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Abstract

Refractory masonry with dry joints is widely used in the steel-making industry for the

linings of several high-temperature components (> 1500 °C) including steel ladles and

furnaces. To properly optimize the design and performance of these linings, thorough

numerical models that consider the presence of joints, joints closure and reopening and

the nonlinear elastic-viscoplastic behaviour (creep and stress relaxation) of refractories at

high temperature are required. The present study reports on the formulation, numerical

implementation, and application of a homogenized multi-scale elastic-viscoplastic model

for the simulation of refractory masonry linings with dry joints. Refractory bricks are

considered to exhibit linear elasticity as well as rate-dependent plasticity. Four joint

patterns are predefined based on the state of bed and head joints. The homogenized

elastic-viscoplastic behaviour of each joint pattern is determined using finite element based

nonlinear homogenization approach. The transition criterion between the four patterns

are defined in terms of macroscopic stresses and strains. Verification of the developed

homogenized constitutive laws is carried out by comparing the numerical results of the

detailed micro models (brick and joints are considered) with the homogeneous equivalent

material models. Furthermore, comparisons with experimental results of refractory masonry

walls subjected to biaxial compression load at room and high temperature are carried

out. Good agreements between the experimental and numerical results are obtained.

Then, the validated models are employed to predict the mechanical behavior of refractory

masonry structures subjected to different loading conditions. The present numerical model

is able to simulate the orthotropic, compressible, rate-dependent homogenized behaviour
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of mortarless refractory masonry structures, and accounts for joints closure and reopening

due to loading and unloading.

Keywords: nonlinear homogenization, computational homogenization, refractories,

masonry, creep, modelling

Nomenclature

Subscripts

b Brick

bed Bed joint

d Deviatoric

eq Equivalent

head Head joint

i, j, k, l Indices of the dimension

UC Periodic unit cell

x, y, z Coordinates

Greek Letters

ν Poisson’s ratio of the bulk material

ε̇ vp 2nd order local viscoplastic strain

rate tensor

Σ 2nd order macroscopic stress tensor

σ 2nd order local stress tensor

σd 2nd order local deviatoric stress ten-

sor

ε t 2nd order local total strain tensor

ε e 2nd order local elastic strain tensor

ε vp 2nd order local viscoplastic strain

tensor

Σeq Macroscopic equivalent stress

σeq Local equivalent stress

Σij Components of macroscopic stress

tensor

σij Components of local stress tensor

ν̃ Macroscopic or effective Poisson’s

ratio

Roman Letters

u Displacement vector

X Position vector

C e 4th order macroscopic or effective

elastic stiffness tensor

N 4th order viscoplastic localization

tensor
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Ė vp 2nd order macroscopic steady state

viscoplastic strain rate

E t 2nd order macroscopic total strain

tensor

I 2nd order identity tensor

Ẽ Macroscopic or effective Young’s

modulus

G̃ Macroscopic or effective shear mod-

ulus

A Creep power law multiplier

db Brick depth

Eij Components of macroscopic strain

tensor

g0 Initial thickness of dry joints

gbed Instantaneous thickness of bed

joints

ghead Instantaneous thickness of head

joints

hb Brick height

lb Brick width

n Creep stress exponent

T Temperature

VUC Periodic unit cell volume

Y Young’s modulus of the bulk mate-

rial

Ėvp
eq Macroscopic equivalent viscoplastic

strain rate

Superscripts

e Elastic

t Total

vp Viscoplastic
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1 Introduction

Refractory masonry with dry joints is extensively used for the linings of several high

temperature components such as steel ladles, furnaces and rotary kilns due to their high

thermal, mechanical and chemical stability, good thermo-mechanical and thermo-chemical

properties [1–5]. When used in steel ladles, they are subjected to high thermal gradients,

thermal shock, cyclic thermal heating and cooling, high thermo-mechanical stresses, slag

attack, and harsh chemical environment [6–11]. Therefore, the lifespan of steel ladles

internal linings is very short (several castings). Moreover, the design and optimization

of these linings is still an engineering challenge due to the complex interaction between

thermal fields, chemistry and the nonlinear mechanical behaviour of refractories at high

temperature [1, 6, 12].

