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Abstract

The first Waste Framework Directive issued by the European Union dates back to the seventies but was

drastically amended in the last decade to reduce environmental impacts of waste by encouraging reuse, recycling

and remanufacturing. Product recovery starts with disassembly which results in high labor costs. Disassembly

supports environmentally conscious choices like replacement of defective parts to extend the life span of products,

removal of suitable components for reuse and extraction of hazardous substances to decontaminate materials for

reprocessing. Besides, selective disassembly also accommodates maintenance and repairs. Optimizing the cost of

disassembly is crucial to make this process an economically viable option. Due to change tools and parts reorien-

tation, disassembly costs are sequence-dependent. Therefore minimizing the disassembly cost involves the search

for an adequate sequence of disassembly tasks. Consequently, this paper addresses the disassembly sequencing

problem for selective and sequential disassembly under sequence-dependent costs. As optimal formulations fail

to handle real-world cases, we develop a randomized greedy algorithm (needing a very few number of parameters

to be set and proving to be robust with respect to their value) and a matheuristic to solve efficiently medium to

large-sized instances.

Keywords: Disassembly; Product recovery; Maintenance; Greedy algorithms; Matheuristics

1 Introduction

Disassembly encompasses a wide variety of issues that mostly depend upon the decision level. On a strategic
level, design for disassembly such as increasing modularity is meant for easier reuse of components and materials
(see for instance Chiodo and Ijomah, 2014 or Soh et al., 2014). Disassembly for remanufacturing using strategic
perspectives has been studied in Tian et al. (2017) and Priyono et al. (2015). Also the problem has been studied
in multi station environments with line balancing requirements (Li et al., 2019) and when buffer allocation among
stages is considered (Alfieri et al., 2020).

In disassembly planning problems, some recent works focus on joint optimization of collecting End-Of-Life
products and disassembling them (Habibi et al., 2017) or aim at reducing unnecessary inventories generated by
products disassembly (Godichaud and Amodeo, 2018).

In these planning models, the disassembly cost of products is a parameter since the disassembly sequencing prob-
lem is assumed to be already solved. Thus, adjacent and central to disassembly planning is disassembly sequencing
where the main objective is to find a sequence of disassembly tasks so as to detach parts of interest (disassembly can
be either selective or complete) while minimizing the dismantling cost or time, subject to precedence constraints
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between components. When disassembly is performed manually as is the case in this paper, the disassembly cost is
equal to the disassembly time multiplied by the labour cost. Thus as the cost is proportional to the time, these terms
can interchangeably be used. The disassembly time of each disassembly operation depends on the sequence, due to
tool selection and part reorientation. That is, the disassembly time of operation j, if performed after disassembling
part i, not only includes the time to dismantle j but also the time to change tool if different from the one needed
for i as well as the time to move the product so as to access the fasteners of j. With sequence-dependent costs
(or time), the sequential disassembly sequencing problem (DSP) is known to be a NP-hard problem (Lambert and
Gupta, 2008) and as such, exact methods have limited real-world applicability.

In this paper, we address the DSP with the aim of obtaining target components from a product for the purpose of
maintenance, recycling or remanufacturing, where parts are sequentially and manually disassembled and disassembly
times are deterministic and sequence-dependent. For this problem, an optimal solution method has been developed
by Han et al. (2013) that can be applied to DSP with up to 50 parts. For large scale problems, these authors
have proposed simple priority rules, therefore leaving room for the development of more efficient heuristic solution
methods. We thus propose a Randomized Greedy Sequencing Algorithm and a Matheuristic approach. Our greedy
algorithm generates feasible sequences by filling one by one the empty positions with components probabilistically
selected according to their disassembly time. Random repetitions are performed and insertion of disassembly
operations is considered for further improvements. Our greedy approach only needs a very few number of parameters
to be set and proved to be robust with respect to their values. Matheuristics are based on a decomposition of the
problem into sub-problems of limited size for which an optimal solution can be quickly obtained. So far, they had
not yet been tested on the DSP, despite their ability to solve efficiently many combinatorial problems in production
and operations management (e.g. Iassinovskaia et al., 2017; Della Croce et al., 2014(a) and 2014(b); Raa et al.,
2013; Guerrero et al., 2013). As Matheuristics make use of mathematical programming models, they can provide
near optimal solutions only to moderate-sized problems. The advantage of our Matheuristic for the DSP is its ability
to find better solutions than the exact approach of Han et al. (2013) that often failed to find the optimal solution to
medium-sized problems in a reasonable computation time. For large-sized problems with hundreds components to
disassemble, Han et al. (2013) showed the superiority of the Nearest Neighbor algorithm over other simple priority
rules. However, when compared with our Greedy algorithm and our Matheuristic, the Nearest Neighbor algorithm
performed so poorly that we suggested an improved randomized version of this algorithm. We used a rigorous
simulation framework to generate realistic instances for which we showed the superiority of our methods over that
of Han et al. (2013). For many instances with product structures with 50 components, the exact approach of Han
et al. (2013) most often failed to find the optimal solution, in which cases our heuristic solution methods beat by
far the solution of the optimal method obtained after one hour of CPU. For large instances with several hundreds
of parts, the Nearest Neighbor algorithm which was assessed as the best heuristic in Han et al. (2013) showed
deviations to our Randomized Greedy Search Algorithm from 30 to 75% whereas these deviations did not exceed
10% on average for our Randomized version of the Nearest Neighbor algorithm.

In real-world problems, disassembly is generally selective because (i) remanufacturing processes require retrieval
of cores only over non-remanufacturable parts; (ii) maintenance is implemented on specific usury parts; (iii) not
all materials can be recycled or can only be recycled a limited number of times. The most frequent situation is that
of a single worker sequentially dismantling a product to obtain one part at a time. Therefore, parallel execution
of disassembly operations to remove several parts simultaneously has been seldom studied in the literature (see
e.g. Ren et al., 2018; Zhang et al. 2014 or Edmunds et al., 2012). Besides, disassembly remains a labor intensive
process because automation demands high investment costs and implies a loss of flexibility in accessing fasteners.
Actually, human intervention will always be needed to choose proper tools for removing fasteners when damaged by
corrosion for instance (Chang et al., 2017). As the labor cost is proportional to the disassembly time, minimizing
the cost is equivalent to minimizing the total disassembly time (see Gonzalez and Adenso-Dìaz, 2006 or Wang and
Johnson, 1995). In addition to time or cost minimization, other objectives are sometimes considered like removing
components according to a priority list (Adenso-Dìaz et al., 2008) or maximizing the profit gained from recycling
(Ren et al., 2018) or maximizing this profit and minimizing the energy consumption related to disassembly (Tian
et al., 2019). More recently, the quality of disassembled components has also been included (Bentaha et al., 2020;
Tian et al., 2018).

