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Joint state and dynamics estimation with high-gain observers and
Gaussian process models

Mona Buisson-Fenet1,2,3, Valery Morgenthaler2, Sebastian Trimpe3, Florent Di Meglio1

Abstract— With the rising complexity of dynamical sys-
tems generating ever more data, learning dynamics models
appears as a promising alternative to physics-based mod-
eling. However, the data available from physical platforms
may be noisy and not cover all state variables. Hence, it
is necessary to jointly perform state and dynamics estima-
tion. In this paper, we propose interconnecting a high-gain
observer and a dynamics learning framework, specifically
a Gaussian process state-space model. The observer pro-
vides state estimates, which serve as the data for training
the dynamics model. The updated model, in turn, is used
to improve the observer. Joint convergence of the observer
and the dynamics model is proved for high enough gain,
up to the measurement and process perturbations. Simulta-
neous dynamics learning and state estimation are demon-
strated on simulations of a mass-spring-mass system.

Index Terms— Machine Learning, Nonlinear systems
identification, Observers for nonlinear systems

I. INTRODUCTION

W ITH the recent advances in control engineering, more
and more complex dynamical systems are being con-

sidered, for which it is often difficult to derive physics-based
models. Because of the availability of experimental data, as well
as novel algorithms to process it, learning dynamics models
directly from that data is an attractive alternative. However, this
experimental data often originates from sensor measurements
on the physical system, which can be noisy and may not
reflect all state variables. On the one hand, reconstituting
the full state from noisy, partial measurements falls into the
area of state estimation and observer design. For nonlinear
systems, this remains a challenging task for which knowledge
of the dynamics is usually required [1]. On the other hand,
most existing approaches for learning dynamics models require
knowing the full state [2]. Therefore, joint state estimation and
dynamics learning is needed, a problem often referred to in
the machine learning community as inference and learning [3].

The design of observers for nonlinear systems is a complex
task for which various approaches have been investigated
(see [1] for an overview). We focus on the fairly large class of
systems that can be expressed in the so-called observable
canonical form (see Sect. II). For these systems, one can
design High-Gain Observers (HGOs), which rely on a triangular

1Centre Automatique et Systèmes, Mines ParisTech, PSL University,
Paris, France, florent.di meglio@mines-paristech.fr,
mona.buisson@mines-paristech.fr

2ANSYS Research Team, ANSYS France, Villeurbanne, France,
valery.morgenthaler@ansys.com

3Institute for Data Science in Mechanical Engineering, RWTH Aachen
University, Aachen, Germany, trimpe@dsme.rwth-aachen.de

structure with increasing gain power to compensate for the
nonlinearity farther from the measurement. HGOs have been
used for a wide variety of applications [4], [5]. In particular,
they provide robustness to model uncertainty, as practical
convergence can be proved for high enough gain, given only
an upper bound on the nonlinearity [6].

Learning dynamics models is also an active research topic.
In particular, Gaussian process (GP) state-space models are
increasingly used [7], [8]. These nonparametric models exhibit
many advantageous properties for learning dynamical systems:
they are flexible, data-efficient, probabilistic, and can easily
incorporate prior knowledge (see [9] for details). Thanks to their
analytical formulation, GPs also allow for theoretical guarantees
[10], [11], which is rarely the case for nonparametric machine
learning frameworks.

The problem of joint inference and learning for GP state-
space models is tackled in its most general form in [3] using
variational inference, by modeling the latent states as extra
hyperparameters of the GP. The expectation maximization
(EM) algortihm is applied: in the first step, measurements
are collected and the posterior distribution of the GP is
computed. In the second step, all hyperparameters, including
the pseudo inputs and outputs representing the evolution of
the latent states, are optimized to maximize the data log
likelihood. Improvements of this approach have been proposed,
e.g., by using more sophisticated loss functions or incorporating
additional structure [12], [13]. However, the optimization
procedure remains high-dimensional and non-convex. This
leads to a high computational burden and a risk of overfitting,
which can make the models difficult to train. Furthermore, no
theoretical guarantees are yet provided for such methods.

Recent works tackle this problem by combining observer
design and data-driven dynamics learning with universal
approximators. The model is learned with a neural network
using smooth, continuous-time weight update laws [14], [15]
or a basis expansion [16], then added to an observer built as a
copy of the system plus linear output injection terms. Limited
theoretical guarantees have been shown [14], [16], but joint
convergence has only been proved if suitable gains can be
found by solving a large set of linear matrix inequalities [15].
However, this yields an unusual neural network model for f
and an observer with a high number of parameters left to tune,
limiting the practical use of the framework.

