N

N

Asymptotic Analysis of Meta-learning as a
Recommendation Problem
Zhengying Liu, Isabelle Guyon

» To cite this version:

Zhengying Liu, Isabelle Guyon. Asymptotic Analysis of Meta-learning as a Recommendation Problem.
Meta-learning Workshop @ AAAT 2021, Feb 2021, Virtual, Canada. hal-03098180v1

HAL Id: hal-03098180
https://hal.science/hal-03098180v1

Submitted on 5 Jan 2021 (v1), last revised 8 Jan 2022 (v3)

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.

https://hal.science/hal-03098180v1
https://hal.archives-ouvertes.fr

Asymptotic Analysis of Meta-learning as a Recommendation Problem

Zhengying Liu' and Isabelle Guyon':?

I'UFR Sciences & INRIA, Université Paris-Saclay, France, 2ChaLearn, USA
{zhengying.liu, isabelle.guyon} @inria.fr

Abstract

Meta-learning tackles various means of learning from past
tasks to perform new tasks better. In this paper, we focus
on one particular statement of meta-learning: learning to rec-
ommend algorithms. We focus on a finite number of algo-
rithms, which can be executed on tasks drawn i.i.d. accord-
ing to a “meta-distribution”. We are interested in general-
ization performance of meta-predict strategies, i.e., the ex-
pected algorithm performances on new tasks drawn from the
same meta-distribution. Assuming the perfect knowledge of
the meta-distribution (i.e., in the limit of a very large number
of training tasks), we ask ourselves under which conditions
algorithm recommendation can benefit from meta-learning,
and thus, in some sense, “defeat” the No-Free-Lunch theo-
rem. We analyze four meta-predict strategies: Random, Mean,
Greedy and Optimal. We identify optimality conditions for
such strategies. We also define a notion of meta-learning com-
plexity as the cardinal of the minimal clique of complemen-
tary algorithms. We illustrate our findings on experiments
conducted on artificial and real data.

Introduction

Meta-learning [1} [17] is an active research field that aims
at leveraging past learning experiences to improve or ac-
celerate the learning process for future tasks. Inspired by
[14]], we study a class of meta-learning problems called zero-
level meta-learning problems, as a special case of the algo-
rithm selection problem introduced in [12]. We contrast it
with other settings by introducing a novel meta-learning tax-
onomy. We analyze the problem of “meta-learnability” for
zero-level meta-learning problems from a theoretical stand-
point, highlighting cases that are not hampered by the No
Free Lunch (NFL) theorems [20} 21, 19]. Roughly speaking,
the NFL theorems state that all learning algorithms have the
same average performance over all possible learning tasks,
where the average is taken with a uniform distribution of the
tasks. This sheds doubt on the efficacy of algorithm selec-
tion. However, as stated in [3], meta-learning offers a viable
path to extract commonalities between tasks encountered in
real life, which are not usually uniformly distributed. In this
work, we consider assume that tasks are drawn i.i.d. form
a given meta-distribution, but not necessarily uniform. We
illustrate this class of problems in practical cases.

Copyright © 2021, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

A taxonomy of meta-learning

In a meta-learning problem, each training example is a
dataset or task (a task usually combines some data and per-
formance metric for supervised learning, but may consist of
a simulator and some rewards for reinforcement learning). A
meta-dataset is therefore a set of tasks (or simply datasets),
characterized by information on how well they can be re-
solved by a variety of algorithms. Based on which level of
information is accessible, we categorize meta-learning algo-
rithms into 3 families (Figure[I): Zero-level meta-learning
uses only past performances of algorithms on tasks, as
shown in Figure We call the performance matrix, with
tasks or Datasets in lines and Algorithms in columns, a DA
matrix. It may contain missing values. This scenario is that
of algorithm recommendation [[12]] in the “collaborative fil-
tering” setting (e.g., [10,[15}[14]). First-level meta-learning
uses past performances plus meta-features of tasks and/or al-
gorithms, as shown in Figure[IDb](e.g., [2}[11]]). Second-level
meta-learning uses full information of past tasks and algo-
rithms, including all examples in all datasets and all code of
all algorithms, as shown in Figure(e.g., 130, 14} 81, [13]).

In this paper, we focus on zero-level meta-learning,
i.e., the collaborative filtering algorithm recommendation
setting: the sole information available for meta-learning is a
DA matrix of dimension (m tasks/datasets x n algorithms).
At test time, the goal is to predict the performance coeffi-
cients of a new DA matrix, having the same algorithms, but
different tasks/datasets. Both training and test matrices have
lines drawn i.i.d. according to the same meta-distribution
(also sometimes referred to as mother distribution, following
the nomenclature introduced in [9]]). In experiments, we use
a finite meta-training sample (finite number of lines m). As
in regular machine learning problems, one can estimate the
meta-distribution of datasets/tasks with a certain precision,
depending on the size of the available sample. However, our
theoretical analyses assume the complete knowledge of the
meta-distribution. In our setting the meta-distribution is the
joint distribution of columns of the DA matrix, considered
as random variables, i.e., assuming that the DA matrix can
be extended infinitely. We are thus in an asymptotic case
and we will show that, under some assumption on the meta-
distribution, certain meta-predict strategies perform better
than others, such as random search.

algo1

algo 1
algo p

algo p

algo 1
algo p

algorithm features

algorithm features

task 1

task 1 task 1

performances of task
each algorithm X (meta-)
on each task features

task n task n

task performances of
performances of (meta-) each algorithm
features on each task

each algorithm

on each task

task n

(c) Second-level meta-learning algo-

(a) Zero-level meta-learning algorithms (b) First-level meta-learning algorithms rithms use full information of past tasks
use only previously known performances use previously known performances plus and algorithms (including all examples in

of algorithms on tasks.

meta-features of tasks and/or algorithms.

all datasets and all code of all algorithms).

