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---   ABSTRACT   --- 
 

Taking into account radiation effects is a crucial part of the design and optimization of applications involving 
high temperatures. This paper outlines the development of a predictive coupling model for steady state conjugate 
heat transfer problems including radiative boundary conditions that models radiative exchanges between gray 
walls in a transparent medium. This canonical model is based on the Godunov-Ryabenkii normal mode analysis 
theory. The general expression of the amplification factor, the stability bounds and the optimal coefficients are 
provided. Moreover, a numerical Biot number including radiation effects that controls the stability of the model, is 
proposed. The destabilizing effect of radiation is highlighted and quantified. A specific test case is then presented 
to evaluate the consistency of this model. The numerical and physical parameters of this test case were 
specifically designed to target large fluid-structure interactions (ceramic material, high radiative coefficient). The 
numerical results fully comply with the theoretical results derived from the predictive model. 
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Nomenclature 

a thermal diffusivity [m2.s-1] 

νBi  numerical Biot number 

D Fourier number 

 D  normalized Fourier number 
F Navier-Stokes flux 

  g  temporal amplification factor 
h heat transfer coefficient [W.m-2.K-1] 
k thermal conductivity [W.m-1.K-1] 
K thermal conductance [W.m-2.K-1] 
N number of beams of energy  
q heat flux [W.m-2] 
t time [s] 
T temperature [K] 

fw  vector of fluid quantities 

y+ non-dimensional wall distance 
z complex variable 

y∆  size 1st cell   [m] 

t∆  time step  [s] 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Greek letters 
α coupling coefficient [W.m-2.K-1] 
β nature of the B.C. at the limit -J 
κ spatial amplification factor 
λ  FVM/FEM parameter 
ξ  tolerance level 
ε  emissivity 
σ  Stefan–Boltzmann constant  [W.m-2.K-4] 

sΛ  solid thickness [m] 
 
Subscripts 
c coupled 
f fluid domain 
s solid domain 
ref reference  
ν numerical 

fν   inward unit normal to the fluid domain 

sν   outward unit normal to the solid domain 
 
Superscripts 
n temporal index 
min minimum  
opt optimal 
R radiative 
( )•̂      unknown value 
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1. INTRODUCTION 

The coupling of heat transfer at a fluid-solid interface is usually known as conjugate heat transfer 
(CHT) [1][2]. CHT is used to analyze thermal interaction processes when the two modes of heat 
transfer - convection and conduction - are considered simultaneously. In recent years, the numerical 
analysis of CHT processes, without thermal radiation, has received extensive attention and many 
different numerical approaches for coupled problems have been proposed, on the basis of a normal 
mode analysis [3][4][5][6][7], the energy method [8], a matrix analysis [9], a steady-state approach 
[10], or a frequency-domain method [11]. In the context of “Large Eddy Simulation”-CHT problems, 
different acceleration techniques have been proposed [12][13][14][15].  
 
However, radiation plays a key role since it is the dominant mode of heat transfer in participating 
media with applications involving high temperatures. Thus, thermal radiation coupled with 
convection and conduction can have extensive real-world applications when accurate heat transfer 
predictions are needed, such as reentry vehicles, turbomachinery, high temperature heat exchangers, 
combustion chambers, furnaces, etc. 
 
Heat transfer involving simultaneously radiation, convection and conduction has been studied for a 
long time using approaches based on simple mathematical models. For instance, Goulard [16] studied 
the interaction of radiation and conduction in the Couette flow. Adrianov and Shorin [17] treated the 
case of coupled radiation and convection for a gray gas of a laminar flow in a tube. Flow between 
parallel plates was also considered and the effects of coupled radiation, conduction, and convection 
were treated by Einstein [18]. Desoto [19] developed an analytical procedure to investigate the 
interaction or coupling of radiation with the conduction and convection mechanisms in the entrance 
region of a black wall tube. In recent years, multidimensional approaches combining CFD, conjugate 
heat transfer and radiative heat transfer have been employed more frequently. These coupled 
calculations with boundary resolving meshes, produce results that provide a deep insight into CHT 
phenomena. For instance, Amaya et al. [20] [21] studied combustion applications on parallel 
computers. Duchaine et al. presented the partitioned coupling strategy [22] as well as the high 
performance computing criteria for coupled simulations [23]. A similar coupled approach has been 
adopted by Koren et al. [24] to predict the wall temperature distribution of a confined premixed 
swirling flame, using a dynamical coupling period. Mercier et al. [25] presented a coupling 
methodology to forecast the wall temperature distribution in a gas turbine combustor. Three different 
codes were used to deal with convection, conduction and radiation. 
 
The most fundamental aspect in the coupling implementation is the choice of efficient conditions to 
connect the various physical phenomena. This is all the more important since these phenomena occur 
generally on a wide range of spatial and temporal scales. Thus, the interface conditions have a direct 
impact on the numerical properties of the coupling methodology. Our goal in this paper is to develop 
interface treatments of CHT problems with radiation on the basis of simple mathematical models, for 
a better handling of multidimensional codes in a coupled manner to solve multiphysics applications. 
 
In CHT analysis, adaptive coupling coefficients have been highlighted and expressed for the first 
time by Errera and Chemin [26] for thermal fluid-structure interaction (FSI) in steady state problems 
and subsequent studies have been carried out [27][28][29]. For unsteady solid heat transfer, on the 
basis of the quasi-steady assumption, these coefficients are quite different and provided in [30]. 
These coefficients have been obtained from a 1D coupled model via a normal mode stability analysis 
based on the theory of Godunov-Ryabenkii [31][32][33][34][35]. The performance of these interface 
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methods within the framework of  Dirichlet-Robin boundary conditions were tested recently either in 
academic test cases [29] [30] or in an industrial furnace [36] and the relevance of the predictive 
model was fully confirmed.  
 
The previous models were devoted to CHT analysis without radiation. The primary goal of the 
current paper is to perform an extensive stability analysis including radiative phenomena. A 
predictive 1D model is essential to explaining and quantifying the major issues pertaining to 
convergence and stability in coupled problems. This will be done by coupling three independent 
process models: the fluid model, the solid model, and radiation. The key issue in the coupling 
implementation is the interface condition. This condition has a direct impact on the numerical 
properties of the coupling methodology. Most of the interface numerical treatments in CHT problems 
are based on a Dirichlet transmission condition where temperature is prescribed on the fluid side and 
thus this condition will be adopted and illustrated in this paper.  
  
The objective of this paper is to establish a numerical predictive model, stable and rapidly convergent 
for thermal coupling problems with radiation and based on a coupling approach in a partitioned 
strategy. Our goal is to provide the main parameters that control the coupling process and to express 
the coefficients that guarantee unconditional stability. Radiative exchanges between gray walls in 
transparent media are considered. Typical applications in the aerospace industry can be found in high 
temperature environments such as a jet engine combustor with hot external walls of the liner 
radiating on the internal wall of the casing. 
 
