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INTRODUCTION

The coupling of heat transfer at a fluid-solid interface is usually known as conjugate heat transfer (CHT) [START_REF] Perelman | On conjugated problems of heat transfer[END_REF] [START_REF] Luikov | Heat transfer from a plate in a compressible gas flow[END_REF]. CHT is used to analyze thermal interaction processes when the two modes of heat transfer -convection and conduction -are considered simultaneously. In recent years, the numerical analysis of CHT processes, without thermal radiation, has received extensive attention and many different numerical approaches for coupled problems have been proposed, on the basis of a normal mode analysis [START_REF] Giles | Stability Analysis of Numerical Interface Conditions in Fluid-Structure Thermal Analysis[END_REF][4] [START_REF] Henshaw | A composite grid solver for conjugate heat transfer in fluidstructure systems[END_REF][6] [START_REF] Joshi | Stability Analysis of a Partitioned Fluid-Structure Thermal Coupling Algorithm[END_REF], the energy method [START_REF] Lindström | A stable and high-order conjugate heat transfer problem[END_REF], a matrix analysis [START_REF] Roux | Domain Decomposition Methods Methodology with Robin Interface Matching Conditions for Solving Strongly Coupled Fluid-Structure Problems[END_REF], a steady-state approach [START_REF] Verstraete | Stability analysis of partitioned methods for predicting conjugate heat transfer[END_REF], or a frequency-domain method [START_REF] He | Unsteady conjugate heat transfer modeling[END_REF]. In the context of "Large Eddy Simulation"-CHT problems, different acceleration techniques have been proposed [START_REF] Duchaine | Development and Assessment of a Coupled Strategy for Conjugate Heat Transfer with Large Eddy Simulation: Application to a Cooled Turbine Blade[END_REF][13][14] [START_REF] Koren | Self-adaptive coupling frequency for unsteady coupled conjugate heat transfer simulations[END_REF].

However, radiation plays a key role since it is the dominant mode of heat transfer in participating media with applications involving high temperatures. Thus, thermal radiation coupled with convection and conduction can have extensive real-world applications when accurate heat transfer predictions are needed, such as reentry vehicles, turbomachinery, high temperature heat exchangers, combustion chambers, furnaces, etc.

Heat transfer involving simultaneously radiation, convection and conduction has been studied for a long time using approaches based on simple mathematical models. For instance, Goulard [START_REF] Goulard | Energy transfer in Couette flow of a radiant and chemically reacting gas[END_REF] studied the interaction of radiation and conduction in the Couette flow. Adrianov and Shorin [START_REF] Adrianov | Radiant heat transfer in a flowing radiating medium[END_REF] treated the case of coupled radiation and convection for a gray gas of a laminar flow in a tube. Flow between parallel plates was also considered and the effects of coupled radiation, conduction, and convection were treated by Einstein [START_REF] Einstein | Radiant heat transfer to absorbing gases enclosed in a circular pipe with conduction, gas flow, and internal heat generation[END_REF]. Desoto [START_REF] Desoto | Coupled radiation, conduction and convection in entrance region flow[END_REF] developed an analytical procedure to investigate the interaction or coupling of radiation with the conduction and convection mechanisms in the entrance region of a black wall tube. In recent years, multidimensional approaches combining CFD, conjugate heat transfer and radiative heat transfer have been employed more frequently. These coupled calculations with boundary resolving meshes, produce results that provide a deep insight into CHT phenomena. For instance, Amaya et al. [START_REF] Amaya | Unsteady coupled convection, conduction and radiation simulations on parallel architectures for combustion applications[END_REF] [21] studied combustion applications on parallel computers. Duchaine et al. presented the partitioned coupling strategy [START_REF] Duchaine | Development and assessment of a coupled strategy for conjugate heat transfer with Large Eddy Simulation. Application to a cooled turbine blade[END_REF] as well as the high performance computing criteria for coupled simulations [START_REF] Duchaine | Analysis of high performance conjugate heat transfer with the OpenPALM coupler[END_REF]. A similar coupled approach has been adopted by Koren et al. [START_REF] Koren | Multiphysics Simulation Combining Large-Eddy Simulation, Wall Heat Conduction and Radiative Energy Transfer to Predict Wall Temperature Induced by a Confined Premixed Swirling Flame[END_REF] to predict the wall temperature distribution of a confined premixed swirling flame, using a dynamical coupling period. Mercier et al. [START_REF] Mercier | 3D full predictive thermal chain for gas turbine combustor metal temperature[END_REF] presented a coupling methodology to forecast the wall temperature distribution in a gas turbine combustor. Three different codes were used to deal with convection, conduction and radiation.

The most fundamental aspect in the coupling implementation is the choice of efficient conditions to connect the various physical phenomena. This is all the more important since these phenomena occur generally on a wide range of spatial and temporal scales. Thus, the interface conditions have a direct impact on the numerical properties of the coupling methodology. Our goal in this paper is to develop interface treatments of CHT problems with radiation on the basis of simple mathematical models, for a better handling of multidimensional codes in a coupled manner to solve multiphysics applications.

In CHT analysis, adaptive coupling coefficients have been highlighted and expressed for the first time by Errera and Chemin [START_REF] Errera | Optimal solutions of numerical interface conditions in fluidstructure thermal analysis[END_REF] for thermal fluid-structure interaction (FSI) in steady state problems and subsequent studies have been carried out [START_REF] Errera | Comparative study of coupling coefficients in Dirichlet-Robin procedure for fluid-structure aerothermal simulations[END_REF][28] [START_REF] Moretti | Stability, convergence and optimization of interface treatments in weak and strong thermal fluid-structure interaction[END_REF]. For unsteady solid heat transfer, on the basis of the quasi-steady assumption, these coefficients are quite different and provided in [START_REF] Errera | A coupling approach to modeling heat transfer during a full transient flight cycle[END_REF]. These coefficients have been obtained from a 1D coupled model via a normal mode stability analysis based on the theory of Godunov-Ryabenkii [START_REF] Sk | The theory of difference schemes. An introduction[END_REF][32] [START_REF] Osher | Systems of difference equations with general homogeneous boundary conditions[END_REF][34] [START_REF] Gustafsson | The Godunov-Ryabenkii condition: the beginning of a new stability theory[END_REF]. The performance of these interface methods within the framework of Dirichlet-Robin boundary conditions were tested recently either in academic test cases [29] [30] or in an industrial furnace [START_REF] Khoury | Efficiency of coupling schemes for the treatment of steady state fluid-structure thermal interactions[END_REF] and the relevance of the predictive model was fully confirmed.

