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NEWTON NON-DEGENERATE µ-CONSTANT

DEFORMATIONS ADMIT SIMULTANEOUS EMBEDDED

RESOLUTIONS

MAXIMILIANO LEYTON-ÁLVAREZ, HUSSEIN MOURTADA,
AND MARK SPIVAKOVSKY

Abstract. Let Cn�1
o denote the germ of Cn�1 at the origin. Let V be

a hypersurface germ in Cn�1
o and W a deformation of V over Cmo . Under

the hypothesis that W is a Newton non-degenerate deformation, in this
article we will prove that W is a µ-constant deformation if and only if
W admits a simultaneous embedded resolution. This result gives a lot
of information about W , for example, the topological triviality of the
family W and the fact that the natural morphism pWpCoqmqred Ñ Co
is flat, where WpCoqm is the relative space of m-jets. On the way to
the proof of our main result, we give a complete answer to a question of
Arnold on the monotonicity of Newton numbers in the case of convenient
Newton polyhedra.

1. Introduction

Before stating and discussing the main problem of this article we will give
some brief preliminaries and introduce the notation that will be used in the
article.

1.0.1. Preliminaries on µ-constant deformations. Let

Ox
n�1 :� Ctx1, ..., xn�1u, n ¥ 0,

be the C-algebra of analytic function germs at the origin o of Cn�1 and Cn�1
o

the complex-analytic germ of Cn�1. By abuse of notation we denote by o
the origin of Cn�1

o . Let V be a hypersurface of Cn�1
o , n ¥ 1, given by an

equation fpxq � 0, where f is irreducible in Ox
n�1. Assume that V has an

isolated singularity at o. One of the important topological invariants of the
singularity o P V is the Milnor number µpfq, defined by

µpfq :� dimCOx
n�1{Jpfq,

where Jpfq :� pB1f, ..., Bn�1fq � Ox
n�1 is the Jacobian ideal of f . In this

article we will consider deformations of f that preserve the Milnor number.
Let F be a deformation of f :

F px, sq :� fpxq �
l°

i�1
hipsqgipxq
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where hi P Os
m :� Cts1, ..., smu, m ¥ 1, and gi P Ox

n�1 satisfy

hipoq � gipoq � 0.

Take a sufficiently small open set Ω � Cm containing o, and representatives
of the analytic function germs h1, ..., hl in Ω. By a standard abuse of nota-
tion we will denote these representatives by the same letters h1, ..., hl. We
use the notation Fs1pxq :� F px, s1q when s1 P Ω is fixed. We will say that
the deformation F is µ-constant if the open set Ω can be chosen so that
µpFs1q � µpfq for all s1 P Ω.

Let E :� te1, e2, ..., en�1u � Zn�1
¥0 be the standard basis of Rn�1. Let us

write the convergent power series g1, . . . , gl P Ctx1, ..., xn�1u as

gpxq �
¸
αPZ

aαx
α, Z :� Zn�1

¥0 ztou,

in the multi-index notation. The Newton polyhedron Γ�pgq is the convex
hull of the set

�
αPSupppgq

pα�Rn¥0q, where Supppgq (short for “the support of

g”) is defined by Supppgq :� tα | aα � 0u. The Newton boundary of Γ�pgq,
denoted by Γpgq, is the union of the compact faces of Γ�pgq. We will say
that gpxq �

°
αPZ

aαx
α, Z :� Zn�1

¥0 ztou, is non-degenerate with respect to its

Newton boundary (or Newton non-degenerate) if for every compact face γ of
the Newton polyhedron Γ�pgq the polynomial gγ �

°
αPγ

aαx
α does not have

singularities in pC�qn�1.
We say that a deformation of F of f is non-degenerate if the neighborhood

Ω of o in Cm can be chosen so that for all s1 P Ω the germ Fs1 is non-
degenerate with respect to its Newton boundary ΓpFs1q.

1.0.2. Preliminaries on Simultaneous Embedded Resolutions. Let us keep
the notation from the previous section. We denote S :� Cmo , and W the
deformation of V given by F . Then we have the following commutative
diagram:

V �
� //

��

W �
� //

%
��

Cn�1
o � S

ww
�

o �
� // S

where the morphism % is flat. We use the notation Ws1 :� %�1ps1q, s1 P S.

In what follows we will define what we mean by Simultaneous Embedded
Resolution of W .

We consider a proper bimeromorphic morphism ϕ : �Cn�1
o � S Ñ Cn�1

o �S

such that �Cn�1
o � S is formally smooth over S, and we denote by �W s and�W t the strict and the total transform of W in �Cn�1

o � S, respectively.

Definition 1.1. The morphism �W s ÑW is a very weak simultaneous res-

olution if �W s
s1 ÑWs1 is a resolution of singularities for each s1 P S.



SIMULTANEOUS EMBEDDED RESOLUTION 3

Definition 1.2. We say that �W t is a normal crossing divisor relative to S

if the induced morphism �W t Ñ S is flat and for each p P �W t there exists an

open neighborhood U � �Cn�1
0 � S of p and a map φ,

U
φ //

��

Cn�1
0 � S

{{
S

biholomorphic onto its image, such that �W tXU is defined by the ideal φ�I,
where I �

�
ya11 � � � y

an�1

n�1

�
, y1, ...yn�1 is a coordinate system at o in Cn�1

0 and

the ai are non-negative integers. If p P �W s, we require that an�1 � 1 and

that �W s X U be defined by the ideal φ�I 1, where I 1 � pyn�1q.

Definition 1.3. We will say φ is a simultaneous embedded resolution if,

in the above notation, the morphism �W s Ñ W is a very weak simultaneous

resolution and �W t is a normal crossing divisor relative to S.

Let us recall that W is defined by

F px, sq :� fpxq �
l°

i�1
hipsqgipxq

where hi P Os
m, m ¥ 1, and gi P Ox

n�1 such that hipoq � gipoq � 0.
Let ε ¡ 0 (resp. ε1 ¡ 0) be small enough so that f, g1, ..., gl (resp.

h1, ..., hl) are defined in the open ball Bεpoq � Cn�1 (resp. Bε1poq � Cm),
and the singular locus of W is tou�Bε1poq. We will say that the deformation
of W is topologically trivial if, in addition, there exists a homeomorphism ξ
that commutes with the projection

pr2 : Bεpoq �Bε1poq Ñ Bε1poq :

Bεpoq �Bε1poq
ξ //

pr2 ##

Bεpoq �Bε1poq

pr2{{
Bε1poq

such that ξpW q � V 1�Bε1poq, where V 1 :� ξpV q, that is to say, ξ trivializes
W . The following Proposition relates Simultaneous Embedded Resolutions,
topologically trivial deformations and µ-constant deformations.

Proposition 1.4. Let V and W be as above. Assume that W admits a
simultaneous embedded resolution. Then:

(1) The deformation W is topologically trivial.
(2) The deformation W is µ-constant.

Proof. The Milnor number µ is a topological invariant, hence p1q implies p2q.
As W admits a simultaneous embedded resolution, there exists a proper

bimeromorphic morphism ϕ : �Cn�1
0 � S Ñ Cn�1

0 � S such that �Cn�1
0 � S

is formally smooth over S and W t is a normal crossing divisor relative to
S. In the topological context this translates into the existence of a proper

bimeromorphic morphism ϕ : �Bεpoq �Bε1poq Ñ Bεpoq �Bε1poq such that for
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all p P ϕ�1poq there exists ε2 ¡ 0, and a diffeomorphism

φp : Bε2ppq � �Bεpoq �Bε1poq Ñ �Bε2poq �Bε1poq

that trivializes W tXBε2ppq. Using partitions of unity and the projection ξ,
we obtain the desired trivialization. �

1.0.3. On the main result of the article. Keep the notation of the previous
sections. Recall that W is a deformation of V over S :� Cmo given by F .
In the article [Oka89] the author proves that if W is a non-degenerate µ-
constant deformation of V that induces a negligible truncation of the Newton
boundary then W admits a very weak simultaneous resolution. However if
the method of proof used is observed with detail, what is really proved is
that W admits a simultaneous embedded resolution in the special case when
n � 2, l � m � 1, h1psq � s and g1pxq is a monomial in x. Intuitively one
might think that the condition that W admit a simultaneous embedded
resolution is more restrictive than the condition that W is a µ-constant
deformation. However, this intuition is wrong in the case of Newton non-
degenerate µ-constant deformations. More precisely, in this article we prove
the following result:

Theorem. Assume that W is a Newton non-degenerate deformation. Then
the deformation W is µ-constant if and only if W admits a simultaneous
embedded resolution.

Observe that if W admits a simultaneous embedded resolution it follows
directly from Proposition 1.4 that W is a µ-constant deformation. The con-
verse of this is what needs to be proved.

From the above theorem and Proposition 1.4 we obtain the following
corollary.

Corollary 1.5. Let W be a Newton non-degenerate µ-constant deformation.
Then W is topologically trivial.

The result of the corollary is already known (see [Abd16]). In the general
case, for n � 2 it is known that if W is a µ-constant deformation, then the
deformation W is topologically trivial, (see [LDR76]). The case n � 2 is a
conjecture (the Lê–Ramanujan conjecture).

The theorem has an interesting implication to spaces of m-jets. Let K be a
field and Y a scheme over K. We denote by Y�Sch (resp. Set) the category
of schemes over Y (resp. sets), and let X be a Y -scheme. It is known
that the functor Y �Sch Ñ Set : Z ÞÑ HomY pZ �K SpecKrts{ptm�1q, Xq,
m ¥ 1, is representable. More precisely, there exists a Y -scheme, denoted
by XpYqm, such that HomY pZ�K SpecKrts{ptm�1q, Xq � HomY pZ,XpYqmq
for all Z in Y �Sch. The scheme XpYqm is called the space of m-jets of X
relative to Y . For more details see [Voj07] or [LA18]. Let us assume that
Y is a reduced K-scheme, and let Z be a Y -scheme. We denote by Zred the
reduced Y -scheme associated to Z.