This paper is structured as follows. First, the numerical model for CHT with radiation is outlined and 
the main parameters are provided and described (Section 2). Then, the numerical tools used in this 
study are briefly presented (Section 3). The following paragraph details the fluid-solid-radiation 
algorithm (Section 4). The numerical coupling procedure arising from the model is then applied to 
analyze the thermal interaction in a simple geometry with strong thermal fluid-solid interaction 
(Section 5). Finally, some concluding remarks are drawn. 
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2. COMPUTATIONAL MULTIPHYSICS 

2.1. Partitioned approach for fluid-solid interaction 

2.1.1.CHT Strategy in the fluid and in the solid domains 

The most efficient way to compute a numerical solution of the heat equation to a steady-state, 
provided the boundary conditions are time independent, is to consider a second order ordinary 
differential equation (Laplace’s equation) and to solve for the temperature. A temporal algorithm 
would be an unnecessarily long procedure for the same result. As a consequence, only steady-state 
solid heat conduction may be considered. On the contrary, the Navier-Stokes equations are generally 
solved to steady-state by a temporal scheme. Thus, if these strategies perform well as single 
subsystems, they should be taken together and assembled in a multiphysics approach. However, 
solving Laplace’s equation at each time step will change the solution too rapidly for stability to be 
maintained. In the current study, an optimal interface condition with remarkable stability properties is 
provided.   

2.1.2. Model problem 

Consider two finite domains with a common interface. The equations for the fluid domain are 
discretized using a finite volume method (FVM) and the heat conduction equation within the solid 
using a finite element method (FEM) as shown in Fig. 1. These domains are interactively solved to 
steady-state through a time-marching algorithm.  
 

 
             

 
 
2.2. Fluid-solid interface treatment   

2.2.1.Without radiation  

The fluid and solid domains are thermally coupled through a common interface and alternately 
integrated forward in time on the basis of a partitioned approach. We assume that the convection term 
is negligible in the first fluid cell. Simply stated, there is no velocity component normal to the fluid-
solid (F-S) interface in 2D/3D flows. At this interface, a general Robin transmission condition is 
applied. In what follows, a common unit normal vector is adopted. This vector points towards the 
inward normal of the fluid domain (See Fig.1). The Robin boundary condition, also known as the 
mixed boundary condition or a boundary condition of the third kind is a linear relationship between 

   External 
      BC 

∆ys ∆yf

x  

  - J                                       -2               -1 

   Interface 
       “0”  

1          2         3                     
j 
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ν  

Figure 1 - Schematic of the fluid-solid interaction in the 1D model problem 
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the heat flux and the temperature [10][26][29]. With the convention signs just adopted, the Robin 
boundary condition on the fluid side becomes  

sssfsf TqTq αα +=+ ˆˆ  (1) 

and on the solid side  

fffsfs TqTq αα −=− ˆˆ  (2) 

where q is the heat flux, T the temperature and ),( sf αα are coupling coefficients. Quantities with the 

superscript (^) are the sought values. ν∂∂−== + fff TKqq 0  is the normal heat flux where ν  is the 

inward normal to the fluid domain. Similarly, ν∂∂−== − sss TKqq 0 , where ν  is the outward normal 

to the solid domain. K is the thermal conductance defined in the fluid finite volume model by 

f

f
f

y

k
K

∆
=

λ
 (3) 

with 21=λ  in a FVM and 1=λ  in a FEM, fy∆  being the size of the fluid cell adjacent to the wall. 

In a steady-state approach, the solid conductance is 

s

s
s

k
K

Λ
=  (4) 

where sΛ  is the solid thickness. k  is the thermal conductivity. 
 
Conditions (1)-(2) act to couple the two models and domains at the F-S interface. The coefficients 

),( sf αα are two adjustable parameters that control how heat is transferred across the F-S interface. 

They are the key stability factors of any numerical CHT procedure. 
 
Note that, for simplicity, the Robin conditions (1) and (2) are expressed here with no temporal index. 
In Appendix A, these conditions are described in more details in a sequential approach and the 
temporal indices are indicated. 

2.2.2. With radiation 

In this study, only radiative heat exchanges between gray walls in transparent media are considered. 
Moreover, temperature differences in the computation domain are assumed sufficiently small to 
linearize radiative fluxes. 
 
The general Robin interface condition on the fluid side becomes 

sss
R
ffsf TqTq αα +=Φ++ ˆˆˆ  (5) 

and on the solid side 

fff
R
ssfs TqTq αα −=Φ−− ˆˆˆ  (6) 

where )( 44
reff

R
f TT −=Φ σε  and )( 44

refs
R
s TT −=Φ σε  are the radiative heat fluxes on the fluid side and solid 

side respectively, with ε , the wall emissivity and σ  the Stefan–Boltzmann constant equal to 
5.67×10-8 W.m-2.K-4. If the radiative fluxes can be linearized, the interface conditions (5) and (6) 
become 

( )








−−=+−

++=++

ref
R
sfffs

R
sfs

ref
R
fsssf

R
fsf

ThTqThq

ThTqThq

αα

αα
ˆ)(ˆ

ˆˆ
 (7) 
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with )ˆ(ˆ

refs
R
s

R
s TTh −=Φ  and )ˆ(ˆ

reff
R
f

R
f TTh −=Φ  

and either: ))(( 22
reffreff

R
f TTTTh ++= σε   and ))(( 22

refsrefs
R
s TTTTh ++= σε  (exact formulation) 

or: 34 ref
R Th σε=  (linearization). 

At convergence, (7) becomes 

[ ]( )
[ ]( )





=−−−−−

=−−−−+

0)()(

0)()(

fsffrefs
R
ss

fsssreff
R
ff

TTqTThq

TTqTThq

α

α
 (8) 

It is easy to see that the convergence of temperature ( sf TT = ) leads to the heat flux continuity 

( )()( reff
R
ffrefs

R
sfs TThqTThqq −+=−+= ) across the interface, provided 0≠+ sf αα  (and 0

11 ≠+
sf αα

). 

Eq (7) represents the most general form of interface conditions in a partitioned approach. This is a 
family of schemes depending on two coupling parameters. Two important aspects are to be 
considered at this stage. First, the Robin-Robin conditions constitute a very large family of potential 
interface conditions, not necessarily easy to set up since the joint use of two coefficients leads to a 
general and complicated relationship between both. Second, if continuity of flux and temperature is 
mathematically ensured at convergence, as just mentioned, it is far more complex in a discrete 
formulation and multiple solutions depending on the coupling coefficients can be obtained. This issue 
was largely discussed in [37] without radiation. With radiation, we have decided to strengthen the 
continuity, at every step of the process by imposing a single temperature value at the interface fs TT =  

in the Robin equation of the solid domain. Thus, the generic system of Robin equations (7) on both 
sides of the interface becomes 

( )
( )






−+−=−

++=++

reff
R
sfffsfs

ref
R
fsssf

R
fsf

TThTqTq

ThTqThq

αα

αα
ˆˆ

ˆˆ
 (9) 

The current study will focus on a one-coefficient approach that is much easier to manage. Moreover, 
this approach inherently includes either the continuity of temperature with a Dirichlet condition or 
the continuity of heat flux with a Neumann condition. However, the Robin-Robin interface condition 
is an avenue that should be explored. 

