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Large time asymptotics of the wave fronts
length II:

surfaces with integrable Hamiltonians

Yves Colin de Verdière∗

January 5, 2021

In the paper [Vi-20], the author proves that the length |St| of the wave
front St at time t of a wave propagating in an Euclidean disk D of radius 1,
starting from a source A, admits a linear asymptotics as t → +∞: |St| ∼
(2 arcsin a)t with a = d(0, A). In the paper [Co-Vi-20], we gave a more direct
proof and some improvements of that result.

Here, we will explain that this result is quite general for surfaces with
an integrable Hamiltonian. We discuss only the 2D case for simplicity. The
main idea is to use action-angle coordinates (section 2) in order to get a nice
integral expression for |St| (section 4). Integrable systems have in general
singularities, therefore we need to make some genericity assumptions (section
2) and to study what happens to the action-angle coordinates (section 3)
near these generic singularities. We need then to evaluate some oscillatory
integrals (section 6) using an ergodic lemma (Appendix B).

For the geodesic flow on closed manifolds of negative curvature, Margulis
[Ma-69] proved that the asymptotics of the length is exponential. The generic
behaviour is not known. Here we study the integrable case which is highly
non generic.

Before starting, let us give a rough version of the main theorem 5.1:
Let (X, g) be a 2D-Riemannian manifold. Let H : T ?X → R be

an integrable Hamiltonian near a given energy E. Assume that the
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energy shell Σ := H−1(E) is compact and that dH does not vanish on
Σ. We assume also that H satisfies some “generic properties”. The
wave front starting from a point A at energy E is the projection
onto X of φt(Σ

A) where φt is the Hamiltonian flow of H and ΣA :=
{(A, ξ)|H(A, ξ) = E} is assumed to be smooth. If the point A in X
is “generic” (see section 4), the g-length of the wave front starting
from A, at energy E, admits a linear asymptotics |St| ∼ λ(A)t as t→
+∞, where λ(A) expresses in terms of the action-angle coordinates.

1 Wave fronts

Let us consider a smooth 2D Riemannian manifold (X, g) without boundary
and fix a real number E. Let H : T ?X → R be a smooth Hamiltonian.
Assume that H−1([E − a,E + a]) is compact for some positive a and that
dH does not vanish on Σ := H−1(E). Let us fix some point A ∈ X and
put ΣA := {(A, ξ) ∈ Σ}. We denote by ω the generic point of ΣA. Assume
that d(H|T ?AX) does not vanish on ΣA. This implies that ΣA is a 1D-compact
submanifold of Σ. We denote by πX the canonical projection of Σ onto X
and by φt : Σ → Σ, t ∈ R, the flow of ~H, the Hamiltonian vector field
derived from H. For any positive t, we define the wave front St at time t
as the set of points of X of the form πX(φt(Σ

A)). The wave front St has a
smooth parametrization by ΣA. This allows to define its length |St| using the
Riemannian metric g, assumed to be continuous and possibly degenerate:

|St| =
∫

ΣA
γ

1
2

(
φt(ω);

d

dω
φt(ω)

)
|dω|

where γ = π?X(g). Note that St admits in general some singular points
as a subset of X, namely cusps and transversal self-intersections. We are
interested in the asymptotic behaviour of |St| as t→ +∞.

Examples:

1. Geodesic flows: H := 1
2
g? is the Hamiltonian of the geodesic flow of a

closed Riemannian manifold (X, g). Let us fix E = 2. Then Σ is the
unit cotangent bundle and, on Σ, φt is the geodesic flow with speed 1.
In this case, St is the image by the exponential map at the point A of
the circle of radius t in the tangent plane TAX.
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2. Schrödinger Hamiltonians: Let (X, g) be a Riemannian manifold with-
out boundary, V : X → R a smooth function and E a real number. We
take H := 1

2
g?+V . Our assumptions are satisfied if V −1(]−∞, E+a]) is

compact for some a > 0, dV does not vanish on V −1(E) and V (A) < E.