As previously mentioned, the cost of a disassembly operation is sequence-dependent and is usually assumed
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to be deterministic in sequential disassembly settings. Several papers consider this dependence through geometric
aspects like rotation or more generally disassembly directions to access fasteners (Tseng et al., 2018; Yeh et al.,
2012; Go et al., 2012; Smith et al. 2012; Gonzalez and Adenso-Dìaz, 2006; Güngör and Gupta, 1997 and 2001).
Solution methods developed in these papers are mainly metaheuristics. Yeh et al. (2012) developed a simplified
swarm optimization with costs integrating learning effects; Go et al. (2012) adopted a Genetic Algorithm and
Gonzalez and Adenso-Dìaz (2006) proposed a scatter search algorithm.

Other papers are based on disassembly cost or time estimates between each feasible pairs of operations (Luo et
al., 2016; Han et al., 2013; Lambert and Gupta, 2008; Lambert, 2006 and 2007; Huang et al., 2000; Johnson and
Wang, 1998). Luo et al. (2016) used an ant colony approach to solve small instances of the DSP, whereas Han et al.
(2013) developed an optimal formulation similar to the modified two-commodity network flow model of Lambert
(2006).

Besides, in parallel disassembly environment, some contributions deal with random disassembly costs or times,
developing heuristic and exact approaches (Kim and Lee, 2018; Kim et al., 2018; Kim et al., 2017; Tian et al.,
2012a, 2012b, 2013).

The remainder of the paper is organized as follows. The next section provides the problem description and
the representation of precedence constraints. Section 3 gives the optimal formulation of the DSP as proposed by
Han et al. (2013). The randomized greedy sequencing algorithm is detailed in Section 4 and Section 5 describes
the matheuristic algorithm. The simulation framework and results analysis are presented in Section 6. Section 7
summarizes our findings and suggests directions for further research.

2 Problem description

As in Lambert (2006), we adopt a disassembly precedence graph, G, to represent disassembly operations and
their precedence relationships. Such a graph is a set of n + 1 nodes where root node 0 corresponds to the start
of disassembly and n is the total number of parts that can be obtained through disassembly operations whose
precedence relationships are symbolized by arcs.

Figure 1(a) displays two graphs G1 and G2 each representing a product with n = 20 components. Graph G1,
including only arcs in solid lines, exhibits a complete divergent structure where disassembling one component never
requires more than one direct predecessor to be dismantled before, immediately or not in the sequence. In addition
to arcs in solid lines, G2 involves dotted arcs and thus has a general structure where detaching one component can
need several operations to be performed before. Letting ��1(j) be the set of direct predecessors of node j, in a
complete divergent structure we have

����1(j)
�� = 1, 8j = 1..n whereas

����1(j)
�� � 1 in a general structure. For

instance ��1(16) = {9} in G1 and ��1(16) = {4, 6, 9} in G2.
We introduce the notion of mandatory components to designate not only target components but also all the

components that have to be disassembled before these targets to meet the precedence constraints. The set M
of mandatory components is simply defined as M = T [j2T �̂�1(j), where T is the set of targets and �̂�1(j)

is the set of ancestors of j (direct and non direct predecessors) in the graph. Ancestor matrix �̂�1 is obtained
from predecessor matrix ��1 by setting first �̂�1 := ��1 and then �̂�1 := �̂�1 _

�
��1

�i, i = 1..n. Set M is a
straightforward feasible sequence to the disassembly problem and also provides the minimum disassembly rate of a
product, (|M|� 1)/n, which gives a better picture of the complexity of the problem than the sole number of target
components does. Indeed, depending upon its location in the graph and on the structure of it, one target component
may require from one to up to all components to be disassembled. In G1 or G2, if the target component is 5, the
disassembly problem is quite easy to solve whereas candidate sequences are far more numerous if component 18
is a target. In Figure 1(a), bold circles represent mandatory parts in G1 with M1 = {0, 1, 2, 3, 5, 7, 8, 9, 11, 13, 16}
and underlined numbers are mandatory components numbers in G2 with M2 = {0, 1, 2, 3, 4, 5, 6, 7, 9, 10, 16} leading
to a minimum disassembly rate of 50% and a minimum of three targets in both cases (T1 = {8, 13, 16} in G1 and
T2 = {5, 10, 16} in G2). The recycle rate thus varies from 3/20 to 0.5 and more if all components in the optimal
sequence can be recycled. As disassembly times are sequence-dependent, it can be optimal to disassemble one or
more non mandatory parts between two mandatory ones. A matrix of disassembly times ti,j is provided in Figure
1(b), where ti,j is the disassembly time in seconds when i immediately precedes j in the sequence. With these
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Figure 1: Disassembly precedence graphs and disassembly times

times, optimal sequences for G1 and G2 both include non mandatory component 6. They are obtained using the
formulation of the disassembly sequencing problem we present in the next section.

3 Mathematical programming formulation of the disassembly sequenc-

ing problem

We adopt the formulation of Han et al. (2013) for it proved to be at least as efficient on several instances as two
other formulations of lower complexity that we developed and in which variables express the position of components
in the disassembly sequence, with either a linear or a quadratic objective function. These alternate formulations are
given in Appendix A. Han et al. (2013) make use of the variables defined in Table 1 in which we also summarize
the notations for the parameters.
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Variables

xi,j Binary variable equal to one if i immediately precedes j in the sequence, and zero otherwise

yj Binary variable equal to one if j is disassembled, and zero otherwise

zi,j Binary variable equal to one if i must be disassembled before j in the sequence and zero otherwise

Parameters

�(j) Set of direct successors of j in the precedence disassembly graph

��1(j) Set of direct predecessors of j in the precedence graph

�̂�1(j) Set of ancestors of j in the precedence graph (direct and non direct predecessors)

T Set of target components

M Set of all mandatory components to be disassembled which includes set T and all their ancestors

in the graph. We have M = T [j2T �̂�1(j)

M̄ Set of non mandatory components, M̄ = {0..n} \M
ti,j Disassembly time (in sec.) of operation j when i immediately precedes j in the sequence

Table 1: Notations

The objective is to minimize the total disassembly time

min
X

i=0..n

X

j=0..n

ti,j · xi,j , (1)

subject to the following constraints.
Input and output flow conservations are written as

X

i=0..n

xi,j = yj , 8j = 1..n. (2)

X

j=0..n

xi,j  yi, 8i = 0..n, j = 0..n. (3)

Mandatory components must be disassembled

yj = 1, 8j 2 M. (4)