Corollary 1.6. Let S � C0 and let W be a non-degenerate µ-constant
deformation. The structure morphism pWpSqmqred Ñ S is flat for all m ¥ 1.
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Proof. By the previous theorem W admits an embedded simultaneous reso-
lution. Hence the corollary is an immediate consequence of Theorem 3.4 of
[LA18]. �

The main result of this article initiates a new approach to the Lê-Ramanujam
conjecture. To wit, in characteristic 0 every singularity can be embedded
in a higher dimensional affine space in such a way that it is either Newton
non-degenerate or Schön (this is due to Tevelev, answering a question of
Teissier, see [Tei14], [Tev14] and [Mou17]). Note that Schön is the notion
that generalizes Newton non-degenerate singularities to higher codimensions
and guarantees the existence of embedded toric resolutions for singularities
having this property. The idea is to prove a generalization of the main the-
orem of this article for an adapted embedding and then to apply the first
part of Proposition 1.4.

Finally, we comment on the organization of the article. In section 2 we
study geometric properties of pairs of Newton polyhedra that have the same
Newton number. This will allow us to construct the desired simultaneous
resolution. In this section we give an affirmative answer to the conjecture
presented in article [BKW19]. This result together with Theorem 2.2 (see
[Fur04]) is a complete solution to an Arnold problem (No. 1982-16 in his
list of problems, see [Arn04]) in the case of convenient Newton polyhedra.
In section 3 we prove the main result of the article. Finally, in section 4 we
study properties of degenerate µ-constant deformations.

2. Preliminaries on Newton Polyhedra

In this section we study geometric properties of pairs of Newton Polyhe-
dra having the same Newton number, one contained in the other.

Given an affine subspace H of Rn, a convex polytope in H is a non-empty
set P given by the intersection of H with a finite set of half spaces of Rn.
In particular, a compact convex polytope can be seen as the convex hull
of a finite set of points in Rn. The dimension of a convex polytope is the
dimension of the smallest affine subspace of Rn that contains it. We will say
that P is a polyhedron (resp. compact polyhedron) if P can be decomposed
into a finite union of convex (resp. compact convex) polytopes. We will say
that P is of pure dimension n if P is a finite union of n-dimensional convex
polytopes. An n-dimensional simplex ∆ is a compact convex polytope gen-
erated by n � 1 points of Rn in general position. Given an n-dimensional
compact polyhedron P � Rn¥0 , the Newton number of P is defined by

νpP q :� n!VnpP q � pn� 1q!Vn�1pP q � � � p�1qn�1V1pP q � p�1qnV0pP q,

where VnpP q is the volume of P , VkpP q, 1 ¤ k ¤ n � 1, is the sum of the
k-dimensional volumes of the intersection of P with the coordinate planes
of dimension k, and V0pP q � 1 (resp. V0pP q � 0 ) if o P P (resp. o R P ),
where o is the origin of Rn.

Let I � t1, 2, ..., nu. We define the following sets:
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RI :� tpx1, ..., xnq P Rn : xi � 0 if i R Iu
RI � tpx1, ..., xnq P Rn : xi � 0 if i P Iu

Given a polyhedron P in Rn, we write P I :� P X RI . Consider an n-
dimensional simplex ∆ � Rn¥0. A full supporting coordinate subspace of ∆

is a coordinate subspace RI � Rn such that dim ∆I � |I|. In the article
[Fur04] the author proves that there exists a unique full-supporting coordi-
nate subspace of ∆ of minimal dimension. We will call this subspace the
minimal full-supporting coordinate subspace of ∆. We denote by VerpP q the
set of vertices of P .

The next result gives us a way of calculating the Newton number of certain
polyhedra using projections.

Proposition 2.1. (See [Fur04]) Let o R P � Rn¥0 be a compact polyhedron
that is a finite union of n-simplices ∆i, 1 ¤ i ¤ m, that satisfy

Verp∆iq � VerpP q.

Assume that there exists I � t1, 2, ..., nu such that RI is the minimal full-
supporting coordinate subspace of ∆i and P I � ∆I

i for all 1 ¤ i ¤ m. Then
νpP q � |I|!V|I|

�
P I

�
νpπIpP qq where πI : Rn Ñ RI is the projection map.

Let E :� te1, e2, ..., enu � Zn¥0 be the standard basis of Rn. Let

P � Rn¥0

be a polyhedron of pure dimension n. Consider the following conditions:

(1) o P P
(2) P J is topologically equivalent to a |J |-dimensional closed disk for

each J � t1, ..., nu.
(3) Let I � t1, ..., nu be a non-empty subset. If pα1, .., αnq P VerpP q

then for each i P I we must have either αi ¥ 1 or αi � 0 (recall that
the αi are real numbers that need not be integers).

We will say that P is pre-convenient (resp. I-convenient) if it satisfies (1)
and (2) (resp. (1), (2), and (3)). In the case when I :� t1, ..., nu we will
simply say that P is convenient instead of I-convenient.

Given a discrete set S � Rn¥0ztou, denote by Γ�pSq the convex hull of the
set

�
αPS

pα � Rn¥0q. The polyhedron Γ�pSq is called the Newton polyhedron

associated to S. The Newton boundary of Γ�pSq, denoted by ΓpSq, is the
union of the compact faces of Γ�pSq. Let VerpSq :� VerpΓpSq) denote the
set of vertices of ΓpSq.

We say that the discrete set S � Rn¥0ztou is pre-convenient (resp. I-

convenient) if Γ�pSq :� Rn¥0zΓ�pSq is pre-convenient (resp. I-convenient).
The Newton number of a pre-convenient discrete set S � Rn¥0ztou is

νpSq :� νpΓ�pSqq.

Note that this number can be negative.
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In the case when P is the polyhedron Γ�pSq associated to a discrete set
S, condition p1q holds automatically and condition (2) can be replaced by
the following:

(21) For each e P E there exists m ¡ 0 such that me P VerpSq.

Consider a convergent power series g P Ctx1, ..., xnu:

gpxq �
¸
αPZ

aαx
α, Z :� Zn¥0ztou.

We define Γ�pgq � Γ�pSupppgqq and Γpgq � ΓpSupppgqq. We say that g
is a convenient power series if for all e P E there exists m ¡ 0 such that
me P Supppgq. Observe that the discrete set Supppgq is convenient if and
only if the power series g is convenient. We will use the following notation:
Verpgq :� VerpSupppgqq, and νpgq � νpSupppgqq.

Theorem 2.2. ([Fur04]) Let P 1 � P be two convenient polyhedra. We have

νpP q � ν pP 1q � ν
�
P zP 1

	
¥ 0, and ν pP 1q ¥ 0.

Corollary 2.3.

(1) Let S and S1 be two convenient discrete subsets of Rn¥0ztou, and
suppose that Γ�pSq � Γ�pS

1q. We have

0 ¤ νpSq � ν pS1q � ν
�

Γ�pSqzΓ� pS1q
	

.

(2) Let S, S1, and S2 be three convenient discrete subsets of Rn¥0ztou
such that their Newton polyhedra satisfy

Γ�pSq � Γ�pS
1q � Γ�pS

2q

and νpSq � νpS2q. Then νpSq � νpS1q � νpS2q.

For a set I � t1, ..., nu, we write Ic :� t1, ..., nuzI. The following re-
sult gives us a criterion for the positivity of the Newton number of certain
polyhedra.

Proposition 2.4. Let o R P be a pure n-dimensional compact polyhedron
such that there exists I � t1, ..., nu such that dim

�
P J

�
  |J | (resp. P J is

topologically equivalent to a |J |-dimensional closed disk) for all I � J (resp.
I � J). Assume that if

pβ1, .., βnq P VerpP q

then for each i P Ic we have βi ¥ 1 or βi � 0. Then there exists a sequence
of sets I � I1, I2, ...., Im � t1, ..., nu, and of polyhedra Zi, 1 ¤ i ¤ m, such
that:

(1) P �
m�
i�1

Zi,

(2) νpP q �
m°
i�1

νpZiq,

(3) νpZiq � |Ii|!V|Ii|

�
ZIii

	
νpπIipZiqq ¥ 0.

In particular, νpP q ¥ 0.

Remark 1. Let S be a discrete subset of Rn¥0ztou and α P RI¡, I � t1, ..., nu.

If α R Γ�pSq, then P :� Γ�pSpαqqzΓ�pSq is topologically equivalent to an
|n|-dimensional closed disk. What’s more, by induction on n we obtain that
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dim
�
P J

�
� |J | for all J � I if and only if P J is topologically equivalent to

a |J |-dimensional closed disk. In addition, we observe that dim
�
P J

�
  |J |

for all J � I.

Proof. The method of proof that we use is similar to the proof of Theorem
2.3 of [Fur04].

As P is a pure n-dimensional compact polyhedron, there exists a finite
subdivision Σ of P such that:

(1) If ∆ P Σ, then dim ∆ � n.
(2) For all ∆ P Σ, Verp∆q � VerpP q.
(3) Given ∆,∆1 P Σ, we have dimp∆X∆1q   n whenever ∆ � ∆1.

Let S be the set formed by all the subsets I 1 � t1, ..., nu such that there exists
∆ P Σ such that its minimal full-supporting coordinate subspace (m.f.-s.c.s.)

is RI 1 .
As dimP J   |J | for all J � I, we obtain that I 1 � I for all I 1 P S. We

define:

Σ
�
I 1
�
�

!
∆ P Σ : the m.f.-s.c.s. of ∆ is RI 1

)
.

