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--- ABSTRACT ---

Taking into account radiation effects is a crugiaft of the design and optimization of applicatiomelving
high temperatures. This paper outlines the devedoprof a predictive coupling model for steady statejugate
heat transfer problems including radiative boundaogditions that models radiative exchanges betvgganp
walls in a transparent medium. This canonical magleélsed on the Godunov-Ryabenkii normal modeyaisal
theory. The general expression of the amplificafector, the stability bounds and the optimal coeffits are
provided. Moreover, a numerical Biot number inchgdradiation effects that controls the stabilityttod model, is
proposed. The destabilizing effect of radiatiohighlighted and quantified. A specific test casthen presented
to evaluate the consistency of this model. The migakand physical parameters of this test caseewer
specifically designed to target large fluid-struetinteractions (ceramic material, high radiatieefticient). The
numerical results fully comply with the theoreticasults derived from the predictive model.
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Nomenclature
a thermal diffusivity[m?®.s"]
Bi numerical Biot number

Fourier number

normalized Fourier number
Navier-Stokes flux
temporal amplification factor
heat transfer coefficiefitv.m?.K™]
thermal conductivitfW.m™*.K™]
thermal conductand®V.m?.K™]
number of beams of energy
heat flux]W.m?|
time [s]
temperature [K]

p vector of fluid quantities

y+ non-dimensional wall distance
z complex variable

Ay  size flcell [m]

At time step [s]

s 172 ZX*JQ U O

Greek letters
coupling coefficient [W.rif.K™]

o
S nature of the B.C. at the limif -

K spatial amplification factor

A FVM/FEM parameter

& tolerance level

£ emissivity

o Stefan—Boltzmann constaftV.m?.K™|
N solid thicknesgm]

Subscripts

c coupled

f fluid domain

s solid domain

ref reference

v numerical

V, inward unit normal to the fluid domain
1% outward unit normal to the solid domain

Superscripts
n temporal index

min minimum

opt optimal

R radiative

(°)  unknown value
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1. INTRODUCTION

The coupling of heat transfer at a fluid-solid nfdee is usually known as conjugate heat transfer
(CHT) [1][2]. CHT is used to analyze thermal intelfan processes when the two modes of heat
transfer - convection and conduction - are consdeimultaneouslyin recent years, the numerical
analysis of CHT processes, without thermal radmtizas received extensive attention and many
different numerical approaches for coupled probléarge been proposed, on the basis of a normal
mode analysis [3][4][5][6][7], the energy method,[& matrix analysis [9], a steady-state approach
[10], or a frequency-domain method [11]. In the texh of “Large Eddy Simulation”-CHT problems,
different acceleration techniques have been prapdsy[13][14][15].

However, radiation plays a key role since it is tfmninant mode of heat transfer in participating
media with applications involving high temperaturéghus, hermal radiation coupled with
convection and conduction can have extensive reddnapplications whemccurate heat transfer
predictions are neededich as reentry vehicles, turbomachinery, highptsature heat exchangers,
combustion chambers, furnaces, etc.

Heat transfer involving simultaneously radiatiooneection and conductiomas been studied for a
long time using approaches based on simple matieahatodels. For instance, Goulard [16] studied
the interaction of radiation and conduction in @muette flow.Adrianov and Shorin [17] treated the
case of coupled radiation and convection for a gay of a laminar flow in a tube. Flow between
parallel plates was also considered and the effdct®upled radiation, conduction, and convection
were treated by Einstein [18]. Desoto [19] devetba analytical procedure to investigate the
interaction or coupling of radiation with the comtion and convection mechanisms in the entrance
region of a black wall tube. In recent years, ndirtiensional approaches combining CFD, conjugate
heat transfer and radiative heat transfer have kmmployed more frequently. These coupled
calculations with boundary resolving meshes, predwsults that provide a deep insight into CHT
phenomena. For instance, Amaya et al. [20] [21istl combustion applications on parallel
computers. Duchaine et al. presented the partticcmupling strategy [22] as well as the high
performance computing criteria for coupled simwlasi [23]. A similar coupled approach has been
adopted by Koren et al. [24] to predict the walihperature distribution of a confined premixed
swirling flame, using a dynamical coupling periddercier et al. [25] presented a coupling
methodology to forecast the wall temperature digtron in a gas turbine combustor. Three different
codes were used to deal with convection, condueti@hradiation.

The most fundamental aspect in the coupling impteaten is the choice of efficient conditions to
connect the various physical phenomena. This ithalmore important since these phenomena occur
generally on a wide range of spatial and temparales. Thus, the interface conditions have a direct
impact on the numerical properties of the couphmgthodology. Our goal in this paper is to develop
interface treatments of CHT problems with radiattonthe basis of simple mathematical models, for
a better handling of multidimensional codes in apted manner to solve multiphysics applications.

In CHT analysis, adaptive coupling coefficients éadveen highlighted and expressed for the first
time by Errera and Chemin [26] for thermal fluidusture interaction (FSI) in steady state problems
and subsequent studies have been carried out 8[A. For unsteady solid heat transfer, on the
basis of the quasi-steady assumption, these cmeffic are quite different and provided in [30].
These coefficients have been obtained from a 1[pledumodel via a normal mode stability analysis
based on the theory of Godunov-Ryabenkii [31][32][34][35]. The performance of these interface
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methods within the framework of Dirichlet-Robinralary conditions were tested recently either in
academic test cases [29] [30] or in an industuathdéce [36] and the relevance of the predictive
model was fully confirmed.

The previous models were devoted to CHT analysibowt radiation. The primary goal of the

current paper is to perform an extensive stabiéityalysis including radiative phenomena. A

predictive 1D model is essential to explaining aqehntifying the major issues pertaining to

convergence and stability in coupled problems. Wit be done by coupling three independent
process models: the fluid model, the solid model] aadiation. The key issue in the coupling

implementation is the interface condition. This @ition has a direct impact on the numerical

properties of the coupling methodology. Most of ithterface numerical treatments in CHT problems
are based on a Dirichlet transmission conditionr@hemperature is prescribed on the fluid side and
thus this condition will be adopted and illustrabedhis paper.

The objective of this paper is to establish a nicagépredictive model, stable and rapidly convetgen
for thermal coupling problems with radiation andsé@ on a coupling approach in a partitioned
strategy. Our goal is to provide the main paranseteait control the coupling process and to express
the coefficients that guarantee unconditional stgbiRadiative exchanges between gray walls in
transparent media are considered. Typical applicatin the aerospace industry can be found in high
temperature environments such as a jet engine cstotbwith hot external walls of the liner
radiating on the internal wall of the casing.