2.3. Dirichlet-Robin interface treatment with radiation 

In the current paper, we will focus on the Dirichlet-Robin (D-R) interface approach obtained by 
imposing ),(),( ffs ααα ∞=  in (9) which corresponds to a "perfect" conduction in the solid. When the 

solid conduction departs significantly from that assumption, in a solid ceramic material for instance, 
effective changes can be made to extend the scope of the D-R conditions so as to continue to retain 
this single interface treatment [37][38]. 

2.3.1. Interface conditions 

In the D-R procedure, the temperature coming from the solid is applied on the fluid side and a 
"relaxed heat flux" is in turn used as a boundary condition for the solid 









−−=+−

=

ref
R
sfffs

R
sfs

sf

ThTqThq

TT

αα ˆ)(ˆ

ˆ

 (10) 

At this stage, there are considerable benefits to note that the second equation in (10) is computed in 
the solid domain. It is then essential to express the temperature in the right-hand-side by a solid 
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temperature only. Similarly, the radiative heat transfer coefficient can be expressed by a single 
temperature ( )RR

f
R
s hhh == . This leads to  








−−=+−

=

ref
R

sffs
R

fs

sf

ThTqThq

TT

αα ˆ)(ˆ

ˆ
 (11) 

The latter expression considerably reduces the fluid-to-solid interpolation error at the interface and 
need only to transfer the interpolated heat flux to the solid. At convergence, it is easy to see that 
continuity of heat flux and temperature is obtained 








−+=

=

)(~

~

refs
R

fs

sf

TThqq

TT
 (12) 

where fq~  is the spatially interpolated heat flux from the fluid grid to the solid grid and similarly sT
~

is 

the spatially interpolated solid temperature received at the fluid interface. Note that the solid 
temperature in the second equation contains no tilde since sT  is directly available in the solid domain 
with no interpolation. Note also that the heat flux transferred to the solid (RHS in the second equation 
in (12)) does not need to be linearized since its exact value is known at each coupling step. 

2.3.2. Amplification factor 

Now, a normal mode solution for the case defined by the equations in the discrete model problem is 
applied according to the Godunov-Ryabenkii (G-R) stability analysis. The G-R stability analysis is 
very similar to the standard Fourier stability method except that the Fourier analysis ignores 
boundary conditions. However, these conditions may affect the stability [31].  
 
The temporal amplification factor may be written as (see details in Appendices A and B): 

( )
fs

R
sff

ff

fs

f
f

K

hK
zD

K

K
zg

αβ

α
κ

αβ
α

+

−−
+

+
= ),(),(  (13) 

where fκ  is the spatial amplification factor (see Appendix B) that depends on the mesh Fourier 

number fD  (defined in the next section) and on the complex variable z. In the denominator, β  is a 

parameter governing the nature of the BC at the outer limit of the solid J−  : 1=β , if a temperature is 
imposed and 0=β  if a heat flux is imposed. (see [26] for details). 

2.4. Influence of radiation on stability 

Thus, it can be seen that )(zg is a complicated non-linear equation in z. After the change of variable 

zz 1→ , the function g  becomes holomorphic on the open set 1<z . As a result, on the basis of the 

maximum modulus principle in complex analysis, the maximum value ofg is achieved at the 

boundary. Using the maximum modulus principle in complex analysis, it can be demonstrated that 

the maximum of ),( fzg α  for 1≥z  is located on the unit circle [26]. Thus 

( ) ( ) ( ) ( )ggzgzg f
z

f
z

f
z

max)(max),(max),(max
111

===
==≥

ααα  (14) 

Actually, on the unit circle, it was shown [26] that the maximum switches from  1−=z  to 1+=z  as 

fα  increases and the amplification factor rebounds abruptly. At this point, { }gmax  attains its 

absolute minimum that is always located in the stable zone 1<g . This intersection identifies the 
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existence of a transition between two opposite zones. Switching from the first value to the second 
results in a sudden transition in the shape of the amplification factor composed of two half-lines with 
a singular point at the intersection of these two branches. The first branch is characterized by low 
values of fα  and the spatial amplification factor ),( fff Dακ  is equal to a specific normalized 

Fourier number fD  

ff

f
f

DD

D
D

211 +++
=  (15) 

 
where fD  is the mesh Fourier number 2

fff ytaD ∆∆= . The domain of fD  is 0≥fD  and the range is 

10 <≤ fD . This branch, associated with 1−=z , is time-dependent. For the specific value 0=fα , the 

maximum of the amplification factor is easily obtained from (13)  

s

R
ff

K

hDK
zg

+−
=

)1(
)0,(  (16) 

The second branch is characterized by large values of fα  and 1),( =fff Dακ . This branch, 

associated with 1+=z , is time-independent.  
 
In summary, the intersection of these two branches combines the advantages of the first two options, 
without suffering their disadvantages: the coupling process is fast and always stable. This is the 
reason why the conditions where this intersection occurs play a fundamental role in CHT.  
 
Figure 2 shows the temporal amplification factor for three different radiative heat transfer 
coefficients )0(0 == εRh , )5.0(311 == εRh , )8.0(498 == εRh . All the other parameter values 
used to plot these curves are provided in Section 5.2.  
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It can be seen that radiation alters substantially the quantitative behavior of each curve. The y-
intercept increases significantly (the exact value of the y-intercept is given by (16)), which has a 
negative impact on the stability. The same applies to the lower stability bound, 1max =g  which is 

shifted to the right. As a result, the optimal coefficients (single coefficients at the junction of the two 
branches) must also be increased to ensure stable computations with radiation. 

 
With that in mind, Figure 2 brings to light a salient point. The optimal coefficient with no radiation, 
representing the absolute minimum of the curve, always less than unity, provides potentially 
unstable thermal computations with radiation ( gmax >1), represented by the small circles in 

Figure 2. The particular conditions necessary for this situation to arise are described in Section 5 and 
all the fundamental properties when radiation takes place are given in the next Section. 

Figure 2 - Amplification factor of the model problem with and without radiation 
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2.5. Fundamental properties of the thermal FSI with radiation 

2.5.1. Optimal coefficient 

It is noteworthy that the modulus of the amplification factor goes through an absolute minimum, 
denoted opt

fα  (without radiation) and opt
Rf −α (with radiation). In other words, the existence of a 

transition value for fα  can be identified: the shape of the curve of the amplification factor switches 

and rebounds as shown in Figure 2. These values can be conveniently represented using a shorthand 
notation (See [27][29] and Appendix B)  

)1(
2

1
1

1
1

2

2

f
f

ff

fopt
f D

K

DD

K
−=−−














+=α  (17) 

and 

R
f

fopt
Rf hD

K
+−=− )1(

2
α  (18) 

The subscript f indicates that the coefficient is calculated in the fluid domain, and transmitted to the 
solid. Similarly, the subscript f-R denotes that the coefficient is calculated in the fluid including 
radiative effects, and then sent to the solid. Eq.(18) highlights the need of an appropriate definition of 
a coupling coefficient for radiation. The multiphysics coupling strategy will be defined in Section 4. 

