
HAL Id: hal-03097920
https://hal.science/hal-03097920

Submitted on 5 Jan 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

An efficient FIFO buffer management to ensure task
level and effect-chain level data properties

Evariste Ntaryamira, Cristian Maxim, Therence Niyonsaba, Liliana
Cucu-Grosjean

To cite this version:
Evariste Ntaryamira, Cristian Maxim, Therence Niyonsaba, Liliana Cucu-Grosjean. An efficient FIFO
buffer management to ensure task level and effect-chain level data properties. ICESS 2020 - IEEE
International Conference on Embedded Software and Systems, Dec 2020, Shanghai / Virtual, China.
�10.1109/ICESS49830.2020.9301518�. �hal-03097920�

https://hal.science/hal-03097920
https://hal.archives-ouvertes.fr

An efficient FIFO buffer management to ensure task
level and effect-chain level data properties
Evariste Ntaryamira∗†, Cristian Maxim‡, Therence Niyonsaba† and Liliana Cucu-Grosjean∗

∗INRIA Paris, France, firstname.lastname@inria.fr
†University of Burundi, Burundi, firstname.lastname@ub.edu.bi
‡IRT-SystemX, France, firstname.lastname@irt-systemx.fr

Abstract—Real-time embedded systems (automotive, avion-
ics,drones autopilots, etc.) are composed of numerous functional
components that are continuously interacting via a variety of
communication models where they intensively share data. For
the overall functional correctness these systems must verify
not only real-time scheduling requirements but they also must
guarantee that the data being used are qualitatively correct.
The quality of the data reflects the preservation of data related
properties: temporal properties (i.e freshness, end-to-end latency,
etc.) and integrity related properties (i.e data consistency). The
proposed protocols to ensure such properties highly depend on
the considered communication model (shared registers or large
buffers) and the data access policy (directly or via local copies).
In order to overcome this limitation, we provide in this paper,
the means for managing the FIFO buffers to guarantee these
data properties in a way that communication dependencies do
not impact the tasks system scheduling order. We do so while
considering the communication model presented in [14]. We
provide methods computing a sufficient size for the considered
buffers. Last but not least, an algorithm implementing the
”last reader tags mechanism” together with the data temporal
matching is provided and explained.

I. INTRODUCTION

One of the specificity of the real-time systems is that they
must react timely to the events in the environment. From the
real-time scheduling point of view, these systems must be
carefully verified and validated provided that functional failure
may result in significant consequences. For that purposes,

Real-time embedded systems are composed of large number
of applications that continuously communicate. One of their
specificity is that they must react timely to the events in
the environment. Part of the applications are made to pro-
duce the data to be utilized by the others. The producing
and consuming applications are referred to as producers and
consumers, respectively. These applications may have different
sampling rates (periods) and , accordingly, some output data
may never be used while others may be read several times.
Additionally, such application may be triggered by different
clocks which may be synchronized or not or for which clocks
synchronization is a challenging task. Additionally to that,
communicating applications may be sampling at different rates
(periods). For the correct functioning of the system, all these
particularities must be taken into account when determining
the scheduling policies. Inter-application communications are
often ensured through shared variables where the output of
one application is used as input for another application and so

on and so forth. A sequence of such applications, involved in
the definition of a given function, is referred to as functional
chain (i.e [13]) or as cause-effect chain (i.e [11]).

With the evolution of technologies, real-time embedded
systems are getting more and more intelligent in the sense
that, at some point, they acquire the capability to achieve
targeted functions autonomously. For instance, the autonomous
vehicles or drones are extended with the capability of sensing
the surrounding environment and navigating on their own by
making driving decisions. The correctness of these driving
decisions depends not only on the system schedulability but
also, and importantly, on the quality of the data being used.
By the quality of the data we mean the temporal properties
of the data such as the freshness, end-to-end latency, and
the integrity related properties such as the data consistency
which consists in protecting the data from the shared resources
against any corruption or modification when this data is still
being utilized by some currently executing applications. Part
of such properties are required to be ensured on the application
level (i.e freshness, consistency) while others are required on
the cause-effect chain level (i.e end-to-end latency, data age).
Accordingly, in the remainder of this paper we clearly classify
such properties into task level and effect-chain level properties,
respectively.

Regarding the task level properties, the data freshness is
implicitly ensured for communication channels having the
storing capacity of only one data sample. This is the case
for the register-based model or the buffers of size one. The
reason is that only one data sample can be available at a given
time instant and when a new data is produced, the old one
is overwritten. This being, for such models, maintaining the
data consistency can’t be achieved implicitly. This is usually
taken care of by the operating system which relies on certain
arbitration mechanisms (i.e semaphores, mutexes, different
synchronization protocols). However, these arbitration mecha-
nisms may have a negative impact on the system schedulability
with prospect of leading to an unpredictable system behavior
as they may provoke priority inversion problems and possible
deadlock formations [4]–[6]. Mechanisms guaranteeing the
data consistency are of three categories (lock-based, lock-free
and wait-free) as detailed in Section II. Such mechanisms are
meant to support generally very basic communication models
that need to be extended to properly maintain different data
properties (at different levels, preferably with zero or less

impact on the system schedulability) in more complex sys-
tems implementing complex communication semantics such
as publish/subscribe mechanism using the µORB (The Micro
Object Request Broker). The latter is implemented in the PX4
autopilot [14] where it operates in the form of active polling;
that is, the execution is triggered by the production of new
data sample and, an application ready to execute, blocks until
a new data sample is produced.