In this work, we combine the predictive power of machine
learning with existing convergence results for state estimation.
Our main contribution is the design of a framework for
simultaneous state and dynamics estimation, by combining
a HGO that estimates the full state from measurements and a
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GP model that learns the unknown nonlinearity. Convergence
guarantees for both the observer and the dynamics model are
provided; practical applicability is discussed and demonstrated
on simulations. This builds upon the scheme proposed in
[17], in which the nonlinearity is considered as a state
with partially known dynamics in an extended HGO, and
is learned by an identifier satisfying certain requirements.
The key difference of our approach is to directly learn a
discrete model of the nonlinearity instead of differentiating
it and extending the observer. This enables us to deal with
controlled systems and input-dependent nonlinearities, and to
decrease the error in the data used for regression. Furthermore,
it decreases the dimensionality of the observer, which reduces
noise amplification by the HGO. We also show that more
flexible, non-parametric models such as GPs can learn the
input-dependent dynamics while satisfying the smoothness
assumptions which are necessary to prove joint convergence.

After formalizing the problem, we present the proposed
framework in Sect. II. In Sect. III we show joint convergence
of both state and dynamics estimation, then demonstrate our
approach on a numerical example in Sect. IV. Comparison to
related work and limitations are discussed in Sect. V, before
concluding in Sect. VI.

II. PROBLEM FORMULATION AND PROPOSED FRAMEWORK

We consider a dynamical system of state x ∈ Rn, output
y ∈ R, and bounded control input u ∈ Rm, where n,m ∈ N.
For ease of notation we focus on the single-output case, but
all results extend to multiple outputs by concatenation. We
assume the following observable canonical form

ẋ = Ax+Bf(x, u) +D(u) + d, y = Cx+ ε, (1)

with f an unknown nonlinearity acting on the nth state xn,
while the rest of the dynamics follows a chain of integrators:

A =

(
0n−1 In−1

0 0
ᵀ
n−1

)
, B =

(
0n−1

1

)
, C =

(
1

0n−1

)ᵀ

.

The input function D : Rm → Rn is continuous and known
while d ∈ Rn, ε ∈ R are unknown disturbances, typically
considered deterministic (see Remark 2). All vectors are
column vectors; 0n denotes a vector of n zeros, while In
is the identity matrix of size n. A broad class of systems
can be transformed into this canonical form without knowing
f , e.g., all differentially observable systems [1, Sect. 7.1].
Our aim is to compute an estimate x̂ of the full state from
measurements y, while jointly learning a model f̂ of f . We
make the following assumptions on (1).

Assumption 1: The true nonlinearity f is Lipschitz continu-
ous of constant Lf . There exist compact sets X and U such
that x(t) ∈ X , u(t) ∈ U ∀ t ≥ 0. Since f is continuous on a
compact space, its norm is also bounded by fmax.

The proposed observer follows a cyclic structure, illustrated
in Figure 1. During cycle number j ∈ N∗, the observer produces
an estimated state trajectory based on measurements and on
the current dynamics model f̂j−1. This data is sampled and
saved. At the end of the cycle, the model is updated based on
the available estimated data. It produces an estimate f̂j , which
is then used by the observer for the next cycle.

Observer design and model learning
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Fig. 1: Structure of the framework: after each cycle, an updated
model f̂j is computed and the observer is adapted.

A. High-gain observer

During cycle number j, the HGO performs state estimation
using the current model of the dynamics f̂j−1:

˙̂x = Ax̂+Bf̂j−1(x̂, u) +D(u) + Λ(g)(y − Cx̂). (2)

The gain is denoted g > 1, while Λ(g) is the gain matrix
following a standard high-gain construction:

Λ(g) :=
(
gL1 g2L1 · · · gnLn

)ᵀ
, (3)

with L =
(
L1 · · · Ln

)ᵀ
∈ Rn such that A−LC is Hurwitz.

Equation (2) corresponds to the observer block in Figure 1.
We make the following assumption, which is ensured by our
dynamics model described hereafter.