Figure 1: Categorization of meta-learning in terms of the information used in the meta-dataset.

Notations and Problem Setting
The DA Matrix

We consider the setting in which a DA matrix is available
for meta-learning, that is a matrix of performances of algo-
rithms on datasets/tasks. To simplify the analysis, we assume
that scores are binary: 0 means algorithm failure and 1 al-
gorithm success. We further assume that tasks/datasets (lines
of the DA matrix) are drawn i.i.d. according to an unknown
but fixed meta-distribution. Performances of algorithms on
tasks/datasets can be thought of as random variables X
7 = 1...n, where n is the total number of algorithms con-
sidered. We call X the random vector [X1, X, ..., X,].

The goal of meta-learning is to learn from m samples
of X constituting a training DA matrix, to devise a meta-
predict strategy. After learning, this strategy is applied to
find a successful algorithm as fast as possible, given a new
task/dataset not seen before, i.e., . by querying the perfor-
mance of as few algorithms as possible.

Here we assume that we have an infinite number
of training examples, such that the joint distribution
P(Xy,Xs,...,X,,) is known perfectly. Hence the meta-
training procedures considered search for an optimal order
of algorithms, knowing the meta-distribution perfectly. We
ask ourselves the following questions: (i) Does the perfect
knowledge of P(X;,Xa,...,X,) allow us to outperform
random search. (ii) Under what conditions (if any).

Criterion of evaluation

To evaluate the performance of any given meta-predict strat-
egy, we consider as metric the area under the (meta-)learning
curve. A learning curve l¢(t;), i = 1...n, is defined as the
performance of the best algorithm queried so far, as a func-
tion of the number of algorithms queried. That is:

lC(Z) = 1max ,{Xt17Xt2) s aXt,i}) (1)
tj,g=1...1

where we denote by X;, the score of the i*" algorithm
queried. Next, we adopt a probabilistic notion of learning
curve, considering a meta-test example (new task or dataset)

as a random variable, i.e., the expectation of l¢(t;) over pos-
sible meta-test examples (a form of meta-generalisation):

tj,j=1..

LC(Z) =E max A{Xthtz? ey th} . (2)

Given that scores are either O or 1, the expected value of the
maximum score seen so far is the probability that at least one
algorithm was successful (score 1). This is also one minus
the probability that all algorithms seen so far failed:

LC(#)=1-P(Xy;, =0,Xy, =0,..., X, =0). (3)
To evaluate the performance of meta-predict strategies hav-
ing a stochastic component, we define

LC(Z) :E[l 7P(Xt1 = Ovth = O)"'7Xti = 0)] (4)
where the expectation runs over possible algorithm order-
ings. For strategies with a fixed pre-determined order of al-
gorithms to be queried, taking this second expectation is not
necessary. It is necessary for the Random strategy and when
ties are broken at random.

Finally, we define the area under the learning curve, which
we wish to maximize it over meta-predict strategies:

ALC(n) =Y LC(i). (5)
i=1

Meta-predict strategies

We consider four meta-predict strategies:

* Random: Query algorithms in uniformly random order.

* Mean: Query algorithms in order of their mean score
value E[Xj] = P(X] =].)

* Greedy: Query first the algorithm with largest P(X;, =
1). Then, query iteratively the next algorithm having the
largest P(th = 1|Xt1 = O,th = O,...,th = O),
until we find one sucessful algorithm; then the order of
the remaining algorithms does not matter.

e Optimal: Query algorithms in the optimal order, maxi-
mizing ALC(n).

For the Mean, Greedy, and Optimal strategies, we assume

that ties are broken at random.

Meta-distributions

We consider four types of meta-distributions:
* NFL: No Free Lunch distribution: P(X1, Xo,...,X,,) =
P(X1)P(X3)...P(X,)and P(X;)=0.5,Vj=1:n.

s Indep: P(X1, Xo,...,X,) = P(X1)P(X2)... P(Xy)
but for some j P(X;) # 0.5. To make is more compara-
ble to NF L, we assume that (1/n) 37, P(X;) = 0.5.

b Dep: P(Xl,XQ, e ,Xn) 7& P(Xl)P(XQ) e P(Xn)
We keep assuming (1/n) 37, P(X;) = 0.5.

* DepU: Dep with uniform marginals P(X;) = 0.5, Vj.

Theoretical Results

In what follows, we prove the following propositions:

1. For the NFL distribution, the Random meta-predict strat-
egy is as good as anything else.

2. For Indep, the Mean strategy is optimum.

3. For the Dep distribution, we might expect that the perfor-
mance order should be Random < Mean < Greedy <
Optimal, however a variety of cases can arise:

(a) “Worst case”: All strategies perform at chance level.
(b) “Best case”: Greedy is optimal.