In a typical industrial scale steel ladle, the internal linings are built with dry joints

masonry (also called mortarless masonry). Thousands of refractory bricks are arranged

periodically. Between the contact surfaces of the bricks, there are small gaps called dry

joints. The macroscopic mechanical behaviour of these structures is orthotropic, nonlinear

and different from the behaviour of the material of the bricks due to the following reasons:

first, material discontinuity introduced by the presence of joints, and second, joints closure

and reopening caused by cyclic loading and unloading [13–15]. To properly optimize the

design and performance of these linings, rigorous numerical models are required especially

when experimental work remains a challenging topic due to technical complexities and

severe working conditions. The numerical model should consider the orthotropic and

nonlinear behaviour of the linings at high temperature and should be efficient in terms of

computational time and cost to enable full scale structural modelling of the linings.

However, most of previous studies on mortarless masonry typically focused on masonry

used in civil structures (usually operates at room temperature) [16–24]. Therefore, the

bricks are considered to exhibit isotropic linear elasticity. For example, several experimental

and numerical studies are carried out to investigate the impact of contact surfaces roughness

on the contact area between the bricks [16,18] or load bearing capacity of the wall [25]. In
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these studies, the micro finite element modelling (FEM) approach is adopted (i.e. bricks

and joints are considered and only few bricks and joints are used as a physical model of the

problem). Also, limit analysis and discrete element modelling of the collapse mechanism

of masonry walls subjected to in-plane and out-of-plane loading conditions can be found

in the literature [17,19,26–29]. It should be noted that the micro FEM approach is only

suitable for modelling few bricks and joints because considering all the bricks and joints of

a wall (hundreds of bricks) leads rapidly to too expensive computational costs and solution

convergence problems.

In the case of refractory masonry, very limited number of studies could be found in

the literature. Room and high temperature compression tests on two refractory bricks

were carried out to investigate the impact of applied stress level on the gradual closure of

joints and the contact area between the bricks [30, 31]. It has been found that the contact

area between the bricks increases with the increase of the applied compression stress.

Furthermore, dry joints close gradually (i.e. a decrease in joint thickness) with the gradual

increase of the applied stress. With regard to numerical studies, Hou et al. [32] developed

a 2D micro FE model to investigate the effect of linings thickness and material properties

on the thermo-mechanical behaviour of steel ladle refractory linings. Due to the selected

micro FEM approach, only 2D cut of few bricks and one joint is considered. Nguyen et

al. [14] developed and validated a homogeneous equivalent material model, by replacing the

bricks and joints with an equivalent material, for the simulation of mortarless refractory

masonry structures. The bricks are considered to obey isotropic linear elasticity. The

model considers the influence of joints closure on the homogeneous mechanical response

of the structure. Their results indicate that the macroscopic behaviour of the masonry

structure is orthotropic and nonlinear due to gradual closure of joints. It should be noted

that the macroscopic model developed by Nguyen et al. [14] can be used to simulate large

scale structures, such as steel ladles and furnaces, with reasonable computational costs.

From the above discussion, it could be inferred that most of previous studies on masonry

with dry joints focus on civil structure masonry using micro FEM approach and consider

elastic behaviour of the bricks. However, these models are not suitable to model large sized
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structures such as steel ladles and furnaces. In addition, only one multi scale numerical

model has been developed in the literature and it is suitable to simulate only the elastic or

thermoelastic behaviour of the masonry. At high temperature, elastic models usually leads

to overestimation of stress levels due to the elastic viscoplastic behaviour of refractories at

high temperature [1,15]. More studies to understand the effects of joints, joints closure

and reopening combined with viscoplasticity on the mechanical behaviour of refractory

masonry linings at high temperature are required.