Functional requirements in the autonomous systems impose
new communication requirements in such a manner that the
utilization of sample shared variables does not meet them. In
the spirit of meeting such requirements, the communication
within the autopilot [14] is ensured in terms of semantic
messages, where a semantic message is a set of several
variables considered together to form a data structure with
an intuitive name with respect to the physical parameter it
represents (i.e position, altitude, etc.). Accordingly, ensuring
application (task) level and effect-chain level data properties
while taking into account such complex communication se-
mantics requires specific and precise approaches guaranteeing
the data management predictability (in addition to the system
scheduling predictability).

Obviously, the structure of this buffer may be complex (i.e
) in such a way that the use of registers as communication
channel may not handle it properly. Instead, the data should
be stored into re-sizable communication channels such as
memory buffer which size may be bigger than one.

However, in order to cope with this challenge, one might
prefer to implement direct data access mechanisms with arbi-
tration mechanisms which may negatively impact the system
scheduling as state previously or the direct data access without
arbitration mechanisms to the price of using global variable
local copies (Implicit communication). It may also be preferred
to use larger buffers with an asynchronous direct access also
called the (wait-free mechanism), which we consider in the
scope of this paper.

Let us consider, for instance, the model presented on the
Figure ??. The tasks τ1, τ2 and τ3 access concurrently the
communication channel var where on the Figure ?? (A) var
is a register of size one accessed directly, on the Figure ??(B)
var is a global variable accessed through local copies var2,
var3 and var4 (a copy for each reader) and finally on the
Figure ?? (C) var is a circular buffer accessed directly based
on the task priory, its storing capacity or size is equal to 2
which is computed considering the tasks timing parameters.

Most of the time the communication between applications is
ensured through shared registers of size one or larger memory
buffers. The shared variable may be a simple variable as it
may be in the form of semantic message where the latter is
seen a set of one or several variables considered together to
form a new variable to which an intuitive name is assigned
with respect to the physical parameter it represents

for instance, to represent an object in the space we need to
specify 3 variables: x, y and z, which normally provides the
position of this object. Similarly,from the system considered
in [?], the vehicle position is defined the following way:

position{uint64 timestamp; float64 lat; float64 lon; · · ·}.
In result, the semantic messages are of complex
structures [14]. In the rest of this paper we’ll be simply using
the term message to designate semantic message.

In addition to these properties, in this paper, we introduce
an other chain level temporal property that we referrer to as
the data matching.

This property is important A single application may belong
to different propagating chains. These chains may have dif-
ferent timing characteristics, so information which transits on
these chains takes various time to reach the final application.
However, depending on the targeted function (object recogni-
tion for instance), data propagating from different chains may
need to adequately associated, so that the final application uses
inputs which all result from the same execution step of the
initial application. We call this property the data matching.

In addition to that, they must fulfill heterogeneous func-
tions such as classical functions (control-command, data log-
ging, display,· · ·) and intelligent functions (recognition, data
fusion,· · ·). We should note that each of the category of
functions presents its own requirements.

for instance, let us consider the following situation: The
consumer application is preempted before reading the entire
input data (due to the complex data structure), and in between
the preemption and resume times, the producer writes a
certain number of data samples. Further, imagine that the
communication channel is a register of size one. Obviously, by
the time the previously preempted application is re-activated,
it goes on reading and fetches the updated data value. Not
only this provokes the data consistency violation but also
combining old and new data in the same execution process
might lead to erroneous results or performance degradation.

A single application may belong to different propagating
chains. These chains may have different timing characteristics,
so information which transits on these chains takes various
time to reach the final application. However, depending on
the targeted function (object recognition for instance), data
propagating from different chains may need to adequately
associated, so that the final application uses inputs which all
result from the same execution step of the initial application.
We call this property the data matching.
Paper contribution: The first contribution of this paper
consists in showing how the FIFO communication buffers
can be exploited efficiently to increase the data management
determinism while not considering any kind of arbitration
mechanism. To that end, we adopt a fully asynchronous wait-
free data access policy exploiting the system scheduling policy
and the applications’ timing parameters. Further, while taking
advantage of the manageability of the FIFO buffers, a general
framework easing to ensure the task level data property and
the effect-chain level data property is provided. Freshness,
consistency and matching are the three data properties to be
ensured in this paper. Data matching is required when there
exists in the system an application managing (associating)
data from different chains and making decisions on the basis
of these data samples. In this paper we assume that the

data to be associated originally result from the same source
application, single-source data matching. Accordingly, only
data samples resulting from the same execution step of the
source application must be associated. An example of meeting
this requirement is the FADE system presented in [22]. The
latter is a vehicle detection and tracking system composed by a
set of image processing components in charge of detecting the
characteristics (detection of shadows, headlights, etc.) related
to the presence of a vehicle (or other moving objects) in
the neighborhood. Herein, an image captured by the camera
sensor is propagated across two different chains (each chain
treating a particular part of the image data, i.e central part or
image periphery) and the outputs of each chain are associated
together by an application in charge of inferring the identity
of the object. Obviously, only outputs resulting from the same
original data image must be associated considering that they
describe a same image. Handling this issue is a challenging
task given that the propagation chains may have different
propagation delays and communicating applications may have
different periods.