(c) Greedy makes best “local” decisions, i.e., increasing
most the learning curve at any given point.

(d) Greedy can be worse than Optimal

(e) Greedy can be worse than Random

(f) Greedy can be worse than Mean

(g) Mean can be worse than Random

4. For the DepU distribution, the Mean meta-predict strat-

egy performs no better than Random. We define a notion
of meta-learning complexity C as the cardinal of the mini-
mal clique of complementary columns (i.e., columns hav-
ing at least one successful algorithm in each line). There

exists a meta-predict strategy such that LC(C) = 1,
i.e., the learning curve asymptote is reached in C steps.

Proofs

We simplify notations using: P(X;, = 1) = p; = 1 — ¢,.
For NFL and Indep meta-distributions, learning curves are:

LC(i) =1 — P(X,, =0)P(X,, =0)...P(X;, =0)
=l-qq...q (©)

1. For the NFL distribution, the Random
meta-predict strategy is as good as anything else.

For the NFL meta-distributions, p; = 1 — ¢; = 0.5. Thus,
LC(i) =1—(0.5)", @)

for all strategies. Thus Random is as good as anything else.

2. For Indep, Mean is optimum.

For the Indep distribution, the Mean strategy provides a
ranking such that ¢; < g < --- < g;. Therefore the product
q192 - - - q; for the Mean strategy will be smaller (or equal)
to that obtained for any other order of algorithms.

LC(i) = 1-qiq2...q
1—(0.5) ®)

IN

3.a. Worse case scenario: All strategies perform at
chance level

This case arises simply when all algorithms are identical:
X1 = X9 = --- = X,. In that case, by our previous
assumption that on average algorithms perform at chance
level, we have P(X; = 1) = 0.5. For individual tasks,
the (unique) algorithm we have will either be successful or
fail, hence lc(i) = 0 of all ¢ or lc(i) = 1 of all i. Thus
LC(i) = 0.5 for all 4, regardless of the strategy chosen.

3.b. Best case scenario: Greedy is optimal

This case arises, for example, when we have only 2 types of
algorithms: an algorithm with scores X, and another one
with exactly complementary scores: Xo = 1 — Xj. All
n algorithms are either of the first or the second type. We
recall that by hypothesis, on average, algorithms perform
at chance level. When we query a first algorithm, regard-
less of the strategy, predictions are therefore at chance level
LC(1) = 0.5. But, as soon as we query a second algorithm
with the greedy strategy, we get LC(i > 1) = 1 because
P(X2:1|X1 :0):1andP(X1 :1‘X2:O):1,
hence the Greedy strategy will pick up one of the versions of
the complementary algorithm. The Optimal algorithm can-
not beat it because LC'(1) = 0.5 regardless of strategy.

3.c. Greedy makes the best local decision
The best local decision is the decision that increases most
the learning curve at any given point. By definition,
LC(H)=1-P(Xy, =0,X4,=0,...,X;,=0)=1-7P
=1-P(Xy, =0/Xy, =0,...,X¢,_, =0) 9)
-P(Xy, =0,...,X;,_, =0)).

Hence the variation of learning curve is:

ALC(i) = LC(i+ 1) — LC(3)
=P (17P(Xti+1 :O|Xt1 :0»“-;th: :0)
:PP(X[»l:1|Xt1:0,’Xf7:O) (10)
By definition of the greedy strategy, unless the learn-
ing curve has already reached its maximum value, Greedy
chooses at step ¢ the algorithm with the largest P(X;, =
11Xy, = 0,X¢, =0,..., X, = 0). Hence greedy makes
the choice that increases most the learning curve, given past
decisions, and ignoring what will happen in the future.

3.d. Greedy can be worse than Optimal

In this example we exploit the fact that the first step of the
Greedy strategy is to choose the algorithm with best mean

ga—a

random
<4~ mean
&~ greedy

2 3 4 1
algorithms tried so far

-

(a) 3a: Worst case scenario

2 3

3 1.0 g 10 =
8 8

8 8

3 094 209

° °

> > |
o 0.8 = 0.8

2 2

So07 207

w061 = 0.6

] ®

© - ©

go51 @ & a S o516 <
5 - 5 - -

2

algorithms tried so far

(b) 3b: Best case scenario

3 4 optimal

(c) Legend

1.0
0.9 1 0.9 1
0.8 0.8

071 074 @

proba at least one algo succeeded

proba at least one algo succeeded

)
210 o o & —a —a
< g B
- S 09
F
S
= 0.8 |
P
5
- random - 0.8026 o 07
<4 mean - 0.8787 8
@ greedy - 0.8741 5 06 @/ —+< <
©
optimal - 0.8799 @ o5 H
5

1 2 3 4 1
algorithms tried so far

(d) 3d: Greedy worse than Optimal

2

algorithms tried so far

(e) 3f: Greedy worse than Mean.

3 4 1 2 3 4 5 6
algorithms tried so far

(f) 3g: Mean worse than Random

Figure 2: Learning curves on constructed examples. (a) “Worst-case’ scenario: All algorithms are identical. Random search
is as good as anything else. (b) “Best-case” scenario: Two algorithms are exactly complementary (one succeeds when the other
one fails). All other algorithms are independent of the two first ones and of one another. Greedy is optimal. (d) Greedy worse
than Optimal: Both mean and greedy do not choose optimally the first point: it is the best performing algorithm by itself, but
does not belong to the best performing pair. (f) Greedy worse than Mean: Mean provides by coincidence the optimal order,
which Greedy does not select. We use € = 0.1 (see text). ALCs are shown in legend. (g) Mean worse than Random: Redundant
versions of the best performing algorithm are included. Mean ranks them all first rather than selecting complementary algorithm.

score (the same as the Mean strategy). But this algorithm
is not necessarily the most informative about what second
algorithm should be chosen.

