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Abstract

In 2015 the New Horizons spacecraft reached the Pluto system and returned unprecedentedly
detailed measurements of its surface properties. These measurements have already been
integrated into global re�ectance, topography and narrow-band multispectral surface maps.
However, analysis of the hyperspectral data from the Ralph/LEISA infrared spectrometer,
which lets us analyse the surface composition, has until now been con�ned to the high-
resolution encounter hemisphere of Pluto. We use an innovative technique � intensity-based
registration � to co-register this high-resolution data with lower-resolution measurements
taken during the spacecraft's approach, and present the �rst global qualitative composition
maps for CH4, N2 and H2O ice, and a tholin-like red material. We compare these maps with
the other maps produced for Pluto and study the global extent of the previously-described
latitudinal distribution of the surface components, which is relatively longitudinally constant
with the exception of Sputnik Planitia. We also correlate these compositional components
with geological features and propose physical interpretations, which include: CH4-ice-rich
dissected plateaus in high northern latitudes, CH4-rich eroded terrain with N2-rich in�ll in
medium northern latitudes, CH4-rich bladed terrain in low northern latitudes, and a red
material belt overlaying H2O ice in low southern latitudes.

Keywords: Pluto, surface, Ices, IR spectroscopy, Image processing

1. Introduction

The July 2015 �yby of the Pluto system by the NASA New Horizons mission returned
a wealth of data, in particular greatly advancing our knowledge of its surface topography,
geology, and composition. Before New Horizons, a �rst insight into the spatial distribution
of Pluto's di�erent surface components had been inferred from the rotational variations in
band depths in ground-based near-IR hemispheric observations (Grundy and Buie, 2001;
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Grundy et al., 2013), coupled with HST low spatial resolution images (Stern et al., 1997;
Buie et al., 2010) which allowed for a global map consisting of ∼ 40−55 resolution elements.

New Horizons, however, was the �rst to directly map Pluto's composition. The high
spatial resolution data (6-7 km/px) is limited to the encounter hemisphere of Pluto, with
partial even higher-resolution coverage at 2.7 km/px over about 11% of the surface, but
the series of hyperspectral images obtained during the approach phase1 provided a lower-
resolution view of its other hemisphere, facing Charon, allowing for the production of a global
mosaic.

The New Horizons instrument collecting surface composition data is the Ralph spectro-
graph, which consists of two components: the Multispectral Visible Imaging Camera (MVIC)
and the Linear Etalon Imaging Spectral Array (LEISA). MVIC has two panchromatic chan-
nels and four colour channels, providing overlapping coverage of the 400-975 nm wavelength
range and obtaining a maximum spatial resolution of 0.66 km/pixel for the encounter hemi-
sphere as imaged at closest approach. LEISA, although its pixel �eld-of-view is three times
wider than that of MVIC, provides a complete spectrum in the 1.25-2.5 µm range with an
average resolving power (λ/∆λ) of 240 (Reuter et al., 2008).

Using the high-resolution LEISA observations, Schmitt et al. (2017) gives a comprehen-
sive qualitative analysis of the spatial distribution of the various materials present on the
surface of the encounter hemisphere. N2-rich and CH4-rich ices are present both separately
and mixed together, possibly either as a two-phase system or as strati�ed phases. N2-rich
ice consists of CO and CH4 molecules present at low concentration in a ternary molecular
mixture with the dominant N2, according to the phase diagrams. Also present are H2O ice
and a dark red organic material. This analysis is complemented by a �rst quantitative study
using pixel-by-pixel Hapke modelling of the spectra (Protopapa et al., 2017), but both of
these studies are restricted to the high-resolution data of the encounter hemisphere.

While global coverage of the illuminated parts of Pluto (excluding the south polar region,
currently experiencing continuous polar night) is possible via the lower-resolution approach
images, the imprecision in the instrument's pointing information resulted in spatial misreg-
istration between the encounter and approach datasets that reached several native pixels,
i.e. up to several degrees of latitude and/or longitude. Additional co-registration work was
thus needed before a global mosaic could be created.

Schenk et al. (2018) produced a panchromatic global re�ectance map using both the
LORRI (Long Range Reconnaissance Imager) framing camera, the instrument with the high-
est spatial resolution on board New Horizons, and the MVIC panchromatic channels, which
were mosaiced together using a network of control points. Subsequently, Earle et al. (2018)
co-registered the MVIC colour channel images on the LORRI image and produced a narrow-
band (0.89-µm band) methane equivalent width map and a global visible spectral slope
map. The high-resolution LEISA data has also been registered to the panchromatic map
using feature-based methods. These methods, however, have proven inadequate for register-
ing the LEISA approach imagery, as the imaging distance combined with the larger pixel

1See 2.2 for timestamps corresponding to approach vs. encounter phase.
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�eld-of-view of the instrument results in low-resolution imagery without readily identi�able
geological feature edges in the Charon-facing hemisphere.

This paper demonstrates a registration method very rarely used in remote sensing and not
at all in planetary science � and heretofore largely published as a proof-of-concept (Liang
et al., 2014; Okorie and Makrogiannis, 2019) � and presents the �rst global qualitative
presence maps for the major surface components of Pluto, analogous to those in Schmitt
et al. (2017) but extended across the full surface, the continuously shaded south hemisphere
excepted. There is ongoing work to produce quantitative maps from these datasets with
inverse radiative transfer modeling, which will soon be ready for publication.