2.5.2. Stability bound 

The stability bound min
Rf −α is calculated from the condition 1),( min =−Rfzg α . After applying a few basic 

calculus transformations (see Appendix B), the following expression is obtained 

22
)1(

2
min s

R

f
f

Rf

Kh
D

K βα −+−=−  (19) 

It is a lower stability bound, i.e., the lowest value ensuring stability. Put another way, all coefficients 
lower than min

Rf −α  lead to a temporal factor greater than unity and thus theoretically to an unstable 

behavior. 

2.5.3. Numerical Biot number 

The stability bound given by Eq. (19) can be re-written 

                                                            ( )1
2

min −=− ν
β

α Bi
K s

Rf                                                                   (20) 

with  

                                                       
s

R

f
s

f

K

h
D

K

K
Bi

ββν +−= )1(                                                                 (21)

νBi may be regarded as a local numerical Biot number involved in a transient CFD calculation. Let 

us recall that the conventional Biot number needs a heat transfer coefficient. This new dimensionless 
number, naturally introduced by Eq. (20), is defined at any time in the transient state of a CHT 
computation and is a result of the balance between the transient fluid and the solid domain. This 
demonstrates how stability depends mainly on the ratio of thermal resistances, but also on the 
dynamics of the transient fluid system via the temporal term fD . 

2.5.4. Weak and strong thermal interaction 

As the coupling coefficient is always positive, two zones are clearly identified: 
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 (1) 1<νBi : the coupling process is stable 0≥∀ −Rfα  

 (2) 1>νBi : the coupling procedure exhibits a stability boundmin
Rf −α . 

 
From that, we naturally introduce the "strength" of the thermal FSI with radiation: 

• Weak interaction: 1<νBi . If this condition holds, the "transient" thermal resistance of 
the fluid domain at the shared interface is greater than the resistance offered by the 
whole solid domain. Note that this resistance is strongly influenced by the time step. A 
Dirichlet interface condition on the fluid side is therefore appropriate.  

 
• Moderate interaction: 1>νBi . This means either that the solid thermal gradients are not 

negligible or that the thermal fluid conductance is larger than that of the solid.  
 
• Strong interaction: 1>>νBi . In this case, a Dirichlet interface condition imposed on the 

fluid does not provide the most efficient solution. However, it should be underlined that 
there is a powerful argument in favor of the Dirichlet condition. Indeed, the term 

)1( fD−  may become small by increasing the coupling period and the strength of the 

thermal FSI can therefore be significantly reduced. 

2.6. Impact of radiation on stability 

2.6.1. Destabilizing effects 

Equation (21) can offer precious help to assess the potential influences of each term. It can be seen 
that all factors contributing to the increase of min

fα  have a negative impact on stability and the 

reverse is also true. On this basis, it is easy to understand and quantify the impact of each term in the 
stability coupling with radiation: 

• )1(
2 f

f D
K

− : increasing the fluid conductance, fK , has a negative effect on stability (low 

Prandtl number, increase of the fluid viscosity, small fluid cell, ...). However, it should be 
kept in mind that the fluid conductance is paired with the temporal term )1( fD− . First, 

let's note that 

f

f
f

f

D

K
D

K

211
)1(

2 ++
=−  (22) 

The Fourier number, fD , is thus capable of stabilizing any CHT computation in two ways. First, 

even if ∞→fK  when 0→∆ fy , it can be easily shown that (22) tends toward a finite value (see [37] 

for more details) given by  

ta

k

D

K

f

f

f

f

∆y f ∆
=

++→ 2

2

211
lim

0
 (23) 

This shows that even if the term in Eq.23 is increasing as fy∆ decreases, it reaches a limit. Thus, 

accurate conjugate heat transfer solutions that require high-resolution CFD meshes can be obtained 
with no instabilities. Second, the dynamic conductance decreases as 21−∆t  and thus the time step is 
capable of stabilizing most CHT calculations. This relationship gives us a better understanding of 
instabilities due to frequent couplings. An alternative interpretation is that the optimal coefficient is 



A Numerical Predictive Model 
 

 
 

inversely proportional to the heat penetration depth ta f ∆2  showing that a small diffusion of heat 

during t∆  has a destabilizing effect. 

• 
2

Rh : this radiative term is always destabilizing and there is no temporal counterpart, as 

previously, to reduce this effect.  
 

• 
2

sKβ : when sss kK Λ= is large, this contributes to strengthening the coupling process since 

this solid term reduces the value of min
fα . This contribution is all the more important 

when the solid is a good thermal conductor (large conductivity sk ) or when the solid 

thickness sΛ is small. Conversely, in the case of a low contribution of the solid term 

(ceramics for instance or large solid thickness) stability issues may arise. 
 

At this point, it is legitimate to wonder at which theoretical value of Rh , the thermal coupling with 
radiation becomes unstable if nothing is done to take it into account. Let us consider that the 
coefficient opt

fα  (without radiation) is implemented. From the definition of g , we obtain 

opt
fs

R
f

opt
fffopt

f
K

hKDK
g

αβ

α
α

+

++−−
=

.
)(  (24) 

Instability is likely to occur when ,1>g  that easily reduces to the following condition  

s
R Kh .β>  (25) 

So, when the radiative heat transfer coefficient dominates the solid thermal conductance, the 
coupling process becomes theoretically unstable.  

 
Note that the solid conductance is maximum for 1=β , corresponding to the Dirichlet condition at 
the outer boundary, value adopted from now on. 

2.6.2. Stabilizing effects 

Consider yet again the amplification factor (Eq. 13). We see that its value for the optimal coefficient 
with radiation is given by 

opt
Rfs

opt
fopt

Rf
K

g
−

− +
=

α

α
α )(  (26) 

This shows that )()( opt
f

opt
Rf gg αα <− . This effect can easily be seen in Figure 2, where the absolute 

minima of the curves with 0>ε  are located slightly below that of the curves without radiation 
0=ε . Although the differences are small, a slightly faster convergence speed is expected, as long as 

the optimal coefficients are employed with and without radiation.  
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2.7.  Summary of the theoretical results 

The main results of the stability analysis are summarized in Table 1. This table shows the behavior of 
the amplification factor (1st column) as a function of the coupling coefficient Rf −α  (1st row). The last 

column “conditions” provides the nature of the thermal F-S interaction: either moderate/strong 
interaction ( 1>νBi ) or weak interaction ( 1<νBi ). Thus, two zones are identified.  
 
The first zone is characterized by a lower stability limit min

Rf −α defined by Eq. (20). The region 
min

RfRf −− < αα  is unstable (see left-hand part of the 3 curves in Figure 2 with 1>g ). For min
RfRf −− > αα , the 

amplification factor decreases from 1 to a certain limit (given by Eq. (26)) and then increases from 
this minimum to 1. This limit is provided by the optimal coefficient (given by Eq. (18)) and 
corresponds to the absolute minimum of the amplification factor.  
 