Assume that we have four types of algorithms: X7, Xo,
X3, and Xy = 1 — X3, with P(X; = 1) = 0.5+ ¢ and
P(Xo=1)=05-€60<e<1,P(X3g=1)=P(Xy =
1) =05 X1 L X5 L (X3|Xy4), X3 U Xy

Greedy will choose algorithm 1 first, then X3 or X4 with-
out distinction (assume it chooses X3), then finally it will
choose X, (as perfectly complementing X3) and Xo last.
Therefore the learning curve of Greedy will be:

LC(1) ~ 0.5, LC(2) ~1—(0.5) LC(i>3)=1.

In contrast the optimal strategy is to choose X3 or X} first,
without distinction. Assume it chooses X3 first, then it will
choose X, and reaches perfect prediction in only two steps.
Therefore the learning curve of Optimal will be:

LC(1)~05, LC(i>2)=1, (11)

and therefore Optimal is better than Greedy.

3.e. Greedy can be worse than Random

True since Greedy can be worse that Optimal and Random
can reach Optimal by chance. However, it is more interest-
ing to find out whether Greedy can perform well in “most
cases” than Random does on average, since Greedy is a de-
terministic algorithm, while Random has a lot of variance.
See Sections [Empirical Results|and [Computational Consid-]

3.f. Greedy can be worse than Mean

In this example, we exploit the fact that “by chance”, Mean,
which is ordering its algorithms with the marginal probabil-
ities, would order them in an optimal order, while Greedy
would choose a sub-optimal order. This construction is pos-
sible with at least 4 algorithms that we call A, B, C, and D.
Without loss of generality, we assume that P(A = 0) <
P(B =0) < P(C =0) < P(D = 0) (no ties). In this
example we chose that:
*« PA=0)=05—-2,P(B=0)=05-—¢ P(C =
0)=05+¢ P(D=0)=0.5+2¢ where 0 < ¢ < 1.
* P(A=0,B =0,C = 0) = 0. Note that this also means
that P(A=0,B=0,C =0,D=0)=0.
The example leads Mean to choose the optimal order
A, B, C, D that reaches the asymptote of the learning curve
in 3 steps, whereas Greedy does not: Greedy chooses
A, D, C, B. This can happen if we have the following con-
ditional probabilities:

Step Mean Greedy

1 P(A=0)=0.5—2¢
2 | P(B=0]A=0)=05+2€

P(A =0)=0.5—2¢
P(D =0/A=0)=05
P(C =0]|A =0) =0.5+ 2
P(C=0/A=0,D=0)=0.5
P(B=0|A=0,D=0)=0.5

3| Pc=0lA=0,B=0)=0

With these values the learning curve cross each other. We
can compute the learning curves values and the ALC:

LC(i)=1-P(X,, =0,X;, =0,...,X;, =0).

ALC = zn: LC(i)

i=1

Mean Greedy
1-LC(1) 0.5 — 2¢ 0.5 — 2¢
1—LC(2) | (0.5-2¢)(0.5+2¢) (0.5 — 2€) - 0.5
1—-LC(3) 0 (0.5 —2¢)-0.5-0.5
1—-LC(4) 0 0

Let us verify that ALC(Mean) > ALC(Greedy).
ALC(Mean) > ALC(Greedy), if and only if LC(2) +
LC(3) is larger for Mean than for Greedy since LC(1) and
LC(4) are identical. Equivalently, 2 — LC(2) — LC(3) is
smaller for Mean than for Greedy. We have
ALC(Mean) — ALC(Greedy)

= (0.5 —2¢) - 0.5% 4 (0.5 — 2¢) - 0.5 — (0.5 — 2€)(0.5 + 2¢)

=1/8—¢/2+1/4—€—1/4+ 4é (12)
3
=1/8— 564—462

which is positive for small enough €. Fore.g., ¢ = 0.1, Mean
has a better ALC than Greedy (we get 0.015 > 0).

3.g. Mean can be worse than Random

This case arises in a similar example as example 3.b. We
still have X5 = 1 — X. But we assume that there is a small
difference in the average score of two types of algorithms
considered: P(X;) = 0.5 + € and P(X3) = 0.5 — ¢, with
0 < € < 1. In this case, the Mean strategy will rank first all
the algorithms of type 1. Hence for the Mean strategy:

LC(i<n/2)~0.5, LC(i >n/2)=1. (13)
For the random strategy, we also have LC'(i > n/2) = 1
because half of the algorithms are of a complementary type,
so even in case of extreme bad luck where we draw first all
the algorithms that fail on a particular task, at n/2 + 1 we
get one that succeeds (its complement). For the Random
strategy, between at each step, we increase our probability
of getting a good algorithm, yielding the learning curve:

LC(i<n/2)~1-05" LC(i>n/2)=1. (14)

4. For the DepU distribution, the Optimal
algorithm attains LC = 1 in C steps.

First, note that, for the DepU distribution, since all marginal
distributions are identical (average performance of algo-
rithms identical), the Mean strategy performs like the Ran-
dom strategy (since ties are broken at random).