2. Methods

2.1. Intensity-based registration

Image registration involves transforming one or more source images to match a target
image. Image registration methods can be classi�ed into two broad categories: feature-
based and intensity-based. Feature-based registration is based on identifying and aligning
distinctive features (such as points, lines or contours) in the images, and is the most common
type of method used in remote sensing (Zitova and Flusser, 2003). However, it is labour-
intensive, as feature mapping frequently needs to be done manually by selecting the anchor
points, and its application is limited to datasets in which sharp, easy-to-map features (crater
rims, cli�s, faults, etc.) are present and still recognisable in the lowest-resolution image used.

The second type of method, intensity-based registration, involves comparing intensity
patterns in the images to be registered. Di�erent metrics can be used to evaluate their simi-
larity, such as cross-correlation, mutual information, or sum of squared intensity di�erences.
Figure 1 shows how a joint histogram may be used to evaluate the misalignment of two
images. Intensity-based registration is underused in planetary science, but is a very common
tool in medical imagery processing, where it is used for MRI (magnetic resonance imaging)
or CT (X-ray computed tomography) scan images (Pluim et al., 2003). This means most
toolkits developed for intensity-based registration, such as ITK (Insight Segmentation and
Registration Toolkit, Schroeder et al., 2003), are designed around medical uses � but they
can be very easily adapted to planetary data (see Liang et al., 2014, for a demonstration of
a combined feature- and intensity-based registration technique on Landsat data).

Registration methods may also be categorised according to what kind of transformations
they use for aligning the images. The transformation may be global, with operations such as
translation, rotation, scaling, and shear a�ecting the whole image uniformly, or locally, i.e.
de�ned by a warp �eld whose e�ect varies across the image. Insofar as this paper is concerned,
the errors in registration of the LEISA data are caused by imprecision in the instrument
pointing, resulting in an overall shift of the image and possibly a slight rotation. We can
therefore restrict ourselves to global transformations applied to the original orthographic
projection.
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Figure 1: Illustration of the e�ect of misregistration, showing the joint histogram of a remote-sensed
image with itself. In (a) no transformation is performed. In (b), (c), and (d), one image is translated
by 0.5, 1, and 2 pixels, respectively (Liang et al., 2014).

2.2. LEISA dataset

During the approach phase each LEISA hyperspectral image fully contains Pluto and
is recorded over a short period of time, which means the same transformation matrix will
be applicable to all wavelengths of the same hyperspectral image. This lets us calculate the
transformation matrix using a spectral subset � one which features large contrasts and clear
patterns � and apply it to all the other wavelengths. The CH4 ice map produced by Schmitt
et al. (2017) using the integrated band depth of the 1.7 µm band group has precisely these
properties, and served as the basis for the registration.

We selected and processed a dataset of 12 approach images spanning about 5 days prior
to the high-resolution images to create the global map (see Table 1 for detailed informa-
tion). Three of the images within that chronological span (MET 298853429, 298940959 and
299064869) were skipped due to either their redundancy with another observation very close
to it in time, or spectro-photometric calibration issues.

Given Pluto's rotation period of about 6.4 days, the sub-spacecraft longitude changed by
about 288.5◦, i.e. about 0.80 rotations. On the other hand, the sub-spacecraft latitude only
changed by about 5.2◦. Figure 2 shows that this dataset provides su�cient global coverage
� evaluated using the initial misregistered data, but a comparison to the registered maps
(Figures 4�7) show that the misregistration is low enough to not substantially change this.

The last, most high-resolution full-disk approach image (#12 in Table 1) was registered
using the encounter-phase data as target image (HR1 & HR2 in Table 1, as well as UHR,
which corresponds to the limited-coverage highest-resolution strip). This newly registered
image was then used to register the previous image at slightly lower spatial resolution, and
so on until the �rst selected approach phase image (e.g.#11 to #12, #10 to #11, etc. until
#1 to #2). This was done in lieu of registering all the images directly to the high-resolution
image, as the overlap between the highest- and lowest-resolution data used was too small to
allow good registration.
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# Observation time Resolution px/Pluto diameter Sub-s/c lat Sub-s/c long
(MET) (UTC) (km/px) (◦N) (◦E)

1 298719334 2015-07-09 03:46:46 394.37 6.0 43.09 87.18
2 298767059 2015-07-09 17:02:14 353.51 6.7 43.07 56.06
3 298824624 2015-07-10 09:01:31 304.31 7.8 43.05 18.56
4 298854539 2015-07-10 17:22:47 278.59 8.5 43.03 358.96
5 298891829 2015-07-11 03:42:21 246.78 9.6 43.01 334.75
6 298939609 2015-07-11 16:58:32 205.88 11.5 42.99 303.66
7 298995539 2015-07-12 08:30:09 158.00 15 42.96 267.30
8 299026199 2015-07-12 17:01:49 131.85 18 42.92 247.35
9 299079314 2015-07-13 07:46:25 86.37 28 42.82 212.94
10 299105209 2015-07-13 13:59:33 64.10 37 42.70 196.19
11 299127869 2015-07-13 21:18:57 44.58 53 42.49 181.68
12 299144829 2015-07-14 02:01:50 30.23 79 42.15 171.14

HR1 299172014 2015-07-14 09:33:05 6.96 342 38.52 158.62
HR2 299172889 2015-07-14 09:48:16 6.20 383 37.91 158.81
UHR 299176809 2015-07-14 10:56:19 2.75 865 30.73 164.17

Table 1: List of Pluto approach-phase LEISA observations used, in chronological order, followed by
the two high-resolution encounter-phase observations and the partial highest-resolution observation.
The spatial resolution is given at the sub-spacecraft point.