II. RELATED WORKS

Regarding the data consistency maintenance, Zeng and al.
proposed in [7] a survey on existing protocols for supporting
communication over shared memory or, in general, protecting
shared resources . An experimental evaluation for all theses
mechanisms is also provided. Therein, these mechanisms are
classified into three mains categories:
• Lock-based: A lock is utilized to arbitrate the access to

the shared memory. Precisely, when a task needs to access
the shared memory while another task holds the lock, it
blocks.

• Lock-free: Each reader accesses the communication data
without blocking. At the end of the operation, it performs
a check. If the reader realizes that there was a possible
concurrent operation by the writer and it has read an
inconsistent value, it repeats the operation.

• Wait-free: Readers and writer are protected against con-
current access by replicating the communication buffers
and by leveraging information about the time instants
when they access the buffer or other information that con-
strains the access (such as priorities or other scheduling
related information). For more details on this mechanism
the reader should refer to [7] for details.

Our proposed mechanism is different from existing work as
follows. We consider a fully asynchronous method without
any kind of arbitration mechanisms which is not the case
for the existing mechanisms. There is no dynamic allocation
of local copies. Instead, we use buffers for which sizes are
computed based on the tasks timing parameters and prior-
ities. The necessary memory buffers are allocated once at
the system start-up and the occupied memory addresses will
always be the same until the system stops. The issue related
to the maintenance of the data matching is addressed by
Pontesso and al. in [12]. However, authors assume that the
FIFO buffers are correctly managed, while in this paper we

propose means to manage efficiently FIFO buffers based on the
system scheduling parameters. Additionally, authors consider
the logical execution model while in this paper we consider
that each application reads all the input data at its release time
and writes back the results at the completion time. The written
data sample becomes immediately available for reading.

III. THE SYSTEMS MODELING

A. The tasks system model

We consider a periodic time-triggered system T composed
of n tasks {τ1, · · · , τn} executing upon a uni-processor or
partitioned multiprocessor platform. The tasks are indepen-
dent and scheduled preemptively based on a fixed-priority
scheduling algorithm such as Rate Monotonic [1] or Dead-
line Monotonic [9]. Each task τi is described by the tuple
(ci, Ci, Ti,Γi,Wi), where ci is the best-case execution time,
Ci is the worst-case execution time, Ti is the period, Γi the
task execution state and Wi the task publication (writing)
status. All tasks are released simultaneously and they have
implicit deadlines; ∀τi, Ti = Di. A task τi may be in two
different execution states (Γi): initial state, Γi = −1
which corresponds to the case when τi has never been released
or when its current job has completed. This parameter is
used to control if the ready job is just starting its execution
or is resuming it. The task publication parameter (Wi) is
used to control the task writing moments. The Wi parameter
guarantees that the data publication happens at predictable
instants (and not anywhere in the program; i.e., during the
interrupts as it is the case for [14]).

At the release time, each task reads the required inputs,
performs some computations using these data and output the
results at the completion instant. Hence, Ci is the sum of
the time spent on the reading of the input data, the processing
time and writing output results. Any job of the reader released
after the execution completion of the writing task can read the
produced data.

Tasks are released periodically and their priorities are as-
signed according to Rate Monotonic. Each task τi generates
an infinite number of jobs and, for the sake of the simplicity,
in the reminder of this paper, we do not focus on specific jobs.
Therefore, τi has the meaning of any of its jobs. We define the
hyper-period as the least common multiple of the periods of
all tasks and we denote it by H = lcm {Ti} |i = 1, · · · , n. The
interval (0, H) is a feasibility interval for the task system T
[19] since all the tasks are released simultaneously and have
implicit deadlines. By feasibility interval we understand the
smallest time interval such that if all deadlines are met within
this interval, then all deadlines are met for the entire system.

B. The communication model

The tasks communicate through the bounded FIFO circular
buffer known to be a FIFO data structure that considers
memory to be managed circularly. Such buffer has in its
structure the tail and head pointers that loop back to 0 after
their values reach the size of the buffer. The size is fixed and
allocated once at the system run-time. The memory addresses

occupied by a given shared buffer will never change during
the system execution which has the advantage of avoiding
dynamic memory allocation. For such an asynchronous data
access, bounding the sizes requires to have knowledge of the
communicating tasks timing characteristics and the scheduling
policy such that the real-time system is schedulable, as it is
assumed in the scope of this paper.

The access to the shared buffer is based on the single writer,
many readers principle and is asynchronous and non-blocking.
Precisely, the tasks accessing the buffer for writing (producer)
and reading input data (consumers) are able to access the
shared buffer independently of the execution state of each
other without blocking, using only temporal characteristics
guaranteed by the real-time scheduling and a sufficiently large
circular buffer to manage concurrency.

1) Message formalization: Let M be the set of
messages that are being exchanged between the tasks of T .
A single task may produce/consume a certain number of
messages. Subsequently, we denote byMi the set of input and
output messages of the task τi , whereMi ⊂M. Input and out
messages of τi are denoted by MIn

i and MOut
i , respectively.