The previous models were devoted to CHT analysis without radiation. The primary goal of the current paper is to perform an extensive stability analysis including radiative phenomena. A predictive 1D model is essential to explaining and quantifying the major issues pertaining to convergence and stability in coupled problems. This will be done by coupling three independent process models: the fluid model, the solid model, and radiation. The key issue in the coupling implementation is the interface condition. This condition has a direct impact on the numerical properties of the coupling methodology. Most of the interface numerical treatments in CHT problems are based on a Dirichlet transmission condition where temperature is prescribed on the fluid side and thus this condition will be adopted and illustrated in this paper.

The objective of this paper is to establish a numerical predictive model, stable and rapidly convergent for thermal coupling problems with radiation and based on a coupling approach in a partitioned strategy. Our goal is to provide the main parameters that control the coupling process and to express the coefficients that guarantee unconditional stability. Radiative exchanges between gray walls in transparent media are considered. Typical applications in the aerospace industry can be found in high temperature environments such as a jet engine combustor with hot external walls of the liner radiating on the internal wall of the casing.

This paper is structured as follows. First, the numerical model for CHT with radiation is outlined and the main parameters are provided and described (Section 2). Then, the numerical tools used in this study are briefly presented (Section 3). The following paragraph details the fluid-solid-radiation algorithm (Section 4). The numerical coupling procedure arising from the model is then applied to analyze the thermal interaction in a simple geometry with strong thermal fluid-solid interaction (Section 5). Finally, some concluding remarks are drawn. The most efficient way to compute a numerical solution of the heat equation to a steady-state, provided the boundary conditions are time independent, is to consider a second order ordinary differential equation (Laplace's equation) and to solve for the temperature. A temporal algorithm would be an unnecessarily long procedure for the same result. As a consequence, only steady-state solid heat conduction may be considered. On the contrary, the Navier-Stokes equations are generally solved to steady-state by a temporal scheme. Thus, if these strategies perform well as single subsystems, they should be taken together and assembled in a multiphysics approach. However, solving Laplace's equation at each time step will change the solution too rapidly for stability to be maintained. In the current study, an optimal interface condition with remarkable stability properties is provided.

COMPUTATIONAL MULTIPHYSICS

Model problem

Consider two finite domains with a common interface. The equations for the fluid domain are discretized using a finite volume method (FVM) and the heat conduction equation within the solid using a finite element method (FEM) as shown in Fig. 1. These domains are interactively solved to steady-state through a time-marching algorithm.

Fluid-solid interface treatment

2.2.1.Without radiation

The fluid and solid domains are thermally coupled through a common interface and alternately integrated forward in time on the basis of a partitioned approach. We assume that the convection term is negligible in the first fluid cell. Simply stated, there is no velocity component normal to the fluidsolid (F-S) interface in 2D/3D flows. At this interface, a general Robin transmission condition is applied. In what follows, a common unit normal vector is adopted. This vector points towards the inward normal of the fluid domain (See Fig. 1). The Robin boundary condition, also known as the mixed boundary condition or a boundary condition of the third kind is a linear relationship between External BC
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Interface "0" [START_REF] Moretti | Stability, convergence and optimization of interface treatments in weak and strong thermal fluid-structure interaction[END_REF]. With the convention signs just adopted, the Robin boundary condition on the fluid side becomes

s s s f s f T q T q α α + = + ˆ (1)
and on the solid side

f f f s f s T q T q α α - = - ˆ ( 2 
)
where q is the heat flux, T the temperature and ) , ( 

∂ ∂ - = = + f f f T K q q 0
is the normal heat flux where ν is the inward normal to the fluid domain. Similarly,

ν ∂ ∂ - = = - s s s T K q q 0
, where ν is the outward normal to the solid domain. K is the thermal conductance defined in the fluid finite volume model by

f f f y k K ∆ = λ (3) 
with

2 1 = λ in a FVM and 1 = λ in a FEM, f y ∆
being the size of the fluid cell adjacent to the wall. In a steady-state approach, the solid conductance is

s s s k K Λ = (4)
where s Λ is the solid thickness. k is the thermal conductivity.

Conditions (1)-( 2) act to couple the two models and domains at the F-S interface. The coefficients ) , ( s f α α are two adjustable parameters that control how heat is transferred across the F-S interface. They are the key stability factors of any numerical CHT procedure.

Note that, for simplicity, the Robin conditions (1) and (2) are expressed here with no temporal index. In Appendix A, these conditions are described in more details in a sequential approach and the temporal indices are indicated.

With radiation

In this study, only radiative heat exchanges between gray walls in transparent media are considered. Moreover, temperature differences in the computation domain are assumed sufficiently small to linearize radiative fluxes.

The general Robin interface condition on the fluid side becomes

s s s R f f s f T q T q α α + = Φ + + ˆ (5) 
and on the solid side

f f f R s s f s T q T q α α - = Φ - - ˆ (6) 
where

) ( 4 4 ref f R f T T - = Φ σε and ) ( 4 4 ref s R s T T - = Φ σε
are the radiative heat fluxes on the fluid side and solid side respectively, with ε , the wall emissivity and σ the Stefan-Boltzmann constant equal to 5.67×10 -8 W.m -2 .K -4 . If the radiative fluxes can be linearized, the interface conditions (5) and ( 6) become ( )
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(exact formulation) or: At convergence, [START_REF] Joshi | Stability Analysis of a Partitioned Fluid-Structure Thermal Coupling Algorithm[END_REF] becomes

[ ] ( ) [ ] ( )      = - - - - - = - - - - + 0 ) ( ) ( 0 ) ( ) ( f s f f ref s R s s f s s s ref f R f f T T q T T h q T T q T T h q α α (8)
It is easy to see that the convergence of temperature (

s f T T = ) leads to the heat flux continuity ( ) ( ) ( ref f R f f ref s R s f s T T h q T T h q q - + = - + =
) across the interface, provided

0 ≠ + s f α α ( and 
0 1 1 ≠ + s f α α
).