Let us consider the set

ΣI 1 :�
!

∆I 1 : ∆ P Σ
�
I 1
�)

�
 
σ1, ..., σlpI 1q

(
.

Given σi P ΣI 1 , let Ci :�
 
∆ P ΣpI 1q : ∆I � σi

(
. Consider the closed set

Zpi,I 1q :�
¤

∆PCi

∆.

Observe that given α P σ�i (where σ�i is the relative interior of σi), there exists
ε ¡ 0 such that for each J � I 1, we have Bεpαq X ZJpi,I 1q � Bεpαq X RJ¥0.

Indeed, as P J is topologically equivalent to a |J |-dimensional closed disk for
all J � I 1, there exits ε ¡ 0 such that Bεpαq XRJ¥0 � P J . Making ε smaller

we may assume that Bεpαq X RJ¥0 � ZJpi,I 1q. This implies that πI 1
�
Zpi,I 1q

�
is a convenient polyhedron in RI 1 (remember that if pβ1, .., βnq P VerpP q
then for each i P Ic we have βi ¥ 1 or βi � 0), from which it follows that
ν
�
πI 1

�
Zpi,I 1q

��
¥ 0 (see Theorem 2.2). Now using Proposition 2.1 we obtain

ν
�
Zpi,I 1q

�
� |I|!V|I|pσiqν

�
πI 1

�
Zpi,I 1q

��
¥ 0.

By construction we obtain

P �
¤
I 1PS

lpI 1q¤
i�1

Zpi,I 1q

and

dim
�
ZJ

1

pi,I 1q X ZJ
1

pi1,I2q

	
  |J 1| for all pi, I 1q � pi1, I2q.

This implies that

νpP q �
¸
I 1PS

lpI 1 q̧

i�1

ν
�
Zpi,I 1q

�
.

Rearranging the indices, we obtain the desired subdivision. �
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Let S and S1 be two discrete subsets of Rn¥0zt0u such that

Γ�pSq � Γ�pS
1q.

We define VerpS1, Sq :� VerpS1qzVerpSq. The following result tells us where
the vertices VerpS1, Sq are found.

Proposition 2.5. Let S, S1 be two convenient discrete subsets of Rn¥0ztou.
Suppose that Γ�pSq � Γ�pS

1q and νpSq � νpS1q. Then

VerpS1, Sq �
�
Rn¥0zRn¡0

�
.

Proof. Let us suppose that VerpS1, Sq � pRn¥0zRn¡0q. Let

W � VerpS1, Sq X pRn¥0zRn¡0q

and α P VerpS1, SqzW . Let us consider S2 :� S Y tαu. As the discrete sets
S, S1, and S2 are convenient and

Γ�pSq � Γ�pS
2q � Γ�pS

1q,

we obtain νpS2q � νpSq � νpS1q (see Corollary 2.3). Let us prove that this
is a contradiction. In effect, by definition of Newton number we have

νpSq � n!Vn � pn� 1q!Vn�1 � � � � p�1qn�1V1 � p�1qn,
νpS2q � n!V 2

n � pn� 1q!V 2
n�1 � � � � p�1qn�1V 2

1 � p�1qn,

where Vk :� VkpΓ�pSqq and V 2
k :� VkpΓ�pS

2qq are the k-dimensional New-
ton volumes of Γ�pSq and Γ�pS

2q, respectively. By construction V 2
n   Vn

and V 1
k � Vk, 1 ¤ k ¤ n� 1, which implies that νpS2q   νpSq. �

If we suppose that νpS1q � νpSq, it is not difficult to verify that this
equality is not preserved by homothecies of Rn¥0. The following result de-
scribes certain partial homothecies of Rn¥0 which preserve the equality of the
Newton numbers.

Let us consider DpS, S1q � tI � t1, 2, ..., nu : Γ�pSqXRI � Γ�pS
1qXRIu

and IpS, S1q �
£

IPDpS,S1q

I. It may happen that

IpS, S1q R DpS, S1q

or

IpS, S1q � H.

Proposition 2.6. Let S, S1 � Rn¥0ztou be two pre-convenient discrete sets
such that Γ�pSq � Γ�pS

1q. Suppose that t1, 2, .., ku � I pS, S1q, and consider
the map

ϕλpx1, .., xnq � pλx1, .., λxk, xk�1, ..., xnq, λ P R¡0.

Then νpϕλpS
1qq � νpϕλpSqq � λkpνpS1q � νpSqq.

Proof. We will use the notation VmpSq :� VmpΓ�pSqq. Recall that

VmpSq �
¸

|I|�m

VolmpΓ�pSq X RIq,

where Volmp�q is the m-dimensional volume.



10 M. LEYTON-ÁLVAREZ, H. MOURTADA, AND M. SPIVAKOVSKY

Let J � t1, 2, ..., ku. Observe that if J � I, then

Γ�pSq X RI � Γ�
�
S1
�
X RI ,

which implies that Vol|I|pΓ�pϕλpSqq X RIq � Vol|I|pΓ�pϕλpS
1qq X RIq. In

particular, if m   k we have VmpϕλpSqq � VmpϕλpS
1qq. Let us suppose that

m ¥ k. Then:

VmpϕλpS
1qq�VmpϕλpSqq �

¸
|I| � m
J � I

pVolmpΓ�pϕλpS
1qqXRIq�VolmpΓ�pϕλpSqqXRIqq.

From this we obtain that VmpϕλpS
1qq � VmpϕλpSqq � λkpVmpS

1q � VmpSqq
and νpϕλpS

1qq � νpϕλpSqq � λkpνpS1q � νpSqq. �

The following Corollary is an analogue of Proposition 2.5 in the pre-
convenient case.

Given S � Rn¥ztou and R � Rn¥0, we denote SpRq :� S YR.

Corollary 2.7. Let S � Rn¥0ztou be a pre-convenient discrete set, and
α P Rn¡0, such that Γ�pSq � Γ�pSpαqq. Then νpSpαqq   νpSq.

Proof. Observe that there exists λ ¡ 0 such that the discrete sets ϕλpSq,
ϕλpSpαqq are convenient where ϕλ is the homothety consisting of multipli-
cation by λ. As IpS, Spαqq � t1, ..., nu, we have

νpϕλpSqq � νpϕλpSpαqq � λnpνpSq � νpSpαqq

(see Proposition 2.6). By Theorem 2.2, we have νpϕλpSpαqqq ¤ νpϕλpSqq,
hence νpSpαqq ¤ νpSq. If

νpSpαqq � νpSq

then νpϕλpSqq � νpϕλpSpαqq. This contradicts Proposition 2.5. �

Take a set I � t1, . . . , nu.

Corollary 2.8. Let S, S1, and S2 be three Ic-convenient discrete sets such
that Γ�pSq � Γ�pS

1q � Γ�pS
2q. Suppose that

I � IpS, S1q X IpS1, S2q

Then νpSq ¥ νpS1q ¥ νpS2q.

Proof. Without loss of generality, we may take I � t1, ..., ku. As S, S1, and
S2 are Ic-convenient, there exists λ ¡ 0 such that after applying the map ϕλ
given by ϕλpx1, .., xnq � pλx1, .., λxk, xk�1, ..., xnq, the discrete sets ϕλpSq,
ϕλpS

1q, and ϕλpS
2q are convenient.

As I � IpS, S1q X IpS1, S2q, we have

νpϕλpSqq � νpϕλpS
1qq � λkpνpSq � νpS1qq,

and

νpϕλpS
1qq � νpϕλpS

2qq � λkpνpSq � νpS2qq.

By Theorem 2.2, we obtain 0 ¤ νpSq � νpS1q and 0 ¤ νpS1q � νpS2q. �
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Convention. From now till the end of the paper, whenever we talk about
a vertex γ of a certain polyhedron and an edge of this polyhedron denoted
by Eγ , it will be understood that γ is one of the endpoints of Eγ .

Given I � t1, 2, ..., nu, let RI¡0 :� tpx1, x2, ..., xnq P RI : xi ¡ 0 if i P Iu.
Let S � Rn¥zt0u be a discrete set, and let α P RI¡0 be such that

Γ�pSq � Γ�pSpαqq.

Let Eα be an edge of ΓpSpαqq such that α is one of its endpoints. Given a
set J with

I � J � t1, 2, ..., nu,

we will say that Eα is pI, Jq-convenient if for all

β :� pβ1, ..., βnq P pEα XVerpSqq

we have βi ¥ 1 for i P JzI and βi � 0 for i P Jc. We will say that Eα is
strictly pI, Jq-convenient if Eα is pI, Jq-convenient and whenever

β P pEα XVerpSqq,

there exists i P JzI such that βi ¡ 1.

The following Proposition will allow us to eliminate certain vertices.

Proposition 2.9. Let S � Rn¥0zt0u be an Ic-convenient discrete set, J a set

such that I � J � t1, ..., nu, and α P RI¡0 such that Γ�pSq � Γ�pSpαqq and
νpSpαqq � νpSq. Suppose that some of the following conditions are satisfied:

(1) α1 P Γ�pSpαqqzΓ�pSq X RI .
(2) α1 P Γ�pSpαqqzΓ�pSqXRJ¡0 and there exists a strictly pI, Jq-convenient

edge Eα of ΓpSpαqq.

Then νpSpα1qq � νpSq.

