires only evaluation nmarginal
probabilities.

Conditional probabilities are estimated
with fewer samples than marginal probabil-
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(a) Random or Mean (b) Greedy

(c) Greedy+ (d) Optimal

Figure 3: Learning curves for toy data, for varying complexity (clique cardinal).
All marginals (ave. algo. perf.) are identical to 0.5. Hence Mean has not
advantage over Random. More subtly, neither does Greedy on average. Greedy+
however selects first the algorithms of the clique and performs as well as Optimal.
ALC shown next to the clique cardinal in legend.

Figure 4: ALC vs Clique cardinal C. For
Random, Mean, and Greedy, the
ALC does not vary (within the
experimental error bar ≃ V AL.
For Greedy+ and Optimal, the
ALC decreases with C.

ities. This can yield to uncertainty in al-
gorithm ranking for the Random and Op-

timal strategies. While Mean has n exam-
ples to evaluate all P (Xj = 1). The number
of examples decays exponentially with the
number of conditions to evaluate P (Xti =
1|Xt1 = 0, Xt2 = 0, . . . , Xti−1 = 0).

7. Discussion and Conclusion

Meta-learning as an algorithm recommenda-
tion problem is, to some extent, what ev-
ery overview paper is doing: Analyzing re-
sults on past tasks, the authors generally at-
tempt to rank algorithms in order of pref-
erence, such that readers would save time
by trying the smallest possible number of
algorithms before obtaining satisfactory re-
sults. This paper puts a formal framework
around this problem and shows that, when
algorithms are not independent of one an-
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(a) Artificial (b) AutoML

(c) Statlog (d) OpenML

Figure 5: Learning curves on benchmark datasets. The shaded areas represent
quantiles for the Random strategy.

other, ranking with the Mean strategy gen-
erally does not perform as well as the Greedy
strategy, which in turns is often nearly opti-
mum. We prove theoretically that if algo-
rithms are independent of one another and
have same average performance, all strate-
gies perform at chance level. This situation
is analogous to that of the NLF theorem. If
they are independent but have different aver-
age performance, then the Mean strategy is
optimal. If they have the same average per-
formance, but are not mutually independent,
the Mean algorithm performs at chance level,
but the Greedy algorithm can potentially do
better. However, seeding the Greedy algo-
rithm properly is important. At the expense
of a slightly slower meta-training time, the
Greedy+ algorithm performs a lot better.
Greedy algorithms make decisions that are
only “locally” optimal, hence can be outper-
formed by the Optimal algorithm. However,
they are much faster and are therefore good

candidates for use in algorithm recommen-
dation.

Further work includes moving from bi-
nary performance scores of algorithms to
continuous scores, re-defining in this con-
text the complexity of meta-learning, and
studying the final sample case. Other ex-
tensions could be done to address the prob-
lem of missing data, and the problem of
“warm starting” recommendation using al-
gorithm meta-features (a first-level meta-
learning problem). However, at least qual-
itatively, our binary zero-level meta-learning
problem setting captures the essence of meta-
learning as a recommendation problem, al-
lowing us to sort out when and how meta-
learning is possible.
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Appendix A. 3.c. Greedy makes
the best local
decision

The best local decision is the decision that
increases most the learning curve at any
given point. By definition,

LC(i) = 1− P (Xt1 = 0, Xt2 = 0, . . . , Xti = 0)

= 1− P
= 1− P (Xti = 0|Xt1 = 0, . . . , Xti−1 = 0)

· P (Xt1 = 0, . . . , Xti−1 = 0)) .

Hence the variation of learning curve is:

∆LC(i) = LC(i+ 1)− LC(i)

= P · (1− P (Xti+1 = 0|Xt1 = 0, . . . , Xti = 0)

= P · P (Xti = 1|Xt1 = 0, . . . , Xti = 0)
(6)

By definition of the greedy strategy,
unless the learning curve has already reached
its maximum value, Greedy chooses at step
i the algorithm with the largest P (Xti =
1|Xt1 = 0, Xt2 = 0, . . . , Xti = 0). Hence
greedy makes the choice that increases most
the learning curve, given past decisions, and
ignoring what will happen in the future.

Appendix B. 3.d. Greedy can be
worse than Optimal

Assume that we have four types of algo-
rithms: X1, X2, X3, and X4 = 1−X3, with

P (X1 = 1) = 0.5+ϵ and P (X2 = 1) = 0.5−ϵ,
0 < ϵ ≪ 1, P (X3 = 1) = P (X4 = 1) = 0.5,
X1 ⊥⊥ X2 ⊥⊥ (X3|X4), X3 ⊥̸⊥ X4.