2 Integrable Hamiltonian flows

For this section, one can look at the chapter 4 of [Vu-06] and the section 1 of
[Co-Vu-03]. We will assume that the Hamiltonian H is integrable near the
energy E. “Integrability” means that there exists a positive number a and
a smooth map M = (I, J) : H−1(]E − a,E + a[) → R2, called the moment
map, so that

• The Poisson bracket {I, J} vanishes identically.

• The critical points of M are of measure 0, i.e. the differentials dI and
dJ are almost everywhere independent.

• There exists a smooth function Φ : M(H−1(]E − a,E + a[)) → R so
that H = Φ(I, J).

Note that dI and dJ cannot vanish at the same point of Σ because dH does
not vanish there.

The main examples with the geodesic flows are the surfaces of revolution,
the tri-axial ellipsöıds ([Ja-39]) and the Liouville metrics on 2D tori (Liouville
metrics are of the form ds2 = (f(u) + g(v))(du2 + dv2), see [B-S-K-97] Chap.
7). Usually, integrable systems have singularities. We will make the following
“generic” assumption which is already used in [Co-Vu-03]: we assume that
the moment map M satisfies the

(A1) Morse-Bott condition: at any point of Σ where dI and
dJ are linearly dependent, i.e. where λdI + µdJ = 0 for some pair
(λ, µ) 6= (0, 0), the function λI + µJ, restricted to Σ, admits a crit-
ical manifold of dimension 1 with a transversally non degenerate
Hessian.

This implies that the singular set Z0 ⊂ Σ, i.e. the set of critical points of
M located in Σ, is a finite union of periodic orbits of ~H. These periodic orbits
are either hyperbolic or elliptic according to the signature of the transversal
Hessian. We denote by Z ⊂ Σ the part of the preimage by M of the critical
values of M which is the union of Z0 and all the stable and unstable manifolds
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of the hyperbolic periodic orbits. The open set Σ \ Z0 admits a smooth
Lagrangian foliation given by the level sets of M .

The open set Σ \ Z is foliated by 2D-tori on which the Hamiltonian flow
of H is quasi-periodic. The set of these tori is a smooth 1D-manifold. We
denote it by L and by σ the generic point of L. The manifold L is a 1D-torus
in the case where there are no singularities, i.e. if Z is empty, and a finite
union of real lines Dj, j = 1, · · ·N if there are some singularities. If σ ∈ Dj

tends to one of the infinity of Dj, the corresponding torus Tσ converges to
a compact connected set Tj,∞ of Σ which is either an elliptic periodic orbit

of H or the union of a finite set of hyperbolic periodic orbits of ~H and some
cylinders which are connected components of their stable manifolds. In the
last case, Tj,∞ is homeomorphic to a 2D torus or to a Klein bottle.

Let us denote by Uj the open connected component of Σ \Z which is the
union of the tori associated to the line Dj. The projection of Uj onto Dj is a
smooth fibration by 2D-tori which is trivial, because it is a fibration on the
real line. There exist global coordinates (θ, σ) ∈ T2×L on Σ \Z so that the
torus Tσ is mapped onto T2×{σ} and the Hamiltonian flow is mapped on a
vector field V (σ) = A(σ)∂θ1 +B(σ)∂θ2 on T2 with some smooth functions A
and B. Note that A and B have no common zeroes because the Hamiltonian
flow does not vanish on Σ.

In what follows, we fix some component Uj. Let us describe the action-
angle coordinates in some neighbourhood of Uj in T ?X: there exists a sym-
plectic diffeomorphism χj of some neighbourhood Vj of Uj onto an open set
T2 × Ωj, with Ωj ⊂ R2, contained in T ?T2 \ 0 with canonical coordinates
(θ, p), so that H ◦χ−1

j (θ, p) = Kj(p) with Kj a smooth function from Ωj into
R. In these coordinates, the vector field Vj is given by Vj = (∂Kj/∂p1)∂θ1 +
(∂Kj/∂p2)∂θ2 . We note ∇̃K this non vanishing vector field. The vector field
∇̃Kj does not vanish and hence the curve Cj := {p ∈ R2|Kj(p) = 1} is
a smooth submanifold of Ωj. The line Dj identifies smoothly to the curve
Cj. The manifold L can be identified to the disjoint union of the curves Cj.
The coordinates p are called the actions: they are given by action integrals
pj :=