Assumption 2: For all j ∈ N, f̂j is continuous and its norm
is bounded by f̂max.
Hence, we can pick X large enough such that x̂(t) ∈ X
∀ t ≥ 0. With Assumptions 1–2, the error on the nonlinearity
f̂(x, u)− f(x, u) is bounded. Then, as proved in [6] and used
in the literature on HGOs, practical convergence in finite time
can be shown in the absence of disturbances: for a given error
level ν > 0 and a given time t̄ > 0, there exists a gain g high
enough to ensure that for all t ≥ t̄, ‖x̂(t)− x(t)‖ ≤ ν. Hence,
no matter how bad the approximation f̂ of f is, as long as an
upper bound of the difference is known, practical convergence
of the observer can be guaranteed for high enough gain. We
leverage this property to build our method.

B. Preliminaries on Gaussian processes

In this paper we focus on Gaussian processes. However, any
learning algorithm that satisfies our assumptions can be used.
A Gaussian process (GP) is a collection of random variables,
any finite subset of which is jointly normally distributed (see
[9] for an overview). It is fully characterized by its mean
function m(·) and its covariance function k(·, ·). Without loss
of generality, we assume m ≡ 0. Any prior information can
be included by substracting it from the output data in order
to learn the residuals of this prior. Function properties such
as smoothness are encoded in the choice of the kernel k(·, ·),
which acts as a similarity measure for the values of f(·). At
an unobserved point x, given a dataset (X,Y ) with Gaussian
noise of variance σ2

ε on the output, the GP prediction of f(x)
is normally distributed with posterior mean and variance

µ(x|X,Y ) = k(x)
ᵀ
(K + σ2

ε I)−1Y (4)

σ2(x|X,Y ) = k(x, x)− k(x)
ᵀ
(K + σ2

ε I)−1k(x), (5)

where I is the identity matrix, K = (k(xi, xj))xi,xj∈X is the
covariance matrix of X , and k(x) = (k(xi, x))xi∈X . The
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kernel k usually depends on some hyperparameters, often
obtained by maximizing the data marginal log likelihood.

Assumption 3: The kernel k is differentiable, Lipschitz
continuous of constant Lk, and its norm is bounded by kmax.
This is the case for most commonly used covariance functions,
such as the squared exponential. GPs are increasingly used for
learning dynamics thanks to their flexibility, data efficiency and
analytical formulation. In this work, we use the GP posterior
mean as a function approximator to estimate f .

C. Learning method
The state trajectory estimated by the observer is used to

learn the dynamics model f̂ through batch updates. For each
update indexed by j ∈ N∗, a dataset of length N is constructed
by sampling this trajectory with period ∆t, starting from the
last sample collected at tj :

Xj =
(
(x̂(tj−N ), u(tj−N )) · · · (x̂(tj−1), u(tj−1))

)ᵀ
Yj =

(
x̂n(tj−N+1) · · · x̂n(tj)

)ᵀ
. (6)

Since the nonlinearity acts on the nth dimension, xn is the only
output that needs to be collected. The jth update f̂j is learned
from inputs Xj and outputs Yj , then used in the observer (2)
for the next cycle. It can be updated offline since this may
necessitate more computing power, and the updates are not
necessarily periodic. The model learned from (6) is

µj(·|Xj , Yj) = kj(·)
ᵀ
(Kj + σ2

ε IN )−1Yj (7)

with Kj = (k(xi, xl))xi,xl∈Xj
, kj(x) = (k(xi, x))xi∈XJ

. For
the formulation of the GP posterior, Gaussian measurement
noise of variance σ2

ε is assumed. However, this need not be the
case in reality as we only use the GP as a function approximator
and σ2

ε , similarly to other hyperparameters, is chosen in practice
for calibration purposes. No assumption on ε is needed for the
provided theoretical guarantees.

We perform nonlinear regression to estimate the mapping µ :
(x̂, u) 7→ x̂n(t+ ∆t). However, f̂ in the observer corresponds
to the continuous time derivative of x̂n. Hence, we form f̂j
with a Euler differentiation step:

f̂j(x̂, u) =
1

∆t
(µj(x̂, u|Xj , Yj)− x̂n). (8)

To guarantee the boundedness of f̂ , we saturate it directly in the
observer by imposing ‖f̂‖ ≤ f̂max. The model (8) corresponds
to the GP block in Figure 1; given the continuity of (7) and
this saturation, it satisfies Assumption 2.