Figure 2: Global coverage obtained with the high-resolution (6-7 km/px) encounter dataset com-
bined with the 12 approach images used (shown prior to registration). The highest-resolution (2.7
km/px) swath is also shown in dark red. The south pole is not shown as it is in polar night in the
current season.
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As mentioned before, once the transformation has been computed, it can be applied to
any or all wavelengths in the hyperspectral image. For this paper we generated four main
maps, corresponding to the spectral indices de�ned by Schmitt et al. (2017) as follows:

CH4: integrated CH4 band depth between 1.589 and 1.833 µm over a group of 3 CH4 bands
at 1.67, 1.72, and 1.79 µm.

BD(CH4) = 1−
∫ 1.833µm

1.589µm
RF (λ)dλ∫ 1.833µm

1.589µm
Cont(λ)dλ

(1)

N2: integrated N2 band depth between 2.121 and 2.160 µm over the N2 band at 2.15 µm.
The integration has been slightly extended to lower wavelengths compared to Schmitt
et al. (2017), as we realised that the N2 band wing contributes up to 2.12 µm in the wing
of the strong 2.20 µm CH4 band. This resulted in a slightly increased signal-to-noise
ratio.

BD(N2) = 1−
∫ 2.160µm

2.121µm
RF (λ)dλ

1.5 ∗ (RF2.105µm +RF2.113µm +RF2.1675µm +RF2.1755µm)
(2)

H2O: spectral indicator using 10 wavelength bands centred around 1.39 and 2.06 µm.

SI(H2O) = 1−
∫ 2.090µm

2.022µm
RF (λ)dλ∫ 1.410µm

1.365µm
RF (λ)dλ

(3)

Red material: spectral indicator using the wavelength ranges around 1.430 and 1.658 µm.

SI(RedMat) = 1−
∫ 1.421µm

1.447µm
RF (λ)dλ∫ 1.641µm

1.670µm
RF (λ)dλ

(4)

The BD(CH4), SI(H2O) and SI(RedMat) indices were calculated after processing the
data cubes with a global PCA (over almost all spectral channels), followed by an inverse PC
rotation on a selected number of axes to reduce noise and instrument artifacts. The BD(N2)
was calculated after similar processing, but over a restricted spectral range (40 wavelength
bands) centred on the band peak (see Schmitt et al., 2017, for details). For the few lowest-
resolution images, the PCA did not reduce the instrument artifacts because the number of
pixels was insu�cient for statistical evaluation, and so the PCA-processed data was not used.

2.3. Registration algorithm

We used intensity-based registration algorithms from SimpleITK (Lowekamp et al., 2013),
a user-friendly Python interface to ITK. As we expect the misalignment between the datasets
to be due entirely to imprecisions in the spacecraft pointing information, we restricted our-
selves to global similarity transformations (i.e. translation, rotation, and scale). We used
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an evolutionary algorithm-based optimiser and a Mattes mutual information metric (Mattes
et al., 2001). The higher-resolution image was bilinearly resampled to the lower resolution,
then both the source and target images were resampled to 2 km/px to allow for subpixel-level
registration precision. A mask was applied to restrict the metric to the overlapping areas
between both images. Table 2 shows the parameters used for the metric and optimiser.

Metric Mattes mutual information

Number of bins 100
Percentage of pixels sampled 100%

Optimiser 1+1 evolutionary

Maximum iterations 20-100
Convergence tolerance 1.5×10−6

Initial search radius 10−3

Growth factor 1.01

Table 2: Registration parameters used.

3. Results

3.1. Validation of registration accuracy

Figure 3: LEISA registration validation with control points: a) high-resolution data; b) misregistered
low-resolution data (observation #10); c) registered low-resolution data.
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The registration results were veri�ed in two steps. First, those low-resolution images that
had su�cient overlap with the high-resolution data were checked with a set of control points
based on features identi�able in the high-resolution map. Figure 3 shows this for observation
#11 as de�ned in Table 1. For observations #7�#12, registration was accurate within 0.5
native pixels.

Secondly, those observations which did not have enough overlap with the encounter hemi-
sphere, or a su�ciently high resolution to do feature-based validation, were visually com-
pared with the global panchromatic re�ectance map produced by Schenk et al. (2018), as
the 1.7 µm CH4 band is very strongly correlated with the visible re�ectance (r = 0.655 2 as
calculated using the high-resolution CH4 map).