The present paper aims at performing computational nonlinear homogenization of

elastic viscoplastic mortarless refractory masonry structures and developing a multi scale

numerical model for their simulation. The developed model is efficient in terms of

computational cost as it replaces all the bricks and joints with an elastic viscoplastic

homogeneous equivalent material model. The present work is an extension of the previous

work developed by Nguyen et al. and Ali et al. [14,15]. As compared to the work in the

literature [14, 15], the addition of viscoplasticty to the developed multi scale numerical

model promotes better understanding of the nonlinear mechanical behaviour of refractory

masonry structures at high temperature and, therefore, assists in the optimization of their

design and performance.

The present paper is organized as following: in section 2, description of the mortarless

refractory masonry structure is presented. In section 3, periodic nonlinear computational

homogenization of the refractory mortarless masonry structure and identification of the

effective elastic and viscoplastic parameters are presented and discussed. Verification of

the developed models and results of masonry structures subjected to different loading

cases are presented and discussed in section 5. Key findings of the present study and

conclusions are given in section 6.

2 Mortarless masonry structure

In the present study, the mortarless refractory masonry structure illustrated in figure 1

is considered. The height and diameter of a typical industrial steel ladle are around 5

and 4.5 m, respectively [15]. The internal linings (also called working lining) of the ladle
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are built up from thousands of tapered shape refractory bricks. However, for the sake of

simplicity, cuboid bricks are considered in the present study. Bricks with height hb, width

lb and depth db are periodically arranged in running bond texture. Dry joints with initial

thickness (g0 << hb, lb, db) are separating the bricks from each other. The dimensions

of the brick are: lb = 124 mm, hb = 76 mm, db = 185 mm, and the initial thickness of

the joints is 0.1 mm. Often, these joints are resulting from the surface unevenness, shape

and dimensions errors of the bricks during production. However sometimes, for instance

rotary kiln and blast furnace, the joints are designed by attaching cardboard spacers to

the bricks during the installation to compensate for thermal expansion effects.

Two types of joints are defined on the basis of their orientation: bed joints with initial

thickness g0,bed (horizontal joints) and head joints with initial thickness g0,head (vertical

joints). Under cyclic thermal heating and cooling or mechanical loading and unloading,

these joints can close and reopen. It should be noted that the mechanical response of

mortarless masonry structures varies with the closure and reopening of joints. Previous

experimental studies show that the stiffness of mortarless masonry structure increases

with the closure of joints [30,31]. This phenomenon should be considered when developing

thorough numerical models for the simulation of mortarless masonry linings.

Figure 1: (a) Steel ladle lined with mortarless refractory masonry [33]. (b) Schematic of
mortarless masonry wall showing the periodically arranged bricks and the gaps between them.
Vertical gaps are called head joints and horizontal gaps are called bed joints.

For the purpose of considering the impact of joints closure and reopening on the

homogenized elastic-viscoplastic behaviour of mortarless masonry structures, four possible
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joint patterns are predefined (see figure 2). Each pattern is defined based on the state of

both bed and head joints (i.e. open or closed) and represents different periodic masonry

structure with different equivalent behaviour. The four joint patterns are as follows [14]:

1. Pattern C: head and bed joints are closed (all joints are closed).

2. Pattern B: bed joints are closed, while head joints are open.

3. Pattern H: head joints are closed, while bed joints are open.

4. Pattern O: head and bed joints are open (all joints are open).

Figure 2: Schematics of possible joint patterns of mortarless refractory masonry structure (a)
pattern O, (b) pattern H, (c) pattern B, and (d) pattern C. The four joint patterns are defined
based on the state of bed and head joints (open or closed).