This paper is structured as follows. First, the atioal model for CHT with radiation is outlined and
the main parameters are provided and describedigBe2). Then, the numerical tools used in this
study are briefly presented (Section 3). The follmyvparagraph details the fluid-solid-radiation
algorithm (Section 4). The numerical coupling pehoe arising from the model is then applied to
analyze the thermal interaction in a simple geoynetith strong thermal fluid-solid interaction
(Section 5). Finally, some concluding remarks aesvth.
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2. COMPUTATIONAL MULTIPHYSICS
2.1.Partitioned approach for fluid-solid interaction
2.1.1.CHT Strategy in the fluid and in the soligrdons

The most efficient way to compute a numerical sotutof the heat equation to a steady-state,
provided the boundary conditions are time indepehdes to consider a second order ordinary
differential equation (Laplace’s equation) and tdve for the temperature. A temporal algorithm
would be an unnecessarily long procedure for timeeseesult. As a consequence, only steady-state
solid heat conduction may be considered. On thé&raon the Navier-Stokes equations are generally
solved to steady-state by a temporal scheme. Tihufese strategies perform well as single
subsystems, they should be taken together and bks®nm a multiphysics approach. However,
solving Laplace’s equation at each time step wikrge the solution too rapidly for stability to be
maintained. In the current study, an optimal irsteef condition with remarkable stability properiges
provided.

2.1.2. Model problem

Consider two finite domains with a common interfad@e equations for the fluid domain are
discretized using a finite volume method (FVM) a&hd heat conduction equation within the solid
using a finite element method (FEM) as shown in EigThese domains are interactively solved to
steady-state through a time-marching algorithm.

Interface
External “0_”
BC 1 <=1 Qeonv
: — v

|
r—eo- - o- -o
J -2 -1
<+“—>

Ays
Solid (-) Fluid (+)

Figure 1 - Schematic of the fluid-solid interactiorthe 1D model problem

2.2.Fluid-solid interface treatment

2.2.1.Without radiation

The fluid and solid domains are thermally coupladotigh a common interface and alternately
integrated forward in time on the basis of a partgd approach. We assume that the convection term
is negligible in the first fluid cell. Simply statethere is no velocity component normal to thedflu
solid (F-S) interface in 2D/3D flows. At this inface, a general Robin transmission condition is
applied. In what follows, a common unit normal weds adopted. This vector points towards the
inward normal of the fluid domain (See Fig.1). TRebin boundary condition, also known as the
mixed boundary condition or a boundary conditiorthaf third kind is a linear relationship between
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the heat flux and the temperature [10][26][29]. Wihe convention signs just adopted, the Robin
boundary condition on the fluid side becomes

G¢ +asT; =g, +adT; 1)
and on the solid side

as_affs:qf —a;Ty (2
whereq is the heat fluxT the temperature angr, ,a,) are coupling coefficients. Quantities with the
superscript (*) are the sought valugs.= q,, = -K; 0T, /av is the normal heat flux whene is the

inward normal to the fluid domain. Similarlg, =q,. =-K,dT,/dv, wherev is the outward normal
to the solid domairK is the thermal conductance defined in the flunitéi volume model by
K
K = 3
Ty, ®3)
with 41=%2 ina FVM andA =1 in a FEM, Ay; being the size of the fluid cell adjacent to tredlw
In a steady-state approach, the solid conductance i
k
Kg=—2 4
=R (4)
where A, is the solid thicknesx is the thermal conductivity.

Conditions (1)-(2) act to couple the two models dodhains at the F-S interface. The coefficients
(a;,a.)are two adjustable parameters that control how tsetinsferred across the F-S interface.

They are the key stability factors of any numeriCBlT procedure.

Note that, for simplicity, the Robin conditions @nd (2) are expressed here with no temporal index.
In Appendix A, these conditions are described inrendetails in a sequential approach and the
temporal indices are indicated.

2.2.2. With radiation

In this study, only radiative heat exchanges betwgray walls in transparent media are considered.
Moreover, temperature differences in the computatiomain are assumed sufficiently small to
linearize radiative fluxes.

The general Robin interface condition on the flsie becomes

G +aT; +OF =g +ad, )
and on the solid side

as‘affs“i’?:(Jf‘afo (6)
where o =ge(T{ -T,&) and o =oe(T -T%) are the radiative heat fluxes on the fluid side solid

side respectively, withe, the wall emissivity ando the Stefan—Boltzmann constant equal to

5.67x10° W.m2.K™. If the radiative fluxes can be linearized, theeiface conditions (5) and (6)
become

A

qf +(as +h$)TAf =qs +asTs +h$Tref
4, —(a, +h®) T, =q, —a,T, -h7T,

s 'ref

(7)
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with @R =hR (T, -T) and dF =h}(T; -T,)
and either:hR = ge(T, +T,)(TZ +T%) andhl =ge(T, + T, )(TZ +T%) (exact formulation)
or: hR =4geT?; (linearization).
At convergence, (7) becomes
([ar +nRere ~Teon)]-as)-asm-Tp) =0
([qS _th(Ts Tt )]‘Qf )_af (Ts—=T¢)=0
It is easy to see that the convergence of temperdty =T, ) leads to the heat flux continuity
(gs=q; +h}(T,-T) =0a; +hR(T; -T,,r)) across the interface, provider +a,#0 (andai +i¢0).

f s

(8)

Eq (7) represents the most general form of interfe@nditions in a partitioned approach. This is a
family of schemes depending on two coupling paramsetTwo important aspects are to be
considered at this stage. First, the Robin-Robimd@mns constitute a very large family of potehtia
interface conditions, not necessarily easy to pesince the joint use of two coefficients leadsto
general and complicated relationship between Ha¢icond, if continuity of flux and temperature is
mathematically ensured at convergence, as justiomeat, it is far more complex in a discrete
formulation and multiple solutions depending on ¢bapling coefficients can be obtained. This issue
was largely discussed in [37] without radiation.thViadiation, we have decided to strengthen the
continuity, at every step of the process by impgsirsingle temperature value at the interfaceT;

in the Robin equation of the solid domain. Thug, generic system of Robin equations (7) on both
sides of the interface becomes

qf +(as +h$)ff =0s +asTs +h$Tref (9)

qs —ag -Ics =q; —aq Ty +h§(Tf _Tref)
The current study will focus on a one-coefficieppaach that is much easier to manage. Moreover,
this approach inherently includes either the catynof temperature with a Dirichlet condition or
the continuity of heat flux with a Neumann conditi¢tHowever, the Robin-Robin interface condition
is an avenue that should be explored.

2.3. Dirichlet-Robin interface treatment with radiation

In the current paper, we will focus on the DiridHRobin (D-R) interface approach obtained by
imposing (as,a,) = (»,a,) in (9) which corresponds to a "perfect” conductionhe solid. When the

solid conduction departs significantly from thas@sption, in a solid ceramic material for instance,
effective changes can be made to extend the sdajhe ®@-R conditions so as to continue to retain
this single interface treatment [37][38].