The second validation step showed that some latitudinal drift occurred for observations
#1�#6. As their resolution was quite low (> 200 km/px), the maximum accuracy of any �t is
limited by feature distortion. The transformation tended to over�t in trying to compensate,
which was corrected by reducing the number of iterations for these six observations.

3.2. Composition maps

Figures 4 through 7 show the four registered global maps in simple cylindrical projection,
at a sampling resolution of 2 km/px (which corresponds to a signi�cant upsampling of the
native resolutions of all approach-phase LEISA observations). Figure A.3 shows the same
maps at the same resolution but in North polar orthographic projection. Figures 9 and
8 show the latitudinal and longitudinal distributions respectively for these four spectral
indices, with binning resolutions of 2 px/◦ and 1 px/◦. The latitudinal distributions have
been weighted by the cosine of the latitude to recover the true surface area of the pixels and
thus compensate the cylindrical projection. There is data at all longitudes down to 20◦S
latitude, and more limited longitude coverage down to about 40◦S, close to the polar night
limit at the time of the encounter. The detection limits and colormap ranges were taken
from Schmitt et al. (2017).

Two additional maps were generated for further analysis, shown in Appendix A � the
integrated band depth of the weak CH4 band at 1.95 µm (Figure A.1, exact de�nition of
band given in Schmitt et al., 2017), and a CH4 band position index (Figure A.2), which
is a metric representing the state of CH4 at the surface, from CH4 diluted in N2-rich ice
for the smaller index values to CH4-rich ice for the highest. Intermediate values mean that
both phases are present at the pixel scale, either spatially distributed, or intimately mixed
at grain level, or strati�ed vertically.

The CH4 integrated 1.7 µm band depth map (Figure 4) shows that the global longitudinal
distribution of CH4 (shown in Figure 8) is largely uniform across most of Pluto, albeit with

2Here and elsewhere in the paper r is the correlation coe�cient weighted by the cosine of the latitude to
account for the area distortion due to the cylindrical projection. The cuto�s for describing the correlation
have been chosen as follows:

0.2 ≤ |r| ≤ 0.4 correlated
|r| < 0.05 not correlated 0.4 ≤ |r| < 0.6 strongly correlated
0.05 ≤ |r| < 0.20 weakly correlated 0.6 < |r| very strongly correlated
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a clear depletion over the longitudinal range of Cthulhu Macula (70◦E to 160◦E, centered
at (0◦N, 90◦E)). The latitudinal distribution of CH4 (Figure 9) is more contrasted, with
a global presence in the north polar areas, a more dispersed presence in the mid-northern
latitudes and a strong CH4 signal in a belt between 0 and 30◦N from 160◦E to 70◦E. Both the
CH4-rich N polar cap and the equatorial CH4 partial belt are clearly visible in the latitudinal
distribution of the data in the isolated BT and SP subsets in Figure 9. The abundance of
CH4 seems also to increase below about 15◦S, close to the shadowed south polar region. This
last area is separated from the N tropical CH4 belt by a S tropical belt of red material (see
below).

Figure 4: Global registered CH4 1.7-µm integrated band depth map of Pluto, with the three largest
geographical features labelled.

The N2 band depth map (Figure 5) clearly shows the nitrogen-rich basin of Sputnik Plani-
tia (centered at 20◦N, 179◦E), easily identi�able as a bump in the centre of the longitudinal
distribution (Figure 8). We also see an asymmetry around 180◦E which re�ects the east-west
contrast in ice composition within SP (the bright and dark plains). N2 ice is also strongly
present in a northern belt between 30◦N and 75◦N, with a strong peak around 43◦N (Figure
9), as well as in the N tropical CH4 belt (E of 180◦) with a peak around 20◦N in phase with
the one of CH4. Its correlation with the 1.7 µm CH4 band is not very strong, but positive
(r = 0.189). Due to the weakness of the N2 band and the low signal-to-noise close to the
terminator it is di�cult to con�rm that an increase of N2 seen SW of Sputnik Planitia in the
high-resolution part of the map also occurs below about 15�20◦S at all longitudes, and that
may be correlated with the mid-southern latitude increase of CH4 ice seen at least between
100◦E and 280◦E (Figure 4).

The H2O spectral index map (Figure 6) shows water ice presence between 50◦N and
30◦S. This overlaps with the global red material belt as seen on Figure 7, which �lls the
space between 10◦N and 20◦S except at Sputnik Planitia � although small quantities of
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red material are indeed visible in the dark plains of SP. There are only small di�erences
between the red material and H2O distributions, as they seem well-correlated when the red
material is moderately abundant but start to be anti-correlated when it is very abundant,
as in the centre E of Cthulhu Macula (115�160◦E), E of Krun Macula (220◦E) and Balrog
Macula (280◦E). This correlation was already evident from the high-resolution map, but is
now con�rmed globally (r = 0.490).

A small bump of red material abundance also occurs just above 30◦N (Figure 9). The
overabundance of H2O both between 70�160◦E and 195�220◦E is due to a combination of
the presence of large maculae (Cthulhu, Krun) at S tropical latitudes and concentrated
water ice spots at mid-northern latitudes ( 30◦N) at these longitudes. As expected, both the
H2O ice and the red material are quite strongly anti-correlated with the 1.7 µm CH4 band
(r = −0.751 and r = −0.757 respectively).