If i is a direct predecessor of j in the graph and if j is disassembled (yj = 1) then i must be disassembled as well
(yi = 1)

yj  yi, 8j = 1..n, i 2 ��1(j). (5)

If i is a direct predecessor of j in the graph then j cannot be disassembled before i in the sequence

zj,i = 0, 8j = 1..n, i 2 ��1(j). (6)

If j is disassembled before i, the opposite is false and conversely

zj,i + zi,j = 1, 8i = 1..n, j = 1..n, i 6= j. (7)

Constraints (7) are redundant with (6) but increase the tightness of the formulation.
If, in the sequence, component i is disassembled before j and j before k thus i is disassembled before k

zi,j + zj,k � zi,k  1, 8i = 0..n, j = 1..n, k = 1..n, i 6= j, k 6= j. (8)

If i is not disassembled before j (zi,j = 0) thus i cannot be disassembled immediately before j (xi,j = 0)
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zi,j � xi,j � 0, 8i = 0..n, j = 0..n. (9)

Let us note that constraints (9) allow for zi,j = 1 and xi,j = 0 meaning that zi,j = 1 if i must precede j in the
sequence even if j is not sequenced right after i (xi,j = 0).

Finally a disassembly operation cannot be performed on one component itself

xi,i = 0, 8i = 0..n. (10)

4 Randomized Greedy Sequencing Algorithm (RGSA)

At the core of our RGSA is a sequencing procedure that generates a feasible sequence by filling one by one the empty
positions with mandatory components probabilistically selected according to their best cumulative disassembly time.
The cumulative time of any component is defined as its disassembly time from its immediate predecessor in the
sequence, to which is added that of its quickest successor operation. A pass of the sequencing procedure consists
in repeating this procedure on a same set of mandatory components until no improvement of the sequence is found
during the last N repetitions. Over the whole repetitions, we record the maximum time loss associated with each
non mandatory operation and the position in the sequence at which this maximum occurs. In this way we get a
proxy of opportunity time losses as a result of the exclusion of non mandatory operations from the sequence. Based
on these losses, non mandatory components are then considered one by one for possible insertion in the sequence in
subsequent passes. To describe our RGSA we adopt the notations and definitions in Table 2. Obviously, root node
0 is sequenced in the first position (Pos = 1) of the sequence. The pseudocode of the whole algorithm is given in
Table 3 where Table 3(a) provides the main steps of the RGSA and Table 3(b) details the sequencing procedure.

To illustrate, let us consider the example in Figure 1. With graph G1, RGSA Initialization consists in
setting Sbest := M1 = {0, 1, 2, 3, 5, 7, 8, 9, 11, 13, 16} which is the straightforward feasible sequence that we provided
in Section 2. The corresponding disassembly time is Obj(Sbest) = t0,1+ · · ·+ t13,16 = 776. A first application of the
Sequencing procedure is implemented on set M without insertion (i⇤ = �1). In position Pos = 1, we have
S1 = {0}, s = 0.

In position Pos = 2, the set K of candidates is K = �(0) = {1, 2}, with M = {1, 2} since both operations are
mandatory. In sub-procedure Select mandatory compo we first compute tm for m 2 {1, 2}. Using Eq. (11)
and Eq. (13) for m = 1, we get �F (1) = �(1) = {3, 5} and F1 = K \ {1} [ �F (1) = {2, 3, 5}, meaning that from
operation 1, component 2 or 3 or 5 can be disassembled. From Eq. (14), we obtain the cumulative disassembly
time of operation 1, t1 = t0,1 +min{t1,2, t1,3, t1,5} = 131. This time t1 reflects the minimum time we could obtain if
operation 1 was performed between 0 and its quickest following operation, namely 5. Applying the same reasoning
on candidate m = 2, we get t2 = t0,2 +min{t2,1, t2,4, t2,6, t2,7} = 57.
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In each position Pos � 2 to be filled in the sequence we have

SPos�1 Set of previously sequenced operations, with

SPos�1 = {s1, s2, . . . , sPos�1} and s1 = 0

s Last sequenced component in SPos�1 (s ⌘ sPos�1)

�F (k) Set of immediate successors of component k in the graph that can be dismantled if k is

disassembled. These feasible successors are such that all their direct predecessors in the

graph (except k) are already detached. We have

�F (k) =
�
j 2 �(k) | ��1(j) \{k} ⇢ SPos�1

 
(11)

In a complete divergent graph, we always have �F (k) = �(k).

K Set of all candidate components that can be detached in position Pos with

K := K \ {s} [ �F (s) (12)

In position 2, we have K := {0} \ {0} [ �F (0) = �(0)

Fk Set of feasible successors in the sequence of candidate k 2 K if k is disassembled, with

Fk = K \ {k} [ �F (k) (13)

tk Cumulative disassembly time if k is sequenced after s and before its successor in the graph
with minimum time. We have

tk = ts,k + arg min
j2Fk

�
tk,j

 
(14)

M Set of mandatory components in K with M = K \M

M̄ Set of non mandatory components in K with M̄ = K \M and obviously we have K = M[M̄

tM , tM̄ Minimum of cumulative times over mandatory candidates and non mandatory ones, respec-

tively (tM = minm2M {tm} and tM̄ = minm̄2M̄ {tm̄})

pm Probability of mandatory candidate m to be sequenced in position Pos

pm =
⇣
tM/tm

⌘
/
X

j2M

⇣
tM/tj

⌘
(15)

Score and insertion position

�m̄ Score of non mandatory candidate m̄ based upon the maximum time loss associated with its

non inclusion in the sequence

�m̄ Position in the sequence at which the maximum �m̄ occurs

�best
m̄ Saving of position �m̄ each time we obtain an improved sequence Sbest

i⇤ Index of the non mandatory component considered for possible insertion in set M

Table 2: Notations and definitions for the heuristic
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(a) RGSA (b) Sequencing procedure

RGSA Initialization Initialize sequence (Pos = 1)
M = T [j2T �̂�1(j) s = 0
Compute |M| S1 = {0}
Sbest := M Obj(S1) = 0
Obj(Sbest) =

P
(i,j)2M ti,j

�j = 0, 8j = 1..n for Pos = 2.. |M|� 1
�best
j = �1, 8j = 1..n Update sets
i⇤ = �1 Determine K using Eq. (12)

Multi-pass sequencing if i⇤ > 0 and �best
i⇤ > 0

do if Pos = �best
i⇤

Initialization M := M [ {i⇤}
�j = �1, 8j = 1..n else
NoImprovement=0 M := M\{i⇤}
ImproveInsert=0 Update |M|

do Select mandatory compo
Sequencing procedure �! for all candidates m 2 M , M = K \M
if Obj(S) < Obj(Sbest) Compute cumulative time tm