The second zone does not exhibit any stability restriction. In other words, all coupled calculations 
performed with 0≥−Rfα are theoretically stable. The amplification factor has an absolute minimum, 

namely when Rf −α  is equal to the optimal coefficient, defined by Eq. (18).  

  

fα    0   min
Rf −α

 

-------------
--- 

   )(opt
Rf −α  ---------------

--- 
∞
 

c o n d i t i o n  

g      U N S T A B L E 
  1  

 
 

)( opt
Rfg −α

 

  1 
1>RBiν  

g  
RBiν   

 
 

)( opt
Rfg −α

 

    

 

 1 
1≤RBiν  

 

  

 
 

 
Table 1- Numerical properties of Dirichlet-Robin BC vs. fα  
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3. CODES AND COUPLING LIBRARY 

3.1.  Fluid Code: elsA 

The fluid code, referred to as the elsA software package (ONERA-Airbus-Safran property), is a  
multi-application CFD simulation platform  for applied aerodynamics (internal and external 
aerodynamics from the low subsonic to the high supersonic flow regime) and multi-physics, which 
capitalizes on the innovative results of CFD research Erreur ! Source du renvoi 
introuvable.[40][41][43]. The governing equations are the time-dependent Navier-Stokes (NS) 
equations which express the conservation laws written in the conservation form as   

                                                 ( )[ ] 0=⋅∇+
∂

∂
f

f wF
t

w
                                                                        (27) 

where fw  represents the vector of mass, momentum and energy quantities, F represents the flux 

including inviscid and viscous terms. The inviscid terms are solved using a second-order upwind 
spatial discretization. The viscous terms are discretized with a five-point central difference 
formulation. The time integration is obtained by an implicit method. 

3.2.  Solid Code: Z-set 

The solid software package, called Z-set [44], is a comprehensive suite of integrated analysis 
programs for general purpose structural analysis. Only the thermal solver is employed in the study 
presented in this paper. Assuming that there are no heat sources, the temperature distribution within 
the solid body is modelled as a balance of the thermal transport governed by  
 
                                                     0)..( =∇∇−∂ TkTC tssρ                                                                 (28) 

where ),,,( zyxtTT =  is the unknown temperature field within the body and k  is a thermal 
conductivity. In the steady-state CHT procedure, we will adopt the steady-state form of (28), i.e. the 
Laplace’s equation 0=∆T .  

3.3. Radiation Code: ASTRE 

ASTRE is a Monte Carlo (MC) radiation transfer code [45]. ASTRE was initially developed to 
simulate radiative transfers within semi-transparent media and is used mainly to deal with 
combustion applications [46] or atmospheric reentries [47].  

Since ASTRE includes volume-volume, surface-volume and surface-surface radiative exchanges, 
ASTRE could obviously be used as is, to calculate only the surface-surface (S2S) radiative exchanges 
in transparent media. However, this would be quite costly in terms of CPU time since the radiative 
power field would be calculated by default over the entire volume of the computational domain, 
which is of no use in transparent media. Therefore, ASTRE was recently optimized to deal more 
efficiently with surface-surface radiative exchanges in transparent media. It would have been very 
simple to use a view factor calculation capability, but our goal is to develop a methodology with the 
computation codes available at ONERA in order to be able to apply this methodology to a large 
variety of complex configurations. 

Several MC methods are available in the ASTRE code [48][49]. In this study, the Emission 
Reciprocity Method (ERM), associated with the Uniform Distribution (UD), was used to calculate 
the radiative fluxes on the walls. This method is based on the reciprocity principle to calculate 
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absorbed fluxes and consequently, it has the advantage of being able to perform local calculations by 
affecting energy bundles to be emitted only to certain faces of the mesh. This contrasts with the 
classical MC method that calculates radiative fluxes on all boundaries of the computational domain 
after the energy bundles emitted from all boundaries are tracked.  

In a Monte Carlo computation, a large number of energy bundles is emitted and tracked until they are 
absorbed. For each energy bundle, two angles are randomly chosen by drawing random numbers. At 
the end of the simulation, when all the energy bundles have been tracked, the radiative fluxes 
computed on the walls are fluxes integrated over all directions (see reference [48] for more details). 

3.4.  Coupling library 

The coupling between the three aforementioned codes is carried out through the coupling library 
CWIPI [50], developed by ONERA. CWIPI (Coupling With Interpolation Parallel Interface) is a 
library that makes it possible to couple an arbitrary number of parallel codes with MPI 
communications. Coupling is made through an exchange zone that can be discretized in a different 
way on any coupled code. Linear, surface or volume couplings are available. There is no requirement 
for the mesh structure, since CWIPI takes into account all types of geometrical elements (polygon, 
polyhedral).  
 

4. PARTITIONED LOOSE COUPLING STRATEGIES 

4.1. Fluid-Radiation algorithm 

The coupling between the fluid code and the radiative code has first been undertaken. All relevant 
information relating to the physical solvers are transmitted via the coupling library. The coupling 
scheme is as follows: 
 
- elsA sends to ASTRE the interface temperature 
- From this temperature field as BC, ASTRE computes the surface radiative heat flux 
- This radiative flux is sent to elsA 
- The total heat flux (convective+radiative) is calculated by the fluid code 

4.2. Fluid-Solid-Radiation algorithm 

The sequence of operations in the partitioned procedure is shown in Figure 3 and detailed in 
Algorithm-1 for the Dirichlet-Robin interface condition. This coupling cycle comprises 7 steps. It can 
be seen in Figure 3 that it is not exactly a 3-code coupling since the solid solver does not 
communicate directly with the radiation code. 
 
The process just described is continued until the Navier-Stokes solver converges and wall 
temperatures and heat fluxes converge, that is until the following tolerance criterion is satisfied  

ξ<− sf TT  (29) 
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_____________________________________________________________________________ 
Algorithm 1 - Schematic of the procedure for the fluid-solid-radiation coupling at a given time coupling 
 
� The fluid solver elsA computes flow and convective fluxes from time ct  to cc tt ∆+  

� elsA sends the surface fluid temperature distribution to the radiation code ASTRE 
� ASTRE computes the radiative fluxes using the new wall temperature distribution 
� ASTRE sends the resulting radiative heat fluxes to elsA 
� elsA sends to Z-set the total (convective+radiative) heat flux distribution 
� Z-set solves a steady-state conduction problem 
� Z-set sends the interface temperature distribution to elsA 
____________________________________________________________________________ 

Figure 3 - Algorithm of the Fluid - Solid - Radiation partitioned approach 
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5. AEROTHERMAL TEST CASE WITH RADIATION 

5.1. Objective of the test case 

In order to illustrate the issues, support the claims made in Section 2 and validate the results, a simple 
test case with radiating surfaces is considered. Emphasis is put on the destabilizing and stabilizing 
effects of radiation and the potential of the new optimal coefficient to obtain fast calculations in the 
presence of radiation. In particular, we would like to check that: 

- a stable and fast converging CHT computation can be destabilized only by radiation 
- the latter case can be stabilized through the use of the coupling coefficient opt

Rf −α   

- 'optimal' CHT with radiation converges slightly faster than 'optimal' CHT without radiation 

5.2. Choice of the physical and numerical parameters 

The parameters presented in this Section have been purposefully selected to maximize the thermal 
fluid-structure interaction. To this end, we have performed the procedure listed below in connection 
with the theoretical concepts just presented. The following three conditions need to be fulfilled: 

(1) The fluid-structure coupling is stable and functions ideally without radiation:( )1)( <opt
fg α  

for .0=ε  
 
(2) In a second step, the addition of radiation must destabilize the coupling and the conventional 

coupling coefficient must become inoperative if it does not take into account radiation ( )1)( >opt
fg α  

for a specific value of .0>ε  This is theoretically obtained if Condition (25) holds (§ 2.6.1). 
 