2.3.1. Interface conditions

In the D-R procedure, the temperature coming frown g$olid is applied on the fluid side and a
"relaxed heat flux" is in turn used as a boundanydttion for the solid

T, =T,

R A 10
QS_(af+th)Ts=Qf ~a(T; —h{T o (10)

At this stage, there are considerable benefitsote that the second equation in (10) is computed in
the solid domain. It is then essential to exprésstemperature in the right-hand-side by a solid
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temperature only. Similarly, the radiative heamngfar coefficient can be expressed by a single
temperature i = h =h¥). This leads to

{T} =T,
(11)

qs _(af +hR)-|:s =0Q; —aqTg _hRTref
The latter expression considerably reduces thé-flisolid interpolation error at the interface and

need only to transfer the interpolated heat fluxhe solid. At convergence, it is easy to see that
continuity of heat flux and temperature is obtained

T, =T,
o (12
qS =qf +h (TS _Tref)

whereq; is the spatially interpolated heat flux from th&d grid to the solid grid and similarW~S IS
the spatially interpolated solid temperature reeéiat the fluid interface. Note that the solid

temperature in the second equation contains ne silaceT, is directly available in the solid domain

with no interpolation. Note also that the heat ftransferred to the solid (RHS in the second equati
in (12)) does not need to be linearized sincexécevalue is known at each coupling step.

2.3.2. Amplification factor

Now, a normal mode solution for the case definedheyequations in the discrete model problem is
applied according to the Godunov-Ryabenkii (G-Rpgity analysis. The G-R stability analysis is
very similar to the standard Fourier stability noethexcept that the Fourier analysis ignores
boundary conditions. However, these conditions afégct the stability [31].

The temporal amplification factor may be written(sse details in Appendices A and B):

K -K; —h&¥
—— k¢ (Dy ,z)+(af—f) (13)
161<s+af ﬂKs"-af

where «; is the spatial amplification factor (see Appenéixthat depends on the mesh Fourier

9za;)=

numberD; (defined in the next section) and on the complasiablez. In the denominatorg is a

parameter governing the nature of the BC at therdimit of the solid-J : g=1, if a temperature is
imposed ands =0 if a heat flux is imposed. (see [26] for details).

2.4. Influence of radiation on stability

Thus, it can be seen thgt) is a complicated non-linear equationzinAfter the change of variable
z - 1/z, the functiong becomes holomorphic on the open|z|e=c 1. As aresult, on the basis of the

maximum modulus principle in complex analysis, thaximum value qg| is achieved at the
boundary. Using the maximum modulus principle imptex analysis, it can be demonstrated that
the maximum o‘g(z,af )‘ for |4 =1 is located on the unit circle [26]. Thus

r‘g‘glxq oza,))= r‘g‘alxq oza)|)= r‘gglxﬂg(af ))=max{g) (14)

Actually, on the unit circle, it was shown [26] thhe maximum switches fronz=-1to z=+1 as
a; increases and the amplification factor reboundu@ly. At this point, ma>{}g|} attains its

absolute minimum that is always located in the Ietalmneteg| <1. This intersection identifies the
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existence of a transition between two opposite goBsvitching from the first value to the second
results in a sudden transition in the shape o&thplification factor composed of two half-lines it
a singular point at the intersection of these twanbhes. The first branch is characterized by low

values of a, and the spatial amplification factor, (a,,D; % equal to a specific normalized
Fourier numbemD,

— D,

D= ——
" 14D, + /142D, (15)

where D; is the mesh Fourier numberf:afAt/Ay% . The domain ofd, is D; =0 and the range is
0<D; <1. This branch, associated witt= -1, is time-dependent. For the specific valwue= |, tle
maximum of the amplification factor is easily olnid from (13)
K; (1-D;)+h®
oz =1 E 2T (16)
The second branch is characterized by large vabfes;, and «,(a,,D;)= 1 This branch,
associated with = +1, is time-independent.

In summary, the intersection of these two brandoesbines the advantages of the first two options,
without suffering their disadvantages: the couplprgcess is fast and always stable. This is the
reason why the conditions where this intersecticeucs play a fundamental role in CHT.

Figure 2 shows the temporal amplification factor finree different radiative heat transfer
coefficientsh® =0 (¢ = 0), h® =311 (¢ = 05), h® =498 (£ = 08). All the other parameter values
used to plot these curves are provided in Sectidn 5
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i No radiation
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Figure 2 - Amplification factor of the model probiewnith and without radiation

It can be seen that radiation alters substantidléy quantitative behavior of each curve. The
intercept increases significantly (the exact vabfighe y-intercept is given by (16)), which has a
negative impact on the stability. The same appliethe lower stability bounehaxg|=1 which is
shifted to the right. As a result, the optimal d¢méénts (single coefficients at the junction oéttwo
branches) must also be increased to ensure sw@lgutations with radiation.

With that in mind, Figure 2 brings to light a saligoint. The optimal coefficient with no radiation
representing the absolute minimum of the curve,agbvless than unity, provides potentially

unstable thermal computations with radiationna(){g| >1), represented by the small circles in

Figure 2. The particular conditions necessarylia situation to arise are described in Sectiond a
all the fundamental properties when radiation tgase are given in the next Section.
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2.5. Fundamental properties of thethermal FSI with radiation

2.5.1. Optimal coefficient

It is noteworthy that the modulus of the amplifioat factor goes through an absolute minimum,
denoted a{™ (without radiation) anda$?;(with radiation). In other words, the existence af
transition value fora; can be identified: the shape of the curve of tmgldication factor switches

and rebounds as shown in Figure 2. These valuebeaonveniently represented using a shorthand
notation (See [27][29] and Appendix B)

2
K K _
a%® = f [1+ij _1_i=_f(1_Df) (17)
2 D, D, 2
and
K _
LR zf (L-Dy)+h* (18)

The subscript indicates that the coefficient is calculated ia fluid domain, and transmitted to the
solid. Similarly, the subscriptR denotes that the coefficient is calculated in filnéd including
radiative effects, and then sent to the solid. E).highlights the need of an appropriate definitd

a coupling coefficient for radiation. The multiplgs coupling strategy will be defined in Section 4.

2.5.2. Stability bound

The stability bounda T, is calculated from the condititjng(z,aTi”R =1. After applying a few basic

calculus transformations (see Appendix B), theofelhg expression is obtained

. K _ R K
a™ =—@1-D,)+—-—"= (19)
f-R 2 ( f) 2 2
It is a lower stability bound, i.e., the lowestwalensuring stability. Put another way, all coédfits
lower thana ", lead to a temporal factor greater than unity and ttheoretically to an unstable
behavior.