A set of algorithms {X;},j = 1-- - p will be called com-
plementary if and only if P(X; = 0,X, =0,--- , X, =
0) = 0. Hence, for each task, there exists at least one suc-
cessful algorithm in that set. Further, we call a clique a min-
imal set of complementary algorithms, i.e., such that remov-
ing any of its members breaks complementarity. Finally, we
define a notion of complexity of a meta-learning problem
C as the cardinal of the smallest clique (when there is one),
and C' = n otherwise.

For a meta-learning problem of complexity C, there ex-
ists an meta-predict strategy such that LC(C) = 1. Indeed,
it suffices to rank first the algorithms of the smallest clique.
Note however that neither the Greedy not the Optimal strate-
gies attain necessarily LC(C') = 1. Nonetheless, we will see
in the experimental section (Section [Empirical Resutls) that
the smaller C, the larger the ALC of Greedy and Optimal.

Empirical Results

In this section, we compare the four meta-predict strategies
considered on various meta-distributions. The theoretical re-
sults offer no guarantee of optimality of the Greedy method.
But we offer empirical evidence of its effectiveness.

First we report results on synthetic data constructed such
that the meta-distribution includes a single clique, and we
vary the complexity C' (size of the clique). Specifically, a DA
matrix is constructed as follows: All values are initialized
with —1 (missing); for C' of its columns, a 1 is randomly
placed in each line; the remaining -1 values are replaced by
0 or 1 randomly, such that the average values of each column
is 0.5. In these experiments we use n = 5 and m = 10000
both for training and testing.

Figure [3] shows the learning curves for the various meta-
predict strategies when C' varies. We see that ALC perfor-
mance does not change with C' for the Random, Mean, and
vanilla Greedy algorithms. It does improve for smaller C for
the optimal strategy. We introduce a variant of the Greedy
strategy called Greedy+ in which, at meta-training time,
all algorithms are tried for the first position, then greedy
search is performed. This algorithm is more computation-
ally costly at meta-training time, but it results in a single
algorithm ordering, hence is not more costly at meta-predict
time. Greedy+ performs nearly as well as Optimal.

Figure 4] shows the relationship between the ALC (Area
under Learning Curve) and complexity C.

To illustrate the behavior of the meta-predict strategies
considered, we also report results on benchmark meta-
datasets used in [15]. These meta-datasets are Statlog (Aus-
tralian Credit Approval) Data Set (21 tasks 24 algorithms),
AutoML challenge dataset [6, [7] (30 tasks 17 algorithms),
a subset of OpenML [16} 18] (76 datasets 292 algorithms)
and an artificially generated dataset by [15] (50 tasks 20 al-
gorithms). Since our setting considers only binary algorithm
scores (failure or success), we binarized the meta-datasets
(using the median value as threshold). We omit the Optimal
strategy due to its prohibitive computational requirement,
with a time complexity of O(n!) (where n is the number of
algorithms). Meta-predict performances are evaluated using
the leave-one-dataset out estimator, as in the original paper.

The learning curves, shown in Figure 3] are qualitatively
similar to those of the original paper [[15], which we include
in supplementary material, for convenience (Figure [6). Re-
markably, for the first dataset (Figure [5a)), the performance
of Mean is worse than others both in the original and the bi-
narized data. Notably, the Greedy algorithm generally per-
forms best (or closely as well as the best), and always better
than the Random strategy does on average.

Computational Considerations

Although this paper focuses on asymptotic analyses (infinite
sample limit), for all practical purposes, we must evaluate
the conditional probabilities from data, i.e., a finite set of
m training tasks. We provide a brief comparison of meta-
predict strategies in that respect.

Unlike all the other strategies, which are deterministic
and advocate one given ranking of algorithms, the Random

http://archive.ics.uci.edu/ml/datasets/statlog+(australian+credit+approval)
http://archive.ics.uci.edu/ml/datasets/statlog+(australian+credit+approval)

el
S 1.0
[
(9]
S
5 0.9 4
9 7
o > N
2081 7
[
5 0.74
8 - Clique cardinal 2 - 0.8275
E 0.6 Clique cardinal 3 - 0.8328
® § [Clique cardinal 4 - 0.8318
.rgu 0.5 £ Clique cardinal 5 - 0.8268
5 T T T T T
1 2 3 4 1)
algorithms tried so far
(a) Random or Mean
el
£ 101 - —
(9] -
()
vl
5 0.9 s
@
)
< 0.8 A
) 4
(=4
S 0.7 1 . .
I -+ Clique cardinal 2 - 0.8999
E 061 £ Clique cardinal 3 - 0.8643
® / —— Clique cardinal 4 - 0.8401
© . &
@ 05 1 Clique cardinal 5 - 0.8282
5 T T T T T
1 2 3 4 <)