Obj(Sbest) = Obj(S) Determine set �F (m) with Eq. (11)
Sbest := S Determine set Fm with Eq. (13)
�best
j := �j , 8j = 1..n Compute tm with Eq. (14)

NoImprovement=0
ImproveInsert+ = 1 Compute tM = minm2M {tm}

else
NoImprovement+=1 for all candidates m 2 M

while NoImprovement < N Compute pm with Eq. (15)

RGSA updates Draw r = ⇡ + u, where u ⇠ U [0, 1� ⇡] and
if i⇤ > 0 ⇡ is a parameter depending on n

if ImproveInsert > 0
M := M [ {i⇤} Select m⇤ accordingly
M̄ := M̄ \{i⇤} if m⇤ = i⇤

else |M|+ = 1
�i⇤ := �1

Update score and insertion position
Compute � = maxm̄2M̄ {�m̄} for all candidates m̄ 2 M̄ , M̄ = K \M
if � > 0 Compute cumulative time tm̄

Determine i⇤ = argmaxm̄2M̄ {�m̄}
Compute tM̄ = minm̄2M̄ {tm̄}

while � > 0 if tM̄ < tM

Determine m̄⇤ = argminm̄2M̄ {tm̄})
if �m̄⇤ < 1� tM̄/tM and �m̄⇤ 6= �1

Update
�m̄⇤ := 1� tM̄/tM

�m̄⇤ = Pos

Update sequence
SPos = SPos�1 [ {m⇤}
Obj(SPos) := Obj(SPos�1) + ts,m⇤

s := m⇤

Last position (Pos = |M|)
Fill it with the remaining mandatory component

Table 3: Pseudocode of the RGSA and the sequencing procedure
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The minimum tM = min{t1, t2} = 57 leads to a probability of selecting operation 1 equal to p1 = (57/131)/((57/131)+
(131/131)) w 0.31 and consequently p2 = 0.69. To give the algorithm a better chance to pick the best option, the
random draw is set to a minimum value ⇡. Preliminary experiments showed that a better performance is obtained
when ⇡ is increased with n since with more operations, the selective pressure must increase to limit the choice to a
few number of good operations. If for instance ⇡ = 0.60 and r = 0.70 then m⇤ = 2 is selected. The sub-procedure
Update score and insertion position is skipped in Pos = 2 since set M̄ of non mandatory operations is
empty. Update sequence leads to S2 = {0, 2}, Obj(S2) = t0,2 = 29, s = 2.

In position Pos = 3, the set K of candidates is updated using Eq. (12) so we get K := {1, 2} \ {2}[�F (2) with
�F (2) = �(2) = {4, 6, 7}, that is K = {1, 4, 6, 7}. The set of mandatory components is M = {1, 7} on which we
apply sub-procedure Select mandatory compo. We obtain F1 = {1, 4, 6, 7}\{1}[{3, 5} = {3, 4, 5, 6, 7}, thus
t1 = t2,1 +min{t1,3, t1,4, t1,5, t1,6, t1,7} = 100. The set of feasible successors of component 7 is F7 = {1, 4, 6, 8, 10},
thus t2 = 69. We therefore have tM = 69 so p1 w 0.41 and p7 = 0.59 leading to the selection of m⇤ = 7 (since
⇡ = 0.60). As the set of non mandatory candidates is not empty, M̄ = {4, 6}, sub-procedure Update score

and insertion position is implemented. We have F4 = {1, 6, 7}, t4 = 190 and F6 = {1, 4, 7} so t6 = 63. Time
t6 provides the minimum tM̄ = 63, as it is lower than tM = 69. This suggests that it might be better to insert non
mandatory operation m̄⇤ = 6 instead of m⇤ = 7 in Pos = 3. To reflect this potential loss of opportunity, a score
�6 = 1� 63/69 w 0.087 is assigned to operation 6 and �6 = 3 is recorded as the corresponding insertion position.
Update sequence gives S3 = {0, 2, 7}, Obj(S3) = 57, s = 7.

In position Pos = 4, the set of candidates is K := {1, 4, 6, 7} \ {7} [ �F (7), that is K = {1, 4, 6, 8, 10}. The
sequencing procedure proceeds by placing operation 1 in position 4 and sub-procedure Update score and

insertion position provides a score �4 = 1� 57/74 w 0.23 for operation 4 and �4 = 4 is recorded.
Let us note that for graph G2, in position Pos = 3 the set of mandatory candidates is M = {1, 4, 6, 7} instead

of {1, 7} for G1. Focusing solely on component 4, we have �(4) = {16, 18, 20} but �F (4) is empty since none of the
operations {16, 18, 20} can be performed even if component 4 was disassembled. Indeed, dismantling component 16
requires not only operation 4 to be performed before but also operations 6 and 9 that are not sequenced yet (the
set ��1(16) \{4} = {6, 9} is not included in S2 = {0, 2}); and the same holds for components 18 and 20.

The sequencing procedure stops when all mandatory components in M are included in the sequence, the last
one being added outside of the loop for Pos = 2.. |M| � 1 to avoid wrong updates of scores and positions for
non mandatory operations. The first complete sequence we obtain for G1 is S = {0, 2, 7, 1, 5, 11, 13, 3, 9, 8, 16} with
a total disassembly time Obj (S) = 478 < Obj(Sbest) = 776 s. Following the instructions in RGSA right after
the sequencing procedure (see Table Table 3(a)), we set Sbest := S and we save the insertion positions of non
mandatory components in �best

j . At the end of the first pass, the best sequence remains unchanged but scores and
insertion positions have been updated several times. In RGSA updates we determine the overall best score �
which is attributed to component i⇤ = 4, �4 = 0.719, with an insertion position �best

4 = 6. Thus, another pass of
the sequencing procedure is performed with component 4 being considered for possible insertion. Sub-procedure
Update sets in the Sequencing procedure specifies that component i⇤ = 4 will possibly be inserted in
position �best

4 = 6 and nowhere else, reminding its selection is probabilistic. At the end of the pass, following RGSA

updates, if the best sequence has improved, operation 4 is added to the set of mandatory components M, be this
operation included or not in Sbest . Otherwise i⇤ = 4 is definitely excluded from further inclusion in M by setting
its score �4 to an arbitrary negative value (�4 = �1). The RGSA stops when all non mandatory components with
positive scores have been assessed in this way, that is after 6 passes in our example where operations 4, 20, 6 and 18
are examined successively. Note that operation 20 is finally inserted between operations 9 and 8 during the third
pass, which leads to an improvement of the objective function (Obj(Sbest) = 472). Another pass with part 20 is
performed but with a negative insertion position so as to prolong the search. After the third pass, we do not record
any further improvement of the sequence.