∫
γj
α, where dα is the symplectic form, and the loops γj, j = 1, 2 form

a basis of H1(Tσ,Z) varying continuously in Vj. Note that if α′ is another
primitive of the symplectic form, the difference α − α′ is closed, hence the
action integrals differ by some constants. There are many choices for the
coordinates θ: if Λ ⊂ Uj is a Lagrangian manifold transversal to the foliation
by the tori, one can choose θ vanishing on Λ.
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We will need one more “generic” assumption on the Hamiltonian flow:
(A2) For any j = 1, · · · , N , there exists, at any point p of Cj, two

integers k ≥ 1 and l ≥ 1, so that the derivatives of order k and l of
the vector field ∇Kj along Cj are linearly independent.

Note that this condition is independent of the parametrization of Cj. For
example, k = 1, l = 2 means that the curvature of the curve {∇Kj(p)|p ∈ Cj}
does not vanish while k = 2, l = 3 means a generic cusp for that curve.

The assumption (A2) implies that, for any ν ∈ R2 \ 0, the map from Cj
into R defined by p→ 〈ν|∇Kj〉 has only critical points of finite order.

3 The behaviour of ∇K near Z

In this section, we forget about the index j: K denotes the expression of H
in some of the action-angle coordinates. We are interested at the behaviour
of ∇K near Z.

3.1 The Elliptic case

Lemma 3.1 Let γ be an elliptic periodic orbit of H (included in Z0), then
K is a smooth function of p1 and p2 up to γ.

Proof.– There exists a symplectic chart of a neighborhood of the elliptic
periodic orbit of H so that H = Φ (ξ, y2 + η2) in (T ?T)x,ξ × (T ?R)y,η (see
[Vu-00]). The invariant tori are the level surfaces of the moment function
M(x, ξ; y, η) = (ξ, y2 + η2). Let us choose γ1 = {s → (s, ξ; y, η)|s ∈ R/Z}
and γ2 = {s → (x, ξ,

√
y2 + η2 cos 2πs,

√
y2 + η2 sin 2πs)|s ∈ R/Z}. If α =

ξdx + ηdy, we get the action integrals p1 = ξ and p2 = π(y2 + η2). Hence
K(p1, p2) ≡ Φ(p1, p2/π). �

We have the following

Corollary 3.1 The manifold L admits an extension as a manifold with
boundary at the elliptic periodic orbits of H and the 1-form d∇K is smooth
and hence integrable on L near that boundary.

3.2 The Hyperbolic case

In this section, we will use Section 1 of [Co-Vu-03].
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3.2.1 Functions of type (L)

Let us start with a

Definition 3.1 A function f : [0, c[→ R, with c > 0, is called of type (L) if
there exists two smooth functions φ, ψ : [0, c[→ R so that

∀x ∈ [0, c[, f(x) = φ(x) log x+ ψ(x)

with φ(0) = 0, φ′(0) 6= 0.

This definition is invariant by any smooth change of variable from [0, c[ into
[0, c′[. Hence it extends to 1D-manifolds with boundaries. Such a function
is invertible in a small enough subinterval of [0, c[ and the inverse f−1 is C1

up to the boundary ψ(0) = limx→0+ f(x).
Now let us describe the application that we have in mind.

Lemma 3.2 Let α be a smooth 1-form so that dα is a volume form in
some neighbourhood [−d, d]2 of the origin in the (y, η) plane. Let mj(s) =
(yj(s), ηjs)), j = 1, 2, be two smooth curves with m1(0) = (e, 0), m2(0) =
(0, f) and e, f ∈]0, d[, η′1(0) > 0, y′2(0) > 0 which are arcs transverse to each
of the coordinates axes. Then consider the integral I(t) =

∫
Γt
α where Γt

is, for t small enough, the part of the hyperbola yη = t (t > 0) between the
curves m1 and m2 oriented in any of the two possible directions. Then I(t)
is a function of type (L).