(3) In a third step, the new coefficient presented in this study must provide theoretically stable 

and fast CHT simulations ( )1)( <−
opt

Rfg α  for the specific value of ε  considered. 

 
As a result, the physical and numerical parameters have been specially chosen to satisfy the above 
conditions. They are provided in the following Tables 2, 3, 4, 5 and 6. 

 
 

  Table 2 - Fluid parameters 
 
 
 

 
 
                 Table 3 - Solid parameters  
 
 

ε  0. 0.5  0.8 
Tref 1400 

Rh  0.0 311.0 498.0 
             Table 4 - Radiation parameters  
 
 

fk  fy∆  fK  ft∆  

6.47 10-2 4.0 10-5 3238 2.875 10-5 

sk  sΛ  sK  

0.5 3.0 10-3 166.0 
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ct∆  fD  

fD  sf KK  νBi  min
fα  opt

fα  

6.0 10-4 83.0 0.856 19.43 2.78 150 232 
    Table 5 - CHT parameters without radiation 
  
 

hR νBi  min
fα  opt

Rf −α  

0.0 2.78 150 232 
311.0 4.65 304 540 
498.0 5.77 395 730 

                Table 6 - CHT parameters with radiation 
 

Let us recall that the above-mentioned parameters have been employed to plot the curves in 
Figure 2. As a result, these curves may be considered as the theoretical representations of the CHT 
computations that will be described in this Section.  

5.3.  Geometry and boundary conditions 

The turbulent channel configuration is the most frequently used geometry implemented in studies of 
the near-wall heat transfer and the most accurate approach is conjugate heat transfer. In this study, 
the geometry is an open 2D channel with a rectangular cross section, where heat conduction inside 
the heated walls is taken into account. Moreover, the two walls facing one another (coupled 
interfaces) are radiating. This configuration is displayed in Figure 4. 
 
 

 
 

   
 
 
This channel, 350 mm long x 100 mm wide, is bounded by two solid plates 3 mm thick. A 
temperature of 1300 K is imposed on the upper surface and 1500K is imposed on the lower surface. 
A buffer zone with upper and lower adiabatic walls is placed upstream to remove the singularity at 
the leading edges of the flow channel. Turbulent air at a temperature of 1200 K flows from the inlet 
(velocity of 83 m/s) to interact and cool the two solid plates (coupled interfaces) before exiting 

Figure 4 - Sketch of the CHT geometry and boundary conditions 
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(outlet static pressure: 1,01.105 Pa). With these conditions, the Reynolds number, based on the length 
of the channel, reaches 5.104. 
 
Figure 5 shows the mesh of the upper solid, a part of the meshes of the fluid domain and the buffer 
zone. The fluid mesh has been refined enough in the y-direction near the wall my f

510.4 −=∆  to 

correctly capture the flow boundary layer so that 1≈+y . There is also the same strong refinement at 

the entrance of the channel flow, mx f
510.4 −=∆ . To avoid interpolation issues in the coupling process, 

the three meshes (fluid, solid and radiative) are coincident at their shared interface. Each solid 
domain is composed of rectangular elements, with 19 cells in the y-direction according to a  
geometric progression and 76 surface elements in the interface in the x-direction. 
 

 
 
 

 
 

 
 
 
The fluid problem is solved with an Unsteady RANS approach using a Jameson type scheme [51] 
and the Spalart-Allmaras turbulence model [52]. This unsteady approach is not the most suitable 
method for quickly obtaining steady-state fluid solutions. However, a constant time step is used 
throughout the calculation to reproduce the conditions of the model problem. The fluid time step 
is st f

510.3 −=∆ . Concerning the calculation of the radiative fluxes, the number of energy 

bundles, iN , emitted by each surface element i, was chosen to be 1000. So, the total number of 

bundles is 000,152=N , which appears to be a good compromise between accuracy and calculation 
time, since a 0.01% convergence is obtained.  

5.4. Radiative fluxes 

As linear interface conditions are needed in the stability analysis, the radiative flux has been 
linearized around a reference temperature taken as the average of the initial temperatures of the two 
walls. However there are two choices. Either the exact formulation is adopted and thus Rh  (see 
Sections 2.2.1 and 2.3.1) can be regarded as a local and transient coefficient or a linearization is 

Figure 5 - Parts of the meshes of the fluid, solid and buffer domains 

solid 

 fluid buffer 
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performed. In the latter case, Rh  is constant during the whole coupling process. Both formulations are 
provided in Eq. (7). 

It would have been possible to adopt the reference temperature as the temperature of the opposite 
wall. However, let us recall that the model problem includes only a single fluid-solid interface. 
Strictly speaking, this means that the opposite wall is not “seen” by this model. In the near future, it 
could be possible to extend the model to take into account both walls simultaneously.  

5.5. CHT Results 

5.5.1. Emissivity 5.0=ε  

Figure 6 shows the convergence history for two values of the coupling coefficient, by plotting the 
normL −∞  of the temperature, i.e. the interface temperature residuals fT∆  as a function of the 

coupling iteration. In other words, two identical coupled calculations with radiation (emissivity 
5.0=ε ) have been performed. The only difference is the value of the coupling coefficient which, in 

the first case ignores radiation (optimal coefficient ( )opt
fα without radiation given by Eq. (17)) and in 

the second case takes it into account (optimal coefficient ( )opt
Rf −α with radiation given by Eq. (18)). 