2.5.3. Numerical Biot number
The stability bound given by Eq. (19) can be retteni

apy =222 (8i, ) (20)
with
K R
Bi, :/31<f5 (1—Df)+/;<s (21

Bi, may be regarded as a local numerical Biot numbeslved in a transient CFD calculation. Let

us recall that the conventional Biot number neeldeat transfer coefficient. This new dimensionless
number, naturally introduced by Eq. (20), is ddfire@ any time in the transient state of a CHT
computation and is a result of the balance betwibertransient fluid and the solid domain. This
demonstrates how stability depends mainly on th® raf thermal resistances, but also on the
dynamics of the transient fluid system via the teraptermD; .

2.5.4. Weak and strong thermal interaction
As the coupling coefficient is always positive, tamnes are clearly identified:
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(1)Bi, <1: the coupling process is staliler ,_, 20
(2)Bi, >1: the coupling procedure exhibits a stability boarit, .

From that, we naturally introduce the "strengththa thermal FSI with radiation:
* Weak interaction:Bi, <1. If this condition holds, the "transient" thernrakistance of
the fluid domain at the shared interface is gre#ttan the resistance offered by the
whole solid domain. Note that this resistance risngly influenced by the time step. A
Dirichlet interface condition on the fluid sidetiserefore appropriate.

* Moderate interactionBi, >1. This means either that the solid thermal gradiemé not
negligible or that the thermal fluid conductancé&iger than that of the solid.

e Strong interactionBi, >>1. In this case, a Dirichlet interface condition wspd on the

fluid does not provide the most efficient solutibtowever, it should be underlined that
there is a powerful argument in favor of the Dilathcondition. Indeed, the term

@-D;) may become small by increasing the coupling peend the strength of the
thermal FSI can therefore be significantly reduced.

2.6. Impact of radiation on stability

2.6.1. Destabilizing effects
Equation (21) can offer precious help to assespdtential influences of each term. It can be seen
that all factors contributing to the increase @f" have a negative impact on stability and the

reverse is also true. On this basis, it is easintterstand and quantify the impact of each terthen
stability coupling with radiation:
K—Zf(l— D;): increasing the fluid conductanck, , has a negative effect on stability (low
Prandtl number, increase of the fluid viscosityalirfiuid cell, ...). However, it should be
kept in mind that the fluid conductance is paireithvthe temporal termi-D;). First,
let's note that
_ Ky
_—1+M
The Fourier numberp;, is thus capable of stabilizing any CHT computatio two ways. First,
even if K; — o whenay; - 0, it can be easily shown that (22) tends towarthigefvalue (see [37]
for more details) given by

Ke _
—-@-Dy) (22)

: K 2k,
lim =
=01+ [1+2D, [2aAt
This shows that even if the term in EQ.23 is insieg asAy, decreases, it reaches a limit. Thus,

accurate conjugate heat transfer solutions thatire@dpigh-resolution CFD meshes can be obtained
with no instabilities. Second, the dynamic condnceadecreases As™*? and thus the time step is
capable of stabilizing most CHT calculations. Tretationship gives us a better understanding of
instabilities due to frequent couplings. An altéiveinterpretation is that the optimal coefficieat

(23)
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inversely proportional to the heat penetration Hem showing that a small diffusion of heat
during At has a destabilizing effect.

R
. h?: this radiative term is always destabilizing ahdre is no temporal counterpart, as

previously, to reduce this effect.

. %: whenk, =k /A, is large, this contributes to strengthening theptiog process since

this solid term reduces the value of™ . This contribution is all the more important
when the solid is a good thermal conductor (largedactivity k,) or when the solid

thickness\is small. Conversely, in the case of a low contidou of the solid term
(ceramics for instance or large solid thicknesabisity issues may arise.

At this point, it is legitimate to wonder at whitheoretical value oh®, the thermal coupling with
radiation becomes unstable if nothing is done t@ td into account. Let us consider that the

coefficienta¢™ (without radiation) is implemented. From the difom of |g| , We obtain

oot —Kf.Bf —O’?pt"'Kf'FhR
CHOR : (24)
Bs+at®
Instability is likely to occur Wherfg| >1, that easily reduces to the following condition
hR > BK, (25)

So, when the radiative heat transfer coefficienmihates the solid thermal conductance, the
coupling process becomes theoretically unstable.

Note that the solid conductance is maximum b1, corresponding to the Dirichlet condition at
the outer boundary, value adopted from now on.

2.6.2. Stabilizing effects

Consider yet again the amplification factor (Eq). Me see that its value for the optimal coeffitien
with radiation is given by
a,opt

opt | — f
‘g(af_R)‘ B Ks+aPs

(26)

This shows th#g(a?’iR)‘ <‘g(a?p‘)‘. This effect can easily be seen in Figure 2, whieeeabsolute

minima of the curves withe >0 are located slightly below that of the curves withradiation
£ =0. Although the differences are small, a slightlgtéa convergence speed is expected, as long as
the optimal coefficients are employed with and withradiation.
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2.7. Summary of the theoretical results
The main results of the stability analysis are samned in Table 1. This table shows the behavior of
the amplification factor (icolumn) as a function of the coupling coefficient ., (1% row). The last

column “conditions” provides the nature of the that F-S interaction: either moderate/strong
interaction @i, >1) or weak interactiongi, <1). Thus, two zones are identified.

The first zone is characterized by a lower stapilimit o7, defined by Eg. (20). The region
a_gr<a"y is unstable (see left-hand part of the 3 curvdSgure 2 with|g|>1). Fora;_, >af"y, the

amplification factor decreases from 1 to a certamt (given by Eq. (26)) and then increases from
this minimum to 1. This limit is provided by the topal coefficient (given by Eq. (18)) and
corresponds to the absolute minimum of the ampliin factor.

The second zone does not exhibit any stabilityricgigtn. In other words, all coupled calculations
performed witha,_; = 0are theoretically stable. The amplification fachas an absolute minimum,

namely wheno ,_ is equal to the optimal coefficient, defined by. ELB).

a 0 a,rfninR a(fo_Plg | condition

Bif <1

g Bi* >1
d — | )| _— }
g(aPs

Table 1- Numerical properties of Dirichlet-Robin BE. o,
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3. CODESAND COUPLING LIBRARY

3.1. Fluid Code: elsA

The fluid code, referred to as tkisAsoftware package (ONERA-Airbus-Safran property)ai
multi-application CFD simulation platform for apgd aerodynamics (internal and external
aerodynamics from the low subsonic to the high sgrec flow regime) and multi-physics, which
capitalizes on the innovative results of CFD reslearErreur! Source du renvoi
introuvable.[40][41][43]. The governing equations are the tidependent Navier-Stokes (NS)
equations which express the conservation lawsemritt the conservation form as

6;\: +[ EﬁF (Wf )] =0 (27)

where w, represents the vector of mass, momentum and erprapytities, F represents the flux

including inviscid and viscous terms. The invistéatms are solved using a second-order upwind
spatial discretization. The viscous terms are disted with a five-point central difference
formulation. The time integration is obtained byiauplicit method.