This lemma follows from the Stokes formula: the isochoric Morse lemma
(see [Co-Ve-79]) allows to reduce to the case where dα = dy ∧ dη and to the
change of variable t→ F (t).

3.2.2 The lines Dj as 1D-manifolds with boundary

Let us put a structure of a 1D-manifold with boundary on the line Dj in the
“hyperbolic case”. Let us recall that we denote be T∞ the limit of the tori
Tσ as σ tends to one of the infinities. We showed that T∞ is the union of a
finite number of closed hyperbolic orbits and of a finite number of cylinders
which are parts of the stable an unstable manifolds of these orbits. Near
T∞ \ Z0, the foliation by the level sets of the moment map is smooth. We
can choose any local transverse arc to that foliation. They are all equivalent
up to diffeomorphism along any connected component of T∞ \ Z0 and give
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Figure 1: the foliation by hyperbolae and the transverse arcs m1 and m2

local parametrization of Dj near that boundary by intervals [0, c[. How do
we pass from one component to the next by crossing Z0? We choose a
Poincaré section at a point of Z0 and use the Morse lemma which gives local
coordinates (y, η) in that section so that (λI+µJ)(y, η) = cte+yη. The local
parameter is then the evaluation of the function yη which allows to pass from
the transversal η = 1 to the transversal y = 1. Both are locally parametrized
by the restriction of the function yη. This gives to Dj the structure of a 1D
compact manifold with boundary. Note that this holds in a smooth way with
respect to E ′ close to E.

3.2.3 The asymptotic behaviour of the action integrals

There exists, in a neighborhood Vj of T∞, invariant by the flows of ~I and
~J , an Hamiltonian P , Poisson commuting with I and J , whose orbits are
periodic of period 1 (Theorem 1.6 of [Co-Vu-03]). P is constant on Z0.
This gives a smooth action of the group S1 on Vj. Note that this action is
principal on (Vj ∩ Σ) \ Z0, but can get some non trivial isotropy Z/2Z on
Z0. Let γ1(z), z ∈ Vj, be the S1-orbits. They are all homotopic. If z lies
in some invariant torus, γ1 is a homotopically non trivial loop in this torus.
We denote by p1 the action integral on γ1(z) which is clearly smooth in Vj.
Note that p1 is a function of P which is a local diffeomorphism.
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We need to choose a loop γ2 on the tori in Vj which, with γ1, generates a
basis of the homology of the invariant tori. Let Rh := Vj ∩ P−1(h)/S1 with
h close to P (Z0). The reduced manifolds (see Appendix C) is foliated by the
reduction of the integrable foliation restricted to P−1(h). Let us denote by
Zh the singular set of that foliation. As does Vj ∩Σ, the orbifold Rh consists
of a singular part Rsing,h, the quotient of Zh∩Vj, which is homeomorphic to a
circle, and an open set smoothly foliated by circles which are the reductions of
the invariant tori. Together they give a topological foliation of Rh depending
smoothly of h. The singular leaf Rsing,h is smooth outside the finite set of
points which are quotients by the S1 action of the hyperbolic periodic orbits
of H. This foliation is smooth outside these singular points. We take for γ2

a lift of the projection of Tσ depending continuously of σ.

Figure 2: a reduced manifold Rh

We have the following crucial Lemma:

Lemma 3.3 The action integrals (p1, p2) on the previously choosen loops γ1

and γ2 satisfy at the boundary

• the action p1 is smooth up to the boundary

• The action p2 as a function of σ is of type (L) at the boundary and
depends smoothly of h and hence of p1.
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Proof.– We saw already the smoothness of p1. The function p2(σ, h)−p2(Zh)
is given by the symplectic area in Rh between the reduction of γ2 and Zh.
Lemma 3.2 implies that p2 is of type (L) depending smoothly of h and hence
of p1.

�

3.2.4 The asymptotic behaviour of ∇K

We have the following important

Corollary 3.2 The 1-form d∇K is integrable at any hyperbolic boundary
point of L.