Eq [START_REF] Joshi | Stability Analysis of a Partitioned Fluid-Structure Thermal Coupling Algorithm[END_REF] represents the most general form of interface conditions in a partitioned approach. This is a family of schemes depending on two coupling parameters. Two important aspects are to be considered at this stage. First, the Robin-Robin conditions constitute a very large family of potential interface conditions, not necessarily easy to set up since the joint use of two coefficients leads to a general and complicated relationship between both. Second, if continuity of flux and temperature is mathematically ensured at convergence, as just mentioned, it is far more complex in a discrete formulation and multiple solutions depending on the coupling coefficients can be obtained. This issue was largely discussed in [START_REF] Errera | A single stable scheme for steady conjugate heat transfer problems[END_REF] without radiation. With radiation, we have decided to strengthen the continuity, at every step of the process by imposing a single temperature value at the interface

f s T T =
in the Robin equation of the solid domain. Thus, the generic system of Robin equations [START_REF] Joshi | Stability Analysis of a Partitioned Fluid-Structure Thermal Coupling Algorithm[END_REF] on both sides of the interface becomes ( )
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The current study will focus on a one-coefficient approach that is much easier to manage. Moreover, this approach inherently includes either the continuity of temperature with a Dirichlet condition or the continuity of heat flux with a Neumann condition. However, the Robin-Robin interface condition is an avenue that should be explored.

Dirichlet-Robin interface treatment with radiation

In the current paper, we will focus on the Dirichlet-Robin (D-R) interface approach obtained by imposing ) , ( ) , (

f f s α α α ∞ =
in (9) which corresponds to a "perfect" conduction in the solid. When the solid conduction departs significantly from that assumption, in a solid ceramic material for instance, effective changes can be made to extend the scope of the D-R conditions so as to continue to retain this single interface treatment [START_REF] Errera | A single stable scheme for steady conjugate heat transfer problems[END_REF] [START_REF] Salem | Adaptive diffusive time-step in conjugate heat transfer interface conditions for thermal-barrier-coated applications[END_REF].

Interface conditions

In the D-R procedure, the temperature coming from the solid is applied on the fluid side and a "relaxed heat flux" is in turn used as a boundary condition for the solid [START_REF] Verstraete | Stability analysis of partitioned methods for predicting conjugate heat transfer[END_REF] At this stage, there are considerable benefits to note that the second equation in [START_REF] Verstraete | Stability analysis of partitioned methods for predicting conjugate heat transfer[END_REF] is computed in the solid domain. It is then essential to express the temperature in the right-hand-side by a solid temperature only. Similarly, the radiative heat transfer coefficient can be expressed by a single temperature (
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. This leads to
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The latter expression considerably reduces the fluid-to-solid interpolation error at the interface and need only to transfer the interpolated heat flux to the solid. At convergence, it is easy to see that continuity of heat flux and temperature is obtained

     - + = = ) ( ~ref s R f s s f T T h q q T T (12)
where f q ~ is the spatially interpolated heat flux from the fluid grid to the solid grid and similarly s T ~is the spatially interpolated solid temperature received at the fluid interface. Note that the solid temperature in the second equation contains no tilde since s T is directly available in the solid domain with no interpolation. Note also that the heat flux transferred to the solid (RHS in the second equation in ( 12)) does not need to be linearized since its exact value is known at each coupling step.

Amplification factor

Now, a normal mode solution for the case defined by the equations in the discrete model problem is applied according to the Godunov-Ryabenkii (G-R) stability analysis. The G-R stability analysis is very similar to the standard Fourier stability method except that the Fourier analysis ignores boundary conditions. However, these conditions may affect the stability [START_REF] Sk | The theory of difference schemes. An introduction[END_REF].

The temporal amplification factor may be written as (see details in Appendices A and B):

( ) f s R s f f f f f s f f K h K z D K K z g α β α κ α β α + - - + + = ) , ( ) , ( (13) 
where f κ is the spatial amplification factor (see Appendix B) that depends on the mesh Fourier number f D (defined in the next section) and on the complex variable z. In the denominator, β is a parameter governing the nature of the BC at the outer limit of the solid J -: [START_REF] Errera | Optimal solutions of numerical interface conditions in fluidstructure thermal analysis[END_REF] for details).

1 = β , if a temperature is imposed and 0 = β if a heat flux is imposed. (see

Influence of radiation on stability

Thus, it can be seen that ) . As a result, on the basis of the maximum modulus principle in complex analysis, the maximum value of g is achieved at the boundary. Using the maximum modulus principle in complex analysis, it can be demonstrated that the maximum of ) , (

f z g α for 1 ≥ z is located on the unit circle [26]. Thus ( ) ( ) ( ) ( ) g g z g z g f z f z f z max ) ( max ) , ( max ) , ( max 1 1 1 = = = = = ≥ α α α (14)
Actually, on the unit circle, it was shown [START_REF] Errera | Optimal solutions of numerical interface conditions in fluidstructure thermal analysis[END_REF] that the maximum switches from . This intersection identifies the existence of a transition between two opposite zones. Switching from the first value to the second results in a sudden transition in the shape of the amplification factor composed of two half-lines with a singular point at the intersection of these two branches. The first branch is characterized by low values of f α and the spatial amplification factor ) , (

f f f D α κ is equal to a specific normalized Fourier number f D f f f f D D D D 2 1 1 + + + = (15)
where f D is the mesh Fourier number

2 f f f y t a D ∆ ∆ = . The domain of f D is 0 ≥ f D
and the range is

1 0 < ≤ f D
. This branch, associated with

1 - = z
, is time-dependent. For the specific value 0 = f α , the maximum of the amplification factor is easily obtained from ( 13)

s R f f K h D K z g + - = ) 1 ( ) 0 , ( (16) 
The second branch is characterized by large values of f α and

1 ) , ( = f f f D α κ . This branch, associated with 1 + = z , is time-independent.
In summary, the intersection of these two branches combines the advantages of the first two options, without suffering their disadvantages: the coupling process is fast and always stable. This is the reason why the conditions where this intersection occurs play a fundamental role in CHT.

Figure 2 shows the temporal amplification factor for three different radiative heat transfer coefficients )

0 ( 0 = = ε R h , ) 5 . 0 ( 311 = = ε R h , ) 8 . 0 ( 498 = = ε R h
. All the other parameter values used to plot these curves are provided in Section 5.2.

It can be seen that radiation alters substantially the quantitative behavior of each curve. The yintercept increases significantly (the exact value of the y-intercept is given by ( 16)), which has a negative impact on the stability. The same applies to the lower stability bound,

1 max = g
which is shifted to the right. As a result, the optimal coefficients (single coefficients at the junction of the two branches) must also be increased to ensure stable computations with radiation.