Remark 1: The choice of ∆t results from a trade-off: small
enough to keep the numerical error from (8) low, large enough
to see a real difference between two samples. Learning a
discrete model from the estimated trajectory enables us to
avoid extending the observer, contrarily to [17].

III. THEORETICAL GUARANTEES

As stated previously, HGOs are robust to model uncertainty
for systems in the observable canonical form. This enables us
to decouple the procedures of state estimation and dynamics
learning. Indeed, thanks to this robustness, convergence guar-
antees can still be obtained even in the worst-case scenario,

i.e., with maximal but bounded model error, at the cost of a
high gain. These convergence properties are then transferred
to the dynamics model through its smoothness with respect to
the dataset used for learning. Both practical and asymptotic
convergence results are provided.

In the following proofs, we focus on the `2 norm for vectors
and matrices, but equivalent bounds can be obtained for any
vector norm and its induced matrix norm. We first give a
technical result on the smoothness of GP models, showing
that the posterior mean is Lipschitz continuous not only with
respect to the test point but also to the training dataset.

Lemma 1: Under Assumptions 1–3, the dynamics model f̂
as defined in (8) is Lipschitz continuous with respect to each
of its variables: (x, u) 7→ f̂(x, u|X,Y ) with constant Lx, and
(X,Y ) 7→ f̂(x, u|X,Y ) with constant Lz .

Sketch of proof: Assumptions 1–3 yield upper bounds on k
and Y . These and the Lipschitz continuity of k directly yield
the first claim. The sensitivity of the entries of K with respect
to each entry of X is then bounded by elementary algebraic
inequalities, and the second claim is obtained similarly. �

Since the dataset (Xj , Yj) is constructed from state esti-
mation samples, the error in this data directly depends on
the state estimation error. This corresponds to the stability
requirement in [17]. Then, Lemma 1 guarantees that any state
estimation error in the dataset is smoothly transferred to the
obtained model. This is essential to obtain stability guarantees,
and corresponds to the regularity requirement in [17]. While
we focus on GPs, any learning algorithm satisfying Lemma
1 based on a dataset constructed as in (6) can be used in our
framework, to produce an observer and a dynamics model that
can both be used for further control tasks.

A. Practical convergence
We denote dg =

(
g−1d1 · · · g−ndn

)
, x̄ = (x, u), ˆ̄x =

(x̂, u) and ‖x‖t̄ = max {‖x(t)‖ | t ≤ t̄}. At a given j ∈ N∗,
f̂∗j is the nonlinearity that would have been learned if the true
data X∗j , Y ∗j had been available, i.e., if the state x(t) had been
directly available for sampling according to (6) instead of its
estimate x̂(t). The prediction error is written as

εj(·) = f̂j(·)− f(·), (9)

while ε∗j (·) = f̂∗j (·)− f(·) is the optimal prediction error that
would have been obtained if the true state had been available
instead of an estimate. We now state a first result on the
practical convergence of the proposed framework.

Theorem 1: For system (1)–(2) with (8) under Assumptions
1–3, for any given error level ν > 0, any time t̄ > 0, there
exists a gain g∗ large enough such that for all g ≥ g∗, t ≥ t̄
and j ∈ N∗ such that t̄ ≤ tj ≤ t, in the absence of disturbances
(d ≡ ε ≡ 0), we have for any fixed x̄ ∈ X × U :

max
{
‖x̂(t)− x(t)‖, ‖f̂j(x̄)− f̂∗j (x̄)‖

}
≤ ν. (10)

Proof: The proof follows three steps. During a given cycle
indexed by some fixed j ∈ N∗, with tj ≥ t ≥ tj−1, the model
error can be bounded by the maximal error: ‖f̂j−1(·)−f(·)‖ ≤
f̂max+fmax. Using existing proofs of the practical convergence
of HGOs under bounded model uncertainty [6], [17], we show
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that there exist constants ρ1, ρ2, ρ3 > 0 and a gain g∗ > 0
such that for all g ≥ g∗, i ∈ {1, ..., n}:
‖x̂i(t)− xi(t)‖ ≤max

{
gi−1ρ0e

−ρ1gt‖x̂(0)− x(0)‖,
ρ2g

i−n−1, ρ3g
i−1‖(dg, ε)‖t

}
:= Bi(t). (11)

