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We report herein a practical method to generate CF3Se™ (and RpSe™) anions from shelf-stable reagents under iodide activation.

Metal-free nucleophilic trifluoromethylselenolations have been then performed with this in situ-generated anion. Perfluoroalkyl-

selenolations have also been described.

Introduction

Because of the peculiar properties of the fluorine atom, fluori-
nated compounds gained a growing interest over the last
decades and found applications in a large panel of fields from
materials to life sciences [1-15]. Fluorinated motifs bring to
molecules specific and often unique electronic and physico-
chemical characteristics. In order to design new substrates with
targeted properties, a modulation of the properties of the intro-
duced substituents became fundamental. In this context, the de-

velopment of innovative fluorinated groups recently emerged,

in particular by combining heteroatoms, such as chalcogens,

and fluorinated moieties [16].

Despite, the negative reputation of selenium due to its toxicity
at high doses, it is an essential trace element for human physi-
ology and biochemistry [17-20]. Furthermore, selenolated com-
pounds found valuable applications in materials [21-23], life
sciences [19,20,24-29], and drug design [30-33]. Consequently,

the merging of fluorinated moieties, such as CF3 with selenium
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could constitute an interesting motif in the design of new mole-
cules, in particular in medicinal chemistry or agrochemistry.
Even if, to date, there are no CF3Se-containing pharmaceuticals
registered [15], a recent work has demonstrated the promising
development of trifluoromethylselenolated nonsteroidal anti-
inflammatory drugs as potential anticancer drugs [34].

Over the last years, trifluoromethylselenolation reactions have
gained a rising infatuation but, despite this recent interest,
methods to introduce the CF3Se group into organic substrates
remain limited [35,36].

One of the simplest ways to achieve trifluoromethylselenolated
compounds is the direct nucleophilic substitution of suitable
leaving groups to form the CF3Se~C(sp>) bond. This chemistry
is the prerogative of the CF3Se™ anion (Scheme 1) [37-40].
However, the formation of this selenium species requires the
tedious use of red elemental selenium [41] and also suffers from
stability issues. To circumvent these drawbacks, a copper com-

[Cu(bpy)SeCF3l,

CF3Se™ *NMey,

R-X R-SeCF;
TDAE

BuyNI
this work

Scheme 1: State of the art concerning the direct nucleophilic trifluoro-
methylselenolation.

Table 1: Reaction between 1a and 2a.
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plex has been developed, but in this case the use of a stoichio-

metric amount of the metal is required [37-39].

Only a few years ago, trifluoromethylselenotoluenesulfonate
(1a) has been developed as an efficient reagent to perform elec-
trophilic or radical trifluoromethylselenolations [42-47]. Very
recently, we demonstrated that under reductive conditions, such
compounds succeeded to perform nucleophilic substitutions
[48]. In this reaction, the CF3Se™ anion was in situ generated by
reduction through a double electron transfer of 1a with TDAE
(tetrakis(dimethylamino)ethylene). Even though this umpolung
strategy is efficient, the use of the sensitive TDAE, a strong
reducing agent, could constitute a drawback for some applica-
tions. Consequently, we decided to develop a new umpolung

method in non-reductive conditions.

Results and Discussion

A few years ago, we have demonstrated that trifluoromethane-
sulfenamides, electrophilic trifluoromethylthiolation reagents,
could also perform nucleophilic trifluoromethylthiolations
through the transient formation of a CF3SI species which
presented an inverted polarity [49,50]. Based on a similar ap-
proach, we hypothesized that the CF3Sel species could also pos-
sess the CF3Se® —I%* inverted polarity. Thus, based on the pre-
viously developed conditions, reagent 1la was reacted with
benzyl bromide (2a) in the presence of tetrabutylammonium
iodide (TBAI) in acetone at 40 °C (Table 1, entry 1).

The observed result was moderate (Table 1, entry 1). Other sol-
vents, which led also to satisfactory yields in the “sulfur series”
were then tested. Acetonitrile did not improve the yield, howev-

TBAI Ph” SeCFs
solvent 3a
T, t
solvent T t 3a
(°C) (h) (%)?
acetone 40 15 52
CH3CN 40 15 54
THF 40 15 61
THF 40 4 62
THF 50 4 59
THF 60 4 54
THF 25 4 47
THF 40 4 55
THF 40 4 89

aYields determined by '°F NMR spectroscopy with PhOCF3 as an internal standard.
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er, a better one was obtained in THF (Table 1, entries 2 and 3).
Interestingly, a shorter reaction time (4 h instead of 15 h) provi-
ded similar results (Table 1, entries 3 and 4). At higher tempera-
tures, the results were not improved and even a slight decrease
of the yield was observed, possibly due to an increased degrada-
tion of CF3Sel or CF3Se™ (Table 1, entries 5 and 6). A lower
temperature also decreased the yield (Table 1, entry 7). With an
excess of reagents 1la and TBAI, leading to an excess of the
CF3Se™
(Table 1, entry 8). On contrary, the use of 2 equivalents of the

species, no significant improvement was observed

electrophile 2a, to ameliorate the CF3Se™ anion trapping, had a
significant effect and gave a very good yield of the product
(Table 1, entry 9). With the optimal conditions in hand, the
reaction was exemplified with various other electrophiles
(Scheme 2).