Figure 5: Global registered N2 2.15-µm band depth map of Pluto, with Sputnik Planitia labelled.
The detection limit is at a value of 0.005.
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Figure 6: Global registered H2O spectral index map of Pluto, with Cthulhu Macula and Sputnik
Planitia labelled. The detection limit is at an index value of -0.23.

Figure 7: Global registered red material spectral index map of Pluto, with Cthulhu Macula and
Sputnik Planitia labelled. The detection limit is at an index value of -1.3.
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Figure 8: Distribution of LEISA dataset band depth and index values as a function of longitude,
binned at 1 pixel per degree. The distribution is computed for the global dataset, for the mid-to-
equatorial latitudes (0�45◦, labelled EQ), and for the mid-to-polar latitudes (45�90◦, labelled POL).
The points represent the mean value over latitude for that longitude range and the error bars are
the standard deviation. The distributions are weighted by cos(lat) to compensate for the cylindrical
projection.
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Figure 9: Distribution of LEISA dataset band depth and index values as a function of latitude,
binned at 2 pixels per degree. The distribution is computed for the global dataset, for the Cthulhu
Macula latitude range (70�160◦E, labelled CM), for the Sputnik Planitia latitude range (160�240◦E,
labelled SP), and for the bladed terrain range (0�70 and 240�360◦E, labelled BT). The points
represent the mean value over longitude for that latitude range and the error bars are the standard
deviation.

4. Discussion

4.1. Analysis of correlations between the LEISA maps

In addition to computing the simple correlation coe�cients between the di�erent LEISA
maps, we also computed the full 2D correlations in order to identify spatially localised
populations. The more signi�cant of these correlations are shown as hexagonal bin plots
in Figure 10, and may be compared with some of the same calculations carried out for the
high-resolution hemisphere by Schmitt et al. (2017).

Figure 10a shows multiple trends within the global positive correlation between the 2.15-
µm N2 and 1.7-µm CH4 integrated band depths:

• a vertical trend, with variable CH4 band depth and negative N2 band depth (marked
in red) that corresponds to �ne- to coarse-grained CH4-rich ice.

• a negative correlation trend, going from strong CH4 values and absent N2 to strong N2

and weak CH4 values (marked in orange), corresponding to coarse-grained N2-rich ice
containing low to medium amounts of dissolved CH4 (<1%).
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• a horizontal trend with high CH4 band depth and variable N2 values (marked in yellow),
that corresponds to very coarse-grained CH4-rich ice (>20 cm) with a high CH4 content
(>1%).

These trends correspond largely to those seen in Figure 18A of Schmitt et al. (2017), and
we used the terrain classes identi�ed by the latter as well as a Gaussian mixture clustering
model(Li et al., 2013) as implemented in scikit-learn (Pedregosa et al., 2011) to generate a
classi�cation of the global map, shown in Figure 12.

Figure 10b shows the correlation between the N2 integrated band depth map and the
CH4 band position index map (i.e. the CH4 state map). We observe a global anti-correlation
(marked in orange) that can be classi�ed into a spectrum of terrains going from N2-rich to
CH4-rich, as shown by Schmitt et al. (2017) in their �gures 22 and 39 for the encounter
hemisphere. We compute a similar classi�cation for the global map and show it in Figure
13.

Figure 10c shows a simple strong linear correlation between the H2O and red material
spectral indices. A global segmentation of the four types of terrains shown visible in this
correlation plot is presented in Figure 11. The pixels which have a positive value for both
datasets correspond to the top right (yellow) quadrant. There is, however, a number of
pixels in Figure 10c displaying an anti-correlation, i.e. a positive presence of red material
but without detection of H2O ice (top left quadrangle, blue). They correspond mostly to
the centre of the maculae, where the red material either fully covers the water ice crust or is
mixed with su�cient quantities of N2 and CH4 ice to attenuate the water ice signal. On the
other hand, there are clearly only very few pixels with pure water ice without red material
(bottom right quadrangle, green). The bottom left quadrangle (purple) corresponds to the
terrains fully covered by N2-rich and/or CH4-rich volatile ices, thus hiding the non-volatile
materials. We can clearly see this anti-correlation between volatile ices and red material in
Figure 10d, trend line marked in orange.
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Figure 10: Hexagonal bin plots showing correlations between di�erent LEISA maps. The detection
thresholds for each map are marked with a red dotted line, and correlation trends are marked with
solid lines.
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Figure 11: Global classi�ed map based on the correlation plot of the H2O and RedMat spectral
indices, de�ned by the dataset detection thresholds.

Figure 12: Global classi�ed map based on the correlation plot of the N2 and 1.7 µm CH4 integrated
band depths, calculated with a Gaussian mixture clustering model.
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Figure 13: Global classi�ed map based on the correlation plot of the CH4 band position index (CH4

state index) and N2 integrated band depth, calculated with a Gaussian mixture model.