2) Data sample characterization: Each buffer
has the capability of storing a finite number of data samples
related to a given message. The set of data samples related
to the message m is denoted by Dm = {∂m1 , · · · , ∂mω } for all
m ∈ M where ω is the total number of data samples that
have been produced. ∂mi = (tmstampi ,Υ

m
i , t

m
issuei

), ∀i ∈ [1, ω)
where i is the ith data sample, tmstampi its timestamp, tmissuei
its time of issue and Υm

i is the set of values affected to
each of the buffer structure members for the ith data sample
such that Υm

i = {υmi,1, · · · , υmi,n} with n the number of the
buffer members. The data timestamp is the intrinsic date of
the data sample. It should be as close as possible to the date
of occurrence of the data sample. It is supplied by the task
that originally produces the message owning this data sample
and remains unmodified until all the data samples resulting
from this data sample are overwritten and disappeared from
the system. Additionally to the timestamp, at the execution
completion, each job adds this completion time to the data
sample in terms of time of issue. The time of issue changes
from task to task.

C. The communication graph
Definition 1 (The communication graph): The com-

munication graph is a bipartite graph G = (T ,M, EM) such
that T is the set of tasks, M is the set of messages and EM

is the set of linking edges between the tasks of T , where
messages of M represent bridges on these edges; n and m
the cardinality of T and M, respectively.

Two tasks (τi, τj) ∈ T don’t communicate directly; there
must be a message ofM to bridge this communication where
one of these tasks is the message producer and the
other is the message consumer. For instance, the notation
Emsg = {τi|τj} is used to show that τi and τj communicate
through the message msg where τi is the producer and τj the
consumer, for all msg ∈ M ∧ (τi, τj) ∈ T . In other words,

two tasks τi and τj communicate though the message msg iff
(τi, τj) ∈ Emsg .

τ1

m1

m2

m3

τ3

τ4

m5

m7

m6

τ2

m4

τ6

Figure 1: Example of the communication graph

For instance, considering the communication graph from the
Figure 1, Em1 = {τ1|τ3, τ4}, Em2 = {τ1|τ2, τ3}, · · · , Em7 =
{τ4|τ6}.

IV. TASK LEVEL DATA PROPERTY MAINTENANCE

In the scope of this paper, the task level properties (data
consistency and data freshness) are ensured while considering
the following:
• The single producer, many consumers data access princi-

ple: Each buffer can be accessed by a single producer for
writing and one or many consumer(s) for reading.

• The access to the buffer (for writing/reading) is asyn-
chronous and non-blocking.

A. Data consistency
Preserving of the data consistency property consists in

ensuring that no data sample will be overwritten as long as
there exists at-least a single job of one of the readers still
processing, considering that the tasks access the data samples
asynchronously and with no arbitration mechanisms.

B. Data freshness
A given data sample is fresh if and only if, from the time

instant this data was written into the buffer, no other job of
the producer hasn’t completed yet.

C. Relation to existing work
The issue related to the preservation of the data freshness

and consistency has previously been addressed in [18]. Herein,
authors propose a method computing the minimal (optimal)
size of each of the buffers. An algorithm ensuring these
properties while considering the found buffer size is proposed
and proved. The buffer sizes are found based on the lifetime
bound method [15], [16] which is based on the computation of
an upper bound of the number of times the writer can produce
new data samples while a given data sample is being used by
at least one reader. Accordingly, since only one task can write
into a given buffer, the size of each buffer is computed as
the ceiling of the reader worst-case response time over the
sampling period of the producer task if only one task reads
from this buffer. In the case when several tasks read from
this buffer, the size of the buffer is computed considering the
largest of the readers worst-case response time as shown in

the Equations 1 and 2. Formally, for a buffer βm where a task
τi writes the data samples related to the message m and the
tasks {τi1 , · · · , τik} such that Em = {τi|τi1 , · · · , τik} where k
is the number of tasks reading from βm, when k = 1 we have

|βm|=
⌈
Rik
Ti

⌉
(1)

while for the case where k ≥ 2 we have

|βm|= max
1<j≤k

{⌈
Rij
Ti

⌉}
(2)

where Ri, ∀τi ∈ T , is the worst-case response time [3]
which corresponds to the maximum time delay it can take
for the first job of τi to complete its execution when released
simultaneously with all the higher priority tasks denoted here
by hp(i).

Ri = Ci +
∑

j∈hp(i)

⌈
Ri
Tj

⌉
∗ Cj (3)

V. EFFECT-CHAIN LEVEL PROPERTY MAINTENANCE:
DATA MATCHING

With respect to the single source data matching category,
the data matching property consists in associating data samples
resulting from the same execution step of the source task. The
set of cause-effect chains, involved in the propagation of the
data samples from the source task until the destination task,
form a spindle that we define as follows:

Definition 2 (Spindle): A spindle, denoted by
Smq (τsrc, τtrm), is the set of q chains propagating the
data samples related to a message m such that all these
chains have in common the spindle source task τsrc and the
spindle terminus task τtrm task, with q ≥ 2.

Each chain of Smq is denoted by Cmc:q with c the index of a
specific chain, ∀1 ≤ c ≤ q. The chains composing the spindle
can be linear or branched.

Definition 3 (Linear chain): A chain Cmc:q ∈ Smq is said
linear iff ∀c′, c′ ∈ [1, q] ∧ c′ 6= c we have Cmc:q ∩ Cmc′:q = ∅.

Definition 4 (Branched chain): A chain Cmc:q ∈ Smq is
said branched iff ∃Cm

c
′
:q
∈ Smq such that Cmc:q ∩ Cmc′:q 6= ∅,

c, c′ ∈ [1, q] ∧ c′ 6= c.
In the presence of one or many branched chains, the number

of initial chains may differ from the one of chains reaching the
end of the spindle. Accordingly, we denote by p the number
of initial chains while q keeps the meaning of the number of
the chains reaching the spindle terminus task. For instance,
regarding the spindle on the Figure 4, p = 2 while q = 3. On
this basis, we distinguish the following classes of spindles:
pure, α-pure and β spindles.