 
 
 

 
 
 
 
 
The first point is that both calculations converge. During the first 10 coupling iterations the curves 
are coincident since radiation is introduced in the process at the 11th iteration. The radiation was not 
set up at the beginning of the coupling process because our objective was to analyze the destabilizing 
effect of radiation and it was therefore essential to trigger it separately at a predetermined step in the 
process. At the 11th iteration, a sudden increase in temperature residuals is observed. The peak 
reached for ( )opt

ff αα = is the highest and this simulation needs 142 coupling iterations to obtain the 

Figure 6 - Convergence history for CHT with radiation (ε = 0.5) 
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convergence 310−=∆ fT  K. On the contrary, the convergence criterion is satisfied after 84 coupling 

iterations with ( )opt
Rff −= αα , i.e. a gain of 69%. Indeed, the calculation with ( )opt

Rff −= αα  is the fastest 

CHT process, as predicted by the coupling CHT model presented in Section 2. However, it should be 
noted that, according to this model, the CHT calculation is supposed to be unstable since 

1)( >opt
fg α , the absolute minimum of the curve for 5.0=ε  in Figure 2. These discrepancies may be 

due to some stabilizing effects generated by the flow, not included in the theoretical model. It is 
necessary nevertheless to specify that even if convergence is reached, important oscillations of the 
interface temperature are observed during the initial phase of the coupling process for this value. 
However, these oscillations are rapidly damped. On the contrary, for )(opt

Rff −= αα , the temperature 

behavior is oscillation-free. For larger values of fα , stable CHT computations are obtained, but they 

take a little longer. Finally, it is worth mentioning that if the tolerance level is less, the number of 
iterations is at least cut by half (see for instance in Figure 6, the number of iterations needed to reach  

110−=∆ fT  K or 210−=∆ fT  K). 

5.5.2. Emissivity 8.0=ε  

Figure 7 illustrates that for a higher value of the radiation 8.0=ε , convergence is obtained rapidly 
when )(opt

Rff −= αα  is used, with approximately the same number of coupling iterations as before 

(87 iterations). However, now, the interface temperature residuals increase and as a result, the 
radiative calculation with ( )opt

ff αα =  crashes rapidly. One can see from Figure 2 that the 

amplification factor this time is close to 2 and thus at this stage, nothing can be done to stabilize the 
coupling process.  
 
 

 
     
 
 
To better understand the cause-effect relationships between the coupling model and the coupling 
results, Table 7 summarizes the key trends of the radiative effect for the three values of emissivity 

Figure 7 - Convergence history for CHT with radiation (ε = 0.8) 
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considered and we can see that radiation may play a crucial role. It is thus essential to provide an 
adequate response to the destabilizing effect of radiation. 
 

Rh  RBiν  )( opt
fg α  )( opt

Rfg −α  Number of iterations to  
converge with opt

fα  
Number of iterations to  

converge with opt
Rf −α  

0. 2.78 0.58 0.58 83 83 
311. 4.65 1.34 0.35 142 84 
498. 5.77 1.83 0.26 crash 87 

 
                                 Table 7 - Convergence properties without and with radiation 

 

5.5.3. Stabilizing effect 

Despite the contradiction with what has just been said, we will now see if the positive effect can be 
highlighted, as described theoretically in Section 2.6.2. This effect, characterized by a decrease of the 
temporal amplification factor, should be identified during the convergence history. For that purpose 
two CHT computations have been compared. The first one without radiation converging in 83 
iterations as mentioned in Table 7 and the CHT computation with 8.0=ε . Figure 8 depicts the 
convergence history of these two calculations. During the first 10 iterations, the curves are the same 
since the radiation has not yet been activated. Then a sudden peak is observed as soon as the radiation 
is activated. Despite this strong negative effect, the temperature residuals decrease rapidly and the 
resulting curve always lies below the curve without radiation until the tolerance criterion is satisfied 
( 310−=∆ fT ) and hence fits perfectly with the theoretical model. 
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What happens if the tolerance level, adopted until now, becomes more severe? By extending the 
convergence level, this question is answered in Figure 9. It is interesting to note that the residuals of 
the CHT computation with radiation end up stagnating around 610−=∆ fT , while the CHT without 

radiation keeps converging. 

Figure 8 - Comparison of convergence history for CHT with and without radiation 
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This result does not call into question the mathematical model but, on the contrary, reinforces its 
validity in so far as the CHT calculation with no radiation can reach very low convergence levels as 
shown in this Figure and as has been observed in previous studies [29][30]. This is only due to the 
number, N, of energy bundles simulated in the radiation code which automatically limits the 
convergence level of the entire process. 
 

5.5.4. Importance of radiation 

The last two figures represent the temperature profiles along the coupling interface (Figure 4) on the 
upper face (Figure 10) and the lower face (Figure 11). Note that the effect of radiation can be very 
important and thus not negligible in the thermal design. For example, in this case ( 8.0=ε ), the lower 
wall receives a greater amount of heat (an increase of 70 K or more) when radiation is taken into 
account. 

Figure 9 - Comparison of convergence history for CHT with and without radiation 
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Figure 10 - Temperature profile along the Upper F-S interface at convergence 
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5.6. General remarks 

The parameters in this test case have been chosen specifically to provide a significant effect on 
stability. When this effect has a small impact, the model will obviously still work regardless. 
However, we now have a fairly good understanding of this behavior and the stability limits are 
known. Otherwise, when radiation has a moderate or strong destabilizing effect, the situation is more 
complicated from a stability point of view, but all the relevant settings can now be provided to ensure 
robust coupled calculations, irrespective of the CHT conditions. The optimal coefficient will 
adaptively adjust to the local conditions. In any case, whether the radiation impact is big or small, 
optimization in terms of convergence and CPU time will be automated to a certain degree in a fairly 
straightforward manner. 

Figure 11 - Temperature profile along the Lower F-S interface at convergence 
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6. CONCLUSION 

A predictive coupling model for steady conjugate heat transfer problems with radiation was proposed 
in this paper. It was derived from a stability analysis based on the Godunov-Ryabenkii normal mode 
theory. The stability bounds, the optimal coefficients and the main numerical characteristics of the 
interface procedures for aerothermal interaction with radiation were highlighted and expressed. The 
numerical treatment relies on adaptive and local coefficients. Consequently, arbitrary relaxation 
parameters are no longer required in the coupling procedure and oscillation-free coupled solutions 
can be obtained. The model presented in this article is part of a wider strategy to ensure optimal 
treatments for CHT problems. It was shown that radiation in a transparent medium with gray walls 
can be taken into account in a simple and effective manner. In the near future, consideration should 
be given to extending this model to semi-transparent media. 
 

In the CHT test case, emphasis was put on the destabilizing nature of radiation and the main 
results derived from the mathematical model were confirmed. All the key trends of radiation effects 
identified theoretically were recovered and the potential of the new optimal coefficient to obtain fast 
calculations in the presence of radiation was confirmed. It was also checked that 'optimal' CHT 
radiation converges slightly faster, which might seem surprising. However, the non-linear nature of 
the thermal radiation should not be forgotten and thus the reliability of the use of a linearized 
radiative coefficient could be questioned or invalidated under some circumstances. Nonetheless, the 
significant patterns and trends illustrated in this paper are particularly valuable in a wide range of 
engineering applications where combined heat transfer of radiation, convection/conduction is 
encountered.  
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 APPENDIX A  
 

Single interface equation for the Dirichlet-Robin boundary condition with radiation 
 
The goal of this Appendix is to determine a single interface equation for the Dirichlet-Robin 
boundary condition with radiation. The temporal interval [ ]1, +nn  in a sequential algorithm is 
considered at the fluid-solid interface. It must be recalled here that ( )X̂  denotes the sought value X. 
 