Proof. Let us suppose that α1 P Γ�pSpαqqzΓ�pSqXRI . We may assume that
Γ�pSq � Γ�pSpα

1qq � Γ�pSpαqq (otherwise there is nothing to prove).
Observe that the discrete sets S, Spα1q, and Spαq are Ic-convenient and

I � IpS, Spα1qq X IpSpα1q, Spαqq.

Using Corollary 2.8, we obtain νpSq � νpSpα1qq � νpSpαqq. This completes
the proof in Case p1q.

Next, assume that (2) holds. Consider a strictly pI, Jq-convenient edge
Eα of ΓpSpαqq. Let β :� pβ1, ., , , βnq P EαXVerpSq. Let E1 � Eα be the line
segment with endpoints α and β. Without loss of generality we may assume
that E1 X VerpSq � tβu. As Eα is strictly pI, Jq-convenient, there exists
i P JzI such that βi ¡ 1. Let δ ¡ 0 be sufficiently small so that βi � δ ¥ 1
and let β1 P RI¥0 be such that γ :� β � δei � β1 P ΓpSpαqq X RJ¡0. Then

Γ�pSq � Γ�pSpγqq � Γ�pSpαqq.

Observe that the discrete sets S, Spγq, and Spαq are Ic-convenient and

I � IpS, Spγqq X IpSpγq, Spαqq.

Then νpSpγqq � νpSpαqq � νpSq.
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If α1 P Γ�pSpγqqzΓ�pSq X RJ , we have

Γ�pSq � Γ�pSpα
1qq � Γ�pSpγqq.

The discrete sets S, Spα1q, and Spγq are Jc-convenient and

J � IpS, Spα1qq X IpSpα1q, Spγqq.

Then νpSpα1qq � νpSpγqq � νpSq.

We still need to study the case α1 P pΓ�pSpαqqzΓ�pSpγqqq X RJ¡0.

Consider the compact set C :� pΓ�pSpα1qqzΓ�pSqq X RJ , and the map

νS : C Ñ R; τ ÞÑ νSpτq :� νpSpτqq �
n°

m�0
p�1qn�mm!VmpSpτqq

where VmpSpτqq :� VmpΓ�pSpτqqqq. The map νS is continuous in C. In

effect, recall that VmpSpτqq �
°

|I 1|�m

VolmpΓ�pSpτqq X RI 1q. Hence

VmpSpτqq � V pτq � V 1pτq,

where

V pτq :�
¸

|I1| � m
I1 � J

VolmpΓ�pSpτqq X RI
1

q,

V 1pτq :�
¸

|I1| � m
I1 � J

VolmpΓ�pSpτqq X RI
1

q.

The function V : RJ Ñ R; τ ÞÑ V pτq is continuous, since each summand
is continuous in RJ . The function V 1 : C Ñ R; τ ÞÑ V 1pτq is constant,
since Γ�pSpα

1qq X pRJ¥0zRJ¡0q � Γ�pSq X pRJ¥0zRJ¡0q. Then each VmpSpτqq
is continuous in τ P C, which implies that the function νS is continuous in C.

Let us assume that α1 P pΓ�pSpαqqzΓ�pSpγqqq X RJ¡0 and α1 R ΓpSpαqq.
Let us suppose that νSpα

1q � νpSpα1qq � νpSq. Let us consider the set
C :� tτ P C : νSpτqq � νSpα

1qqu. The continuity of νS implies that C is
compact. We define the following partial order on C. For τ, τ 1 P C we will
say that τ ¤ τ 1 if Γ�pSpτ

1qq � Γ�pSpτqq. Let us consider an ascending chain

τ1 ¤ τ2 ¤ � � � ¤ τn ¤ � � �

We will prove that this chain is bounded above in C. Let us consider the
convex closed set

Γ �
£
i¥1

Γ�pSpτiqq.

As C is compact, the sequence tτ1, τ2, ..., τn, ...u has a convergent subsequence
tτi1 , τi2 , ..., τin , ...u. Observe that

Γ�pSpτqq �
£
n¥1

Γ�pSpτinqq,

where τ :� lim
nÑ8

τin P C. By definition, Γ � Γ�pSpτqq, and by construction

for each i ¥ 1 there exists n ¥ 1 such that Γ�pSpτinqq � Γ�pSpτiqq. Then



SIMULTANEOUS EMBEDDED RESOLUTION 13

Γ � Γ�pSpτqq, which implies that τi ¤ τ for all i ¥ 1. By Zorn’s lemma C
contains at least one maximal element. Let τ P C be a maximal element.
Recall that we consider α1 R ΓpSpαqq, and we made the assumption that

νpSpα1qq � νpSq. Hence τ R pΓ�pSpγqqzΓ�pSqq X RJ .
Observe that for all α2 P Γ�pSpαqq we have

Γ�pSq � Γ�pSpα
2qq � Γ�pSpγ, α

2qq � Γ�pSpαqq.

As the discrete sets S, Spα2q, and Spγ, α2q are Ic-convenient and

I � IpSpα2q, Spγ, α2qq X IpSpγ, α2q, Spαqq,

we obtain νpSpγ, α2qq � νpSpα2qq � νpSq.

As τ R Γ�pSpγqqzΓ�pSq X RJ and γ P ΓpSpαqq, there exists a relatively

open subset Ω of the relative interior of Γ�pSpαqqzΓ�pSq X RI such that τ
belongs to the relative interior of�

Γ�
�
Spγ, α2

��
zΓ�

�
S
�
α2

��
XRJ

for all α2 P Ω. We obtain

Γ�
�
S
�
α2

��
� Γ�

�
S
�
τ, α2

��
� Γ�

�
S
�
γ, α2

��
.

The discrete sets S pα2q, S pτ, α2q, and S pγ, α2q are Jc-convenient, and

J � I
�
S
�
α2

�
, S

�
τ, α2

��
X I

�
S
�
τ, α2

�
, S

�
γ, α2

��
.

Hence ν pS pτ, α2qq � ν pS pα2qq � νpSq.
Given an edge Eτ of ΓpSpτqq that connects τ with a vertex in VerpΓpSqq,

let E1
τ be the subsegment of Eτ containing τ such that |E1

τ X VerpSq| � 1.
We choose α2 P Ω1 such that for each edge Eτ of ΓpSpτqq connecting τ with
an element of VerpΓpSqq we have dim pE1

τ X Γ pS pα2qqq � 0. In other words,
no subsegment of E1

τ is contained in the Newton boundary ΓpSpα2qq.

Let us consider the compact polyhedron P :� Γ�pSpτ, α2qqzΓ�pSpα2qq.
Observe that νpP q � 0 (see Theorem 2.2).

Given the choice of α2, there exists τ 1 P P such that

Γ�
�
S
�
τ 1
��
� Γ�pSpτqq

and Q0 :� pΓ�pSpτqqzΓ�pSpτ 1qqq � P (it is for achieving the last inclusion
that the choice of α2 is really important).

Let Q1 :� P zQ0. As dim
�
QJ

1

0 XQJ
1

1

	
  |J 1|, for all J 1 � t1, ..., nu,

we obtain νpP q � νpQ0q � νpQ1q. The polyhedra Q0 and Q1 satisfy the
hypotheses of Proposition 2.4. In effect:
p1q By construction Q0 and Q1 are pure n-dimensional compact polyhedra

and o R P � Q0 YQ1.
p2q Recall that τ P RJ¡0. The polyhedron P satisfies

dim
�
P J

1
	
  |J 1| for all J 1 � J,

which implies dim
�
QJ

1

0

	
  |J 1| and dim

�
QJ

1

1

	
  |J 1| for all J 1 � J .

p3q Now we will verify that QJ
1

0 is topologically equivalent to a |J 1|-
dimesional closed disk for all J 1 � J . As S is Ic-convenient and τ P RJ¡0, we

have dim
�
QJ

1

0

	
� |J 1| for each J 1 � J . By Remark 1 we obtain that QJ

1

0 is



14 M. LEYTON-ÁLVAREZ, H. MOURTADA, AND M. SPIVAKOVSKY

topologically equivalent to a |J 1|-dimensional closed disc. The proof for QJ
1

1

is analogous to the proof for QJ
1

0 .
p4q As S is Ic-convenient (in particular Jc-convenient), we obtain that if

pβ1, .., βnq P VerpP q then for each i P Jc we have βi ¥ 1 or βi � 0. This
property is inherited by Q0 and Q1.

By Proposition 2.4 we have νpQ0q ¥ 0, νpQ1q ¥ 0. As νpP q � 0, we
obtain νpQ0q � νpQ1q � 0. We have τ   τ 1 P C, which contradicts the
maximality of τ in C. As a consequence we obtain νpSpα1qq � νpSq.

Now let us suppose that α1 P ΓpSpαqq X RJ¡0, and let v P RJ¡0. For ε ¡ 0
small enough αε :� α1�εv belongs to the relative interior of Γ�pSpα

1qqzΓ�pSq.

For the continuity of νS in C :� pΓ�pSpα1qqzΓ�pSqq X RJ we obtain

lim
εÑ0

νSpαεq � νpSpα1qq,

which implies that νpSpα1qq � νpSq. �

Corollary 2.10. Let I � J :� t1, ..., nu. Let S, S1 � Rn¥0ztou be two con-
venient discrete sets such that Γ�pSq � Γ�pS

1q and νpSq � νpS1q. Suppose
that there exists α P VerpS1, SqXRI¡0 and an edge Eα of ΓpSq that is pI, Jq-
convenient. Then there exists

pβ1, ..., βnq P VerpSq X Eα

such that βi � 1 for all i P Ic.

Proof. Let R :� VerpS1, Sqztαu and SpRq � S Y R. The discrete sets S,
SpRq and S1 are convenient, and Γ�pSq � Γ�pSpRqq � Γ�pS

1q. Then

νpSpRqq � νpS1q.