4.2. Comparison with MVIC maps

Figures 14 and 15 show the methane narrow-band (980 nm) equivalent width map and
the global spectral slope map obtained by Earle et al. (2018) from the analysis of the MVIC
dataset and plotted with a similar colour scale to our maps derived from the LEISA dataset.
Figure 16 shows the 2D correlations between these two maps and several of the LEISA maps.

Figure 14: Global mosaic of the MVIC equivalent width of the 980 nm methane absorption band,
produced by Earle et al. (2018).
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Figure 15: Global mosaic of the MVIC spectral slope map in re�ectance %/100 nm, produced by
Earle et al. (2018).

The LEISA strong-band 1.7 µm CH4 band depth map is somewhat correlated with the
MVIC 980 nm-band CH4 map (r = 0.445), but Figure 16a shows that there is no single
strong trend to be identi�ed in the correlation plot. We expected the weak-band 1.95 µm
CH4 band depth map to be more strongly correlated with the MVIC 980 nm band, and while
the overall correlation is slightly stronger (r = 0.531), the correlation plot (Figure 16b) again
shows no particularly strong trends. In particular, both LEISA band depth maps display
areas with abundant methane where MVIC did not see any, or at very weak levels (bottom
right quadrangles and in particular the yellow spot along the right part of the red horizontal
line in both �gures). Conversely, over a number of pixels MVIC has positive detection of
CH4 where LEISA detects none of the CH4 bands (upper left quadrangle). Figure 17 shows
which spatial regions these quadrangles correspond to. We can see that the LEISA-only
values (in green) are present almost exclusively in the high-resolution data, while conversely
the MVIC-only values (in blue) are seen largely in the low-resolution part of the map. This
seems to suggest that while the encounter-phase LEISA measurements are more sensitive to
CH4 than MVIC, the signal averaging that occurs at lower resolutions means this sensitivity
is lost.
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Figure 16: Hexagonal bin plots showing correlations between di�erent LEISA maps and the MVIC
maps. The detection thresholds for each map are marked with a red dotted line.

In Figure 16c and d we see that the MVIC slope map is correlated relatively strongly with
the red material spectral index (r = 0.675) as well as the H2O spectral index (r = 0.529),
with overall similar distributions. The latter �gure is consistent with the correlation and
terrain classi�cation calculated by Schmitt et al. (2017) for the H2O spectral index, and we
adapt their terrain de�nitions to produce a similar classi�cation (Figure 18).
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Figure 17: Global classi�ed map based on the correlation plot of the LEISA CH4 1.95 µm band
depth map and the MVIC CH4 980 nm band map, de�ned by the dataset detection thresholds.

Figure 18: Global classi�ed map based on the correlation plot of the H2O spectral index and MVIC
slope, de�ned from a Gaussian mixture model and the segmentation in (Schmitt et al., 2017).

Earle et al. (2018) also developed a terrain classi�cation based on the MVIC CH4 and
slope maps (see their Fig. 15). The six terrain types established are: pure CH4-rich;
CH4-rich diluted with N2; N2- or CO-rich areas with some CH4; mix of CH4 and
tholins; moderate tholin deposits with some CH4; and substantial tholin deposits
with little/no CH4. Figure 19 shows histograms for the four LEISA band depths (N2,
1.7 µm CH4) and spectral indices (H2O and red material) within these six terrain types.
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Figure 19: Histograms of the value distribution of the four LEISA maps (N2 and 1.7 µm CH4

band depths, H2O and red material spectral index) for the six MVIC terrain types, weighted to
compensate for distortion due to the cylindrical projection and normalised to the terrain area.

The global methane-rich belt between 0 and 30◦N largely corresponds to the "pure CH4-
rich" terrain type on the MVIC terrain map (band depth mean µ = 0.359, σ = 0.056),
and the diluted methane presence at mid-northern latitudes relatively well corresponds to
the "CH4-rich diluted with N2" terrain (µ = 0.352, σ = 0.091), as shown in Figure 19a.
The histograms extracted from the N2 band depth map (Figure 19b) show N2 presence
within both the "N2-rich with some CH4" and "CH4-rich with N2" MVIC terrain types,
but also in all other MVIC terrain types. As expected, the MVIC channels are only poorly
sensitive to the presence of N2 ice through the general anti-correlation between the presence
of volatile ices and the red slope produced by the red material, due to the segregation of both
components through sublimation-condensation cycles. Even if the LEISA N2 band depth is
not a direct measurement of the abundance of nitrogen ice at the surface, and is sensitive
to other parameters such as grain size and CH4 abundance, it is far more sensitive to its
presence than the MVIC data. Looking at the N2 and CH4 band depth-based classi�cation
in Figure 12, we can see several distinct regions corresponding to various coarse-grained N2-
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rich ices with high to medium CH4 content that are not mapped as containing N2 ice using
the MVIC CH4-band/red slope classi�cation alone.