With that in mind, Figure 2 brings to light a salient point. The optimal coefficient with no radiation, representing the absolute minimum of the curve, always less than unity, provides potentially unstable thermal computations with radiation ( g max >1), represented by the small circles in Figure 2. The particular conditions necessary for this situation to arise are described in Section 5 and all the fundamental properties when radiation takes place are given in the next Section. 

Fundamental properties of the thermal FSI with radiation

Optimal coefficient

It is noteworthy that the modulus of the amplification factor goes through an absolute minimum, denoted opt f α (without radiation) and opt R f -α (with radiation). In other words, the existence of a transition value for f α can be identified: the shape of the curve of the amplification factor switches and rebounds as shown in Figure 2. These values can be conveniently represented using a shorthand notation (See [START_REF] Errera | Comparative study of coupling coefficients in Dirichlet-Robin procedure for fluid-structure aerothermal simulations[END_REF][29] and Appendix B)

) 1 ( 2 1 1 1 1 2 2 f f f f f opt f D K D D K - = - -         + = α (17) and R f f opt R f h D K + - = - ) 1 ( 2 α (18)
The subscript f indicates that the coefficient is calculated in the fluid domain, and transmitted to the solid. Similarly, the subscript f-R denotes that the coefficient is calculated in the fluid including radiative effects, and then sent to the solid. Eq.( 18) highlights the need of an appropriate definition of a coupling coefficient for radiation. The multiphysics coupling strategy will be defined in Section 4.

Stability bound

The stability bound min

R f - α is calculated from the condition 1 ) , ( min = -R f z g α
. After applying a few basic calculus transformations (see Appendix B), the following expression is obtained

2 2 ) 1 ( 2 min s R f f R f K h D K β α - + - = - (19)
It is a lower stability bound, i.e., the lowest value ensuring stability. Put another way, all coefficients lower than min R f -α lead to a temporal factor greater than unity and thus theoretically to an unstable behavior.

Numerical Biot number

The stability bound given by Eq. ( 19) can be re-written ( )

1 2 min - = - ν β α Bi K s R f (20) with s R f s f K h D K K Bi β β ν + - = ) 1 ( (21) 
ν Bi may be regarded as a local numerical Biot number involved in a transient CFD calculation. Let us recall that the conventional Biot number needs a heat transfer coefficient. This new dimensionless number, naturally introduced by Eq. [START_REF] Amaya | Unsteady coupled convection, conduction and radiation simulations on parallel architectures for combustion applications[END_REF], is defined at any time in the transient state of a CHT computation and is a result of the balance between the transient fluid and the solid domain. This demonstrates how stability depends mainly on the ratio of thermal resistances, but also on the dynamics of the transient fluid system via the temporal term f D .

Weak and strong thermal interaction

As the coupling coefficient is always positive, two zones are clearly identified:

A Numerical Predictive Model (1) 1 < ν Bi : the coupling process is stable 0 ≥ ∀ -R f α (2) 1 > ν Bi : the coupling procedure exhibits a stability bound min R f - α .
From that, we naturally introduce the "strength" of the thermal FSI with radiation:

• Weak interaction:

1 < ν

Bi

. If this condition holds, the "transient" thermal resistance of the fluid domain at the shared interface is greater than the resistance offered by the whole solid domain. Note that this resistance is strongly influenced by the time step. A Dirichlet interface condition on the fluid side is therefore appropriate.

• Moderate interaction: 1 > ν Bi
. This means either that the solid thermal gradients are not negligible or that the thermal fluid conductance is larger than that of the solid.

• Strong interaction:

1 >> ν Bi . In this case, a Dirichlet interface condition imposed on the fluid does not provide the most efficient solution. However, it should be underlined that there is a powerful argument in favor of the Dirichlet condition. Indeed, the term

) 1 ( f D -
may become small by increasing the coupling period and the strength of the thermal FSI can therefore be significantly reduced.

Impact of radiation on stability

2.6.1. Destabilizing effects Equation ( 21) can offer precious help to assess the potential influences of each term. It can be seen that all factors contributing to the increase of min f α have a negative impact on stability and the reverse is also true. On this basis, it is easy to understand and quantify the impact of each term in the stability coupling with radiation:

• ) 1 ( 2 f f D K -
: increasing the fluid conductance, f K , has a negative effect on stability (low Prandtl number, increase of the fluid viscosity, small fluid cell, ...). However, it should be kept in mind that the fluid conductance is paired with the temporal term

) 1 ( f D - . First, let's note that f f f f D K D K 2 1 1 ) 1 ( 2 + + = - (22) 
The Fourier number, f D , is thus capable of stabilizing any CHT computation in two ways. First, even if

∞ → f K when 0 → ∆ f y
, it can be easily shown that [START_REF] Duchaine | Development and assessment of a coupled strategy for conjugate heat transfer with Large Eddy Simulation. Application to a cooled turbine blade[END_REF] tends toward a finite value (see [START_REF] Errera | A single stable scheme for steady conjugate heat transfer problems[END_REF] for more details) given by

t a k D K f f f f ∆y f ∆ = + + → 2 2 2 1 1 lim 0 (23)
This shows that even if the term in Eq.23 is increasing as f y ∆ decreases, it reaches a limit. Thus, accurate conjugate heat transfer solutions that require high-resolution CFD meshes can be obtained with no instabilities. Second, the dynamic conductance decreases as 2 1 -∆t and thus the time step is capable of stabilizing most CHT calculations. This relationship gives us a better understanding of instabilities due to frequent couplings. An alternative interpretation is that the optimal coefficient is inversely proportional to the heat penetration depth

t a f ∆ 2
showing that a small diffusion of heat during t ∆ has a destabilizing effect.

• 2 R h : this radiative term is always destabilizing and there is no temporal counterpart, as previously, to reduce this effect.

•

2 s K β : when s s s k K Λ =
is large, this contributes to strengthening the coupling process since this solid term reduces the value of min f α . This contribution is all the more important when the solid is a good thermal conductor (large conductivity s k ) or when the solid thickness s Λ is small. Conversely, in the case of a low contribution of the solid term (ceramics for instance or large solid thickness) stability issues may arise.

At this point, it is legitimate to wonder at which theoretical value of R h , the thermal coupling with radiation becomes unstable if nothing is done to take it into account. Let us consider that the coefficient opt f α (without radiation) is implemented. From the definition of g , we obtain

opt f s R f opt f f f opt f K h K D K g α β α α + + + - - = . ) ( (24) 
Instability is likely to occur when , 1 > g that easily reduces to the following condition

s R K h . β > (25) 
So, when the radiative heat transfer coefficient dominates the solid thermal conductance, the coupling process becomes theoretically unstable.