At time nt , on the fluid side, a Robin interface condition (see Eq. 1) has the following form :  

( ) n
s

n
s

n
s

nR
f

n
f

n
s

n
f TqTq αα +=Φ++

+++ 111 ˆˆˆ  (A-1) 

After completing the previous step, the fluid quantities are transferred to the solid and implemented 
on the right-hand side. A Robin equation is employed on the solid side of the same interface at time 

1+nt  (see Eq. 2) 
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The radiative fluxes are linearized (see Eq. 9) and thus the interface conditions become 
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with )( reff
R
s

R
s TTh −=Φ   and )( reff

R
f

R
f TTh −=Φ .  

The system (A-3) represents the general formulation of the Robin-Robin interface conditions. From 
now on, we will consider only a Dirichlet boundary condition in the fluid domain. This condition is 
directly obtained by imposing ∞=sα . Then, expressing the heat fluxes in terms of the temperature, 
(A-3) becomes 

     ( )









−−−
∂

∂
−=







 −
∂
∂−

=

++
+

+++

+

ref
R
s

n
f

R
s

n
f

n
fn

f
n

s
n
f

n
s

n
s

n
f

ThTh
T

KTK

TT

11
1

111

1

ˆ

ˆ

α
ν

α
ν

 (A-4) 

Where ν is the unit normal vector at the fluid-solid interface, i.e. pointing to the inward normal of the 
fluid (see Figure 1). For easier reading, the superscripts n  and 1+n  will now be removed in the 
coefficients fK , sK , and fα .  

 
At this stage, it is worth remembering that the temperatures sT  and fT  are located on either side of 

the same interface 0=y . In other words, −= 0TTs and += 0TT f . As the derivatives 
ν∂
∂  at the interface 

are approximated by one-sided differences, (A-4) becomes 
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Since a steady-state is considered on the solid side,
s

J

s

TT

y

TT

Λ
−

=
∆

− −−−− 010 . Thus (A-5) can be rewritten 
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This system becomes  
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Where extG  is a constant term defined by ref
R
sJsext ThTKG += −β . 

 
Let us remind here, that the coefficient β  is a dimensionless number that can be thought of as a 
simplified representation of the outer boundary condition -J of the solid domain. If a temperature is 
imposed at this limit, then 1=β . See [26] for more details. 
 
Substituting the definition of 1

0
+

+
nT  into the second equation of (A-7), we find 

                                          ( ) ( ) ext
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n

f
n
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1
1

0̂ ααβ                                     (A-8)  

We therefore arrive at  
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At this point, it must be emphasized that a constant plays no role in the normal mode stability 
analysis and thus the term extG can be removed. Finally, the following single interface equation is 
obtained 

nnn BTATT −
++

− += 0
1

1
1

0  (A-10) 

With      
K

K
A

f=    ,     
( )

K

hK
B

R
sff −−

=
α

    ,    fsKK αβ +=  (A-11) 
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APPENDIX B 

 
Stability Analysis  

 
B.1 Link between the fluid and solid temporal amplification factor 
The stability analysis is based on the Godunov & Ryabenkii theory. We seek normal mode solutions 
to the equation (A-10) of the form 
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≤

>
=

−

0,

0,1

jz

jz
T

j
s

n
s

j
f

n
fn

j
κ

κ
 (B-1) 

 
Where z is the "temporal" amplification factor and κ  is the "spatial" amplification factor. 
 
Substitution of the normal mode solution (B-1) into the continuity of temperature at the fluid-solid 
interface ( )nn TT −

+
+ = 0

1
0  leads to  

zzzzz sf
n
s

n
f ==⇒=  (B-2) 

 
B.2. Characteristic equation in the steady solid domain 
Introducing the second equation of (B-1) into the Laplace equation solved in the solid domain yields 

0122 =+− ss κκ 0≤j  (B-3) 
 

Thus the trivial solution 1=sκ  is obtained, which means that there is no spatial amplification in the 
solid domain. 
 
B.3. Characteristic equation in the transient fluid domain 
In the interval[ ]1, +nn , the fluid solution is advanced from nt  to 1+nt and a new temperature field is 
calculated on the basis of a forward implicit scheme. In the first grid cell adjacent to the interface, the 
following discrete equation is solved 
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n
j

n
j TTTDTT  (B-4) 

 
Substitution of the normal mode solution (B-1) into this equation leads to  
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There is only one acceptable solution to this equation, given by the choice of the root with the minus 
sign 
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From (B-6), we can see that the values of the complex function, fκ , at the specific points 1+=z  and 

1−=z  are real and equal to  
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fff
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)1,(

1)1,(

κ

κ
     (B-7) 

 
The definition of the normalized Fourier number fD is given by (15). 
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B.4. Temporal amplification factor of the coupled problem 
Now, inserting the normal mode solution (B-1) into the single interface condition given in Equation 
(A-10), we readily obtain the temporal amplification factor for the coupled model problem 

BzDAzgz fff +== ),(),( κα  (B-8) 

With fκ given by (B-6). The coefficients A and B are defined by (A-11).  

 
B.5. Application to the Dirichlet-Robin interface condition 

 
B.5.1. Temporal Amplification factor 
From (B-8) and (A-11), it is straightforward to obtain the temporal amplification factor 

( )
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The expression given by (13) is recovered 
 
B.5.2. Spatial amplification factor 
From (A-10) we obtain 
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The left-hand side of equation (B-10) represents the definition of the temporal amplification 
factorz . As a result, from (B-8), another simple expression of the spatial amplification factor in the 
fluid domain may readily be expressed 
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B.5.3. Optimal coefficient 
The amplification factor is composed of two half-lines with a singular point at the intersection of 

these two lines defined by  

),1(),1( ff zgzg αα −===  (B-12) 
 

Using the definition given by (B-8) in its simple form, (B-12) becomes  

BzDABzDA ffff +−==+= ),1(),1( κκ  (B-13) 
 

Substituting the definition of fκ  given by (B-7), (B-13) becomes 

BDABA f +=+  (B-14) 
 

Thus, a remarkable condition for a transition to occur is obtained for 

                                       ( ) 0.2).1( =−−++ R
sffff hKKD α                                                 (B-15) 

 
The unique coefficient satisfying (B-15), is called an optimal coefficient since the temporal 
amplification factor attains an absolute minimum on the unit circle. From (B-15) we obtain 
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The expression given by (18) is recovered. 
 
B.5.4. Stability limit 
The stability bound is obtained for 1),,( =sfzg αα . Thus from (B-8) 

        1),( =+ BzDA ffκ                                                          (B-17) 

This relationship may occur only in the unstable zone and thus 1−=z and ff D=κ . As a result  

(B-17) becomes 

                                                                    1−=+ BDA f                                                                (B-18)  

And consequently 
( ) ( )fs

R
sffff KhKDK αβα +−=+−−                                         (B-19) 

Finally, the stability limit is 
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The expression given by (19) is recovered. 
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