It should be noted that a candidate i⇤ for insertion in position �best
i⇤ > 0 can contribute to reach a better solution

as it allows for a shuffling of selection probabilities, be i⇤ inserted or not in Sbest . Positions �j are reset to �1 at
the beginning of each pass whereas scores �j keep their maximum value. Thus, it is possible that a component
with the best score so far has a negative insertion position in which case the algorithm amounts to perform another
pass of sequencing on an unchanged set of mandatory components. Further improvements can be reached for the
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search is simply prolonged over N and if so, the component will finally be included in M and excluded from M̄ in
order to create diversity. Otherwise the component will definitely stay in set M̄.

Positive insertion positions �best
j correspond to positions where the maximum scores were reached in any sequence,

be this sequence the best so far or not. Thus, position �best
j can be negative if the best score �j recorded over all

previous passes is not reached in any sequence of the current pass. This approach has proved to perform better
than other options we tested, such as using always a positive insertion position corresponding to the best score, or
recording the best scores and corresponding positions for the best local sequence over one pass. Besides, we also
unsuccessfully tried to constraint the sequencing procedure to possibly insert a component from its best position,
when positive, to all subsequent positions.

5 Matheuristic (MH)

Starting from an initial sequence S, the matheuristic considers each pair of adjacent operations (a, b) in S and
determines a subset L of components to be optimized, with a as a root node, a > 0. This list L is first made of
the direct successors of all components already sequenced before b to which we add {a, b}. Second, the list involves
all the direct successors of the components previously determined, that is descendants of candidates. Once L is
optimized (L⇤) we replace in S the subsequence in L⇤ from a to b. In this way some operations can be inserted
between a and band to update S, we delete duplicates after b. If the updated sequence is improved, we record
it. Another pair (a, b) is then selected in the updated S, by setting a := b and b = sPos (a)+1. Optimization of
subproblems stops when Pos(b) reaches the value of |S|� 1.

To allow for a simple writing of the pseudocode of our matheuristic, we generalize the definition of the set
of feasible successors �F (k) given in Eq. (11). Set K keeps the same definition, thus including all candidate
components to be sequenced at any iteration. Let us now define S as the set involving not only K but also the
previously sequenced components at any iteration. Set �F (k) is rewritten as

�F (k) =
�
j 2 �(k) ; j /2 K | ��1(j) \{k} ⇢ S

 
. (16)

Let us note that in our RGSA, in Eq. (16) condition j /2 K is never activated, and S = SPos�1. Table 4 displays
the pseudocode of our matheuristic.

To illustrate, let us consider graph G2 in Figure 1(a). In step MH Initialization, we choose Sinitial =
SRGSA = {0, 2, 6, 1, 7, 10, 5, 4, 3, 9, 16}, so we set Sbest = SRGSA; S = Sbest and Obj (Sbest) = Obj (SRGSA) = 444.
We have a = 2; b = 6 , with Pos(a) = 2; Pos(b) = 3.

At the first iteration of MH, we set K = S3 = {0, 2, 6} and S = S3 = {0, 2, 6}. In sub-procedure Determine

new feasible succ. we use Eq. (16) to obtain �F (0) = {1} since successor 2 of node 0 is already included in
K and predecessor of 1 is 0 which is already sequenced. We get �F (2) = {4, 7} as �(2) = {4, 6, 7} but {6} 2 K and
for j = 4, 7 we have ��1(j) \{2} = {2} \{2} = ? and the empty set is necessarily included in S. Set �F (6) = ?
since 6 has 16 as a successor in the graph but predecessors of 16 are 4, 6 and 9 and operations 4 and 9 are not in
set S.

We now set K =
S

k2K �F (k) [ {a, b} = �F (0) [ �F (2) [ �F (6) [ {2, 6}, so we have K = {1, 2, 4, 6, 7}. We
thus have S = SPos(a)�1 [ K = {0, 1, 2, 4, 6, 7}. Set K contains all components that will be re-sequenced and set
S includes all operations sequenced so far and those that will be re-sequenced in the current iteration. Again,
in sub-procedure Determine new feasible desc. we use Eq. (16) in the same way as before to obtainS

k2{1,2,4,6,7} �
F (k) = {3, 5} [ ? [ ? [ ? [ {8, 10}. Set L of components to be optimally resequenced is therefore

L = K
S

k2{1,2,4,6,7} �
F (k) that is L = {1, 2, 3, 4, 5, 6, 7, 8, 10} with 10 being the only one non mandatory component.

To apply the formulation of Han et al. (2013) on this subproblem, we take a = 2 as the root node and we extract
from matrices ��1 and (ti,j)i,j lines and rows li 2 L. Calling for CPLEX, we get L⇤ = {2, 7, 6, 1, 3, 4, 10, 5} which
leads to S = {0, 2, 7, 6, 1, �7, 10, 5, 4, 3, 9, 16} with Obj (S) = 474, so Sbest is not updated.
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(a) MH (b) MH...continued

MH Initialization
Sbest := Sinitial if |L| > 2
Obj(Sbest) = Obj(Sinitial) Optimize L
S := Sbest Set a as the root node
a = s2, Pos(a) = 2 Extract parameters of the sub-problem
b = s3, Pos(b) = 3 Call CPLEX to get L⇤ = {a, l⇤2 , . . . , b, . . . , l⇤|L|}

Consider L⇤
Pos (b) = {a, l⇤2 , . . . , b}

Iterate optimization of subsequences if
���L⇤

Pos (b)

��� > 2

do Update S
Set In S, replace {a, b} with L⇤

Pos (b)

K = SPos(b) Delete in S after b all j 2 L⇤
Pos (b)

S = SPos(b)
Determine new feasible succ. Compute |S|
for all k 2 K

Determine �F (k) with Eq. (16) Compute Obj(S)
if Obj(S) < Obj(Sbest)

Set Sbest := S
K =

S
k2K �F (k) [ {a, b} Obj(Sbest) = Obj(S)

S = SPos(a)�1 [K
Determine new feasible desc. Update (a, b)
for all k 2 K a := b

Determine �F (k) with Eq. (16) Determine Pos(a) in S
b := sPos(a)+1

Determine subset L to optimize Pos(b) := Pos(a) + 1
L = K

S
k2K �F (k)

while Pos(b) < |S|

Table 4: Pseudocode of our matheuristic MH

At the second iteration, we have S = {0, 2, 7, 6, 1, 10, 5, 4, 3, 9, 16}. We set a = 6 with Pos (a) = 4 so b = s5 = 1.
We optimize L = {6, 1, 3, 4, 5, 8, 9, 10, 11, 14} and we obtain L⇤ = {6, 1, 3, 9, 4, 10, 5} so S is left unchanged.