Note that the solid conductance is maximum for 1 = β , corresponding to the Dirichlet condition at the outer boundary, value adopted from now on.

Stabilizing effects

Consider yet again the amplification factor (Eq. 13). We see that its value for the optimal coefficient with radiation is given by

opt R f s opt f opt R f K g - - + = α α α ) ( (26) This shows that ) ( ) ( opt f opt R f g g α α < -
. This effect can easily be seen in Figure 2, where the absolute minima of the curves with 0 > ε are located slightly below that of the curves without radiation 0 = ε . Although the differences are small, a slightly faster convergence speed is expected, as long as the optimal coefficients are employed with and without radiation.

Summary of the theoretical results

The main results of the stability analysis are summarized in Table 1. This table shows the behavior of the amplification factor (1 st column) as a function of the coupling coefficient ). Thus, two zones are identified.

The first zone is characterized by a lower stability limit min R f -α defined by Eq. ( 20). The region

min R f R f - -< α α
is unstable (see left-hand part of the 3 curves in Figure 2 with

1 > g ). For min R f R f - -> α α
, the amplification factor decreases from 1 to a certain limit (given by Eq. ( 26)) and then increases from this minimum to 1. This limit is provided by the optimal coefficient (given by Eq. ( 18)) and corresponds to the absolute minimum of the amplification factor.

The second zone does not exhibit any stability restriction. In other words, all coupled calculations performed with 0 ≥ -R f α are theoretically stable. The amplification factor has an absolute minimum, namely when R f -α is equal to the optimal coefficient, defined by Eq. [START_REF] Einstein | Radiant heat transfer to absorbing gases enclosed in a circular pipe with conduction, gas flow, and internal heat generation[END_REF].

f α 0 min R f - α ------------- --- ) (opt R f - α --------------- --- ∞ c o n d i t i o n g U N S T A B L E 1 ) ( opt R f g - α 1 1 > R Bi ν g R Bi ν ) ( opt R f g - α 1 1 ≤ R Bi ν Table 1-Numerical properties of Dirichlet-Robin BC vs. f α

CODES AND COUPLING LIBRARY

Fluid Code: elsA

The fluid code, referred to as the elsA software package (ONERA-Airbus-Safran property), is a multi-application CFD simulation platform for applied aerodynamics (internal and external aerodynamics from the low subsonic to the high supersonic flow regime) and multi-physics, which capitalizes on the innovative results of CFD research Erreur ! Source du renvoi introuvable.[40][41] [START_REF] Cambier | The Onera elsA CFD software: input from research and feedback from industry[END_REF]. The governing equations are the time-dependent Navier-Stokes (NS) equations which express the conservation laws written in the conservation form as

( ) [ ] 0 = ⋅ ∇ + ∂ ∂ f f w F t w ( 27 
)
where f w represents the vector of mass, momentum and energy quantities, F represents the flux including inviscid and viscous terms. The inviscid terms are solved using a second-order upwind spatial discretization. The viscous terms are discretized with a five-point central difference formulation. The time integration is obtained by an implicit method.

Solid Code: Z-set

The solid software package, called Z-set [44], is a comprehensive suite of integrated analysis programs for general purpose structural analysis. Only the thermal solver is employed in the study presented in this paper. Assuming that there are no heat sources, the temperature distribution within the solid body is modelled as a balance of the thermal transport governed by

0 ) . .( = ∇ ∇ - ∂ T k T C t s s ρ (28) where ) , , , ( z y x t T T =
is the unknown temperature field within the body and k is a thermal conductivity. In the steady-state CHT procedure, we will adopt the steady-state form of (28), i.e. the Laplace's equation 0 = ∆T .

Radiation Code: ASTRE

ASTRE is a Monte Carlo (MC) radiation transfer code [START_REF] Tessé | Radiative Transfer Modeling Developed at Onera for Numerical Simulations of Reactive Flows[END_REF]. ASTRE was initially developed to simulate radiative transfers within semi-transparent media and is used mainly to deal with combustion applications [START_REF] Tessé | Monte Carlo modeling of radiative transfer in a turbulent sooty flame[END_REF] or atmospheric reentries [START_REF] Rouzaud | Influence of radiative heating on a Martian orbiter[END_REF].

Since ASTRE includes volume-volume, surface-volume and surface-surface radiative exchanges, ASTRE could obviously be used as is, to calculate only the surface-surface (S2S) radiative exchanges in transparent media. However, this would be quite costly in terms of CPU time since the radiative power field would be calculated by default over the entire volume of the computational domain, which is of no use in transparent media. Therefore, ASTRE was recently optimized to deal more efficiently with surface-surface radiative exchanges in transparent media. It would have been very simple to use a view factor calculation capability, but our goal is to develop a methodology with the computation codes available at ONERA in order to be able to apply this methodology to a large variety of complex configurations.

Several MC methods are available in the ASTRE code [48][49]. In this study, the Emission Reciprocity Method (ERM), associated with the Uniform Distribution (UD), was used to calculate the radiative fluxes on the walls. This method is based on the reciprocity principle to calculate absorbed fluxes and consequently, it has the advantage of being able to perform local calculations by affecting energy bundles to be emitted only to certain faces of the mesh. This contrasts with the classical MC method that calculates radiative fluxes on all boundaries of the computational domain after the energy bundles emitted from all boundaries are tracked.

In a Monte Carlo computation, a large number of energy bundles is emitted and tracked until they are absorbed. For each energy bundle, two angles are randomly chosen by drawing random numbers. At the end of the simulation, when all the energy bundles have been tracked, the radiative fluxes computed on the walls are fluxes integrated over all directions (see reference [START_REF] Tessé | Radiative Transfer in Real Gases Using Reciprocal and Forward Monte Carlo Methods and a Correlated-k Approach[END_REF] for more details).

Coupling library

The coupling between the three aforementioned codes is carried out through the coupling library CWIPI [50], developed by ONERA. CWIPI (Coupling With Interpolation Parallel Interface) is a library that makes it possible to couple an arbitrary number of parallel codes with MPI communications. Coupling is made through an exchange zone that can be discretized in a different way on any coupled code. Linear, surface or volume couplings are available. There is no requirement for the mesh structure, since CWIPI takes into account all types of geometrical elements (polygon, polyhedral).