Definition 5 (Pure spindle): Smq is a pure spindle iff
p = q and all q chains are linear.

τ1 m1

τ3

τ2

m3 τ5 m5

m2 τ4 m4

τ6

Figure 2: A pure spindle example.

Definition 6 (α-pure spindle): Smq is a pure spindle
iff p = q and there is a number α of embedded pure spindles
in its composition.

τ1 m1

τ3 m3

τ2
τ4

m4
τ6

τ5 m5

m2

Figure 3: An α-pure spindle example.

Definition 7 (β-spindle): Smq is a β-spindle iff p < q.

τ1 m1

τ2

τ3

m4

m2 τ4 m3

m5 τ5 m6

τ6

Figure 4: A β-spindle example.

In the scope of this paper we focus solely on the pure
spindle.

The value of p has also the meaning of the number of
tasks reading from the spindle source buffer that we define
as follows:

Definition 8 (Spindle source buffer): Let
βm be the buffer storing the data samples related
to the message m. βm is the spindle source buffer
iff ∃Smq ∧ {τsrc, τsrc1 , · · · , τsrcp} ∈ T such that
Em = {τsrc|τsrc1 , · · · , τsrcp},∀2 ≤ p ≤ q.
where τsrc is the producer of the message m and
τsrc1 , · · · , τsrcp are the tasks reading from the buffer βm.

Further, the spindle terminus task reads the input data from
q different buffers where each of these buffers is written by
the last task belonging to each of the q reaching chains (except
the spindle terminus task). We analogically name each of these
buffers as the spindle chain terminus buffer.

So, let βmc be the output buffer of the Cmc
c:q such that c is

the index of a specific chain and 1 ≤ c ≤ q with q ≥ 2:
Definition 9 (Spindle chain terminus buffer):

βmc is a spindle chain terminus buffer iff ∃(τtrmc
, τtrm) ∈ T

such that τtrm is the spindle terminus task and Emtrmc =
{τtrmc

|τtrm}, ∀1 ≤ c ≤ q.
where τtrmc

is the last task belonging to the chain of index c.
This task is the producer of the message mtrmc

being one of
the spindle terminus task input message.

A. The solution overview
Addressing the single-source data matching problem re-

quires that the spindle terminus task associate only the data
samples resulting from the same execution step of the spindle
source task. Precisely, by the time a job of the spindle terminus
task is released there should be, in each of the spindle chain
terminus buffers, the data samples resulting from the same
execution step of the spindle source task. However, for a

multi-rate system the propagation of the data may be broken
due the gap between the sampling periods of the message
producers and consumers which may lead to the loss of some
data before reaching the terminus task. On the other hand,
different chains may have different data propagation delays.
Subsequently, the propagation of the data samples produced
during the same execution step of the spindle source may
not reach the spindle terminus task. In order to overcome
the aforementioned situation, in the following we propose the
steps leading to the solution:
Step 1: Forcing all the consumers reading from the spindle

source buffer to propagate the same data samples. For this
purpose, we propose the last reader tags mechanism that we
present in the Section V-B1.
Step 2: Computing the optimal (minimal) size of spindle

source buffer in such a manner that the data consistency of
the read data is always guaranteed. This is ensured in the
Section V-B2.
Step 3: Computing the propagation delay for each prop-

agation chains and the optimal size of each of the chain
terminus buffer such that there will be in each of these buffers
at-least one data sample resulting from the same execution step
of the spindle source task. The solution is proposed along the
Section V-B3.
Step 4: Implement the temporal alignment and matching

algorithm to ensure that the spindle terminus task reads the
right data samples from each of the chain terminus buffers.

B. The data matching maintenance

1) The last reader tags mechanism: The main
idea behind this mechanism resides in modifying the rules
under which the access to the spindle source buffer is done.
This is organized in a way that all the readers involved in the
single source data matching process, can always propagate the
same data samples. In other words, this means that all the tasks
reading from this buffer should always have the same value
of the tail pointer, as opposite to the classical organization
of the circular buffer where each reader follows its own tail
pointer. This mechanism relies on the following rule: if a
data sample is consumed by one of the readers then all the
readers will consume it until the execution completion of the
job of the slowest among these readers. Only at this instant,
another sample can be chosen. The implementation of this
mechanism is performed at the price of the larger memory
required to guarantee the consistency of this data which must
not be overwritten as long as there is at-least one task still
processing it. Accordingly, let us consider the message domain
Em = {τsrc|τsrc1,···,τsrcp} and the buffer βm where p is the
number of readers. Let hpp and lwp be, respectively, the
higher and the lower priority tasks among {τsrc1 , · · · , τsrcp}.
From the fact that all the tasks are released simultaneously, we
formulate Lemma 1 regarding exclusively the first data sample
produced by τsrc.

Lemma 1: Setting tail(τsrcc) ← tail(hpp) forces the first
job of any task τsrcc to read the same data sample from βm,

and the job of lwp is the one processing this data lastly with
c the index of a given chain, ∀c ∈ [1, p].

Proof 1: When all the tasks are released simultaneously,
the execution of the first job lasts for the worst-case response
time and the lower is its task priority the latter this happens.
Accordingly, the first job of lwp is the one reading the data
lastly while the one of hpp reads the data firstly. After the job
of hpp had read this data, all jobs released after its completion
will have to inherit this tail value until the completion of the
job lwp.