We argue by contradiction. If there is no pβ1, ..., βnq as in the Corollary
then the edge Eα is strictly pI, Jq-convenient. By Proposition 2.9, for all

α1 P Γ�pSpαqzΓ�pSq X Rn¡0 we have

νpSpRqq � νpSpRY tα1uqq,

which contradicts Proposition 2.5. �

The following Proposition allows us to fix a special coordinate hyperplane
and gives information about the edges not contained in the hyperplane that
contain a vertex of interest belonging to the hyperplane.

Proposition 2.11. Let S, S1 � Rn¥0ztou be two convenient discrete sets such
that Γ�pSq � Γ�pS

1q and νpSq � νpS1q. Let us suppose that

α P VerpS1, Sq X RI¡0, I � t1, .., nu.

Then there exists i P Ic such that for all the edges Eα of ΓpS1q not contained
in Rtiu there exists pβ1, ..., βnq P VerpSq X Eα such that βi � 1.

Proof. First we will prove the following Lemma.

Lemma 2.12. Let S � Rn¥0ztou be an Ic-convenient discrete set and

α P RI¡0, I � t1, .., nu,

such that νpSq � νpSpαqq. Then there exists i P Ic such that for each edge
Eα of ΓpSpαqq not contained in Rtiu there exists pβ1, ..., βnq P VerpSq X Eα
such that βi � 1.
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Proof of the Lemma. By Corollary 2.7, we have |I|   n. Let k be the great-
est element of t1, . . . , n � 1u such that the Lemma is false for some I with
|I| � k. In other words, for all i P Ic there exists an edge Eα, not contained
in Rtiu, such that for all pβ1, ..., βnq P VerpSq X Eα we have βi ¡ 1. Let

J � t1, ..., nu be a set of the smallest cardinality such that Eα � RJ . Then
Eα is a strictly pI, Jq-convenient edge. Using Proposition 2.9 we obtain that

for all α1 P Γ�pSpαqzΓ�pSq X RJ¡0 we have νpSpα1qq � νpSq. Now let us
choose α1 sufficiently close to α so that for each edge Eα1 of ΓpSpα1qq, and
β P Eα1 X VerpSq adjacent to α1 in Eα1 , there exists an edge Eα of ΓpSpαqq
such that β P Eα. Then the discrete sets S, Spα1q are Jc-convenient and
do not satisfy the conclusion of the Lemma, which is a contradiction, since
|J | ¡ k. �

The proof of the Proposition is by induction on the cardinality of VerpS1, Sq.
Lemma 2.12 says that the Proposition is true whenever |VerpS1, Sq| � 1. Let
us assume that the Proposition is true for all S, S1 such that

|VerpS1, Sq| ¤ m� 1.

Let S, S1 with |VerpS1, Sq| � m ¥ 2 be such that the Proposition is false.
Then there exists α P VerpS1, Sq such that for each i P Ic there exists an edge
Eα of Γ�pS

1q, not contained in Rtiu, that satisfies the following condition:

(*) for all β � pβ1, ..., βnq P VerpSq X Eα we have βi ¡ 1;

note that condition (*) is vacuously true if

(1) VerpSq X Eα � H.

Observe that for each α1 P VerpS1, Sqztαu, we have |VerpS1, Spα1qq| � m� 1
and, by Corollary 2.8, νpSpα1qq � νpS1q.

First, let us suppose that there exists i P Ic such that (1) does not hold
for the corresponding edge Eα. Let us fix α1 P VerpS1, Sqztαu. Then Eα
connects α with a vertex β of S, hence α1 R E1, where E1 � Eα is the line
segment with endpoints α and β. We obtain that the polyhedra Γ�pSpα

1qq �
Γ�pS

1q do not satisfy the conclusion of the Proposition, which contradicts
the induction hypothesis.

Next, let us suppose that there exists i P Ic such that (1) is satisfied for
the corresponding edge Eα. Then |Eα XVerpS1, Sq| � 2. Now, take

α2 � pα11, ..., α
1
nq P Eα XVerpS1, Sq

such that α1 � α. If α1i ¡ 1, then the Newton polyhedra

Γ�pSpα
1qq � Γ�pS

1q

do not satisfy the Proposition and (1) does not hold, which is a contradiction.
Hence α1i � 1. Let ε ¡ 0 be such that

α1ε :� α1 � εei P
�
Γ�

�
S1
�
zΓ�pSq

�
.

Put
R :� pVerpS1, Sqztα1uq Y tα1εu.

Then Γ�pSq � Γ�pSpα
1
εqqq � Γ�pSpRqqq � Γ�pS

1q.
The discrete sets S, Spα1εq, SpRq, and S1 are convenient. We have

νpSpα1εqq � νpSpRqq � νpSq.
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Let us assume that ε is small enough so that there exists an edge E1
α Q α of

ΓpSpRqq such that α1ε P E
1
α. Then the Newton polyhedra Γ�pSq � Γ�pSpRqq

satisfy the preceding case (namely, α1i ¡ 1). This completes the proof of the
Proposition. �

Corollary 2.13. Assume given two convenient discrete sets S, S1 � Rn¥0ztou
such that Γ�pSq � Γ�pS

1q and νpSq � νpS1q. Assume that

α P VerpS1, Sq X RI¡0.

The for the i P Ic of Proposition 2.11 there exists an edge Eα of ΓpS1q,
and pβ1, ..., βnq P Eα X VerpSq, such that βj � δij, j P I

c, where δij is the
Kronecker delta.

Proof of the Corollary. By Proposition 2.11 there exists i P Ic such that for
all the edges Eα of ΓpS1q, not contained in Rtiu, there exists

pβ1, ..., βnq P VerpSq X Eα

such that βi � 1. Since the set S is convenient, there exists m ¡ 1 such
that mei P VerpSq. Let J � I Y tiu. Since α,mei P RJ , there exists a
chain of edges of ΓpS1q connecting α with mei, contained in RJ . The edge
Eα belonging to this chain and containing α satisfies the conclusion of the
Corollary. �

Remark 2. Using the same idea as in Corollary 2.13, but using Lemma
2.12 instead of Proposition 2.11, we can prove the following fact. Let I �
t1, ..., nu and let S � Rn¥0ztou be an I-convenient discrete set. Let α P RI¡0

be such that Γ�pSq � Γ�pSpαqq, and νpSq � νpS1q. Then for the i P Ic

of Lemma 2.12 there exists an edge Eα of ΓpSpαqq, and pβ1, ..., βnq P Eα X
VerpSq, such that βj � δij, j P I

c, where δij is the Kronecker delta.

The following Theorem generalizes to all dimensions the main theorem of
[BKW19]. In [BKW19] this result is conjectured.

Definition 2.14. Let S, S1 � Rn¥0ztou be two discrete sets such that

Γ�pSq � Γ�pS
1q,

I � t1, ..., nu and α P VerpS1, Sq X RI¡0. We will say that α has an apex if:

(1) I � t1, ..., nu
(2) There exists i P Ic and a unique edge of Eα of ΓpS1q that contains α

and is not contained in Rtiu.
In this case the point β P VerpSqXEα adjacent to α in Eα is called the apex
of α. We will say that an apex, β :� pβ1, ..., βnq, is good if βj � δij, j P I

c.

Remark 3. Let S � Rn¥0ztou be a convenient discrete set,I � t1, ..., nu and

α P RI¡0 such that Γ�pSq � Γ�pSpαqq. The condition that α has a good apex

β P RIYtiu, i P Ic, is equivalent to P :� Γ�pSpαqqzΓ�pSq being a pyramid
with apex β and base P X Rtiu.

Theorem 2.15. Let S, S1 � Rn¥0ztou be two convenient discrete sets such
that Γ�pSq � Γ�pS

1q. Then νpSq � νpS1q if and only if each α P VerpS1, Sq
has a good apex.



SIMULTANEOUS EMBEDDED RESOLUTION 17

Proof. First we will prove the following Lemma.

Lemma 2.16. Let S � Rn¥0ztou be a discrete set and α P RI¡0, I � t1, ..., nu,
such that Γ�pSq � Γ�pSpαqq, and α has a good apex. Then

νpSpαqq � νpSq.

Proof of the lemma. Let β be a good apex of α. Let i P Ic be such that

β P RIYtiu¡0 .
Given an element m P t1, . . . , nu and J � t1, ..., nu such that |J | � m, we

will use the notation

Vmpα, Jq � VolmpΓ�pSpαqq X RJq �VolmpΓ�pSq X RJq
As α P RI¡0, we have

νpSpαqq � νpSq �
n°

m�|I|

p�1qm
°

|J| � m
I � J

|J |!Vmpα, Jq

�
n�1°
m�|I|

p�1qm
°

|J| � m
i R J, I � J

p|J |!Vmpα, Jq � p|J | � 1q!Vm�1pα, J Y tiuqq

As the apex of α is good, we obtain

|J |!Vmpα, Jq � p|J | � 1q!Vm�1pα, J Y tiuq

which implies that νpSq � νpSpαqq. �

Now we will prove that if each α P VerpS1, Sq has a good apex, then

νpSq � νpS1q.

The proof is by induction on the cardinality of VerpS1, Sq. Let us assume
that the implication is true for all S and S1 such that |VerpS1, Sq|   m.
To verify the implication for |VerpS1, Sq| � m, let α P VerpS1, Sq and
R � VerpS1, Sqztαu. By the induction hypothesis νpSpRqq � νpSq and
by Lemma 2.16 we have νpS1q � νpSpRqq. This proves that νpS1q � νpSq.

To finish the proof of the Theorem we need the following Lemma.