el
910 @ z s—=o
[
8 v
S 0.9 &
w
&
< 0.8
v @2
c
S 0.7+ T X
3 &~ Clique cardinal 2 - 0.8999
3 . / Clique cardinal 3 - 0.8643
® / &~ Clique cardinal 4 - 0.8401
© - . " R
@ 054 &~ Clique cardinal 5 - 0.8282
s T T T T T
1 2 3 4 5
algorithms tried so far
(b) Greedy
3
© 1.0 > g—*
(]
o 4
5 0.9 A 2
[}
S
< 0.8 A
(]
(=
S 0.7 g . .
i #¢— Clique cardinal 2 - 0.8999
E 0.6 Clique cardinal 3 - 0.8643
® - Clique cardinal 4 - 0.8401
3 k— Clique cardinal 5 - 0.8304
S 051 = Clg
s T T T T T
1 2 3 4 D)

algorithms tried so far

(c) Greedy+

algorithms tried so far

(d) Optimal

Figure 3: Learning curves for toy data, for varying complexity (clique cardinal). All marginals (ave. algo. perf.) are identical
to 0.5. Hence Mean has not advantage over Random. More subtly, neither does Greedy on average. Greedy+ however selects
first the algorithms of the clique and performs as well as Optimal. ALC shown next to the clique cardinal in legend.

é 0901 @ —#— random

P —J~ mean

S 0.88 —$— greedy

O —— greedy+

o .

£ 0.86 optimal

£

3

— 0.84 4

-

(V]

2

S 0.82

©

<

< T T T T
2 3 4 5

Cardinal of the minimal clique

Figure 4: ALC vs Clique cardinal C. For Random, Mean,
and Greeedy, the ALC does not vary (within the experimen-
tal error bar ~ V AL. For Greedy+ and Optimal, the ALC
decreases with C.

strategy has a large variance. At the first step, for instance,
the variance of LC(1) is p1¢;. To beat this variance, one
would need to repeat random search many times, which de-
feats the purpose because after trying all n algorithms one
is certain of finding the best one. Hence, although it may
perform well on average, it is only useful as a theoretical
baseline.

The three other strategies differ greatly in computational
complexity at meta-training time:

e Optimal: To determine the optimal order of algorithms
of the Optimal strategy, we need to conduct a search in a

search space of n! permutations, to find the permutation
that maximize ALC'(n). For each permutation, we need
to evaluate n conditional probabilities.

* Greedy: In contrast, the Greedy strategy evaluates only
n(n + 1)/2 conditional probabilities. The Greedy+ strat-
egy requires repeating the search n times.

e Mean: The Mean strategy is much faster, since it requires
only evaluation n marginal probabilities.

Conditional probabilities are estimated with fewer sam-
ples than marginal probabilities. This can yield to uncer-
tainty in algorithm ranking for the Random and Optimal
strategies. While Mean has n examples to evaluate all
P(X; = 1). The number of examples decays exponentially
with the number of conditions to evaluate P(X;, = 1|X;, =
0,X:,=0,...,Xs, =0).

Discussion and Conclusion

Meta-learning as an algorithm recommendation problem is,
to some extent, what every overview paper is doing: Ana-
lyzing results on past tasks, the authors generally attempt
to rank algorithms in order of preference, such that read-
ers would save time by trying the smallest possible number
of algorithms before obtaining satisfactory results. This pa-
per puts a formal framework around this problem and shows
that, when algorithms are not independent of one another,
ranking with the Mean strategy generally does not perform
as well as the Greedy strategy, which in turns is often nearly

el
4 1.0
Q
(9]
o
o
2
g 0.8 1 -~ random - 0.9570
© | <4 mean - 0.8980
()
S 4 ©- greedy - 0.9660
+ 0.6 1 / Quantiles 5-25%
8 Quantiles 25-50%
© BN Quantiles 50-75%
§ 0.4 B Quantiles 75-95%
5 . ; ; ; . ;

3 6 9 12 15 18

algorithms tried so far

(a) Artificial
el
L7
o
(7]
(7}
o
o
2
g, 0.7 -l- random - 0.8826
o e <4~ mean - 0.9015
s @~ greedy - 0.9053
% 0.51 Quantiles 5-25%
< 0.4 Quantiles 25-50%
® B Quantiles 50-75%
2 03 BB Quantiles 75-95%
a

0 3 6 9 12 15 18 21 24
algorithms tried so far

(c) Statlog

1.0 4 A <4448 § €S E€EES9

0.8 1

- random - 0.6980
<4 mean - 0.9529
©- greedy - 0.9137

Quantiles 5-25%

Quantiles 25-50%

Quantiles 50-75%

Quantiles 75-95%

0.6 1

0.4 1

0.2 1

T T T T T T

T T
2 4 6 8 10 12 14 16
algorithms tried so far

proba at least one algo succeeded

(b) AutoML

0.8 4

e ' ©®

-l random - 0.8003

0.7 4

067 <4 mean - 0.8006
0.5 4 ©- greedy - 0.7639
Quantiles 5-25%
0.4 1 Quantiles 25-50%
03 I Quantiles 50-75%
Ml Quantiles 75-95%

proba at least one algo succeeded

T T T
10° 10t 10?
algorithms tried so far

(d) OpenML

Figure 5: Learning curves on benchmark datasets. The shaded areas represent quantiles for the Random strategy.

optimum. We prove theoretically that if algorithms are inde-
pendent of one another and have same average performance,
all strategies perform at chance level. This situation is analo-
gous the that of the NLF theorem. If they are independent but
have different average performance, then the Mean strategy
is optimal. If they have the same average performance, but
are not mutually independent, the Mean algorithm performs
at chance level, but the Greedy algorithm can potentially do
better. However, seeding the Greedy algorithm properly is
important. At the expense of a slightly slower meta-training
time, the Greedy+ algorithm performs a lot better. Greedy
algorithms make decisions that are only “locally” optimal,
hence can be outperformed by the Optimal algorithm. How-
ever, they are much faster and are therefore good candidates
for use in algorithm recommendation.