3.2. Solid Code; Z-set

The solid software package, called Z-set [44], i€omprehensive suite of integrated analysis
programs for general purpose structural analysidy @he thermal solver is employed in the study
presented in this paper. Assuming that there arbeab sources, the temperature distribution within
the solid body is modelled as a balance of thentaétransport governed by

pLoT-0.(kIOT)=0 (28)
where T=T { x,yz) is the unknown temperature field within the bodydak is a thermal

conductivity. In the steady-state CHT procedure wileadopt the steady-state form of (28), i.e. the
Laplace’s equatiodAT = 0

3.3.Radiation Code: ASTRE

ASTRE is a Monte Carlo (MC) radiation transfer cdd®&]. ASTRE was initially developed to
simulate radiative transfers within semi-transparemedia and is used mainly to deal with
combustion applications [46] or atmospheric reestf47].

Since ASTRE includes volume-volume, surface-voluamel surface-surface radiative exchanges,
ASTRE could obviously be used as is, to calculaly the surface-surface (S2S) radiative exchanges
in transparent media. However, this would be gadstly in terms of CPU time since the radiative
power field would be calculated by default over #mire volume of the computational domain,
which is of no use in transparent media. Theref&®TRE was recently optimized to deal more
efficiently with surface-surface radiative exchamge transparent media. It would have been very
simple to use a view factor calculation capabilidyt our goal is to develop a methodology with the
computation codes available at ONERA in order toab&e to apply this methodology to a large
variety of complex configurations.

Several MC methods are available in the ASTRE cptj[49]. In this study, the Emission
Reciprocity Method (ERM), associated with the UmifoDistribution (UD), was used to calculate
the radiative fluxes on the walls. This method &sdd on the reciprocity principle to calculate
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absorbed fluxes and consequently, it has the adgardf being able to perform local calculations by
affecting energy bundles to be emitted only to arrfaces of the mesh. This contrasts with the
classical MC method that calculates radiative fluge all boundaries of the computational domain
after the energy bundles emitted from all boundaaie tracked.

In a Monte Carlo computation, a large number ofgnéundles is emitted and tracked until they are
absorbed. For each energy bundle, two angles adomay chosen by drawing random numbers. At
the end of the simulation, when all the energy besmchave been tracked, the radiative fluxes
computed on the walls are fluxes integrated ovettiedctions (see reference [48] for more details).

3.4. Coupling library

The coupling between the threéorementionedcodes is carried out through the coupling library
CWIPI [50], developed by ONERA. CWIPI (Coupling Witnterpolation Parallel Interface) is a
library that makes it possible to couple an arbjtraaumber of parallel codes with MPI
communications. Coupling is made through an exchage that can be discretized in a different
way on any coupled code. Linear, surface or voleoeplings are available. There is no requirement
for the mesh structure, since CWIPI takes into aotall types of geometrical elements (polygon,
polyhedral).

4. PARTITIONED LOOSE COUPLING STRATEGIES

4.1. Fluid-Radiation algorithm

The coupling between the fluid code and the ragkatiode has first been undertaken. All relevant
information relating to the physical solvers aransmitted via the coupling library. The coupling
scheme is as follows:

- elsA sends to ASTRE the interface temperature

- From this temperature field as BC, ASTRE compthessurface radiative heat flux
- This radiative flux is sent to elsA

- The total heat flux (convective+radiative) isadated by the fluid code

4.2.Fluid-Solid-Radiation algorithm

The sequence of operations in the partitioned phaee is shown in Figure 3 and detailed in
Algorithm-1 for the Dirichlet-Robin interface conidin. This coupling cycle comprises 7 steps. It can
be seen in Figure 3 that it is not exactly a 3-cadepling since the solid solver does not
communicate directly with the radiation code.

The process just described is continued until thaviéi-Stokes solver converges and wall
temperatures and heat fluxes converge, that isthetfollowing tolerance criterion is satisfied

"Tf _Ts" << (29)
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Figure 3 - Algorithm of the Fluid - Solid - Radiati partitioned approach

Algorithm 1 - Schematic of the procedure for the fluid-sobdliation coupling at a given time coupling

@ The fluid solver elsA computes flow and convecfivxes from timet,_ to t, + At

@ elsA sends the surface fluid temperature distitiouto the radiation code ASTRE
® ASTRE computes the radiative fluxes using the mell temperature distribution
@ ASTRE sends the resulting radiative heat fluxesisé

® elsA sends to Z-set the total (convective+rad@theat flux distribution

® Z-set solves a steady-state conduction problem

®@ Z-set sends the interface temperature distributcgisA
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5. AEROTHERMAL TEST CASE WITH RADIATION

5.1. Objective of the test case

In order to illustrate the issues, support thenatamade in Section 2 and validate the resultapalsi
test case with radiating surfaces is consideredplasis is put on the destabilizing and stabilizing
effects of radiation and the potential of the neptirnal coefficient to obtain fast calculations het
presence of radiation. In particular, we would likecheck that:

- a stable and fast converging CHT computationbmdestabilized only by radiation
- the latter case can be stabilized through theotifee coupling coefficiert$”,

- ‘optimal’ CHT with radiation converges slightbster than ‘optimal' CHT without radiation

5.2.Choice of the physical and numerical parameters

The parameters presented in this Section have jpegrosefully selected to maximize the thermal
fluid-structure interaction. To this end, we hawsfprmed the procedure listed below in connection
with the theoretical concepts just presented. Dhiewing three conditions need to be fulfilled:

(1) The fluid-structure coupling is stable and fiiowes ideally without radiatiorﬂ:g(a?p‘)‘ <1)
for e = 0.

(2) In a second step, the addition of radiation ihalestabilize the coupling and the conventional
coupling coefficient must become inoperative ifldes not take into account radiatiﬂ)g(a?"‘) >1)

for a specific value ok > (QThis is theoretically obtained if Condition (25)lds (8 2.6.1).

(3) In a third step, the new coefficient presentedhis study must provide theoretically stable
and fast CHT simulationQ;g(a?’i‘R)‘ <1) for the specific value of considered.

As a result, the physical and numerical paraméiave been specially chosen to satisfy the above
conditions. They are provided in the following TebP, 3, 4, 5 and 6.