PARTITIONED LOOSE COUPLING STRATEGIES

Fluid-Radiation algorithm

The coupling between the fluid code and the radiative code has first been undertaken. All relevant information relating to the physical solvers are transmitted via the coupling library. The coupling scheme is as follows:

-elsA sends to ASTRE the interface temperature -From this temperature field as BC, ASTRE computes the surface radiative heat flux -This radiative flux is sent to elsA -The total heat flux (convective+radiative) is calculated by the fluid code

Fluid-Solid-Radiation algorithm

The sequence of operations in the partitioned procedure is shown in Figure 3 and detailed in Algorithm-1 for the Dirichlet-Robin interface condition. This coupling cycle comprises 7 steps. It can be seen in Figure 3 that it is not exactly a 3-code coupling since the solid solver does not communicate directly with the radiation code.

The process just described is continued until the Navier-Stokes solver converges and wall temperatures and heat fluxes converge, that is until the following tolerance criterion is satisfied 

AEROTHERMAL TEST CASE WITH RADIATION

Objective of the test case

In order to illustrate the issues, support the claims made in Section 2 and validate the results, a simple test case with radiating surfaces is considered. Emphasis is put on the destabilizing and stabilizing effects of radiation and the potential of the new optimal coefficient to obtain fast calculations in the presence of radiation. In particular, we would like to check that:

-a stable and fast converging CHT computation can be destabilized only by radiation -the latter case can be stabilized through the use of the coupling coefficient opt R f -α -'optimal' CHT with radiation converges slightly faster than 'optimal' CHT without radiation

Choice of the physical and numerical parameters

The parameters presented in this Section have been purposefully selected to maximize the thermal fluid-structure interaction. To this end, we have performed the procedure listed below in connection with the theoretical concepts just presented. The following three conditions need to be fulfilled:

(1) The fluid-structure coupling is stable and functions ideally without radiation: ( )

1 ) ( < opt f g α for . 0 = ε (2)
In a second step, the addition of radiation must destabilize the coupling and the conventional coupling coefficient must become inoperative if it does not take into account radiation ( )

1 ) ( > opt f g α
for a specific value of . 0 > ε This is theoretically obtained if Condition ( 25) holds ( § 2.6.1).

(3) In a third step, the new coefficient presented in this study must provide theoretically stable and fast CHT simulations ( )

1 ) ( < - opt R f g α
for the specific value of ε considered.

As a result, the physical and numerical parameters have been specially chosen to satisfy the above conditions. They are provided in the following Tables 2, 3, 4, 5 and 6. Let us recall that the above-mentioned parameters have been employed to plot the curves in Figure 2. As a result, these curves may be considered as the theoretical representations of the CHT computations that will be described in this Section.

Geometry and boundary conditions

The turbulent channel configuration is the most frequently used geometry implemented in studies of the near-wall heat transfer and the most accurate approach is conjugate heat transfer. In this study, the geometry is an open 2D channel with a rectangular cross section, where heat conduction inside the heated walls is taken into account. Moreover, the two walls facing one another (coupled interfaces) are radiating. This configuration is displayed in Figure 4. This channel, 350 mm long x 100 mm wide, is bounded by two solid plates 3 mm thick. A temperature of 1300 K is imposed on the upper surface and 1500K is imposed on the lower surface. A buffer zone with upper and lower adiabatic walls is placed upstream to remove the singularity at the leading edges of the flow channel. Turbulent air at a temperature of 1200 K flows from the inlet (velocity of 83 m/s) to interact and cool the two solid plates (coupled interfaces) before exiting Figure 5 shows the mesh of the upper solid, a part of the meshes of the fluid domain and the buffer zone. The fluid mesh has been refined enough in the y-direction near the wall m y f . There is also the same strong refinement at the entrance of the channel flow, . To avoid interpolation issues in the coupling process, the three meshes (fluid, solid and radiative) are coincident at their shared interface. Each solid domain is composed of rectangular elements, with 19 cells in the y-direction according to a geometric progression and 76 surface elements in the interface in the x-direction.

The fluid problem is solved with an Unsteady RANS approach using a Jameson type scheme [START_REF] Jameson | Numerical solutions of the Euler equations by finite volume methods using Runge Kutta time stepping schemes[END_REF] and the Spalart-Allmaras turbulence model [START_REF] Spalart | A One-Equation Turbulence Model for Aerodynamic Flows[END_REF]. This unsteady approach is not the most suitable method for quickly obtaining steady-state fluid solutions. However, a constant time step is used throughout the calculation to reproduce the conditions of the model problem. The fluid time step is s t f

5 10 . 3 - = ∆
. Concerning the calculation of the radiative fluxes, the number of energy bundles, i N , emitted by each surface element i, was chosen to be 1000. So, the total number of bundles is 000 , 152 = N , which appears to be a good compromise between accuracy and calculation time, since a 0.01% convergence is obtained.

Radiative fluxes

As linear interface conditions are needed in the stability analysis, the radiative flux has been linearized around a reference temperature taken as the average of the initial temperatures of the two walls. However there are two choices. Either the exact formulation is adopted and thus R h (see Sections 2.2.1 and 2.3.1) can be regarded as a local and transient coefficient or a linearization is performed. In the latter case, R h is constant during the whole coupling process. Both formulations are provided in Eq. ( 7).

It would have been possible to adopt the reference temperature as the temperature of the opposite wall. However, let us recall that the model problem includes only a single fluid-solid interface. Strictly speaking, this means that the opposite wall is not "seen" by this model. In the near future, it could be possible to extend the model to take into account both walls simultaneously. ) have been performed. The only difference is the value of the coupling coefficient which, in the first case ignores radiation (optimal coefficient ( ) opt f α without radiation given by Eq. ( 17)) and in the second case takes it into account (optimal coefficient ( )

CHT Results

5

opt R f - α
with radiation given by Eq. ( 18)).