For the correctness of the last reader tags mechanism, all the
jobs released after the completion of job of the lwp will start
reading a different data sample. To that end, we formulate the
Lemma 2, which is generalized to all the data samples written
into βm.

Lemma 2: Setting tail(τsrcc)← tail(lwp) forces each task
τsrcc,∀c∈[1,p] to read the same data from βm.

Proof 2: Analogically to the Lemma 1, once the job of the
lower priority among the readers lwp completes, a new data
sample is tagged (marked) and can start being used by any job
released after this instant and that until the completion of the
next job of lwp. At the completion of the job of lwp the new
data sample to be read is the one being into the slot number
given by

(head− 1 + |βm|) mod |βm|.

The current value of head points to the slot where to write
at the next completion. That is why we take the data recently
written (head − 1) to which we add |βm| to avoid negative
values.

2) Computing the spindle source buffer
size: On the basis of the lifetime bound method we need to
compute the largest amount of time the tagged data can still
be in use by at-least one of the consumers with respect to the
last reader tags mechanism. We call this delay the spindle
source buffer data consistent interval which we denote by
SCI and compute on the basis of the Lemma 3.

Lemma 3: We consider Em = {τsrc|τsrc1,···,τsrcp} and
two consecutive jobs of lwp that we denote by lwpj and
lwpj+1. The value of SCI is found when the data tagged at
the completion of lwpj was produced as early as possible (by
τsrc) and the execution of lwpj+1 lasts for the lwp worst-case
response time.

Proof 3: The delay separating two consecutive tagged data
directly depends of the time instant the tagged data was written
into the buffer and the time instant when the next data is
going to be tagged. If the tagged data was written as earlier as
possible and the next data is tagged as late as possible (which
is when the tagging task executes for its worst-case response
time), the delay separating these data is the maximum possible.
Hence,

SCI = Tlwp − csrc +Rlwp (4)

where csrc is the best-case execution time of the task τsrc,
Tlwp and Rlwp are, respectively, the period and the worst-case
response time of lwp.

With respect to the life time bound method, the size of
the spindle source buffer is given by the maximal number of
data samples that may be produced between two consecutive
data tagging instants. The Theorem 1 provides its formal
computation.

Theorem 1: We consider βm the spindle source buffer
related to the message m.

|βm|=

{⌈
SCI
Tsrc

⌉
, if Tsrc ≤ Tlwp.

1, Otherwise
(5)

Proof 4: From the Equation 4, the largest delay that can
separate two consecutive data tagging instants is equal to the
SCI value. So, the computation result of the Theorem 1
guarantees that within SCI time interval, there may not be
produced more than |βm| data samples, which would lead to
overwriting some data. Subsequently, any data sample read
from the spindle source buffer will never be overwritten before
the completion of all jobs having read it.
For instance, considering the scheduling results presented on
the Figure 5, we have

|βm|=
⌈
T3 +R3 − c1

T1

⌉
=

⌈
25

6

⌉
= 5 slots (6)

3) Computing the spindle chains
propagation delays: In this section we compute
the minimum and the maximum delays it takes for a data
sample to propagate from the spindle source until the spindle
terminus tasks for each of the chains involved into this task.

We start by decomposing the cth chain belonging to the
spindle Smq as follows:

Cmc:q = τsrc →︸ ︷︷ ︸
Delay 1

τsrcc → τi → τi+1 · · · τn →︸ ︷︷ ︸
Delay 2

τtrmc
→ τtrm︸ ︷︷ ︸

Delay 3

where
• τsrc and τtrm are the spindle source task and the spindle

terminus tasks, respectively.
• τsrcc and τtrmc are, respectively, the task reading from

the spindle source buffer and the task writing into the
spindle chain terminus buffer; both belonging to the chain
of index c, ∀c ∈ [1, p].

• And finally, τi → τi+1 · · · τn is the chain segment
comprised between τsrcc and τtrmc

.
The minimum and the maximum propagation delay of the

cth chain that we respectively denote by Dminc:q and Dmaxc:q , are
computed as the sum of the following delays:
Delay 1: The amount of time that that can separate the

tagging instant and the consumption of a given data by each
task τsrcc . This delay concerns the segment

τsrc → τsrcc ,∀c ∈ [1, p]

and we call it the spindle source data waiting time and denote
it by swtc. Accordingly, the minimum and the maximum of
this parameter are denoted by swtminc and swtmaxc , respec-
tively.

Delay 2: The propagation delay by the tasks belonging to
the segment

τsrcc → τi → τi+1 · · · τn

Delay 3: The execution completion of τtrmc
, which is the

time an output data is written into the spindle chain terminus
buffer belonging to the cth propagation chain. This is the
segment

τtrmc
→ τtrm,∀c ∈ [1, q]

The maximum delay is found by summing the maximum
delays while the minimum delay is found by summing the
minimum delays for each segment, with respect to the cth

chain.
a) Computing the Delay 1: The swtminc can be not less

than two processor cycles. This corresponds to the case where
the time separating the completion of the job of τsrc and the
tagging moment by the job of the lwp task is only one cycle.
The other cycle is spent between the completion of the lwp
task and the reading by a job of τsrcc . Since this value is very
short, we round it to zero.