The key then lies in bounding the error on Xj and Yj :

‖Xj −X∗j ‖ ≤
j−1∑

l=j−N

n∑
i=1

‖x̂i(tl)− xi(tl)‖, (12)

‖Yj − Y ∗j ‖ ≤
j∑

l=j−N+1

‖x̂n(tl)− xn(tl)‖. (13)

Therefore, the error on the input and output datasets used to
learn f̂j decreases as the state estimation error decreases, with
a delay of N time steps corresponding to the time before earlier
samples with a larger error are forgotten. Applying Lemma 1
then (12)-(13) and (11) yields for any x̄ ∈ X × U :

‖f̂j(x̄)− f̂∗j (x̄)‖ ≤LzN(n+ 1) max
{
ρ3g

n−1‖(dg, ε)‖tj ,
ρ2

g
, gn−1ρ0e

−ρ1gtj−N ‖x̂(0)− x(0)‖
}
. (14)

Combining (11) and (14) as such leads to a joint practical
convergence result, with an additional term corresponding to
the disturbances. In the absence of disturbances, i.e., with
d ≡ ε ≡ 0, this concludes the proof.

B. Asymptotic convergence
Theorem 1 shows that the practical convergence guarantees

obtained for HGOs with bounded nonlinearity extend to the
complete error system. Both the state estimation error and
the error made by the dynamics model due to seeing only
estimated instead of true data can be made arbitrarily small
arbitrarily fast, up to the disturbances, at the cost of a high
gain. We now present an asymptotic convergence result arising
from the practical convergence of HGOs in the presence of
model uncertainty, by bounding this uncertainty depending on
the data, the test point, and the optimal ε∗.

Theorem 2: For system (1)–(2) with (8) under Assumptions
1–3, there exist constants c, c′, c′′ > 0 and a gain g∗ > 0 such
that ∀ g ≥ g∗, ∀ i ∈ {1, ..., n} and for any fixed test point
x̄ ∈ X × U , we have

lim sup
t→∞

‖x̂i(t)− xi(t)‖ ≤ cmax
{

gi−n−1 lim sup
t+j→∞

‖ε∗j (x, u)‖, gi−1 lim sup
t→∞

‖(dg, ε)‖
}
, (15)

lim sup
t+j→∞

‖f̂j(x̄)− f̂∗j (x̄)‖ ≤ max
{

c′g−1 lim sup
t+j→∞

‖ε∗j (x, u)‖, c′′gn−1 lim sup
t→∞

‖(dg, ε)‖
}
. (16)

Proof: First, using definition (9) and Lemma 1, we show
that for any fixed j ∈ N∗, (x, x̂, u) ∈ X ×X ×U , there exists
c1 > 0 such that

‖f̂j−1(x̂, u)− f(x, u)‖
≤ ‖f̂j−1(x̂, u)− f̂∗j−1(x, u)‖+ ‖ε∗j−1(x, u)‖
≤ c1

(
‖x̂− x‖+ ‖Xj−1 −X∗j−1‖+ ‖Yj−1 − Y ∗j−1‖

+ ‖ε∗j−1(x, u)‖
)
. (17)
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Fig. 2: Schematics of the mass-spring-mass system.

Then, using (17) in the proof of practical convergence of the
HGO with g large enough yields a bound similar to (11), but
involving ‖Xj−1 −X∗j−1‖ + ‖Yj−1 − Y ∗j−1‖ + ‖ε∗j−1(x, u)‖
instead of the constant term in ρ2. Going to the limit in both
time and number of cycles and using (12)–(13) yields the first
claim. Lemma 1 yields the second claim.

Theorem 2 bounds the difference between f̂ and f̂∗ that
would have been obtained using true instead of estimated data
for learning, without any assumption on the fit of the GP. If ε∗

is zero, both the state estimation and the prediction error are
input-to-state stable with respect to the disturbances. If there are
also no disturbances, they converge asymptotically. Since GPs
with universal kernels are universal function approximators, ε∗

can get very small (it converges up to the numerical errors due
to the Euler differentiation) as the number of samples grows
to infinity, if the samples are densely distributed over X × U ,
i.e., if the state-action space is well explored. However, if the
hyperparameters of the GP do not enable a good fit or if the
data is not rich enough, then ε∗ may be large. We further note
that it is also possible to bound ‖f̂j(x̄)− f(x̄)‖ similarly to
(16) using the same error decomposition as (17): a term ε∗j (x̄)
appears, representing the optimal error due to the GP model
at the test point x̄.