Proof.–
Near a closed orbit of Z0, we have the normal form H = Φ(ξ, yη) with

(x, ξ, y, η) ∈ T ?x,ξT × T ?y,ηR. We have p1 = ξ up to a constant. We get
H = K(p1, p2) = Φ(p1, F (p1, p2)) expressing H in terms of the actions. We
get

∂1K = ∂1Φ + ∂2Φ× ∂F/∂p1, ∂2K = ∂2Φ× ∂F/∂p2

which are smooth outside Σ and continuous on Σ. Hence their derivatives
are integrable.

�

4 An integral formula for |St|
One of the difficulties in extending the result for the disk to this case is the
fact that the action-angle coordinates only exist outside Z. Therefore, we
need to make some assumptions on the point A.

4.1 Assumptions on the point A

If Λ ⊂ T ?X is a Lagrangian manifold, the caustic set of Λ is the set of
critical points of the projection πX restricted to Λ. We first need a

Lemma 4.1 Let us take ω0 ∈ ΣA so that (A, ω0) /∈ Z0 and denote by F0 the
2D-leaf of the invariant foliation of Σ containing (A, ω0). If (A, ω0) does not
belong to the caustic set of F0, then ΣA and F0 are transversal at the point
(A, ω0).

9



Proof.– ΣA is a 1D-submanifold of T ?AX and hence πX(ΣA) = {A}. On the
other hand, the fact that (A, ω0) is not in the caustic set means that (πX)|F0

is a local diffeomorphism onto X near (A, ω0). The conclusion follows. �
We will assume:
(A3) The intersection of ΣA with Z is a countable set.

Proposition 4.1 (A3) is satisfied as soon as there is only a finite number
of ω ∈ ΣA ∩ (Z \ Z0) so that (A, ω) is in the caustic set of the Lagrangian
leaf in which it lives.

Proof.– The intersection of ΣA with Z0 is a finite set. On the other hand, the
points ω so that (A, ω) is not a caustic point of the corresponding leaf are
isolated inside ΣA. Hence there is at most a countable set of such points. �

(A4) The set of critical points of the smooth map ω → σ from
ΣA ∩ (Σ \ Z) into L is countable.

Proposition 4.2 (A4) is satisfied as soon as there is only a finite number
of ω ∈ ΣA ∩ (Σ \ Z) so that (A, ω) is a caustic point of the invariant torus
containing that point.

The argument is quite similar to that of the proof of Proposition 4.1

4.2 Exact formulae for |St|
We will compute the lengths of the wave front using the action-angle coor-
dinates.

We will start with the finite covering of Σ \ Z by the semi-global action-
angle charts. This allows a description of St as follows: let χ : U → T2 × C
be one of these charts and let ΠX : T2 × C → X be the map πX ◦ χ−1.

This way, if we call (θ(ω), p(ω)) the image of ω ∈ ΣA by χ, we can assume
that θ(ω) vanishes identically, because T ?AX is Lagrangian. We get that the
corresponding part of the wave front St is defined by

St = {ΠX

(
t∇̃K(p(ω)), p(ω)

)
|ω ∈ ΣA}

where K is the Hamiltonian H expressed in the action coordinates and
(θ(ω), p(ω) are the action-angle coordinates of ω ∈ ΣA. We get, using the
Assumption (A3), the expression

|St| = t

∫
ΣA
γ

1
2

((
∇̃K(p(ω)), p(ω)

)
;
d

dω
∇̃K(p(ω))

)
dω
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where γ is the pull-back of g by ΠX . We can make a change of variable:
instead of ω, one can use σ ∈ L thanks to assumption (A4). We get the

Proposition 4.3 The length of the wave front is given by

|St| = t

∫
L
NA(σ)γ

1
2

((
t∇̃K(σ), σ

)
; d∇̃K(σ)

)
where NA(σ) = #{ΣA ∩ L}.