The swtmaxc , for its part, is the time that can be used by
n = b SCITsrcc

c jobs of τsrcc that can be released and complete
their executions within the time interval bounded by the SCI
plus the largest interference that can be induced by the higher
priority tasks than τsrcc . This interference corresponds to the
time at which the (n+1)th job of τsrcc (the last job) can start
reading.

b) Computing the Delay 2: Within the concerned prop-
agation chain, the maximum delay is found if two consecutive
execution completions of the producer task must happen
as early as possible and as late as possible, respectively.
On the contrarily, the minimum value is found when these
completions happen as late as possible and as early as possible,
respectively. So, for all two adjacent tasks τi and τj such that
τi produces input for τj , the maximum delay a data sample
produced by a job of τi can be available for the the job of
τj is utmost 2Ti − Ci [10] while the shortest time this data
can be available is equal to ci. On the other hand, the number
of jobs of τj that can be released between two consecutive
releases of τi is denoted by ωji and computed as

ωji =

{
dTj

Ti
e, if Ti ≤ Tj

bTj

Ti
c+ 1, if Ti > Tj

So for the segment τsrcc → τi → τi+1 · · · τn, the maximum
delay is computed as

ωisrcc(2Tsrcc − Csrcc) + · · ·+ ωnn−1(2Tn−1 − Cn−1) (7)

and the minimum propagation delays are

ωisrcccsrcc + · · ·+ ωnn−1cn−1 (8)

c) Computing the Delay 3: The minimum completion
time is found when the task executes with no interference;
which is equal to its worst-case execution time, while the
late moment of completion can happen at the end of the task
period. In result,

D
max
c:q = swtmaxc + max

1≤c≤q
(Delay 2) + Ttrmc

Dminc:q = swtminc + min
1≤c≤q

(Delay 2) + ctrmc

(9)

4) Computing the spindle chain terminus buffers size:
Knowing the smallest and the largest propagation delays
allows us to compute the size of each of the spindle terminus
buffers. To that end, we compute the ceil of the largest time it
can take for a data to propagate from the spindle source task
until the spindle terminus task over the smallest propagation
delay of the cth propagation chain, ∀c ∈ [1, n].

Theorem 2: Let βmc
c:q be the spindle source terminus buffer

belonging to the chain of index c,

|βmc
c:q |=

max
1≤c≤q

Dmaxc:q

Dminc:q

 (10)

Proof 5: The idea here is to compute the sizes ensuring
that by the time a job of the spindle terminus task is released
it must find, in each of the spindle chain terminus buffers,
at-least a single data sample resulting from the execution
step of the spindle chain source task and that, without any
kind of synchronization mechanism. The Equality 10 has
the meaning of the maximum number of times the data
samples propagating along the chain of index c can reach
the spindle terminus task while the slowest chain (the one
having the largest propagation delay) still hasn’t output at-
least once. Accordingly, the size we consider for each of the
spindle terminus buffers is the one willing to store (without
overwriting) all the data samples produced by τtrmc

within a
time interval bounded by max

1≤c≤q
Dmaxc:q .

5) The temporal alignment and matching algorithm:
This algorithm implements the proposed spindle-single source
data matching solution. All the notations used are previously
defined in the paper except prior,BIn,minprior and βsrc which
stand for the index of the prior task, the set of input buffers for
prior and the spindle source buffer, respectively. Scheduling
starts at the Statement 4 (further Stt.). During the scheduling
time, use the method get_Prior() which returns the prior
task (Stt. 5). At the release of prior, it checks all its input
buffers (Stt. 6). For all of these buffers, prior needs to retrieve
the tail value which indicates from which slot of the buffer to
read. If the current buffer is a spindle source one, tail is the
one of lwp; the lower priority tasks among readers (Stt. 7-8).

If prior is a spindle terminus task, then it has to read from
each of the spindle chain terminus buffers. To that end, for a
correct matching of the data, the method get_Timestamp is
used to return the timestamp of the data being into the smallest
(the one belonging to the chain with the largest propagation
delay; its size is one). Further, it retrieves from each of the

Algorithm 1 The temporal alignment and matching algorithm

1: Require G = (T ,M, EM),H, τsrc, lwp, τtrm, prior
2: Require βsrc,BIn,minprior

3: int tail = head = 0, tstamp
4: while schedule(T ,H) == true do
5: prior=get_Prior()
6: for each β ∈ BInprior do
7: if β ≡ βsrc then
8: tail← tail(lwp, β)
9: else

10: if prior ≡ τtrm then
11: tstamp ← get T imestamp(BIn,minprior)
12: tail← get Tail(β, tstamp)
13: else
14: tail← tail(prior, β)
15: end if
16: end if
17: readFrom(prior, β, tail)
18: end for
19: end while

remained buffers, the data sample whose timestamp is equal
to the one returned by get_Timestamp() at Stt. 10-12.
Finally, if the current buffer is not a spindle source one
and prior is not the spindle terminus task, then, we use
the classical approach where each task owns a tail pointer
(Stt. 14). Once the correct value of tail pointer is found, prior
reads from the slot of β pointed by the current value of tail
by calling the method readFrom() (Stt. 17).