Further work includes moving from binary performance
scores of algorithms to continuous scores, re-defining in this
context the complexity of meta-learning, and studying the
final sample case. Other extensions could be done to ad-
dress the problem of missing data, and the problem of “warm
starting” recommendation using algorithm meta-features (a
first-level meta-learning problem). However, at least qual-
itatively, our binary zero-level meta-learning problem set-
ting captures the essence of meta-learning as a recommen-
dation problem, allowing us to sort out when and how meta-
learning is possible.

Acknowledgements:

We are grateful to Lisheng Sun for sharing her benchmark
datasets and her code.

References

[1] Brazdil, P.; Carrier, C. G.; Soares, C.; and Vilalta, R.
2008. Metalearning: Applications to data mining.
Springer Science & Business Media.

[2] Feurer, M.; Klein, A.; Eggensperger, K.; Springenberg,
J.; Blum, M.; and Hutter, F. 2015. Efficient and Ro-
bust Automated Machine Learning. In Cortes, C.;
Lawrence, N. D.; Lee, D. D.; Sugiyama, M.; and Gar-
nett, R., eds., Advances in Neural Information Pro-
cessing Systems 28, 2962-2970. Curran Associates,
Inc. URL http://papers.nips.cc/paper/5872-efficient-
and-robust-automated-machine-learning.pdf.

[3] Finn, C.; Abbeel, P.; and Levine, S. 2017. Model-
Agnostic Meta-Learning for Fast Adaptation of Deep
Networks. In Precup, D.; and Teh, Y. W., eds., Pro-
ceedings of the 34th International Conference on Ma-
chine Learning, volume 70 of Proceedings of Machine
Learning Research, 1126—1135. International Conven-
tion Centre, Sydney, Australia: PMLR. URL http:
/lproceedings.mlr.press/v70/finn17a.html.

[4] Franceschi, L.; Frasconi, P.; Salzo, S.; Grazzi, R.;
and Pontil, M. 2018. Bilevel Programming for
Hyperparameter Optimization and Meta-Learning.
In International Conference on Machine Learning,
1568—-1577. URL http://proceedings.mlr.press/v80/
franceschil8a.html.

[5] Giraud-Carrier, C. G. 2005. Toward a Justification
of Meta-learning : Is the No Free Lunch Theorem a
Showstopper ?

http://papers.nips.cc/paper/5872-efficient-and-robust-automated-machine-learning.pdf
http://papers.nips.cc/paper/5872-efficient-and-robust-automated-machine-learning.pdf
http://proceedings.mlr.press/v70/finn17a.html
http://proceedings.mlr.press/v70/finn17a.html
http://proceedings.mlr.press/v80/franceschi18a.html
http://proceedings.mlr.press/v80/franceschi18a.html

(6]

(7]

(8]

(9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

Guyon, I.; Bennett, K.; Cawley, G.; Escalante, H. J.;
Escalera, S.; Tin Kam Ho; Macia, N.; Ray, B.; Saeed,
M.; Statnikov, A.; and Viegas, E. 2015. Design of the
2015 ChaLearn AutoML challenge. In 2015 Interna-
tional Joint Conference on Neural Networks (IJCNN),
1-8. Killarney, Ireland: IEEE. ISBN 978-1-4799-
1960-4. doi:10.1109/IJCNN.2015.7280767. URL http:
/fieeexplore.ieee.org/document/7280767/.

Guyon, I.; Sun-Hosoya, L.; Boullé, M.; Escalante,
H. J.; Escalera, S.; Liu, Z.; Jajetic, D.; Ray, B.; Saeed,
M.; Sebag, M.; Statnikov, A.; Tu, W.-W.; and Vie-
gas, E. 2018. Analysis of the AutoML Challenge se-
ries 2015-2018. In Hutter, F.; Kotthoff, L.; and Van-
schoren, J., eds., AutoML: Methods, Systems, Chal-
lenges, The Springer Series on Challenges in Machine
Learning. Springer Verlag. URL https://hal.archives-
ouvertes.fr/hal-01906197.

Liu, H.; Simonyan, K.; and Yang, Y. 2019. DARTS:
Differentiable Architecture Search. In 7th Interna-
tional Conference on Learning Representations, ICLR
2019, New Orleans, LA, USA, May 6-9, 2019. Open-
Review.net.

Lopez-Paz, D.; Muandet, K.; Scholkopf, B.; and Tol-
stikhin, I. 2015. Towards a learning theory of cause-
effect inference. In International Conference on Ma-
chine Learning, 1452-1461.

Misir, M.; and Sebag, M. 2017. Alors: An algorithm
recommender system. Artificial Intelligence 244: 291—
314.

Muioz, M. A.; Villanova, L.; Baatar, D.; and Smith-
Miles, K. 2018. Instance spaces for machine learn-
ing classification. Machine Learning 107(1): 109-147.
ISSN 1573-0565. doi:10.1007/s10994-017-5629-5.
URL https://doi.org/10.1007/s10994-017-5629-5,

Rice, J. R. 1976. The algorithm selection problem. In
Advances in computers, volume 15, 65-118. Elsevier.