5 The main result

Theorem 5.1 Let (X, g) be a Riemannian manifold of dimension 2 with
g continuous, possibly degenerate. Let H be an Hamiltonian integrable at
energy E and satisfying the assumptions (A1) and (A2). Let A ∈ X be a
point satisfying the assumptions (A3) and (A4). The length for the metric
g of the wave front St starting from A has a linear asymptotics |St| ∼ λ(A)t
as t→∞.

Let us denote be L the 1D-manifold of all invariant Lagrangian tori
Lσ, σ ∈ L, filling Σ \Z and consider the continuous density on L defined by

|dσ| =
∫
Tσ
γ

1
2

(
(θ, σ); d(∇̃K(σ))

)
|dθ|

where γ is the pull-back of g by the projection ΠX . The measure |dσ| is
independent of A. We have

λ(A) =

∫
L
NA(σ)|dσ| (1)

with NA(σ) := #{ΣA ∩ Lσ}.

Corollary 5.1 Let H be the Hamiltonian of the geodesic flow of a smooth
metric G on a closed manifold X. If D is a smooth domain with boundary
in X, the g−length of St ∩D, is given by

|St ∩D| ∼ t

∫
D

dµA

where dµA is an absolutely continuous density dµA = F |dx| with F ∈ L1(X, |dx|).
whose integral is λ(A).
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Proof of the Corollary.– Let ψ be a positive continuous function on X. We
can apply the previous theorem with g′ = ψ2g. This way, we see that the
asymptotics of the g′-length of St is given by replacing the measure |dσ| by
the measure

|dσ|′ =
∫
Tσ
ψ(πX(θ, σ))γ

1
2 (
(

(θ, σ); d(∇̃K(σ))
)
|dθ|

This says that

|St|g′ ∼ t

∫
X

ψdµA

where dµA is the pushforward by πX of the absolutely continuous (a.c. in

short) finite measure dMA := NA(σ)γ
1
2 (
(

(θ, σ); d(∇̃K(σ))
)
|dθ|, supported

by Σ.
We need to show that we can apply this when ψ is the characteristic

function of a smooth domain. In our situation Σ is the unit cotangent bundle
and πX : Σ → X is a submersion. It follows that that dµA is a.c. w.r. to
|dx|. �

6 Proof of Theorem 5.1

We start from the expression of |St| given in Proposition 4.3. Let us show
that we can apply Lemma B.1 to the integral giving |St|/t. In the notations
of that lemma, we have V (σ) = ∇̃K(σ). The Assumption (A2) implies that
the assumption on V of the Lemma is satisfied. The function F is given by

F (σ, θ) = NA(σ)γ
1
2

(
θ; d∇̃K(σ)/dσ)

)
. The integrability assumption follows

from the Corollaries 3.1 and 3.2 and the upper bound

|NA(σ)γ
1
2 (θ;W ) | ≤ C‖W‖

The continuity with respect to θ follows from the continuity of g and the
smoothness of the projection of any Tσ onto X. It is shown using Lebesgue’s
dominated convergence Theorem.
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7 Examples

7.1 Surfaces of revolution

Surfaces with a non trivial action of S1 are tori or spheres. In both case, the
metric is given by g = a(s)2dθ2 + ds2 where s ∈ R/LZ in the first case and
s ∈ [0, L] in the second (in this case s = 0 and s = L are the poles).

The assumption (A1) is satisfied if and only if a is a Morse function. The
assumption (A2) is satisfied for a generic a. Assuming (A1) and (A2), the
assumption (A3) is satisfied for any point of the torus and for A not a pole
in the case of the sphere. while (A4) is always satisfied. If A is a pole, |St|
is periodic of period 2L.

7.2 Tri-axial ellipsöıds

The integrability was found by C. Jacobi ([Ja-39], see also [Kl-82] and sec-
tion 3.2 of [Co-Vu-03]). Assumption (A1) and (A2) are satisfied. (A3) is
satisfied for A not an ombilical point while (A4) is always satisfied. If A is
an ombilical point, |St| is periodic.