The first point is that both calculations converge. During the first 10 coupling iterations the curves are coincident since radiation is introduced in the process at the 11 th iteration. The radiation was not set up at the beginning of the coupling process because our objective was to analyze the destabilizing effect of radiation and it was therefore essential to trigger it separately at a predetermined step in the process. At the 11 th iteration, a sudden increase in temperature residuals is observed. The peak reached for

( ) opt f f α α =
is the highest and this simulation needs 142 coupling iterations to obtain the 

= α α

, i.e. a gain of 69%. Indeed, the calculation with

( ) opt R f f - = α α
is the fastest CHT process, as predicted by the coupling CHT model presented in Section 2. However, it should be noted that, according to this model, the CHT calculation is supposed to be unstable since 1 ) ( > opt f g α

, the absolute minimum of the curve for 5 . 0 = ε in Figure 2. These discrepancies may be due to some stabilizing effects generated by the flow, not included in the theoretical model. It is necessary nevertheless to specify that even if convergence is reached, important oscillations of the interface temperature are observed during the initial phase of the coupling process for this value. However, these oscillations are rapidly damped. On the contrary, for

) (opt R f f - = α α
, the temperature behavior is oscillation-free. For larger values of f α , stable CHT computations are obtained, but they take a little longer. Finally, it is worth mentioning that if the tolerance level is less, the number of iterations is at least cut by half (see for instance in Figure 6, the number of iterations needed to reach 

1 10 - = ∆ f T K or 2 10 - = ∆ f T K).

Emissivity

) (opt R f f - = α α
is used, with approximately the same number of coupling iterations as before (87 iterations). However, now, the interface temperature residuals increase and as a result, the radiative calculation with

( ) opt f f α α =
crashes rapidly. One can see from Figure 2 that the amplification factor this time is close to 2 and thus at this stage, nothing can be done to stabilize the coupling process.

To better understand the cause-effect relationships between the coupling model and the coupling results, Table 7 summarizes the key trends of the radiative effect for the three values of emissivity A Numerical Predictive Model considered and we can see that radiation may play a crucial role. It is thus essential to provide an adequate response to the destabilizing effect of radiation. with what has just been said, we will now see if the positive effect can be highlighted, as described theoretically in Section 2.6.2. This effect, characterized by a decrease of the temporal amplification factor, should be identified during the convergence history. For that purpose two CHT computations have been compared. The first one without radiation converging in 83 iterations as mentioned in Table 7 and the CHT computation with 8 . 0 = ε . Figure 8 depicts the convergence history of these two calculations. During the first 10 iterations, the curves are the same since the radiation has not yet been activated. Then a sudden peak is observed as soon as the radiation is activated. Despite this strong negative effect, the temperature residuals decrease rapidly and the resulting curve always lies below the curve without radiation until the tolerance criterion is satisfied ( ) and hence fits perfectly with the theoretical model.

R h R Bi ν ) ( opt f g α ) ( opt R f g - α Number of
What happens if the tolerance level, adopted until now, becomes more severe? By extending the convergence level, this question is answered in Figure 9. It is interesting to note that the residuals of the CHT computation with radiation end up stagnating around This result does not call into question the mathematical model but, on the contrary, reinforces its validity in so far as the CHT calculation with no radiation can reach very low convergence levels as shown in this Figure and as has been observed in previous studies [29][30]. This is only due to the number, N, of energy bundles simulated in the radiation code which automatically limits the convergence level of the entire process.

Importance of radiation

The last two figures represent the temperature profiles along the coupling interface (Figure 4) on the upper face (Figure 10) and the lower face (Figure 11). Note that the effect of radiation can be very important and thus not negligible in the thermal design. For example, in this case ( 8 . 0 = ε ), the lower wall receives a greater amount of heat (an increase of 70 K or more) when radiation is taken into account. 

General remarks

The parameters in this test case have been chosen specifically to provide a significant effect on stability. When this effect has a small impact, the model will obviously still work regardless. However, we now have a fairly good understanding of this behavior and the stability limits are known. Otherwise, when radiation has a moderate or strong destabilizing effect, the situation is more complicated from a stability point of view, but all the relevant settings can now be provided to ensure robust coupled calculations, irrespective of the CHT conditions. The optimal coefficient will adaptively adjust to the local conditions. In any case, whether the radiation impact is big or small, optimization in terms of convergence and CPU time will be automated to a certain degree in a fairly straightforward manner. 

CONCLUSION

A predictive coupling model for steady conjugate heat transfer problems with radiation was proposed in this paper. It was derived from a stability analysis based on the Godunov-Ryabenkii normal mode theory. The stability bounds, the optimal coefficients and the main numerical characteristics of the interface procedures for aerothermal interaction with radiation were highlighted and expressed. The numerical treatment relies on adaptive and local coefficients. Consequently, arbitrary relaxation parameters are no longer required in the coupling procedure and oscillation-free coupled solutions can be obtained. The model presented in this article is part of a wider strategy to ensure optimal treatments for CHT problems. It was shown that radiation in a transparent medium with gray walls can be taken into account in a simple and effective manner. In the near future, consideration should be given to extending this model to semi-transparent media.

In the CHT test case, emphasis was put on the destabilizing nature of radiation and the main results derived from the mathematical model were confirmed. All the key trends of radiation effects identified theoretically were recovered and the potential of the new optimal coefficient to obtain fast calculations in the presence of radiation was confirmed. It was also checked that 'optimal' CHT radiation converges slightly faster, which might seem surprising. However, the non-linear nature of the thermal radiation should not be forgotten and thus the reliability of the use of a linearized radiative coefficient could be questioned or invalidated under some circumstances. Nonetheless, the significant patterns and trends illustrated in this paper are particularly valuable in a wide range of engineering applications where combined heat transfer of radiation, convection/conduction is encountered.

APPENDIX A Single interface equation for the Dirichlet-Robin boundary condition with radiation

The goal of this Appendix is to determine a single interface equation for the Dirichlet-Robin boundary condition with radiation. The temporal interval [ ]

1 , + n n
in a sequential algorithm is considered at the fluid-solid interface. It must be recalled here that ( ) X ˆ denotes the sought value X.

At time n t , on the fluid side, a Robin interface condition (see Eq. 1) has the following form :

( ) n s n s n s n R f n f n s n f T q T q α α + = Φ + + + + + 1 1 1 ˆ (A-1)
After completing the previous step, the fluid quantities are transferred to the solid and implemented on the right-hand side. A Robin equation is employed on the solid side of the same interface at time

1 + n t (see Eq. 2) ( ) 1 1 1 1 1 1 1 ˆ+ + + + + + + Φ + - = - n R s n f n f n f n s n f n s T q T q α α (A-2)
The radiative fluxes are linearized (see Eq. 9) and thus the interface conditions become

( ) ( )      - + - = - + + = + + + + + + + + + + + ref n f R s n f n f n f n s n f n s ref R f n s n s n s n f R f n s n f T T h T q T q T h T q T h q 1 1 1 1 1 1 1 1 1 ˆˆα α α α (A-3) with ) ( ref f R s R s T T h - = Φ and ) ( ref f R f R f T T h - = Φ .
The system (A-3) represents the general formulation of the Robin-Robin interface conditions. From now on, we will consider only a Dirichlet boundary condition in the fluid domain. This condition is directly obtained by imposing ∞ = s α . Then, expressing the heat fluxes in terms of the temperature, (A-3) becomes ( )

       - - - ∂ ∂ - =       - ∂ ∂ - = + + + + + + + ref R s n f R s n f n f n f n s n f n s n s n f T h T h T K T K T T 1 1 1 1 1 1 1 ˆα ν α ν (A-4)
Where ν is the unit normal vector at the fluid-solid interface, i.e. pointing to the inward normal of the fluid (see Figure 1). For easier reading, the superscripts n and 1 + n will now be removed in the coefficients f K , s K , and f α .