Ky Ay Ky Aty

6.47 10° | 4.010° | 3238 | 2.87510
Table 2 - Fluid parameters

kS /\ KS

S

0.5 | 3.01C | 166.0

Table 3 - Solid parameters

e |0. |05 | 08
Thet 1400

h? | 0.0 | 311.0] 498.0
Table 4 - Radiation parameters
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Atc Df Df Kf/Ks Biv a"f“i” a’?pt

6.010" [ 83.0 | 0.856| 19.43| 2.78 150 23p
Table 5 - CHT parameters without radiation

h™ [ B, [apn | a9
0.0 [278] 150 232
311.0 | 4.65| 304| 540

498.0 | 5.77| 395| 730
Table 6 - CHT parameters with rédia

Let us recall that the above-mentioned parameterse heen employed to plot the curves in
Figure 2. As a result, these curves may be coresidas the theoretical representations of the CHT
computations that will be described in this Section

5.3. Geometry and boundary conditions

The turbulent channel configuration is the mostjfiently used geometry implemented in studies of
the near-wall heat transfer and the most accungbeoach is conjugate heat transfer. In this study,
the geometry is an open 2D channel with a rectamgiross section, where heat conduction inside
the heated walls is taken into account. Moreovee two walls facing one another (coupled
interfaces) are radiating. This configuration ispayed in Figure 4.

T =1300 K

. A =3
Adiabatic Wall Solid ; mm

Coupled interface
Buffer Zone Y
— [/ =83 m/s
A7/ 7717774777477 x
b 7 Z ik Fluid Ay =100 mm
170 mm L =350 mm
Coupled interface

Adiabatic Wall

Solid As=3mm

T =1500 K

Figure 4 - Sketch of the CHT geometry and boundanditions

This channel, 350 mm long x 100 mm wide, is bountgdtwo solid plates 3 mm thick. A

temperature of 1300 K is imposed on the upper saréamd 1500K is imposed on the lower surface.
A buffer zone with upper and lower adiabatic wadlplaced upstream to remove the singularity at
the leading edges of the flow channel. Turbulenttia temperature of 1200 K flows from the inlet
(velocity of 83 m/s) to interact and cool the twalid plates (coupled interfaces) before exiting
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(outlet static pressure: 1,01%1Pa). With these conditions, the Reynolds numbaset on the length
of the channel, reaches 510

Figure 5 shows the mesh of the upper solid, agfatte meshes of the fluid domain and the buffer
zone. The fluid mesh has been refined enough inyitieection near the wallly, = 410°m to
correctly capture the flow boundary layer so tyat= . There is also the same strong refinement at
the entrance of the channel flowx, = 410°m. To avoid interpolation issues in the couplingqess,

the three meshes (fluid, solid and radiative) asen@dent at their shared interface. Each solid
domain is composed of rectangular elements, withcéls in they-direction according to a
geometric progression and 76 surface elementsimtbrface in the-direction.

v

L

solid

buffer fluid

Figure 5 - Parts of the meshes of the fluid, safid buffer domains

The fluid problem is solved with an Unsteady RANS®@ach using a Jameson type scheme [51]
and the Spalart-Allmaras turbulence model [52].sThnsteady approach is not the most suitable
method for quickly obtaining steady-state fluid wgamins. However, a constant time step is used
throughout the calculation to reproduce the coodgiof the model problem. The fluid time step

isAt, = 310°s. Concerning the calculation of the radiative flsxethe number of energy
bundlesN;, emitted by each surface elementvas chosen to be 1000. So, the total number of

bundles isN =152 000Qwhich appears to be a good compromise betweamramcand calculation
time, since a 0.01% convergence is obtained.

5.4. Radiative fluxes

As linear interface conditions are needed in thabiBty analysis, the radiative flux has been
linearized around a reference temperature takeéheaaverage of the initial temperatures of the two
walls. However there are two choices. Either thacexXormulation is adopted and thu§ (see

Sections 2.2.1 and 2.3.1) can be regarded as hdadatransient coefficient or a linearization is
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performed. In the latter cask? is constant during the whole coupling processhBotmulations are
provided in Eq. (7).

It would have been possible to adopt the referdaogerature as the temperature of the opposite
wall. However, let us recall that the model problemludes only a single fluid-solid interface.
Strictly speaking, this means that the oppositd i8atot “seen” by this model. In the near futute,
could be possible to extend the model to takeastmunt both walls simultaneously.

5.5.CHT Results

5.5.1. Emissivitye = 05
Figure 6 shows the convergence history for two eslaf the coupling coefficient, by plotting the
L* -—norm of the temperature, i.e. the interface temperatesiduals AT, as a function of the

coupling iteration. In other words, two identicadupled calculations with radiation (emissivity
£ = 05) have been performed. The only difference is tlees of the coupling coefficient which, in
the first case ignores radiation (optimal coeﬁixtie/("p‘)without radiation given by Eq. (17)) and in

the second case takes it into account (optimalficisit () with radiation given by Eq. (18)).

10°

B

- | OV
QL _a.r F

I||_
IL'(1H

" af =

102
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o
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10-3 \’\ N

60 80 1#3["' 20 140
{..mlplnl{:,' Iterations

Ll

e

Figure 6 - Convergence history for CHT with radatie = 0.5)

The first point is that both calculations converBeuring the first 10 coupling iterations the curves
are coincident since radiation is introduced in phecess at the fMiteration. The radiation was not
set up at the beginning of the coupling processibse our objective was to analyze the destabilizing
effect of radiation and it was therefore essentiatigger it separately at a predetermined stejnén
process. At the Il iteration, a sudden increase in temperature rekidis observed. The peak

reached fora, = a!®is the highest and this simulation needs 142 cogptierations to obtain the
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convergenceAT, =10° K. On the contrary, the convergence criterionaistied after 84 coupling

iterations withor, =™, i.e. a gain of 69%. Indeed, the calculation with = o) is the fastest

CHT process, as predicted by the coupling CHT mpdetented in Section 2. However, it should be
noted that, according to this model, the CHT catoh is supposed to be unstable since
‘g(a?’“)‘ >1, the absolute minimum of the curve fo=  @5Figure 2. These discrepancies may be
due to some stabilizing effects generated by tbe,flnot included in the theoretical model. It is

necessary nevertheless to specify that even if exgewice is reached, important oscillations of the
interface temperature are observed during thealnghase of the coupling process for this value.

However, these oscillations are rapidly damped.t@n contrary, forr, = a!®?, the temperature
behavior is oscillation-free. For larger valuesagf, stable CHT computations are obtained, but they

take a little longer. Finally, it is worth mentiowg that if the tolerance level is less, the nunfer
iterations is at least cut by half (see for inseircFigure 6, the number of iterations needecéxin

AT, =107 K or AT, =107 K).

5.5.2. Emissivitys =08
Figure 7 illustrates that for a higher value of thdiation £ = 0.8 convergence is obtained rapidly
when a, =a'® is used, with approximately the same number ofptog iterations as before
(87 iterations). However, now, the interface terap@e residuals increase and as a result, the
radiative calculation witha, :a$°”‘) crashes rapidly. One can see from Figure 2 that th

amplification factor this time is close to 2 andighat this stage, nothing can be done to stalitiee
coupling process.