A Stationary phase

For this section, one can look at [Gu-St-77], chap. 1.
We want to evaluate the asymptotics as t→ +∞ of integrals of the form

I(t) :=

∫
R
eitS(x)a(x)dx

where S is a real valued smooth function and a ∈ C∞o (R). We have the

Proposition A.1 Let us assume that the critical points of S, i.e. the zeroes
of S ′, are non degenerate, i.e. S ′′(x) 6= 0 if S ′(x) = 0. Then, if x1, · · · , xN
are the critical points of S in the support of a, I(t) admits an asymptotic
expansion given by

I(t) =
N∑
j=1

√
2πeiεjπ/4

|tS ′′(xj)|
1
2

eitS(xj) (a(xj) +O(t)) (2)

with εj = ±1 depending on the sign of S ′′j (0).
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In the case where the critical points are degenerate, we have the following
result:

Proposition A.2 If the zeroes of S ′ in the support of a are of finite order,
we have I(t)→ 0 as t→∞.

Note also that in equation (2), the remainders “O(t)” are uniform if S ′

(resp. a′) is close to S (resp. close to a) in the C∞ topology and the support
of a stays in some fixed bounded intervall.

B An “ergodic” lemma

This section could be of independent interest.

Lemma B.1 For s ∈ J where J is an interval of the real line, let V (s) =
A1(s)∂1 + A2(s)∂2 be a family of constant vector fields on T2 depending
smoothly of s. Assume that, for any s ∈ J , there exists two derivatives
V (k)(s) and V (l)(s) which are linearly independent.

Let F is a function on J × T2 with F ∈ C0(T2, L1(J, ds)) satisfying the
following condition: there exists a function ψ ∈ L1(J, ds) so that

∀(s, θ) ∈ J × T, |F (s, θ)| ≤ ψ(s) .

Then

lim
t→+∞

∫
J

F (s, [tV (s)])|ds| =
∫
J×T2

F |dsdθ|

The assumption on the derivatives of V have the following geometrical mean-
ing: if V ′(s0) = 0, we get a cusp point which is of finite order; if V ′(s0) 6= 0,
the curvature of the curve V vanishes at a finite order. In particular the
points where V ′ and V ′′ are linearly dependent are isolated.

Proof.– It follows from Lebesgue’s dominated convergence theorem, that
the map f : θ → F (., θ) is continuous from T2 into L1(J, |ds|). Let us choose
a finite covering of T2 by balls of centers θj, 1 ≤ j ≤ N , so that the L1-
oscillation of f is each ball is smaller than ε/2 and a smooth finite partition
(ψj) of unity subordinated to that covering. Let Fj ∈ C∞o (J) satisfying
‖F (., θj)− Fj‖L1 ≤ ε/2. Such functions do exist (see [Fo-99] Prop. 8.17). If
G(s, θ) =

∑
j ψj(θ)Fj(s), we have∫

J

|F (s, θ)−G(s, θ)|ds| ≤ ε
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This allows to reduce to prove the result for such a function G. We can
again approximate G by a function

L(s, θ) =
∑

n∈Z2, ‖n‖≤N

an(s)exp(2πi < n|θ >)

uniformly in L1(|ds|). We have a0(s) =
∫
T2 L(s, θ)|dθ|. We are left with the

integrals ∫
J

an(s)e2iπt<n|V (s)>|ds|

It follows from the assumption on V that such integrals tend to 0 as t→∞
for n 6= 0.

�

C Symplectic S1-reduction

Let P : M → R be an Hamiltonian on a symplectic manifold (M,ω) so that

the vector field ~P is complete and generates an action of T onto M . Let us
assume that this action is almost free: it is free on an open dense subset of
M and all the isotropy subgroups are finite. Let us look at an energy shell
Sh := P−1(h) for some h ∈ R. The quotient of Sh by the T-action is an
orbifold Rh. Let us denote by πh the canonical projection of Sh onto Rh.
The orbifold Rh admits an unique symplectic structure Ω so that π?(Ω) = ω.
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complètement intégrables au voisinage d’un point critique de
l’application moment. Asymptotic Analysis 24 (3,4):319–342 (2000).
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