VI. CONCLUSIONS

In this paper we propose a full framework ensuring the data
freshness, consistency and temporal matching in the context
of the single-source data matching problem. Our solution is
achieved asynchronously without any kind of arbitration mech-
anism (blocking semaphores and protocols). Considering that
predictability is a mandatory property for real-time systems,
our solution responds perfectly to this requirement unlike
using arbitration mechanisms which, while trying to protect the
shared resource, induce temporal uncertainty with possibility
of leading to undesirable situations like priority inversion
problem or dead-lock formations. Further, we formally show
how to bound the size of all the categories of buffers con-
sidered herein (spindle source, spindle chain terminus buffer
and inner buffers). The proposed results will serve as the
internal communication model within the the PX4-RT drone
autopilot being prepared within the KOPERNIC research team
at INRIA Paris. In the future works, we aim to address the
issues regarding the data matching for the α- and β- spindles.

REFERENCES

[1] C. L. Liu and James W. Layland, ”Scheduling Algorithms for Multpri-
orogramming in a Hard-Real-Time Environment” Journal ACM, 1973.

[2] J. Lehoczky, L. Sha, Y. Ding, ”The rate monotonic scheduling algorithm:
Extact characterization and average case behavior”, Real-Time Systems
Symposium (1989) 166–171.

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46

τ1

τ2

τ3

SCI

τ4

τ5

τ6

Figure 5: Implementation results while considering the model presented on the Figure 2 where
τ1(1, 6), τ2(1, 8), τ3(3, 18), τ4(2, 12), τ5(2, 18) and τ6(3, 24). We assume the best- and the worst-case execution times
are equal.

[3] M. Joseph, P. Pandya, Finding response times in a realtime system, BCS
Computer Journal 29 (5) (1986) 390–395.

[4] L. Sha, R. Rajkumar and J. P. Lehoczky, ”Priority Inheritance Protocols:
An Approach to Real-Time Synchronization.”, IEEE Trans. Computers,
1990.

[5] T.Kloda,A. Bertout and Y. Sorel, ”Latency analysis for data chains of
real-time periodic tasks.”, ETFA, 2018.

[6] J. Schlatow and R. Ernst, ”Response-Time Analysis for Task Chains
in Communicating Threads.”, 2016 IEEE Real-Time and Embedded
Technology and Applications Symposium (RTAS), ETFA, 2016.

[7] H. Zeng and Marco Di Natale, ”Mechanisms for guaranteeing data
consistency and flow preservation in AUTOSAR software on multi-core
platforms.”,SIES 2011.

[8] Bruno Steux, ”RTMAPS, un environnement logiciel dédié à la concep-
tion d’applications embarqués tems-réel. Utilisation pour la détection
automatique de véhicules par fusion radar/Vision.”, PhD paper, Ecole
des mines de Paris, France,2001.

[9] Joseph Y.-T. Leung and Jennifer Whitehead, ”On the complexity of
fixed-priority scheduling of periodic, real-time tasks” Journal Perform.
Evaluation, 1982.

[10] M. Becker,D. Dasari, S. Mubeena, M. Behnam and Thomas Nolte,
”Synthesizing Job-Level Dependencies for Automotive Multi-Rate Ef-
fect Chains.”, RTCSA, At Daegu, South Korea, 2016.

[11] Alix Munier Kordon and Ning Tang, ”Evaluation of the Age Latency of a
Real-Time Communicating System Using the LET Paradigm.”, ECRTS,
2020.

[12] N. Pontisso and P. Quéinnec and G. Padiou, ”Analysis of distributed
multi-periodic systems to achieve consistent data matching.”, 2013.

[13] J. Forget, F. Boniol and C. Pagetti, ”Verifying end-to-end real-time
constraints on multi-periodic models.”, ETFA 2017, Limassol, Cyprus,
2017.

[14] L. Meier, D. Honegger, and M. Pollefeys, ”PX4: A node-based mul-
tithreaded open source robotics framework for deeply embedded plat-
forms”, ICRA 2015, Seattle, WA, USA, 26-30 May, 2015.

[15] J. Chen and A. Burns, ”Loop-free asynchronous data sharing in mult-
priorocessor real-time systems based on timing properties.”, RTCSA,
1999.

[16] H. Kopetz and J. Reisinger, ”The non-blocking write protocol NBW: A
solution to a real-time synchronization problem.”,RTSS, 1993.

[17] N. Feiertag, K. Richter, J. Nordlander and J. Jonsson, ”A Composi-
tional Frameworfor End-to-End chain Delay Calculation of Automotive
Systems under Different chain Semantics.”, journal CRTS, 2008.

[18] E. Ntaryamira, C. Maxim and Liliana Cucu-Grosjean, ”data consis-
tency and temporal validity under the circular buffer communication
paradigm.”, RACS 2019, Chongqing, China, September 24-27, 2019.

[19] Liliana Cucu-Grosjean and Joël Goossens, ”Exact schedulability tests
for realtime scheduling of periodic tasks on unrelated multpriorocessor
platforms”, Advances in Real-Time Systems, 2012.

[20] C. M. Kirsch and A. Sokolova, ”The Logical Execution Time Paradigm”
IEEE International Conference on Robotics and Automation, ICRA
2015, Seattle, WA, USA, 26-30 May, 2015.

[21] L. Sha, R.Rajkumar and J. P. Lehoczky, ”Priority Inheritance Protocols:
An Approach to Real-Time Synchronization”, IEEE Trans. Computers,
1990.

[22] B. Steux and C. Laurgeau and L. Salesse and D. Wautier, ”Fade: a
vehicle detection and tracking system featuring monocular color vision
and radar data fusion”, Intelligent Vehicle Symposium, 2002. IEEE.