Remark 2: Nowhere do we use the form of d and ε. In
principle, they could also be realizations of stochastic processes.
However, Theorem 2 may then not be as meaningful as,
depending on the process, lim sup may not exist.

Remark 3: The proposed framework is modular: any regres-
sor f̂ can be used seamlessly instead of the GP. If Assumptions
1–2 and Lemma 1 are satisfied, the same theoretical guarantees
will hold. This is the case for models of form f̂(·) = θ

ᵀ
σ(·),

where θ is a parameter to be learned from data following a
Lipschitz procedure (such as recursive least squares), and σ
is a known, Lipschitz feature vector. Other observer designs
providing guarantees similar to HGOs could also be considered,
e.g., sliding mode observers [18].

Remark 4: In practice, one can learn the residuals model
µres : (x̂, u) 7→ x̂n(t+∆t)− x̂n−∆tDn(u) instead of µ, and
use µ(x̂, u) = µres(x̂, u)+ x̂n+∆tDn(u) for prediction. This
eases the training process by incorporating prior knowledge
into the regression problem, while minimally changing the
form of Yj , which leads to a factor (n+ 2) instead of (n+ 1)
in (14) and maintains the theoretical guarantees.

IV. NUMERICAL SIMULATION

We demonstrate the performance of the proposed approach
on a mass-spring-mass system with a nonlinear spring, as
illustrated in Figure 2, and motivated by series-elastic actuator,
e.g., [19]. We assume the system can be described by

m1ẍ1 = fk(x2 − x1), m2ẍ2 = −fk(x2 − x1) + u, (18)
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where x1, x2 are the positions of the two objects, m1 = m2 = 1
are their masses, and fk(·) is some unknown nonlinear function
representing the spring dynamics.

Assuming system (18) is differentially observable of order
4 (see [1] and references), it can be transformed into the
observable canonical form (1). This is done by introducing a
new state z ∈ R4, taking z1 = x1 and computing the successive
derivatives of z1. As in (1), this yields

ż =Az +Bf(z, u) + d (19)
y = Cz + ε,

where f is an unknown nonlinearity. The proposed approach
can directly be applied to (19) without further knowledge
about f . In our simulations, we use fk(·) = k1(·) + k2(·)3

with k1 = 0.3, k2 = 0.1 the spring constants. This yields for
the true system in observable canonical form:

f(z, u) =
3k2

m1m2
(u− (m1 +m2)z3)v2

1 +
6k2

m1
v1v

2
2

+
k1

m1m2
(u− (m1 +m2)z3), (20)

α =
3

√√√√m1z3

2k2
+

√(
k1

3k2

)3

+

(
m1z3

2k2

)2

,

β =
3

√√√√m1z3

2k2
−
√(

k1

3k2

)3

+

(
m1z3

2k2

)2

,

v1 = α+ β, v2 =
z4

k1
m1

+ 3k2
m1
v2

1

.

We simulate (19) with d, ε Gaussian noise of standard
deviation σd = σε = 10−4 for ten cycles of 15 seconds
each, sampled at ∆t = 0.06s. We set u(t) = 0.4 cos(1.2t),
N = 3000, g = 10, L = (5, 5, 3, 1)

ᵀ, and f̂0 ≡ 0. We use a
squared exponential kernel whose hyperparameters are fixed
by maximizing the marginal log likelihood on a subset of data
offline. We run 10 simulations from 10 initial conditions with
x1 ∈ [0, 0.1], x2 ∈ [0.1, 0.2], and ẋ1, ẋ2 ∈ [−0.005, 0.005]1.
For each, we start by precomputing a grid of random states
and inputs, along with 50 test trajectories of 200 time steps,
using a random initial state and one of three control strategies:
random control, u(t) = 0.4 cos(1.2t), or u(t) = 0.

In each simulation, we evaluate both the observer and the
model at the end of every cycle. The observer (2) containing
the current model is evaluated by computing the root mean
square error (RMSE) between true and estimated trajectory
over the last cycle, but also over the test trajectories, given
ẑ(t0) = (y(t0), 0, 0, 0)

ᵀ and y(t). The model (8) is evaluated
by computing the RMSE of one step ahead predictions over
the precomputed grid, and the RMSE of the predicted test
trajectories, given the initial state but no measurements.