103

II|T|T| IIII|T|T|_

102

10!

AT,

10°
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O 11 1 N 11
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10

fd
":-"_I‘l'I'ITm] IIIII|'|T| IIIII|T|'| IIII|T|T| TTTT
| 1Ll

20 40 60 80
Figure 7 - Convergence history for CHT with radbatie = 0.8)

To better understand the cause-effect relationshgigieen the coupling model and the coupling
results, Table 7 summarizes the key trends of dkétive effect for the three values of emissivity
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considered and we can see that radiation may plery@al role. It is thus essential to provide an
adequate response to the destabilizing effectcatian.

R | BiR ‘g(a?pt) ‘Q(U?ER)‘ Number of iterations to Number of iterations to
converge witha¢™ converge witha$"y

0. | 2.78) 0.58 0.58 83 83

311.14.65| 1.34 0.35 142 84

498.| 5.77| 1.83 0.26 crash 87

Table 7 - Convarge properties without and with radiation

5.5.3. Stabilizing effect

Despite the contradiction with what has just beaid,sve will now see if the positive effect can be
highlighted, as described theoretically in SecRdh 2. This effect, characterized by a decreasbeof
temporal amplification factor, should be identifiddring the convergence history. For that purpose
two CHT computations have been compared. The &ir# without radiation converging in 83
iterations as mentioned in Table 7 and the CHT adatpn with £ = 08 Figure 8 depicts the
convergence history of these two calculations. Dythe first 10 iterations, the curves are the same
since the radiation has not yet been activatedn Bh&udden peak is observed as soon as the radiatio
is activated. Despite this strong negative effdot, temperature residuals decrease rapidly and the
resulting curve always lies below the curve withmadiation until the tolerance criterion is satsfi
(aT, =107*) and hence fits perfectly with the theoretical mlod
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Figure 8 - Comparison of convergence history forfTGi#th and without radiation

What happens if the tolerance level, adopted urmdWw, becomes more severe? By extending the
convergence level, this question is answered inrg€i§. It is interesting to note that the residuxls
the CHT computation with radiation end up stagmptamoundiT, =10°, while the CHT without

radiation keeps converging.
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Figure 9 - Comparison of convergence history forTG#ith and without radiation

This result does not call into question the matheakamodel but, on the contrary, reinforces its
validity in so far as the CHT calculation with nadration can reach very low convergence levels as
shown in this Figure and as has been observedewiqus studies [29][30]. This is only due to the
number, N, of energy bundles simulated in the radiation cedgch automatically limits the
convergence level of the entire process.

5.5.4. Importance of radiation

The last two figures represent the temperaturellpsoélong the coupling interface (Figure 4) on the
upper face (Figure 10) and the lower face (Figure Mote that the effect of radiation can be very
important and thus not negligible in the thermadige. For example, in this case€  ).8he lower
wall receives a greater amount of heat (an increasé&® K or more) when radiation is taken into
account.
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Figure 10 - Temperature profile along the Upper iRt8rface at convergence
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Figure 11 - Temperature profile along the Lower Fi8rface at convergence

5.6.General remarks

The parameters in this test case have been chgsmifically to provide a significant effect on
stability. When this effect has a small impact, tedel will obviously still work regardless.
However, we now have a fairly good understandinghid behavior and the stability limits are
known. Otherwise, when radiation has a moderastrong destabilizing effect, the situation is more
complicated from a stability point of view, but #lle relevant settings can now be provided to ensur
robust coupled calculations, irrespective of the TCEbnditions. The optimal coefficient will
adaptively adjust to the local conditions. In amge&, whether the radiation impact is big or small,
optimization in terms of convergence and CPU tiniéle automated to a certain degree in a fairly
straightforward manner.
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6. CONCLUSION

A predictive coupling model for steady conjugatatiteansfer problems with radiation was proposed
in this paper. It was derived from a stability aiséd based on the Godunov-Ryabenkii normal mode
theory. The stability bounds, the optimal coeffitee and the main numerical characteristics of the
interface procedures for aerothermal interactiotih wadiation were highlighted and expressed. The
numerical treatment relies on adaptive and locaffaoents. Consequently, arbitrary relaxation
parameters are no longer required in the couplimgguure and oscillation-free coupled solutions
can be obtained. The model presented in this ariglpart of a wider strategy to ensure optimal
treatments for CHT problems. It was shown thatatoln in a transparent medium with gray walls
can be taken into account in a simple and effeatia@ner. In the near future, consideration should
be given to extending this model to semi-transgaredia.

In the CHT test case, emphasis was put on the lkatag nature of radiation and the main
results derived from the mathematical model werdiooed. All the key trends of radiation effects
identified theoretically were recovered and thesptal of the new optimal coefficient to obtaintfas
calculations in the presence of radiation was cordd. It was also checked that ‘optimal' CHT
radiation converges slightly faster, which migh¢rsesurprising. However, the non-linear nature of
the thermal radiation should not be forgotten amgstthe reliability of the use of a linearized
radiative coefficient could be questioned or indated under some circumstances. Nonetheless, the
significant patterns and trends illustrated in théper are particularly valuable in a wide range of
engineering applications where combined heat teamnsf radiation, convection/conduction is
encountered.
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APPENDIX A
Single interface equation for the Dirichlet-Robin boundary condition with radiation

The goal of this Appendix is to determine a singieerface equation for the Dirichlet-Robin
boundary condition with radiation. The temporalemtl [nn+1 in a sequential algorithm is

considered at the fluid-solid interface. It mustreealled here thd ) denotes the sought valde

At time t", on the fluid side, a Robin interface conditioag€q. 1) has the following form :
§rt + ol e (@5 =qn 4 arry (A1)
After completing the previous step, the fluid quiaes are transferred to the solid and implemented
on the right-hand side. A Robin equation is empdbga the solid side of the same interface at time
t"! (see Eq. 2)
agﬂ _ a?+1fsn+1 - qrf1+1 _ a?+1-|-fn+1 " (¢§)n+1 (A'2)
The radiative fluxes are linearized (see Eq. 9)thngd the interface conditions become
677+ (ar + hR) TP = o + Ty + T, s
GQ” _a?+l-|'—‘sn+1 — qrf1+1 _a?+l-|—fn+l + hs(-l—fnﬂ _Tref) ( - )
With ®R =h¥(T, -T,,;) and e} =h}(T, -T,).
The system (A-3) represents the general formulatiothe Robin-Robin interface conditions. From
now on, we will consider only a Dirichlet boundargndition in the fluid domain. This condition is
directly obtained by imposing, =« . Then, expressing the heat fluxes in terms of theperature,

(A-3) becomes
-Iifn+1 :Tsn
oT M . . (A-4)
af - (0’? t- hs)Tfn t- thTref
14
Wherev is the unit normal vector at the fluid-solid in&cg, i.e. pointing to the inward normal of the
fluid (see Figure 1). For easier reading, the ssgp@ts n and n+1 will now be removed in the
coefficientx; , K, anda; .