At the third iteration, S = {0, 2, 7, 6, 1, 10, 5, 4, 3, 9, 16}, with a = 1 and b = 10. The subsequence that we op-
timize is L = {1, 3, 4, 5, 8, 9, 10, 11, 14} and we obtain L⇤ = {1, 3, 9, 4, 10, 5}. Thus S = {0, 2, 7, 6, 1, 3, 9, 4, 10, 5, 16}
and Obj (S) = 383 < 444, so we set Sbest = S.

The next iterations do not lead to any additional improvement. Thus, MH finally provides Obj (Sbest) = 383
whereas the optimal total disassembly time is 334. However MH reaches the optimal solution for G1.

It should be mentioned that in our MH, we do not control the size of the subset of operations to be optimized. In
the simulation experiments we present in the next section, the maximum proportions of these operations compared to
mandatory components n with n 2 {50, 100, 200, 300, 400, 500} were respectively {2.80, 0.60, 0.35, 0.28, 0.125, 0.10}.
For instance, in one instance with n = 50 and 10 mandatory components, the maximum size of the subset was equal
to 2.8 · 10 = 28 components.

6 Simulation experiments

We first describe the instances and parameters setting in Subsection 6.1. The experimental design involved 2 phases.
In the first phase, our incentive is to test the efficiency of our heuristics against the optimal solution provided by
the MILP formulation of Han et al. (2013), for disassembly graphs with 50 components.

We decided not to include the Branch and Fathoming algorithm (B&F) that Han et al. (2013) developed to
solve instances with a maximum number of 50 components, due to its performance. For the most complex DSP the
authors solved to optimality, the B&F was not always able to find the optimal solution whereas applying CPLEX to
their MILP formulation provided the optimum in several seconds only on average. Our incentive is not to provide
an alternative to the exact approach when CPLEX can reach the optimal solution in a reasonable computation
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time. Preliminary simulations showed that such “easy-to-solve” instances are related to specific combinations of
parameters, like a high product structure complexity, a low number of items to disassemble or disassembly graphs
with less than 50 components. In practice however, disassembly graphs have a low product structure complexity
and recycling rates should be as high as possible. Thus, our simulation experiment encompasses more realistic
instances for which CPLEX actually often failed to find an optimal solution, therefore emphasizing the need for
heuristic solution methods.

Like in Han et al. (2013), our second phase considers large-sized instances (100 to 500 components) that cannot
be solved to optimality. For large instances, these authors used exclusively several priority rules amongst which the
Nearest Neighbor algorithm (NN) proved to be the most efficient. Therefore, along with our Randomized Greedy
Sequencing Algorithm RGSA and our Matheuristic MH, we also included NN. Due to the very poor performance
of NN, we tested a randomized version of that algorithm (RNN), in which the selection probability pm of each
mandatory component m was set equal to exp (|M| ·minj2M {ts,j} /ts,m ), with pm̄ = 0 (non mandatory operations)
and then normalized. RNN was repeated for an execution time equal to that of RGSA and the best solution was
recorded. As RNN provided much better results than NN, we chose to include it as well in the first phase.

Results of the 2 phases are presented and discussed in Subsection 6.2.

6.1 Instances generation and parameters setting
Number of components. For the sake of comparison with the optimal formulation of Han et al. (2013) a first set
of experiments was conducted with a number of components n = 50 which is the maximum number that CPLEX
could handle. As in Han et al. (2013), larger problems from 100 to 500 components were then considered.

Disassembly precedence graphs. We set the lowest level of each graph to the reasonable value of
⌅
(n+ 1)0.5+0.01·Rep⌥

where Rep is the seed used for replications with Rep = 1..5. To generate disassembly graphs, we used the product
structure complexity index C of Kimms (1997), with C = 0 for complete divergent graphs in which the number of
arcs equals the number of components. We have C = 1 when each component is connected to all components at
lower levels. In practice disassembly graphs tend to have complexity indices close to zero because minimizing the
number of connections is one of the strategies of design for disassembly. We therefore considered C = 0, C = 0.05
and C = 0.031, this positive value corresponds to the structure complexity of an electronic calculator used as a real
case in Han et al. (2013). Our graph generator randomly allocates components at each level, arcs are then created
one by one at random until all nodes are connected with the desired structure complexity.

Recycling rate / minimum disassembly rate. The European directive on electrical and electronic equipment
wastes (WEEE) set for year 2015 a minimum recycling rate of 50% for most categories of WEEE such as small
household appliances, electrical and electronic tools or medical devices. We thus considered a minimum disassembly
rate ⇢ = 0.50 in all instances, leading to a number of mandatory components to be disassembled |M| = b⇢ · ne.
More ⇢ values were examined for n = 50 components as we set ⇢ 2 {0.20, 0.35, 0.50, 0.65, 0.80}.

The set M of mandatory components was iteratively filled at random based upon their number of ancestors. At
each iteration, the desired number of ancestors of a mandatory operation is a uniformly distributed random fraction
of the maximum possible number of ancestors.

Disassembly time. Following Gonzalez and Adenso-Dìaz (2006), the disassembly time tij is defined as tij =
tj · �1 · �2, where tj is the disassembly time of component j and ✓1 and ✓2 are correction factors to account for
a possible speed reduction occurring respectively when moving/rotating component j is necessary and when tool
changing is required, with ✓1 2 {1.00, 1.15} and ✓2 2 {1.00, 1.10} picked at random with equal probabilities. Based
on case studies (Go et al., 2012 and Luo et al., 2016), disassembly times tj in seconds were uniformly drawn
at random in the range {10, . . . , 100} with probability 0.85 and in the range {101, . . . , 150} with complementary
probability.

Parameters of the RGSA. The number of repetitions of the sequencing procedure with no improvement was set
to N = 300 for all instances, whatever the number of components. Pilot studies showed that the best minimum
probability ⇡ for selecting a mandatory component was equal to 0.60 for 50 components, 0.70 for 100 components,
0.80 for 200 and 300 components, and 0.85 for 400 and 500 components.
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6.2 Simulation results
6.2.1 Medium-sized instances

In this first set of experiments with n = 50, we generated disassembly precedence graphs with a complexity
C 2 {0, 0.031, 0.05} and we considered five values of the minimum disassembly rate ⇢ 2 {0.20, 0.35, 0.50, 0.65, 0.80}.
Performing 5 replications for each combination of parameters led to 75 problems to solve. The MILP of Han et
al. (2013) was coded in C and linked with the CPLEX callable optimization library version 12.5. We run CPLEX
with a time limit of 3600 s, RGSA, RNN (with same execution time as RGSA), and the Matheuristic with RGSA
and RNN as initial solutions. We also applied the Nearest Neighbor algorithm (NN) but we finally excluded it
from the results due to its quite poor performance (total disassembly times were about 64% higher than those of
CPLEX on average). Detailed results on the 75 problems are provided in Table 8, Appendix B. Table 5 displays
the average Gap/deviations and execution times over replications, for each combination of parameters values, as
well as averages over all cases.