We observe joint convergence of the observer and the
dynamics model. The error in all considered metrics decreases
over time, as depicted in Figure 3. The numbers themselves are
not necessarily meaningful, but their decreasing behavior and

1Code available at https://github.com/monabf/joint_state_
dynamics_estimation_HGOs_GPs.git
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Fig. 3: RMSE of metrics over 10 simulations of (19)
(mean ± 2 standard deviations).
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Fig. 4: Estimation of a test trajectory of z4 (random control).

the visual results before and after a few cycles are significant.
The variance is due to having different initial conditions,
evaluation grids and test trajectories for each run rather than
a different performance of the method. The remaining error
is caused by the measurement and process noise, along with
the irreducible model error given the available data. A test
trajectory as estimated by the observer is presented in Figure 4.
Before the model is learned (a), the observer’s estimates are
delayed compared to the true state, because the observer has
to wait for correction from the measurements. Once the model
has been learned (b), the observer can anticipate and produce
accurate estimates without delay. The phase portrait of another
test trajectory predicted by the dynamics model is also depicted
in Figure 5. It shows the final model can predict the first 100
time steps accurately, then slowly deviates.

Note that the same simulations were also run with the method
proposed in [17]. By avoiding to differentiate f̂ , our method
introduces less bias in the data used for regression, and the
HGO has a lower dimensionality. As expected, the results seem
to indicate that a discrete model learned directly from sampled
trajectories yields a better dynamics model, which in turn yields
a better observer. This difference grows with the dimensionality
and the complexity of the considered nonlinearity.

V. DISCUSSION

In this paper, we propose a framework for joint state and
dynamics estimation of dynamical systems in the observable
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Fig. 5: Prediction of a test trajectory of z4 against z3 with
sine control (mean ± 2 standard deviations).

canonical form. Though the method shows promising results, it
has some limitations that require further investigation. On the
observer side, Theorems 1 and 2, like all theoretical guarantees
provided by HGOs, only hold for high enough gain. However,
using a large gain can be prohibitive in practice, mostly in high
dimensions or with high measurement noise, as HGOs suffer
from peaking and from noise amplification. This can be seen in
Figure 4, where peaking is present and the measurement noise
is already visible though it was rather low in the simulations
(σε = 10−4), making it difficult to deal with much higher noise.
These effects can be mitigated by changing the gain [20] or
using multiple HGOs [5], [21]. In future work, these could be
combined with our method to allow for higher noise levels.
We are also limited by the observable canonical form: many
systems can be transformed into this form without knowledge
of the dynamics, as in Sect. IV, but the transformation back into
the original coordinates remains unknown. In future work, we
plan on extending our ideas to more general classes of systems,
for example by replacing the HGO with another observer.

On the learning side, we assume f̂ is Lipschitz continuous
with respect to the training data. This is the case for GPs
with fixed hyperparameters. However, as soon as a non-
convex optimization procedure is involved, e.g., for online
hyperparameter tuning or for training a neural network instead
of a GP, this assumption is not satisfied. In this case, Theorems
1 and 2 do not hold. In practice, such tools can often still
be used while maintaining performance. Another limitation of
GPs is the dimensionality: as the computation of the posterior
scales at O(N3), the GP model can only deal with up to about
104 data samples. The sliding window of length N used in (6)
deals with this issue but leads to the loss of possibly useful
data. Other methods such as sparse GP approximations [22]
can be more efficient in practice, but whether the theoretical
guarantees extend is open.

VI. CONCLUSION AND OUTLOOK

Due to the imperfect state data provided by most physical
platforms, joint estimation of state and dynamics is at the
core of dynamics model learning from experimental data. This
is a challenging problem in general: few approaches exist,
even fewer provide convergence guarantees. In this paper, we
propose a framework for joint state estimation and dynamics
learning of nonlinear systems in the observable canonical form.
A high-gain observer estimates the state trajectory, which
is used for learning the nonlinearity with a non-parametric

Gaussian process model. Practical and asymptotic convergence
of both the state and dynamics estimation can be guaranteed, so
that after convergence, the observer and the dynamics model
can be used for further control tasks. Simultaneous model
learning and improved state estimation are demonstrated on a
numerical example. In future work, we plan on extending our
approach to further ease application.
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