Snell, J.; Swersky, K.; and Zemel, R. 2017. Prototyp-
ical networks for few-shot learning. In Advances in
neural information processing systems, 4077-4087.

Sun-Hosoya, L. 2019. Meta-Learning as a Markov
Decision Process. phdthesis, Université Paris Saclay
(COmUE). URL https://hal.archives-ouvertes.fr/tel-
02422144.

Sun-Hosoya, L.; Guyon, I.; and Sebag, M. 2018. Ac-
tivmetal: Algorithm recommendation with active meta
learning .

Van Rijn, J. N.; Bischl, B.; Torgo, L.; Gao, B.;
Umaashankar, V.; Fischer, S.; Winter, P.; Wiswedel, B.;
Berthold, M. R.; and Vanschoren, J. 2013. OpenML: A
collaborative science platform. In Joint european con-
ference on machine learning and knowledge discovery
in databases, 645—-649. Springer.

Vanschoren, J. 2018. Meta-Learning: A Survey.
arXiv:1810.03548 [cs, stat] URL http://arxiv.org/abs/
1810.03548. ArXiv: 1810.03548.

(18]

[19]

[20]

[21]

Vanschoren, J.; van Rijn, J. N.; Bischl, B.; and Torgo,
L. 2014. OpenML: networked science in machine
learning. ACM SIGKDD Explorations Newsletter
15(2): 49-60. ISSN 19310145. doi:10.1145/2641190.
2641198. URL http://arxiv.org/abs/1407.7722. ArXiv:
1407.7722.

Wolpert, D. 2001. The Supervised Learning No-Free-
Lunch Theorems. In Proceedings of the 6th Online
World Conference on Soft Computing in Industrial Ap-
plications. doi:10.1007/978-1-4471-0123-9 3.

Wolpert, D. H. 1996. The Lack of A Priori Distinc-
tions Between Learning Algorithms. Neural Com-
putation 8(7): 1341-1390. ISSN 0899-7667. doi:
10.1162/nec0.1996.8.7.1341. URL https://doi.org/10.
1162/neco.1996.8.7.1341.

Wolpert, D. H.; and Macready, W. G. 1997. No
free lunch theorems for optimization. IEEE Transac-
tions on Evolutionary Computation 1(1): 67-82. ISSN
1089-778X. doi:10.1109/4235.585893. URL https:
//ti.arc.nasa.gov/m/profile/dhw/papers/78.pdf.

http://ieeexplore.ieee.org/document/7280767/
http://ieeexplore.ieee.org/document/7280767/
https://hal.archives-ouvertes.fr/hal-01906197
https://hal.archives-ouvertes.fr/hal-01906197
https://doi.org/10.1007/s10994-017-5629-5
https://hal.archives-ouvertes.fr/tel-02422144
https://hal.archives-ouvertes.fr/tel-02422144
http://arxiv.org/abs/1810.03548
http://arxiv.org/abs/1810.03548
http://arxiv.org/abs/1407.7722
https://doi.org/10.1162/neco.1996.8.7.1341
https://doi.org/10.1162/neco.1996.8.7.1341
https://ti.arc.nasa.gov/m/profile/dhw/papers/78.pdf
https://ti.arc.nasa.gov/m/profile/dhw/papers/78.pdf

Supplementary material

Asymptotic Analysis of Meta-learning as a Recommendation Problem
Zhengying Liu and Isabelle Guyon

To facilitate comparing our Figure [5] with the figure of the paper of Sun et al. [13]], which uses the same benchmark meta-
datasets, we reproduce her figure (Figure[6). She uses four methods:

1. Random search (similar to our Random strategy)

2. SimpleRank w. median (similar to our Mean strategy)

3. Active_Meta_Learning w. CofiRank (a Greedy method)

4. Median_LandMarks w. CofiRank (another Greedy method)

She represents the quantiles of Random search by shaded areas.

Artificial AutoML
10
- -
8 8 o8
o o
w w
4] i}
= 2 os
I ©
£ E
£ £ 04
@ o
=% Q
- -
Q 4
o o 0.2
0.0
25 50 75 100 125 150 175 200 2 4 6 8 0 12 14 16
number of algorithms estimated so far number of algorithms estimated so far
(a) Artificial data. (b) AutoML data.
Statlog OpenML

0.7
0.6

0.6

0.5

best performance so far
o °
& =

best performance so far
°
s

014
0.1

25 10° 101 107

0

5 10 15 20
number of algorithms estimated so far number of algorithms estimated so far
(c) StatLog data. (d) OpenML data.

Active_Meta_Learning w. CofiRank
Median_LandMarks w. 1-CofiRank
— SimpleRank w. median
—s— Random: median
Random: 5-25% quantiles
Random: 25-50%
Random: 50-75%
Random: 75-95%

Figure 6: Learning curves in Lisheng Sun et al. [15]]

	Introduction
	A taxonomy of meta-learning

	Notations and Problem Setting
	The DA Matrix
	Criterion of evaluation
	Meta-predict strategies
	Meta-distributions

	Theoretical Results
	Proofs
	Empirical Results
	Computational Considerations
	Discussion and Conclusion