Lemma 2.17. Let S � Rn¥0ztou be a discrete set and let α P RI¡0, I �
t1, ..., nu, be such that Γ�pSq � Γ�pSpαqq. Let us suppose that Spαq is
Ic-convenient and that νpSpαqq � νpSq. Then α has a good apex.

Proof of the Lemma. Let i P Ic be as in Remark 2. Then there exists Eα of
ΓpSpαqq, and β :� pβ1, ..., βnq P Eα XVerpSq, such that βj � δij , j P I

c. We
want to prove that β is a (necessarily good) apex of α. Let us assume that
β is not an apex of α, aiming for contradiction. Then there exits another
edge α P E1

α de ΓpSpαqq, and β1 :� pβ11, ..., β
1
nq P E

1
α XVerpSq adjacent to α

in E1
α such that β1i � 1.

Let us consider β1ε :� β1 � εei, and the discrete set Sε � pSztβ1uq Y tβ1εu,
ε ¡ 0. Let us assume that ε is small enough so that:

(1) VerpSεq � pVerpSqztβ1uq Y tβ1εu
(2) There exists an edge Eεα of ΓpSεpαqq such that βε P E

ε
α XVerpSεq is

adjacent to α in Eεα.
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Let P ε � pΓ�pSεpαqzΓ�pSεqq. Let Q0 be the convex hull of the set

tβu Y
�
P ε X Rtiu

�
(observe that Q0 does not depend on ε) and Qε1 :� P εzQ0. Recall that β
satisfies βj � δij , j P I

c. Then, using the same idea as in the proof of Lemma

2.16 we obtain νpQ0q � 0. As dim
�
QJ0 X pQε1q

J
	
  |J | for all J � t1, ..., nu,

we have

νpP εq � νpQ0q � νpQε1q. Then νpP εq � νpQε1q.

As Sεpαq is Ic-convenient, Qε1 satisfies the hypotheses of Proposition 2.4
(to prove this statement use the same idea as in the proof of Proposition
2.9). Let us consider the sequence

I Y tiu � I1, I2, ...., Im � t1, ..., nu,

and the polyhedra Zεj , 1 ¤ j ¤ m, such that

(1) Qε1 �
m�
j�1

Zεj

(2) νpQε1q �
m°
j�1

ν
�
Zεj

	
� 0

(3) ν
�
Zεj

	
� |Ij |!V|Ij |

��
Zεj

	Ij

ν
�
πIj

�
Zεj

		
¥ 0

(the existence of these objects is given by Proposition 2.4). For each j, 1 ¤
j ¤ m, we may choose the family Zεj of polyhedra to vary continuously with
ε. More precisely, we can choose the Zεj to satisfy the following additional

condition: for each j, 1 ¤ j ¤ m, either Zεj � Z0
j for all small ε or VerpZεj q

differs from VerpZ0
j q in exactly one element, β1ε � β1, for all small ε ¡ 0.

Since i P Ij , we have πIj pβ
1
εq � πIj pβ

1q. This implies that ν
�
πIj

�
Zεj

		
is

independent of ε for all 1 ¤ j ¤ m. For ε � 0, we have

ν
�
πIj

�
Z0
j

��
� 0.

Hence νpP εq � νpQε1q � 0 for ε small enough. Then there exists a0 set J ,
tiuYI � J � t1, 2, ..., nu, such that the edge Eεα is strictly pI, Jq-convenient.

By Proposition 2.9, given α1 P Γ�pSεpαqqzΓ�pSεq X RJ¡0 we have

νpSεpα1qq � νpSεq.

This proves that |I|   n� 1: indeed, if |I| � n� 1, then α1 P Rn¡0, which
contradicts Proposition 2.7.

Let r be the largest element of t1, . . . , n�1u such that the Lemma is true
for all I such that |I| ¡ r. Now let us assume that |I| � r. Let us choose α1

sufficiently close to α so that for each edge Eα1 of ΓpSεpα1qq and

β P Eα1 XVerpSεq

adjacent to α1 in Eα1 , there exists an edge Eα of ΓpSεpαqq such that β P Eα.
This implies that α1 does not have a good apex, which contradicts the choice
of r, since |J | ¡ r. This completes the proof of the Lemma. �
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Now we can finish the proof of the Theorem. We will prove that if

νpSq � νpS1q

then each α P VerpS1, Sq has a good apex. The proof is by induction on
the cardinality of VerpS1, Sq. Lemma 2.17 shows that the implication is true
for |VerpS1, Sq| � 1. Let us assume that this is true for every pair pS, S1q
of convenient discrete sets such that |VerpS1, Sq|   m. Let us prove the
result for |VerpS1, Sq| � m. Let α P VerpS1, Sq, R � VerpS1, Sqztαu and
αε � p1� εqα, where ε ¡ 0. Then

Γ�pSq � Γ�pSpαεqq � Γ�pSpαεqpRqq � Γ�pS
1q.

By Corollary 2.3 we have νpSpαεqpRqq � νpSpαεqq. Observe that

|VerpSpαεqpRq, Spαεqq| ¤ m� 1.

By the induction hypothesis, each α1 P R has a good apex β P VerpSpαεqq
for the inclusion Γ�pSpαεqq � Γ�pSpαεqpRqq of Newton polyhedra. Since all
the non-zero coordinates of αε are strictly greater than 1, we have β � αε,
so that β P VerpSq. We take ε small enough so that for every α1 P R every
edge Eα1 of ΓpSpαεqpRqq that connects α1 with a vertex in VerpSq is an edge
of ΓpS1q. Thus every α1 P R has a good apex for the inclusion

Γ�pSq � Γ�pS
1q

of Newton polyhedra.
Now it suffices to verify that α has a good apex for the inclusion

(2) Γ�pSq � Γ�pS
1q

of Newton polyhedra. Let ε ¡ 0 and put Rε :� tp1� εqα1 : α1 P Ru. Then

Γ�pSq � Γ�pSpRεqq � Γ�pSpRεqpαqq � Γ�pS
1q.

By Corollary 2.3 we have νpSpRεqq � νpSpRεqpαqq � νpSq. Observe that
VerpSpRεqpαq, SpRεqq � tαu. By Lemma 2.17, α has a good apex

β P VerpSpRεqq.

Since every non-zero coordinate of every element of Rε is strictly greater
than 1, we have β R Rε, so that β P VerpSq. Take ε small enough so that
every edge Eα of ΓpSpRεqpαqq that connects α with a vertex in VerpSq is an
edge of ΓpS1q. Then β is a good apex of α for the inclusion (2), as desired.
This completes the proof of the Theorem. �

We end this section by recalling a result that relates the Milnor number
to the Newton number.

If the formal power series g is not convenient, we can define the Newton
number νpgq of g (νpgq could be 8) in the following way. Let E 1 � E such
that there does not exist m P Z¡0, such that me P Verpgq. We define the
Newton number of g as

νpgq :� sup
mPZ¡0

νpSupppgq Y E 1mq,

where E 1m :� tme : e P E 1u.
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Theorem 2.18 (See [Kou76]). Let h P Ox
n�1. Then µphq ¥ νphq. Moreover,

µphq � νphq if h is non-degenerate.

Remark 4. Let h P Ox
n�1 be non-degenerate and convenient. Then µphq   8,

which implies that h has, at most, an isolated singularity in the origin o.

Example 1. Consider the following families of non-degenerate deformations:

F λpx, y, z, sq :� x5λ � y7λz � z15 � y8λ � sxλy6λ, λ ¥ 1.

Observe that F 1 is a µ-constant deformation of Briançon-Speder (convenient
version), see [BS75]. By virtue of Theorem 2.18 and Proposition 2.6, for
each λ ¥ 1 the deformation F λ is non-degenerate and µ-constant.

3. Characterization of Newton non-degenerate µ-constant
deformations

First let us recall some information regarding the Newton fan and toric
varieties. Given S � Zn�1

¥0 ztou, consider the support function

hΓ�pSq : ∆ Ñ R; α ÞÑ hΓ�pSqpαq :� inftxα, py | p P Γ�pSqu,

where ∆ :� Rn�1
¥0 is the standard cone, and x�, �y is the standard scalar

product. Let 1 ¤ i ¤ n, and let F be an i-dimensional face of the Newton
polyhedron Γ�pSq. The set σF :� tα P ∆ : xα, py � hΓ�pSqpαq, @p P F u
is a cone, and Γ�pSq :� tσF : F is a face of Γ�pSqu is a subdivision of the
fan ∆ (by abuse of notation we will denote for ∆ the fan induced by the
standard cone ∆). The fan Γ�pSq is called the Newton fan of S. Let ∆1 ¬ ∆
be a strict face of the standard cone ∆ , and p∆1q� is the interior relative to
∆1. Observe that if there exists α P p∆1q� such that hΓ�pαq � 0, then ∆1 is
a cone of the fan Γ�pSq. We will say that Σ is an admissible subdivision of
Γ�pSq if Σ is a subdivision that preserves the previous property, which is to
say that if there exists α P p∆1q� such that hΓ�pSqpαq � 0, then ∆1 P Σ. In
the case that the discrete set S is convenient, an admissible subdivision of
Γ�pSq is a fan where there are not subdivisions of the strict faces of ∆.

Given a fan Σ, we denote XΣ the toric variety associated to the fan Σ.
Given σ P Σ, we denote Xσ as the open affine of XΣ associated to the cone σ.
Let Σ1 be a subdivision of Σ, it is known that there exists a proper, birational
and equivariant morphism,π : XΣ1 Ñ XΣ, induced by the subdivision. Given
σ1 P Σ1, we denote πσ1 :� π|Xσ1 .