At this stage, it is worth remembering that the temperatures 

) ( )      + + - - = ∆ - + = + + + + - + - - + + ref R s n f n R s f f n s s n f s n n T h T K T h K T y T K T T 1 1 1 0 1 1 1 0 0 1 0 ˆα λ α (A-5)
Since a steady-state is considered on the solid side,

s J s T T y T T Λ - = ∆ - - - - - 0 1 0 . Thus (A-5) can be rewritten ( ) ( )      + + + - - = + = - + + + + - - + + ref R s J s n f n R s f f n f s n n T h T K T K T h K T K T T β α α β 1 1 1 0 1 0 0 1 0 ˆ (A-6) This system becomes ( ) ( )      + + - - = + = + + + + - - + + ext n f n R s f f n f s n n G T K T h K T K T T 1 1 1 0 1 0 0 1 0 ˆα α β (A-7) Where ext G is a constant term defined by ref R s J s ext T h T K G + = - β .
Let us remind here, that the coefficient β is a dimensionless number that can be thought of as a simplified representation of the outer boundary condition -J of the solid domain. If a temperature is imposed at this limit, then 1 = β . See [START_REF] Errera | Optimal solutions of numerical interface conditions in fluidstructure thermal analysis[END_REF] for more details.

Substituting the definition of 1 0

+ + n T into the second equation of (A-7), we find ( ) ( ) ext n R s f f n f n f s G T h K T K T K + - - + + = + - + + - 0 1 1 1 0 ˆα α β (A-8)
We therefore arrive at ( )

K G T K h K T K K T ext n R s f f n f n + - - + = - + + - 0 1 1 1 0 α (A-9)
At this point, it must be emphasized that a constant plays no role in the normal mode stability analysis and thus the term ext G can be removed. Finally, the following single interface equation is obtained , the fluid solution is advanced from n t to 1 + n t and a new temperature field is calculated on the basis of a forward implicit scheme. In the first grid cell adjacent to the interface, the following discrete equation is solved 

f s R s f f f f f s f f K h K z D K K z g α β α κ α β α + - - + + = ) , ( ) , ( (B-9)
The expression given by ( 13) is recovered

B.5.2. Spatial amplification factor

From (A-10) we obtain Thus, a remarkable condition for a transition to occur is obtained for

( ) 0 . 2 ). 1 ( = - - + + R s f f f f h K K D α (B-15)
The unique coefficient satisfying (B-15), is called an optimal coefficient since the temporal amplification factor attains an absolute minimum on the unit circle. From (B-15) we obtain

R s f f opt R f f h D K + - = = - ) 1 ( 2 α α (B-16)
The expression given by ( 18) is recovered.

B.5.4. Stability limit

The stability bound is obtained for ) ( )

f s R s f f f f K h K D K α β α + - = + - - (B-19)
Finally, the stability limit is The expression given by ( 19) is recovered.
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 6 Figure 6 shows the convergence history for two values of the coupling coefficient, by plotting the norm L -∞
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 6 Figure 6 -Convergence history for CHT with radiation (ε = 0.5)
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 7 Figure 7 illustrates that for a higher value of the radiation 8 . 0 = ε , convergence is obtained rapidly when
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 7 Figure 7 -Convergence history for CHT with radiation (ε = 0.8)
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 11 Figure 11 -Temperature profile along the Lower F-S interface at convergence
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 12 Link between the fluid and solid temporal amplification factorThe stability analysis is based on the Godunov & Ryabenkii theory. We seek normal mode solutions to the equation (A-10) of the form the "temporal" amplification factor and κ is the "spatial" amplification factor. Substitution of the normal mode solution (B-1) into the continuity of temperature at the fluid-Characteristic equation in the steady solid domain Introducing the second equation of (B-1) into the Laplace equation solved in the solid domain yields which means that there is no spatial amplification in the solid domain.B.3. Characteristic equation in the transient fluid domainIn the interval [ ]
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 47 Substitution of the normal mode solution (B-1) into this equation leads to one acceptable solution to this equation, given by the choice of the root with the minus sign 6), we can see that the values of the complex function, f κ , at the specific points 1The definition of the normalized Fourier number f D is given by[START_REF] Koren | Self-adaptive coupling frequency for unsteady coupled conjugate heat transfer simulations[END_REF].B.4. Temporal amplification factor of the coupled problemNow, inserting the normal mode solution (B-1) into the single interface condition given in Equation (A-10), we readily obtain the temporal amplification factor for the coupled model problem f κ given by (B-6). The coefficients A and B are defined by (A-11). B.5. Application to the Dirichlet-Robin interface condition B.5.1. Temporal Amplification factor From (B-8) and (A-11), it is straightforward to obtain the temporal amplification factor ( )

  left-hand side of equation (B-10) represents the definition of the temporal amplification factor z . As a result, from (B-8), another simple expression of the spatial amplification factor in the fluid domain may readily be expressed coefficientThe amplification factor is composed of two half-lines with a singular point at the intersection of these two lines defined by ) given by (B-8) in its simple form, (B-12) becomes

(

  

  

  

Table 2 -

 2 Fluid parameters

Table 3 -

 3 Solid parameters

	ε		0.	0.5	0.8
	T ref		1400
	h	R	0.0 311.0 498.0

Table 4 -

 4 Radiation parameters

Table 6 -

 6 CHT parameters with radiation

	-4 83.0 0.856	19.43	2.78 150	232
	Table 5 -CHT parameters without radiation
	h R	ν Bi	α	min f	α	opt f -	R
	0.0	2.78 150	232	
	311.0 4.65 304	540	
	498.0 5.77 395	730	

Table 7 -

 7 Convergence properties without and with radiation

	iterations to	Number of iterations to
	converge with opt f α	converge with opt f -α	R
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