Greedy will choose algorithm 1 first, then
X3 or X4 without distinction (assume it
choosesX3), then finally it will chooseX4 (as
perfectly complementing X3) and X2 last.
Therefore the learning curve of Greedy will
be:

LC(1) ≃ 0.5, LC(2) ≃ 1−(0.5)2, LC(i ≥ 3) = 1 .

In contrast the optimal strategy is to
choose X3 or X4 first, without distinction.
Assume it chooses X3 first, then it will
choose X4 and reaches perfect prediction in
only two steps. Therefore the learning curve
of Optimal will be:

LC(1) ≃ 0.5, LC(i ≥ 2) = 1 ,

and therefore Optimal is better than
Greedy.

Appendix C. 3.f. Greedy can be
worse than Mean

We recall that the construction is possible
with at least 4 algorithms that we call
A,B,C, and D. Without loss of generality,
we assume that P (A = 0) < P (B = 0) <
P (C = 0) < P (D = 0) (no ties). In this
example we chose that:

• P (A = 0) = 0.5− 2ϵ, P (B = 0) = 0.5− ϵ,
P (C = 0) = 0.5 + ϵ, P (D = 0) = 0.5 + 2ϵ,
where 0 < ϵ ≪ 1.

• P (A = 0, B = 0, C = 0) = 0. Note that
this also means that P (A = 0, B = 0, C =
0, D = 0) = 0.

The example leads Mean to choose the
optimal order A,B,C,D that reaches the
asymptote of the learning curve in 3 steps,
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whereas Greedy does not: Greedy chooses
A,D,C,B. This can happen if we have the
following conditional probabilities:

Step Mean Greedy

1 P (A = 0) = 0.5 − 2ϵ P (A = 0) = 0.5 − 2ϵ

2 P (B = 0|A = 0) = 0.5 + 2ϵ P (D = 0|A = 0) = 0.5

P (C = 0|A = 0) = 0.5 + 2ϵ

3 P (C = 0|A = 0, B = 0) = 0 P (C = 0|A = 0, D = 0) = 0.5

P (B = 0|A = 0, D = 0) = 0.5

With these values the learning curve
cross each other. We can compute the
learning curves values and the ALC:

LC(i) = 1−P (Xt1 = 0, Xt2 = 0, . . . , Xti = 0) .

ALC =

n∑
i=1

LC(i)

Mean Greedy

1− LC(1) 0.5 − 2ϵ 0.5 − 2ϵ

1− LC(2) (0.5 − 2ϵ)(0.5 + 2ϵ) (0.5 − 2ϵ) · 0.5

1− LC(3) 0 (0.5 − 2ϵ) · 0.5 · 0.5

1− LC(4) 0 0

Let us verify that ALC(Mean)
> ALC(Greedy). ALC(Mean) >
ALC(Greedy), if and only if LC(2)+LC(3)
is larger for Mean than for Greedy since
LC(1) and LC(4) are identical. Equiva-
lently, 2 − LC(2) − LC(3) is smaller for
Mean than for Greedy. We have

ALC(Mean)−ALC(Greedy)

= (0.5− 2ϵ) · 0.52 + (0.5− 2ϵ) · 0.5− (0.5− 2ϵ)(0.5 + 2ϵ)

= 1/8− ϵ/2 + 1/4− ϵ− 1/4 + 4ϵ2 (7)

= 1/8− 3

2
ϵ+ 4ϵ2

which is positive for small enough ϵ. For
e.g., ϵ = 0.1, Mean has a better ALC than
Greedy (we get 0.015 > 0).
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Appendix D. Results from Sun’s paper

To facilitate comparing our Figure 5 with the figure of the paper of Sun et al. Sun-Hosoya
et al. (2018), which uses the same benchmark meta-datasets, we reproduce her figure (Figure
6). She uses four methods:

1. Random search (similar to our Random strategy)

2. SimpleRank w. median (similar to our Mean strategy)

3. Active Meta Learning w. CofiRank (a Greedy method)

4. Median LandMarks w. CofiRank (another Greedy method)

She represents the quantiles of Random search by shaded areas.

Figure 6: Learning curves in Lisheng Sun et al. Sun-Hosoya et al. (2018)
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