0 ~
_ Kn_ _a,n+1:|-|-n+1 =—K n+l
|: s v f s f

At this stage, it is worth remembering that the peraturest, and T; are located on either side of

the same interfage=0. In other words;T, =T,_and T; =T,, . As the derivatives(;)—v at the interface

are approximated by one-sided differences, (A-4pbees
Tt =10

(KS e )-I:On_ﬂ _A/]_Sf‘Tl = (a'f -K¢ - hE)Tonfl + KT+ T,
Y,

ref
s

(A-5)

. Thus (A-5) can be rewritten

Since a steady-state is considered on the sol«'ﬂIﬁ'FgJ_T—‘l =T°‘Ai
Ys

s
-|:0n++1 - TOn— (A 6)
('BKS + af )-fon_+l = (af - Kf - hSR)TOn++1 +K fT1n+l + ﬁKsT—J + hsTref

This system becomes
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-|:0n++1 = TOn— A-7
(,BKS +af) o (af “K, - hSR)TOn++1 KT 4Gy (A-7)
WhereG,,, is a constant term defined Iy, = AK T_; +hiT -

Let us remind here, that the coefficieatis a dimensionless number that can be thoughsd a

simplified representation of the outer boundarydibon -J of the solid domain. If a temperature is
imposed at this limit, thea=1. See [26] for more details.

Substituting the definition ofi* into the second equation of (A-7), we find
(ﬁKs +a; )-I:On—Jrl = "'KlenJrl + (af - Kf - th)TOn— + Gext (A'8)
We therefore arrive at

(a'f -K¢ =hf

) Tol + Cext (A-9)
K

n+l _ n+l
T =T

At this point, it must be emphasized that a corisfdays no role in the normal mode stability
analysis and thus the terg,,can be removed. Finally, the following single iféee equation is
obtained

Tt = AT + BT (A-10)
_ _nhR
With A=t Bz(‘”fK—fhs) K=K +a (A-11)
K K s f
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APPENDIX B
Stability Analysis

B.1 Link between the fluid and solid temporal afigation factor

The stability analysis is based on the Godunov &lsenkii theory. We seek normal mode solutions
to the equation (A-10) of the form

] 217, j>0
TJ = (B'l)

n,j ;
ZoKg 10

Where z is the "temporal” amplification factor ands the "spatial" amplification factor.

Substitution of the normal mode solution (B-1) inb@ continuity of temperature at the fluid-solid
interface (TO'L+1 :TO”_) leads to

2=z = ‘zf‘=

Zg

=l (B-2)

B.2. Characteristic equation in the steady soligném
Introducing the second equation of (B-1) into ttagplace equation solved in the solid domain yields

kZ-2k,+1=0 j<0 (B-3)

Thus the trivial solutiork, =1 is obtained, which means that there is no spatiglification in the
solid domain.

B.3. Characteristic equation in the transient fluidmain

In the intervaln n+1], the fluid solution is advanced fromi to t"*and a new temperature field is
calculated on the basis of a forward implicit sckein the first grid cell adjacent to the interfatiee
following discrete equation is solved

-I—]_r1++11 _Tjn+l - Df (Tjn++11 —2T1n+1 +-|—jn+1) (B'4)
Substitution of the normal mode solution (B-1) itiics equation leads to

K? —(2+z—_1}g +1=0 (B-5)

Dz

There is only one acceptable solution to this eqoagiven by the choice of the root with the minus
sign

2
Kf(Df,z)zé 2+é—"i— [2+é"ﬂ -4 (B-6)
f f

From (B-6), we can see that the values of the cermfunction,«; , at the specific pointz = +1 and
z=-1 are real and equal to
ki (Ds,z=+) =1
{ f Ay - (B-7)
K¢(D¢,z=-1) =Dy

The definition of the normalized Fourier numlris given by (15).
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B.4. Temporal amplification factor of the coupledigem
Now, inserting the normal mode solution (B-1) itbe single interface condition given in Equation
(A-10), we readily obtain the temporal amplificatitactor for the coupled model problem

z=9(z,a:)=Ak;(D;,2)+B (B-8)
With «; given by (B-6). The coefficients A and B are defir®y (A-11).

B.5. Application to the Dirichlet-Robin interfaceraition

B.5.1. Temporal Amplification factor
From (B-8) and (A-11), it is straightforward to abt the temporal amplification factor

K a; —-K; —hf
dza;)= ,B’Kslaf Kt (Df-Z)*'(fT:af) (B-9)

The expression given by (13) is recovered
B.5.2. Spatial amplification factor
From (A-10) we obtain

-I—On_+1 B T1n+1

L =A +B (B-10)

Ton_ Ton_

The left-hand side of equation (B-10) represents difinition of the temporal amplification
factorz. As a result, from (B-8), another simple expressib the spatial amplification factor in the
fluid domain may readily be expressed

-I—n+l Tn+l
Ky == (B-11)
T Tor

B.5.3. Optimal coefficient

The amplification factor is composed of two haifds with a singular point at the intersection of
these two lines defined by

|oz=1a,)=|o(z=~1a,) (B-12)
Using the definition given by (B-8) in its simpleri, (B-12) becomes
|Ax( (Df =1.2)+ B|=|Ax( (D; =-12) +§] (B-13)
Substituting the definition ok; given by (B-7), (B-13) becomes
|A+B|=|AD; +§ (B-14)
Thus, a remarkable condition for a transition tourds obtained for
@+D;)K; +2la, -K, -h¥)=0 (1=3)

The unique coefficient satisfying (B-15), is callad optimal coefficient since the temporal
amplification factor attains an absolute minimumtioa unit circle. From (B-15) we obtain
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a, =a® =K—2f(1—5f)+hsR (B-16)

The expression given by (18) is recovered.

B.5.4. Stability limit
The stability bound is obtained fpg(z,a; ,a,)|=1. Thus from (B-8)

|Ak((D¢,2)+ B[ =1 (B-17)
This relationship may occur only in the unstableeand thus =-1andx; =D, . As a result
(B-17) becomes

AD; +B=-1 (B-18)
And consequently
Kfﬁf_(Kf _af+h§)=_(ﬂ<s+af) (B'lg)
Finally, the stability limit is
min K N th S
af—R:Tf(l_Df)"'?_ﬁKT (B)2

The expression given by (19) is recovered.
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