The LEISA red material spectral index map (Figure 7, histograms in Figure 19c) cor-
responds primarily to the "substantial tholin deposits" terrain type (spectral index mean
µ = −0.205, σ = 0.274), while the spectral index for the two tholin-CH4 mixed terrain types
is signi�cantly lower ("moderate tholin deposits, some CH4": µ = −0.576, σ = 0.348; "mix of
CH4 and tholins": µ = −0.706, σ = 0.463). Our red material indices are thus well-correlated
in the terrains dominated by this material. The H2O ice spectral index map exhibits a sim-
ilar distribution to the red material map (Figure 19d), with the strongest presence in the
"substantial tholin deposits" terrain (µ = 0.090, σ = 0.212) and in the "moderate tholin de-
posits, some CH4" terrain (µ = 0.064, σ = 0.208). This is consistent with the LEISA-based
classi�cation in Figure 18 and con�rms that H2O ice is mostly spatially coincident with the
red material.

4.3. Composition relationship with geology

We are able to evaluate the relationship between the LEISA composition maps and the
geology of Pluto's surface using the LORRI panchromatic re�ectance map and the digital
elevation model (Figure 20) produced by Schenk et al. (2018).

While both the LEISA CH4 and N2 maps (Figures 4 and 5) are globally anti-correlated
with altitude, this is largely due to the massive presence of the convective Sputnik Planitia
basin, which is N2-rich with some diluted CH4. The two maps are strongly anti-correlated
with altitude for the area of the DEM containing Sputnik Planitia (between 140 and 200◦E
and south of 40◦N, r(CH4) = −0.501 and r(N2) = −0.569), but outside this area CH4 is
positively correlated with the DEM (r = 0.211), while the N2 anti-correlation is much weaker
than it is within SP (r = −0.161). The two separate populations of CH4 and N2 terrains
can also be clearly seen in the 2D hexagonal bin correlation plots (see Appendix B).

These CH4-rich elevations appear to mostly correspond to the bladed terrains as described
in Moore et al. (2018), and can be visually identi�ed in the LEISA 1.7 µm CH4 map as the
methane-rich belt between 0 and 30◦N. The N2-rich medium-altitude areas, accordingly,
correspond to the smooth plains present in the bright pitted uplands as described in Moore
et al. (2016), and are identi�able between 30◦N and the equator as well as intermittently
between 0 and 30◦S. Figure 21 and 22 show an overlays of the CH4 and N2 maps respectively
over the DEM, where these terrains can be seen.

The CH4 and N2 presence in this belt extends fully across the low-resolution hemisphere,
and so we may posit that the "bright pitted upland and bladed terrain"-type landscape also
continues eastward across Pluto until approximately 80◦E, although it is mostly coated with
dark red material in the southern part of the belt between 0 and 30◦S.

Calculating the correlations between the datasets as a function of latitude (see Appendix
C) shows that in addition to the equatorial methane belt, the CH4 1.7 µm band depth is
also correlated with altitude at higher latitudes (between 40 and 80◦N, peaking at 60◦N).
These CH4-rich uplands match the dissected and eroded terrains described in Moore et al.
(2016), while the lower-altitude N2-rich areas within them correspond to the smooth in�ll of
the pits and depressions contained in these terrains.
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Conversely, while H2O ice is globally slightly correlated with altitude (r = 0.118), the
latitude- and longitude-dependent correlation plots show that elevated water-ice terrains
are found primarily in two latitudinal belts, at about 30◦N and 10◦S, and that within the
encounter hemisphere they are restricted to the 150-180◦E range. This suggests that the
global H2O�altitude correlation is due mostly to the water-ice mountain ranges bordering
the west side of Sputnik Planitia (Howard et al., 2017; White et al., 2017), and water ice found
elsewhere corresponds mostly to partially exposed substrate terrain, underlying either a layer
of red material at sub-equatorial southern latitudes or CH4-rich uplands at northern latitudes.
This is supported by computing the H2O�DEM correlation for the SP area (strongly positive,
r = 0.448) separately from the rest of the DEM (negative, r = −0.221).

Figure 20: Global digital elevation model of Pluto produced using stereogrammetric analysis of
LORRI and MVIC stereo scans (Schenk et al., 2018).
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Figure 21: Global LEISA CH4 1.7 µm band depth map overlaid over the digital elevation model of
Pluto.

Figure 22: Global LEISA N2 2.15 µm band depth map overlaid over the digital elevation model of
Pluto.

4.4. Utility of global composition maps for atmospheric circulation

Bertrand et al. have dedicated multiple works (Bertrand and Forget, 2016; Bertrand
et al., 2018, 2019) to simulating the long-term volatile transport history that would result
in a present-day ice reservoir distribution coherent with New Horizons observations. These
studies have relied on composition information from both the high-resolution hemisphere
LEISA data and the global MVIC maps, but have not been able to take into account global
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composition maps from hyperspectral data, which will provide more accurate information
on both the latitudinal and longitudinal asymmetries of the volatile ice reservoirs as well as
on their total volume. Notably, Bertrand et al. (2018) mention that the location of perennial
N2 ice deposits should depend on the brightness of mid-to-polar CH4 deposits, which can
be more easily quanti�ed with a global map. Additionally, Bertrand et al. (2019) predicts
the deposition pattern of N2 outsite of Sputnik Planitia to consist of very localized patchy
deposits in the equatorial deep depressions of the BT and mid-latitude deposits (±30�60◦).
This was consistent with the encounter hemisphere maps already released by Schmitt et al.
(2017) and Protopapa et al. (2017) but can now be veri�ed globally and can be easily
observed to be true from the latitudinal map distributions (Figure 9). All types of global or
local energy balance models or climatic models will bene�t from these new global maps of the
di�erent materials present at the surface of Pluto, either as an input to calculate the current
thermal balance of the planet, or as a constraint for the current volatile ice distribution to
be obtained (e.g. Lewis et al., this special issue, submitted; Johnson et al., this special issue,
submitted; Bertrand et al., submitted).For a more speci�c example, as on Pluto the general
atmospheric circulation is driven by the N2 condensation�sublimation �ows, the global maps
of distribution of surface N2 ice are key to allow simulating realistic atmospheric circulation.