Table 5: 50 components - average results over replications

There is a clear inverse relationship between the performance of CPLEX and that of the heuristics. CPLEX
reached the optimal solution only in 12 cases over 75, all of them being obtained with low disassembly rates
(⇢  0.35). CPLEX gaps to optimality increase with ⇢ for the search space is augmented accordingly. However an
improvement of the CPLEX solutions is always observed as the complexity index increases because more constraints
of type (5) and (6) are activated, which tightens the formulation. For the lowest ⇢ value, ⇢ = 0.20, the best heuristic
is MH-RNN with an average deviation of 2.58% from CPLEX and a quite low average CPU time of 7.72 s versus
2015.36 s for CPLEX. With ⇢ = 0.35, the best heuristic is again MH-RNN with an average deviation of -6.59% and
a CPU time of 16.94 s, whereas CPLEX required on average 3474.56 s. When ⇢ � 0.50, all heuristics outperform
CPLEX. MH-RGSA becomes the best heuristic possibly because the inclusion of non mandatory components in
the sequence ameliorates the performance when the disassembly rate is increased. Let us note that in all cases, MH
takes longer to produce a solution when C = 0 than it does for instances with C > 0 in which subsets of components
to be optimized are always smaller (some operations have more than one predecessor to be dismantled). Likewise,
the performance of MH is greater when C = 0.
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6.2.2 Large instances (from 100 to 500 components)

For large problems with n 2 {100, 200, 300, 400, 500}, we fixed ⇢ = 0.5 and C = 0.031 throughout. Performing 5
replications for each n�value, we got 25 problems on which we applied RGSA, RNN and the matheuristic with
RGSA as an initial solution. The rationale for this choice comes from the significantly better performance of RGSA
for large problems, with an average improvement of 6.25% over RNN. For our instances with 50 components, the
average improvement of RGSA over RNN was only 1.13% which made it worth to try both heuristics as initial
solutions for MH. From n � 300, MH-RGSA was no longer used since some subsequences to optimize included more
than 50 components. We thus applied MH\D, a version of the matheuristic without considering descendants of
candidates. In the pseudocode given in Table 4, MH\D simply skips sub-procedure Determine new feasible

desc. RGSA was used as a benchmark since it represents the best compromise between solution quality and
execution time. Detailed results for the 25 problems are given in Table 9 in Appendix B.

Table 6 displays for each heuristic and each n�value the average over all replications of the deviations of solutions
to RGSA as well as the average CPU. Note that the CPU for RNN is not reported since the running time of RNN
was set equal to that of RGSA. The execution time of NN was negligible (2.14 · 10�4 s on average) so we did not
report it. Below the deviations we also indicated in brackets the number of times RGSA was outperformed over
the 5 replications. And below the CPU for MH, we give the time limit we had to set for CPLEX to avoid out of
memory issues. For MH, in column “Neighb.”, we provide an indicator of the neighborhood size explored by CPLEX,
defined as the average of maximum number of components to be optimally sequenced, expressed in percentage of
the number of mandatory components. For instance, with n = 100 and MH-RGSA, the average maximum size of
components optimally sequenced in each replication is equal to 25.80, which leads to a neighborhood size of 51.60%
(25.80/50).

RGSA NN(*) RNN MH-RGSA MH\D-RGSA

n Obj. CPU s Dev. % Dev. % Dev. % CPU s Neighb. % Dev. % CPU s Neighb. %
100 1269.2 0.27 75.32 9.10 -3.02 134.84 51.60 -0.93 11.63 31.60

(0) (0) (2) (no) (1) (no)
200 2339.8 0.87 52.67 9.40 -7.98 4130.42 32.60 -1.43 44.86 18.40

(0) (1) (4) (no) (1) (no)
300 3078.8 1.76 44.70 8.81 -0.52 1578.87 23.60 0 35.81 13.20

(0) (0) (1) (120 s) (0) (no)
400 4111.2 3.33 31.92 3.42 -0.22 68.66 11.40

(0) (1) (1) (240 s)
500 4921.0 4.70 31.70 3.90 -0.42 86.41 9.28

(0) (1) (1) (240 s)
(*) Han et al. (2013)

Table 6: Results for large instances

For n < 300, MH-RGSA is able to provide substantial improvements over RGSA but at the price of dramatic
execution time increases. With a much more reasonable CPU time, MH\D-RGSA can outperform RGSA but in
a limited number of cases (one case over five for each n, except for n = 300). It should be noted that when n
increases, the performance of MH degrades for the explored neighborhood relative to the problem size decreases.

Finally, let us note that an additional pass of the MH did not change the results.

7 Conclusion

For real-world instances, the disassembly sequencing problem has been primarily solved using metaheuristics which
require fine tuning to obtain good quality solutions. To the best of our knowledge this paper is the first that
develops a randomized greedy heuristic and a matheuristic that are easy to implement and capable to efficiently
solve medium to large scale instances. For medium-sized problems, our randomized greedy sequencing algorithm
(RGSA) outperformed CPLEX whenever it was unable to reach the optimal solution, that is as soon as the minimum
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disassembly rate was greater than 50%. Starting from the RGSA solution, our matheuristic offered further significant
improvements. From 300 components, improvements of the RGSA solution by the matheuristic MH-RGSA become
less significant and execution times are pretty high but the use of MH\D is always worthwhile since it might
ameliorate the solution in a quick execution time.

Possible enhancements of our solution methods include a refinement of the selection process of non mandatory
components in RGSA, especially for low disassembly rates as well as exploration of other neighborhoods in the
matheuristic, like picking pairs of non adjacent operations, eventually at random, between which the optimal
subsequence is inserted.

Acknowledgments

Jully Jeunet is grateful for her time as a visiting researcher at DIGEP, Politecnico di Torino, where this research
has been conducted.

A Alternate formulations to the DSP

In these formulations, we define uj,k as the binary variable that takes a value of one if operation j occupies position
k in the sequence. Variables zi,j no longer exist and other variables keep the same definition as in Table 1.

In the linear formulation, the objective to minimize is the same as in Eq. (1) subject to the following
constraints.