Now we will use the notations from Section 1.0.1. Let V be a hypersur-
face of Cn�1

o , provided by a unique isolated singularity at the point o. Let
us assume that V is given by the equation fpxq � 0, where f P Ox

n�1

is irreducible, and let % : W Ñ Cm0 be a deformation of V given by
F px, sq P Ctx1, ..., xn�1, s1, ..., smu.

Without loss of generality we can assume that the germ of analytic func-
tion f is convenient. In effect the Milnor number, µpfq :� dimCOx

n�1{Jpfq,
is finite, then for each e P E there exists m ¡¡ 0 such that xme belongs to
the ideal Jpfq, which implies that the singularity of f and of f � xme have
the same analytic type.

Let Σ be an admissible subdivision of Γ�pFsq (not necessarily regular),
and we denote π : XΣ Ñ Cn�1 morphism given by the subdivision of ∆.
Using the morphism Cn�1

o Ñ Cn�1 we can consider the base change of π and
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XΣ to the base Cn�1
o . By abuse of notation we will note for π : XΣ Ñ Cn�1

0
the base change morphism.

Let us recall the following known fact. Let V 1 be a hypersurface of Cn�1
o ,

n ¥ 1, provided by a unique isolated singularity at the point o. Let us
suppose that V 1 is given by the equation gpxq � 0, where g P Ox

n�1. Let us
suppose that Σ is a regular admissible subdivision of a Newton fan Γ�pgq. If
g is non-generate with respect to the Newton boundary, then the morphism
between toric varieties π : XΣ Ñ Cn�1

o defines an embedded resolution of V 1

in a neighborhood of π�1poq (see [Var76], [Oka87] or [Ish07]). This shows
that if Γ�pFsq � Γ�pfq, where s is the generic point of Cmo , and F is a non
degenerate deformation of f (µ-constant deformations of f for the Theorem
2.18 in particular), a regular admissible resolution of the Newton fan defines
a simultaneous embedded resolution of W . Whereby for the rest of this
section we will assume:

(1) F px, sq P Ctx1, ..., xn�1, s1, ..., smu is a non-degenerate µ-constant
deformation of f .

(2) Γ�pFsq � Γ�pfq. In particular VerpFs, fq :� VerpFsqzVerpfq � H.

Let morphism ϕ : XΣ � Cmo Ñ Cn�1
o � Cmo be induced by π. Let s be

the generic point of Cmo . Given α P VerpFsq we denote for σα the pn � 1q-
dimensional cone of Γ�pFsq generated by all the non-negative normal vectors

to faces of Γ�pFsq which contain to α. Denote for �W t the total transform
of W by ϕ.

Proposition 3.1. Let s be the generic point of Cmo , and let us assume
that νpFsq � νpfq. Then there exists an admissible subdivision, Σ, of
Γ�pFsq, such that for each α P VerpFs, fq, the fan Σ defines a subdivision,

tσ1
α, ...., σ

r
αu, regular to σα, such that �W tXpX

σjα
�Cmo q is a normal crossings

divisor relative to Cmo for j P t1, ..., ru.

Proof. Let us recall that E :� te1, e2, ..., en�1u � Zn�1
¥0 is the standard basis

of Rn�1. First we will construct a simplicial subdivision of Γ�pFsq. Let
Γ�pFsqpjq be the set of all the j-dimensional cones of Γ�pFsq. Let us consider

a compatible simplicial subdivision, ΣS, of
n�
j�1

Γ�pFsqpjq, such that if σ1 is

a simplicial j-dimensional cone of Γ�pFsqpjq, 1 ¤ j ¤ n, then σ1 P ΣS and
ΣSp1q � Γ�pFsqp1q, where ΣSp1q is the set of all the 1-dimensional cones of
ΣS.

Let us consider the case

α P VerpFs, fq.

By Theorem 2.15, α has a good apex. Then there exists I � t1, ..., n � 1u
such that α P RI¡0 and i P Ic such that there exists a single edge Eα Q α, of
ΓpFsq not contained in Rtiu. Let β � pβ1, ..., βn�1q P VerpFsq X Eα be the
good apex, which is to say βi � δij , j P I

c.
Observe that ei P E , is an extremal vector of σα. Let us consider the

following simplicial subdivision of σα:

Σspσαq :� tConepei, τq : τ P ΣS and τ � σαu Y tτ P ΣS : τ � σαu,
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where cone Conept�uq is the cone generated by t�u. Now let us consider the
case

α P VerpFsqzVerpFs, fq.

let Σspσαq be an arbitrary simplicial subdivision of σα that is compatible
with ΣS. Then

Σs :�
�

αPVerpFsq

Σspσαq

is a simplicial subdivision of Γ�pFsq. As Fs is convenient, the faces of σα,
α P VerpFsq, contained in a coordinate plane are simplicial cones, then Σs

is an admissible subdivision.

Now we will define a subdivision of Σs to obtain the sought after fan.

Let α P VerpFs, fq. By abuse of notation we will denote for σα a cone
in Σspσαqpn � 1q. Without loss of generality we can suppose i � n � 1,
in this manner we have that σα � Conepen�1, τq with τ P ΣS. We denote
H0 � Rtn�1uXΓ�pFsq and H1,....,Hn the n-dimensional faces of Γ�pFsq that

define σα, then
n�
j�0

Hj � tαu. Then Eα :�
n�
j�1

Hj

Let p1, ..., pn be non-negative normal vectors to the faces H1, ...,Hn. Then
σσ :� Conepp1, ..., pn, en�1q. Now we will construct a regular subdivision of
σα. Let us consider the cone τ :� Conepp1, ..., pnq � σα, and a regular
subdivision RSpτq of τ that does not subdivide regular faces of τ . Then
RSpτq does not subdivide faces ∆1 ¬ ∆. Let τ 1 P RSpτq, then there exists
q1, ..., qn P Conepp1, ..., pnq such that τ 1 :� Conepq1, ..., qnq. Observe that the
cones

p�q σ1α :� Conepq1, ..., qn, en�1q

define a subdivision of the cone σα that can be extended to a subdivision Σ of
Σs that does not subdivide faces ∆1 ¬ ∆, which implies that Σ is admissible.

Now we will prove that σ1α :� Conepq1, ..., qn, en�1q is regular. Looking at
qj as column vectors, and consider the matrix of the size pn� 1q � n:

A :�
�
q1 � � � qn

�
�

�
�� q1 1 � � � qn 1

...
...

q1 n�1 � � � qn n�1

�
�

For each j P t1, ..., n� 1u let Aj be the matrix of the size n� n obtained
by deleting the row j of the matrix A. As τ 1 :� Conepq1, ..., qnq is regular,
we have that the greatest common divisor, gcdpd1, ..., dn�1q, where

dj � |detpAjq|,

is equal to 1. Let us suppose that the cone

σ1α :� Conepq1, ..., qn, en�1q

is not regular, then |detpq1, ..., qn, en�1q| � dn�1 ¥ 2. For each Hj , 1 ¤ j ¤
n we have that α, β P Hj , then xα, pjy � xβ, pjy for all 1 ¤ j ¤ n, which
implies that xα, qjy � xβ, qjy for all 1 ¤ j ¤ n. With which we obtain that
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qj n�1 �
°n
k�1pαk � βkqqjk for all 1 ¤ i ¤ n (remember that β is the good

apex of α). Then dn�1 divides to dj for all 1 ¤ j ¤ n, which contradicts the
fact that gcdpd1, ..., dn�1q � 1. Which implies that σ1α is regular.

Observe that there exist coordinates y1, ..., yn�1 of Xσ1α � Cn�1 (before
the base change) such that the morphism

πσ1αpyq :� πσ1αpy1, ..., yn�1q � px1, ..., xn�1q

is defined by:

xn�1 :� y
q1 n�1

1 � � � y
qn n�1
n yn�1 and xi :� yq1i1 � � � yqnin , 1 ¤ i ¤ n.

From this we obtain

F pπσ1αpyq, sq � ym1
1 � � � ymnn F py, sq, mi � xqi, αy, 1 ¤ i ¤ n.

Let us suppose that r � pr1, ..., rn�1q is a singular point of F py, oq, then
there exists 1 ¤ j ¤ n such that rj � 0. Without loss of generality we can
suppose that rn � 0. We know that for each β1 P Eα XVerpfq we have that
xα, qiy � xβ1, qiy, for all 1 ¤ i ¤ n, and as α has a good apex, we obtain that

F py, sq � c0psq �Hpy, sq �Kpyn�1, sq � ynGpy, sq,

where y � py1, ..., yn�1q, c0poq � 0, and

Kpyn�1, sq � c1psqyn�1 � � � � � clpsqy
l
n�1, c1poq � 0.

If Eα X Verpfq � tβu, then Kpyn�1, sq � c1psqyn�1. Which shows that
r cannot be a singular point of F . If |Eα X Verpfq| ¡ 1, then the singular
point r � pr1, ..., rn�1q satisfies that

dKprn�1, 0q

dyn�1
� 0.

Which implies that rn�1 � 0. We will prove that this is contradiction.
Let W � VerpFs, fq X Rn�1 and we define

F 1px, sq � fpxq �
°
γPW dγpsqx

γ , dγpoq � 0 for all γ PW .

We can assume that F 1 is a non degenerate deformation of f . As Γ�pfq �
Γ�pF

1
sq � Γ�pFsq, we have that νpF 1

sq � νpfq (see corollary 2.3). By defini-
tion of F 1, the point α belongs to VerpF 1

s, fq � W . We note σα the cone of
Γ�pF 1

sq associated to α. By construction the cone σα of Γ�pF 1
sq is the cone

σα of Γ�pFsq previously defined. Using the same regular subdivision of σα
we can define a regular admissible subdivision Σ1 of the fan Γ�pF 1

sq.
Let σ1α be one of the two regular cones of the subdivision of σα (see p�q).