5. Conclusion

5.1. Global compositional cartography

We have co-registered a dataset of low-resolution LEISA hyperspectral images, recorded
during the approach phase, with the high-resolution closest-approach data from the New
Horizons encounter with Pluto, and produced global maps for the following spectral indica-
tors:

1. CH4 1.7 µm integrated band depth

2. N2 2.15 µm integrated band depth

3. H2O spectral index

4. Red material spectral index

We compare these maps with other global Pluto datasets based on LORRI (topography
and panchromatic re�ectance (Schenk et al., 2018)) and MVIC measurements (980 nm CH4

band and spectral slope) (Earle et al., 2018), as well as previous works on the high-resolution
LEISA dataset (Schmitt et al., 2017; Protopapa et al., 2017). We are able to globally
con�rm the latitudinal composition variation proposed by Protopapa et al. (2017) � a red
carbonaceous material belt between 0 and 30◦S, an accumulation of CH4-rich ice between
0 and 30◦N in the anti-encounter hemisphere (opposing SP and CM), a mixture of N2-rich
terrains with some CH4-rich areas between 30 and 60◦N, and a CH4-rich North polar area
� which also corresponds well to the categorisation of CH4 and red material terrains based
on MVIC data presented in Earle et al. (2018). In addition, the LEISA data allowed us to
correctly map globally the presence of both N2 and H2O ices.

Based on the composition maps' correlation with geology and topography we also propose
geological interpretations for compositional features in the anti-encounter hemisphere, such
as:
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• the presence of CH4-rich dissected/eroded terrain in high latitudes, especially enriched
in CH4 at high altitude,

• further evidence of an interrupted/partial equatorial belt of CH4-rich bladed terrain
punctuated with N2-rich lowlands,

• and exposed H2O ice substrate at longitudes outside Sputnik Planitia.

5.2. Evaluation of intensity-based registration

This study is one of the �rst applications of intensity-based registration in planetary
cartography, and shows the promising potential of this tool. Figure 3 shows the sub-pixel
accuracy of the technique in the regions that can be veri�ed using control points based on the
high-resolution data, and this validation method shows that the accuracy remains constant
when co-registering maps with resolutions as low as 158 km/px (the lowest tested resolu-
tion) and no easily-delineable features. While intensity-based registration alone becomes
insu�cient when working with signi�cantly lower resolutions, it can be easily combined with
a large-scale feature-based algorithm that helps maintain common-sense constraints (e.g.
making sure the object being mapped remains within its possible range of boundaries) to
create a fully automated all-purpose registration algorithm.
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Appendix A. Additional LEISA maps

This section contains two additional registered composition maps (the weak-band CH4 ice
band depth map and the CH4 band position index map) referred to in 3.2 and the analysis,
as well as the principal four maps in orthographic projection.

Figure A.1: Global registered CH4 map of Pluto (1.95 µm integrated band depth).

Figure A.2: Global registered CH4 band position index (CH4 state index) map of Pluto. The lower
index limit is at a value of 36.5.
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(a) Global registered CH4 1.7-µm integrated band depth
map of Pluto.

(b) Global registered N2 2.15-µm band depth map of Pluto.
The detection limit is at 0.005.

(c) Global registered H2O spectral index map of Pluto. The
detection limit is at -0.23.

(d) Red material spectral index map of Pluto. The detection
limit is at -1.3.

Figure A.3: Registered global LEISA maps in north polar orthographic projection.

31



Appendix B. Additional 2D correlation plots

This section contains 2D correlation plots between the LEISA datasets and the digital
elevation map, for further information concerning which datasets correlate to altitude as
referenced in section 4.3.

Figure B.4: Hexagonal bin plots showing correlations between di�erent LEISA maps and the digital
elevation map. The detection thresholds for each map are marked with a red dotted line.
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Appendix C. Correlations as a function of latitude and longitude

This section contains latitude- and longitude-based correlation plots of each dataset pair
analysed, allowing further study of how correlations between datasets vary with location.
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Figure C.5: Correlations between the datasets used as a function of latitude, grouped by LEISA
datasets. For each pair of datasets, the Pearson correlation coe�cient is calculated for each row of
data points, corresponding to a range of 1.7 degrees of latitude.
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Figure C.6: Correlations between the datasets used as a function of longitude,grouped by LEISA
datasets. For each pair of datasets, the Pearson correlation coe�cient is calculated for each row of
data points, corresponding to a range of 0.65 degrees of longitude. The calculation is weighted to
compensate for latitude-based distortion due to the cylindrical projection.
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