Constraints to link variables xi,j with variables uj,k. The variable xi,j takes a value of 1 if i immediately
precedes j in the sequence which means that i occupies position k (ui,k = 1) and j occupies position k+1 (uj,k+1 = 1).
In all other cases xi,j must equal zero: i occupies k (ui,k = 1) and j does not occupy k + 1 (uj,k+1 = 0); i does not
occupy k (ui,k = 0) and j occupies k + 1 (uj,k+1 = 1); i and j do not occupy position k and k + 1, respectively
(ui,k = uj,k+1 = 0). Obviously we have xi,j = ui,k · uj,k+1 which can be linearized as follows

ui,k + uj,k+1 � xi,j < 2, 8i = 0..n, j = 0..n, k = 1..n. (17)

As xi,j is in the objective function to be minimized, xi,j will take a value of zero when ui,k + uj,k+1 = 0 or 1.

Disassembly and position. If component j is not disassembled (yj = 0) then it does not occupy any position
in the sequence. Conversely, if j is disassembled (yj = 1) then j occupies one and only one position in the sequence.
This is written as

X

k=1..n+1

uj,k = yj , 8j = 0..n. (18)

It should be noted that we necessarily have y0 = 1 and node 0 occupies position 1 in the sequence thus we have
u0,1 = 1 and u0,k = 0, 8k = 2..n+ 1 and uj,1 = 0, 8j = 1..n.

Adjacency constraints between occupied positions. Since disassembly is selective, all disassembled com-
ponents must occupy adjacent positions in the sequence. This means that if position k is such that

P
j=1..n uj,k = 0

thus all subsequent positions must not be occupied. This is written as
X

j=0..n

uj,k �
X

j=0..n

uj,k+1 � 0, 8k = 1..n. (19)

Precedence constraints. If j is disassembled (yj = 1) and if j occupies position k in the sequence (uj,k = 1)
thus all its direct predecessors i 2 ��1(j) must have been disassembled before, which is written as

����1(j)
�� · uj,k �

X

i2��1(j)

X

l=1..k�1

ui,l  0, 8j = 1..n, k = 2..n+ 1, (20)
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In the quadratic formulation, the objective is written as
X

i=0..n

X

j=0..n

X

k=1..n+1

ci,j · ui,k · uj,k+1, (21)

subject to the same constraints as before except constraints (17) that link variables xi,j and uj,k since variables
xi,j no longer exist in this formulation.

Table 7 gives the number of variables and constraints for each formulation. Although our linear formulation has
less constraints than that of Han et al. (2013), preliminary testing showed that both formulations were comparable
in terms of execution time so we kept the existing published formulation. Even though the quadratic formulation
saves a significant number of constraints, it led to very large execution times compared with the linear formulations.

Formulation #Variables #Constraints
Han et al. (2013) 2(n+ 1)2 n3 + 5n2 + 8n+ 5
Our linear 2(n+ 1)2 n3 + 3n2 + 3n+ 1
Our quadratic (n+ 1)2 + n+ 1 n2 + 2n+ 1

Table 7: Number of variables and constraints for the three formulations

B Tables of detailed results

Table 8 provides the results for each of the 40 instances with 50 components. There are 10 problems per minimum
disassembly rates ⇢ 2 {0.20, 0.35, 0.50, 0.65}. For each ⇢ value, 5 replications are performed with the two complexity
indices C 2 {0, 0.031}. For CPLEX 3600 s, we give the objective value which is the total disassembly time of the
sequence, the gap to best bound in % and the CPU in seconds. For the other methods, we provide the deviation
(Dev.) in % of the solution to that of CPLEX 3600s as well as the execution time in seconds.
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Table 8: Detailed results for instances with 50 components
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Table 9 displays the results for the 25 large instances with ⇢ = 0.50 and C = 0.031 throughout and n 2
{100, 200, 300, 400, 500}. The RGSA is used as a benchmark and for the matheuristics we provide in column “Size”
the maximum number of components that was optimally sequenced.

RGSA NN (Han et al.) RNN MH-RGSA MH\D-RGSA

n Rep Obj CPU Dev. CPU Dev. CPU Dev. CPU Size Dev. CPU Size
100 1 1407 0.34 77.68 0.00 12.22 0.34 0.00 72.69 24 0.00 1.85 17

2 1114 0.17 43.36 0.00 10.59 0.17 0.00 78.59 25 0.00 17.08 16

3 1001 0.38 89.81 0.00 8.39 0.38 0.00 178.30 24 0.00 14.87 15

4 1436 0.23 64.97 0.00 3.13 0.23 -14.07 128.24 26 -4.67 5.65 15

5 1388 0.22 100.79 0.00 11.17 0.22 -1.01 216.38 30 0.00 18.69 16

200 1 2350 1.12 39.96 0.00 6.47 1.12 -6.98 3119.51 35 0.00 21.65 19

2 2078 1.03 52.50 0.00 17.18 1.03 0.00 4616.25 35 0.00 44.28 22

3 2068 0.78 46.23 0.00 6.62 0.78 -5.46 4620.41 30 0.00 13.20 18

4 2905 0.59 66.06 0.00 -0.41 0.59 -17.31 2459.83 30 -7.13 109.06 16

5 2298 0.85 58.62 0.00 17.15 0.85 -10.14 5836.08 33 0.00 36.10 17

300 1 3113 2.02 34.24 0.00 5.14 2.02 0.00 1860.56 35 0.00 48.60 18

2 3106 1.82 66.55 0.00 16.74 1.82 0.00 672.52 42 0.00 45.29 21

3 3014 1.45 44.13 0.00 9.52 1.45 -2.59 2820.28 33 0.00 21.04 19

4 3164 2.00 54.08 0.00 8.85 2.00 0.00 1493.69 34 0.00 34.00 20

5 2997 1.48 24.49 0.00 3.80 1.48 0.00 1047.31 33 0.00 30.13 21

400 1 4161 3.81 20.81 0.00 -1.92 3.81 0.00 74.88 25

2 4205 2.83 49.23 0.00 11.03 2.83 -1.09 123.34 25

3 3946 2.79 29.40 0.00 3.40 2.79 0.00 37.86 19

4 4163 3.19 34.30 0.00 0.58 3.19 0.00 52.62 24

5 4081 4.04 25.85 0.00 4.02 4.04 0.00 54.62 21

500 1 4951 5.27 31.04 0.00 3.49 5.27 0.00 85.96 23

2 4848 4.68 26.57 0.00 6.64 4.68 0.00 67.13 24

3 4851 3.05 30.39 0.00 -1.44 3.05 -2.08 156.53 25

4 4980 5.81 37.29 0.00 5.56 5.81 0.00 69.03 21

5 4975 4.66 33.23 0.00 5.27 4.66 0.00 53.38 23

Table 9: Detailed results for large-sized instances with ⇢ = 0.50 and C = 0.031
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