The reaction gave generally good results with reactive electro-
philes such as benzylic, allylic or propargylic ones (3a—k).
Noteworthy, in the reaction with 2-(bromomethyl)pyridine (2g)

Beilstein J. Org. Chem. 2020, 16, 3032-3037.

only 1 equivalent was required, maybe due to a higher reactivi-
ty. Furthermore, the reaction seems to be very sensitive to steric
hindrance as illustrated by the low yield obtained for 3b. In
contrast, in the aliphatic series, only low yields were observed
(3m,n) except for the activated a-bromo acetophenone (3l).
This led us to suppose that CF3Se™ might be a poor nucleophile,
which is confirmed by the medium yield observed with the
propargylic substrate 3k, where the chloride starting material
was used instead of the bromide as for the other compounds.
Noteworthy, because of the volatility of the obtained products,
the isolated yields were sometimes significantly below the
NMR yields.

Higher fluorinated homologs of 1a were also synthesized.
Consequently, an extension of this method was considered with
pentafluoroethylated and tridecafluorohexylated reagents 1b
and 1c. Good yields were obtained, in particular for Sa which
constitutes, to the best of our knowledge, the first example of a
direct nucleophilic tridecafluorohexylselenolation.

TBAI (2 equiv)

ReSe” + R-Br
2

(2 equiv)

89% (75%)

A\

e
87% (65%)

3i

91% 80%)

SECF3

3f
74% (69%)

j
83% (77%)

Y\/Y\/SGCF;;

R—SeRF
THF, 40 °C
4h 35

SeCF3
©)\SGCF3 /©/\ J©/\SQCF3
Ph
3a 3b 3c F 3d

90% (82%) 83% (52%)

( I O  SeCFs
NP SeCFs D—/

3g 3h
94% (75%)? 95% (60%)

O,N

// SeCF3

3k
50% (46%)°

SN SeCF

SeCF3
SeCF3 ©/\/
3l 3m 3n

95% (68%) 20%

m
Pz SeC,F
N eb2rs

49
(65%)?

15%

©/\S€C6F13

5a
(89%)

Scheme 2: The nucleophilic fluoroalkylselenolation of alkyl bromides. Yields were determined by '°F NMR spectroscopy with PhOCF3 as an internal
standard and yields of isolated products are shown in parentheses. 2With 1 equiv of electrophile 2. PStarting from propargyl chloride.
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From a mechanistic point of view, a pathway inspired by the
reaction described with trifluoromethanesulfenamides was
postulated (Scheme 3) [49].

8t &
F;CSe—Ts
1a

BusN* I-

58t
FsCSe—I

BusN* I- or Br=

CF3SeSeCF3 _ I, orBrl
R-SeCF R-Br [ —]
3 “orr—y | CFaSe

’ S
+ |-
BuN"I~ o

Scheme 3: Mechanism proposal.

The first equivalent of iodide (from TBAI) reacts with the
reagent la to produce the transient species CF3Sel with an
inverted polarity on the selenium atom. This compound then
undergoes the attack of the second equivalent of iodide to
generate the CF3Se™ anion with releasing of I,. Finally, the
nucleophilic CF3Se™ can substitute the leaving group onto the
electrophilic substrate 2. However, because of the release of I,
as side reaction the oxidation of the CF3Se™ anion can be also
envisaged. This was confirmed by the formation of 25-30% of
CF3SeSeCF3 when 1 equivalent of 2a was used (Table 1,
entries 3 and 4). Consequently, the nucleophilic substitution is
in competition with this relatively fast oxidation. By adding an
excess of the electrophile 2, the substitution is favored detri-
mentally to the oxidation. Nevertheless, with weaker or
hindered electrophiles, the oxidation reaction is favored com-
pared to the slower substitution. This is adequate with the ob-
served results. Noteworthy, the supposed formation of I, was
strengthened by the appearance of a red-brown color of the
reaction media which faded after the addition of sodium thiosul-
fate. As demonstrated in the sulfur series [49], the in situ forma-
tion of an alkyl iodide from 2, through a Finkelstein reaction,
can be also envisaged. This would not impact the reaction path-
way since the released bromide can also activate the CF3Sel
species to provide the expected CF3Se™ anion.

Conclusion

To conclude, trifluoromethylselenotoluenesulfonate confirmed
to be a versatile reagent able to perform electrophilic, radical or
nucleophilic reactions depending on the conditions. The iodide-
mediated, metal-free method is complementary to the previous
one using TDAE. Thus, the umpolung reactivity of trifluo-

romethylselenotoluenesulfonate can be performed under reduc-

Beilstein J. Org. Chem. 2020, 16, 3032-3037.

tive or oxidative conditions. Furthermore, this method was ex-
tended to higher fluorinated homologs allowing the first nucleo-

philic tridecafluorohexylselenolation.

Experimental

Typical procedure: In a 10 mL flame-dried flask tube equipped
with a magnetic stirring bar was added la—c (0.2 mmol,
1 equiv) followed by 0.4 mL of dry THF. Then, compound
2a-n (0.4 mmol, 2 equiv) was added followed by TBAI
(0.4 mmol, 2 equiv). The tube is then sealed and the reaction
mixture stirred at 40 °C for 4 h. The conversion was checked by
I9F NMR spectroscopy with PhOCFj; as internal standard. After
completion, the reaction mixture was partitioned between Et,O
or pentane and water. The aqueous layer was extracted with
Et;O and pentane and the combined organic layers were dried
over MgSOQy, filtered and concentrated to dryness. The crude
residue was purified by chromatography to afford the desired
products 3, 4, or 5.
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