As we previously obtained

F 1pπσ1αpyq, sq � ym1
1 � � � ymnn F 1py, sq, mi � xqi, αy, 1 ¤ i ¤ n.

Then r is a singular point of F py, oq if and only if r is a singular point of
F 1py, oq (in fact F py, oq � F 1py, oq). We recall that |Eα X Verpfq| ¡ 1, and
that Eα is the only edge of Γ�pFsq not contained in Ri, which contains α and
its good apex. Observe that Eα also is the unique edge Γ�pF

1
sq which satisfies

the previous properties. Let β1 � α an end point of Eα, and σβ1 P Γ�pFsq the
cone associated to β1. As |EαXVerpfq| ¡ 1, and VerpF 1

s, fq � Rn�1, we have
that the cone σβ1 belongs to Γ�pfq. Then the regular subdivision σ1

β1 , ...,σtβ1



24 M. LEYTON-ÁLVAREZ, H. MOURTADA, AND M. SPIVAKOVSKY

of σβ1 defined by the regular admissible subdivision Σ1 can be extended to
regular admissible subdivision Σ2 of Γ�pfq. By construction there exists
1 ¤ j ¤ t such that r P X

σj
β1
� Cn�1. But f is non degenerate, which

implies that rV s X Xσi
β1

is smooth, from where we obtain the sought after

contradiction. This implies that F pπσ1pyq, sq, which is a normal crossings
divisor relative to Cmo around π�1

σ1α
poq � Cmo . �

The following theorem is the main result of this article. Let s be the
generic point of Cmo . We will construct a regular admissible subdivision, Σ,
of Γ�pFsq in the manner that ρ : XΣ � pCm, oq Ñ Cn�1

o � Cmo is the sought
after simultaneous embedded resolution. Observe that for the result com-
mented upon previously, π : XΣ Ñ Cn�1

o defines an embedded resolution of
Ws.

Theorem 3.2. Assume that W is a Newton non-degenerate deformation.
The deformation W is µ-constant if and only if W admits a simultaneous
embedded resolution.

Proof. The “if” part is given by Proposition 1.4. We will prove “only if”.

By Proposition 3.1 there exists an admissible subdivision, Σ, of Γ�pFsq
such that for each α P VerpFs, fq, the fan Σ defines a subdivision σ1

α, ...., σ
r
α,

regular of σα, such that �W tXXσiα
�Cmo is a normal crossings divisor relative

to Cmo for i P t1, ..., ru. Consider the set, Σpjq, of all the cones of dimension
j of Σ. Observe that given a regular admissible subdivision of Σpjq, there
exists a regular admissible subdivision of Σpj�1q compatible with the given
subdivision. Using recurrence we have that there exists a regular admissible
subdivision of Σ that does not subdivide its regular cones. By abuse of
notation we will denote for Σ the regular admissible subdivision. To finish
the proof we still need to consider α P VerpFsqzVerpFs, fq. Let us consider
the cone σ � Rn�1

¥0 generated by all the non-negative normal vectors to faces

of Γ�pFsq which contain a α, and let σ1, ..., σr be the regular subdivision
defined by Σ. Let us suppose that pi1, ..., p

i
n�1 are the extremal vectors of σi.

As σi is regular, we have that Xσi � Cn�1 (before the base change). Then
we can associate the coordinates y1, ..., yn�1 to Xσi such that πσi :� π|Xσi
is defined by

πσipyq :� πσipy1, ..., yn�1q � x :� px1, ..., xn�1q,

where xj :� y
pi1j
1 � � � y

pin�1 j

n�1 , pij :� ppij1, ..., p
i
j n�1q, 1 ¤ j ¤ n� 1. Then

F pπσipyq, sq � ym1
1 � � � y

mn�1

n�1 F py, sq, mj � xpij , αy, 1 ¤ j ¤ n� 1.

Let cpsq be the coefficient of degree zero of F py, sq. As α R VerpFs, fq,
then cpsq � 0 for all s P Cmo . Then the property of non degeneracy of Fs
implies that F pπσipyq, sq is a normal crossings divisor relative to Cmo around
π�1
σi
poq � Cmo . �
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4. The Degenerate Case

Let us recall that F is a deformation of f :

F px, sq :� fpxq �
°l
i�1 hipsqgipxq,

where hi P Os
m :� Cts1, ..., smu, m ¥ 1, and gi P Ox

n�1 such that hipoq �
gipoq � 0. Consider the relative Jacobian ideal

JxpF q :�
�
Bx1F, ..., Bxn�1F

�
� Cts1, ..., sm, x1, ..., xn�1u.

The following theorem gives a valuative criterion for the µ-constancy of a
deformation.

Theorem 4.1 (See [Gre86], [LDuS73] and [Tei73]). The following are equiv-
alent:

(1) F is a µ-constant deformation of f .

(2) For all i P 1, ....,m we have that BsiF P JxpF q, where JxpF q denotes
the integral closure of the ideal JxpF q.

(3) For all analytic curve γ : pC, oq Ñ pCn�1�Cm, oq, γpoq � o, and for
all i P t1, ...,mu we have that:

OrdtpBsiF � γptqq ¡ mintOrdtpBxjF � γptqq | 1 ¤ j ¤ n� 1u.

In the general case the following proposition is analogous to Corollary
2.13. In the rest of the section let us assume that F is a µ-constant defor-
mation of f .

Proposition 4.2. Let us conserve the hypothesis on f and F , and let us
suppose that SupppFs, fq X RI¡0 � H, I � t1, ..., n � 1u. Then given I �
J � t1, .., n� 1u, F satisfies at least one of the following conditions:

(1) F |RJ is a µ-constant deformation of f |RJ provided by a unique iso-
lated singularity at the point o.

(2) There exists i P Jc and β :� pβ1, ..., βn�1q P SupppFsq such that
βi � δij, for j P Jc.

A difference between the degenerate case and the non-degenerate cases is
that we do not have, in general, that the point β P SupppFsq of the previous
proposition belongs to the set Supppfq.

Example 2. Consider the following deformation

F px1, x2, x3, sq :� x5
1 � x6

2 � x5
3 � x3

2x
2
3 � 2sx2

1x
2
2x3 � s2x4

1x2.

In the article [Alt87] it is shown that F is a µ-constant degenerate deforma-
tion of the non-degenerate polynomial fpx1, x2, x3q :� x5

1�x
6
2�x

5
3�x

3
2x

2
3 . In

this example we have that VerpFs, fq :� tp4, 1, 0qu � Rt1,2u¡0 and β :� p2, 2, 1q.
Observe that β R Supppfq.

Proof of the Proposition 4.2. There is not loss of generality in supposing
that J � t1, ..., ku, k ¤ n. We can always write F in the following manner:

F px1, ..., xn�1, sq �
Gpx1, .., xk, sq �

°
k i xiGipx1, ..., xk, sq �

°
k i¤j xixjGijpx1, ..., xn�1, sq,

where s � ps1, ..., smq. Observe that F |RJ � G, and let g :� f |RJ � G|s�0.
Let us suppose that p2q is not satisfied, then Gipx1, ..., xk, sq � 0 for all
k   i ¤ n� 1, then
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F px1, ..., xn�1, sq � Gpx1, .., xk, sq �
°
k i¤j xixjGijpx1, ..., xn�1, sq.

So we obtain that:

(1) BlF � BlG�
°
k i¤j xixjBlGij , for 1 ¤ l ¤ k,

(2) BlF �
°
k i¤l xiGil �

°
l¤j xjGlj �

°
k i¤j xixjBlGij , for k   l,

(3) Bsj1F � Bsj1G�
°
k i¤j xixjBsj1Gij , for 1 ¤ j1 ¤ m.

Let us suppose that the singularity of gpxq � Gpx1, .., xk, 0q is not isolated in

the origin o. Then for each open set o P Ω � Ck1 there exists pp1, ..., pkq P Ω
such that:

(i) gpp1, ..., pkq � 0,
(ii) Blgpp1, ..., pkq � 0, for 1 ¤ l ¤ k.

Then pp1, ..., pk, 0, ..., 0q P Cn�1 is a singularity of f , which is a contradic-
tion.

Let us suppose that Gpx1, ..., xk, sq is not a µ-constant deformation of g.
Then by virtue of theorem 4.1 there exists 1 ¤ j ¤ m, and an analytic curve

γptq :� ptr1a1ptq, ..., t
rkakptq, t

q1b1ptq, ..., t
qmbmptqq, ri, qi P Z¡0,

such that:

Ordt BsjG � γptq ¤ min1¤i¤ktOrdt BiG � γptqu.

Let us consider the following analytic curve:

βptq :� ptr1a1ptq, ..., t
rn�1an�1ptq, t

q1b1ptq, ..., t
qmbmptqq.

Using the equations p1q, p2q and p3q, we observe that we can choose
the large enough rk�1, ...rn�1, and the ak�1ptq, ...an�1ptq, which are general
enough in the manner that:

(1) Ordt BsjF � βptq � Ordt BsjG � γptq for 1 ¤ j ¤ m,
(2) Ordt BiF � βptq � Ordt BiG � γptq for 1 ¤ i ¤ k,
(3) Ordt BlF � βptq ¥ max1¤i¤ktOrdt BiF � βptqu for k   l.

This implies that

Ordt BsjF � βptq ¤ min
1¤i¤n�1

tOrdt BiF � βptqu.

This contradicts Theorem 4.1 since F defines a µ-constant deformation.
Then Gpx1, ..., xk, sq is a µ-constant deformation of g or there exists at least
one non-zero Gi. �
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