

What is the problem? Point sources pollution

Ammonium and phosphorus

Diffuse sources pollution

Nitrate

Improve the treatment of urban and industrial waste waters

GOAL (almost) ACHIEVED

Rivers and coastal waters eutrophication

Changes in agricultural Landscape management practices (like reintroducing wetlands or ponds)

GOAL NOT (yet)

ACHIEVED

What are we able to simulate?

Validation with the period 2003 - 2006

EPCN 2012 Study site – the Seine River basin, land use and population

Why thinking to the ponds?

Why thinking to the ponds?

DECREASE OF NO $_{\scriptscriptstyle 3}$ CAN REACH 60 % AT THE END OF SUMMER

Which location of historical ponds?

Cassini Map of the Orgeval watershed (end of 18th century)

What were historical ponds for?

Many ponds (fishing, mills, timber rafting ...)

How many historical ponds within the Seine River basin?

Nontricour

DISTRIBUTION OF CASSINI'S PONDS ON THE SEINE WATERSHED

Ponds digitized from the map of Cassini georeferenced by EHESS

EPCN 2012 What pondscape for the future?

Nontricour

What are the effects of these ponds?

Nontricour

What are the effects of these ponds?

Montricout

What optimal ponds density?

Seasonal variations of NO₃ concentrations at the outlet of the Orgeval basin

Evolution of NO₃ fluxes at the outlet of the Orgeval basin

5 % of the area of the watershed devoted to ponds permits to decrease by 50 % the NO₃ summer concentration

Main conclusions

- Ponds were ubiquitous features of the traditional rural waterscape: more than 2500 ponds were present at the end of the 18th century, representing 0.24 % of the basin.

- Ponds can reduce NO_3 concentration by 20 % at the outlet of a basin covered by 2.7 % of ponds, but have no effects at the outlet of the Seine River.

- A pond density of 5 % could reduce NO_3 concentration by 50 %.

Managing pondscape could be a solution to locally reduce NO_3 concentrations within the river network, but best results would be achieved by changing agricultural practices.

Thanks for your attention / Merci fir Är Opmierksamkeet

Some questions? / Etlech Froen ?