In the present study, bauxite-based refractory ceramic is considered as the base material

of the bricks. At high temperature, the constitutive material is assumed to undergo small

deformations (i.e. the displacement gradients are small, each component is small as

compared to unity, |ui,j| << 1) and to exhibit an isotropic linear elasticity as well

as an isotropic steady state rate-dependent plasticity (secondary creep). Under these

assumptions, the total strain second order tensor (ε t) can be described by the symmetric

part of the displacement vector (u) with respect to the position vector (X) of the material

point according to:

ε t = 1
2

 ∂u

∂X
+
(
∂u

∂X

)T
 (1)

The total strain tensor can be additively decomposed into elastic (ε e) and viscoplastic

(ε vp) second order strain tensors according to:

ε t = ε e + ε vp (2)
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The second order linear elastic strain tensor can be determined using Hooke’s law for

isotropic linear elasticity according to:

ε e = 1 + ν

Y
σ − ν

Y
tr(σ)I (3)

where, ν is the Poisson’s ratio of the bulk material of the bricks and Y is the Young’s

modulus of the bulk material of the bricks. σ and I refer respectively to the second order

local stress tensor and the second order identity tensor.

The steady state isotropic viscoplastic strain rate second order tensor (ε̇vp) is expressed

as [34]:

ε̇
vp = 3

2A (σeq)n−1 σd (4)

where A, n are the creep parameters of the bulk material of the bricks. σeq and σd denote

the Von Mises equivalent stress and the second order deviatoric stress tensor, respectively.

The deviatoric stress tensor and Von Mises equivalent stress are expressed as:

σd = σ −
(1

3

)
tr(σ)I (5)

σeq =
√(3

2

)
σd : σd (6)

The required material parameters are taken from [35] and reported in table 1. For

the sake of simplicity, no strain hardening of the constitutive material of the bricks is

considered. In addition, symmetric creep behaviour is assumed (i.e. creep parameters

in tension and compression are equal). Further details on the nonlinear homogenization

analysis and the identification of the homogenized elastic viscoplastic behaviour of the

four patterns and the transition criteria from one joint pattern to another are described in

sections 3 and 4.
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Table 1: Material parameters of bauxite refractory at T = 1000 °C [35].

Property Value
Young’s modulus (Y , MPa) 11000
Poisson’s ratio (ν) 0.2
Creep stress exponent (n) 2.8
Creep power law multiplier (A, s−1 MPa−n) 2.77× 10−8

3 Periodic nonlinear homogenization of mortarless

masonry structures

3.1 Joint pattern C

As indicated previously in the case of joint pattern C, head and bed joints are closed (see

figure 2). Previous experimental studies show that when joints are closed, the mechanical

behaviour of the masonry is similar to the mechanical behaviour of the base material of

the bricks. Thus, the macroscopic elastic-viscoplastic behaviour of pattern C is isotropic,

similar to that of the base material of the bricks and can be described by equations 1 - 6.

3.2 Joint pattern B

3.2.1 Micro modelling

In the case of pattern B, head joints are open, and bed joints are closed (see figure

2). The existence of open joints in the masonry results in a reduction in their effective

stiffness [14, 15,36,37]. Thus, the macroscopic elastic-viscoplastic behaviour of pattern B

is different from that of the base material of the bricks. For the purpose of studying the

homogenized mechanical behaviour of periodic structures, like pattern B, and computing

the effective elastic viscoplastic parameters, the finite element (FE) -based homogenization

technique can be adopted [38–41].

To carry out homogenization of joint pattern B using FE technique, a periodic unit

cell (UC) with volume (VUC) has been selected from the periodic structure as illustrated

in figure 3. Then, 3D−FE simulations have been performed on the UC to characterise its

homogenized elastic viscoplastic response. To account for the periodicity of the structure,
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periodic boundary conditions have been applied to the UC’s boundaries [42–44]. In contrast

to homogeneous boundary conditions, periodic boundary conditions satisfy both boundary

displacement periodicity and boundary traction periodicity. Moreover, homogeneous

boundary conditions are over constrained conditions, violate stress periodicity of the

boundaries and, therefore, are not recommended to be used for periodic UC subjected to

shear loading conditions [42,43].

Figure 3: (a) Schematic of periodic mortarless masonry structure in pattern B. (b) Periodic unit
cell selected from the structure and used for the nonlinear finite element based homogenization
analysis.

Several FE numerical experiments of uniaxial tensile tests along the x, y and z directions

and simple shear tests in the xy, xz, and yz planes (see figure 4) have been performed.

The numerical models have been developed using ABAQUS software and the UC has

been meshed with 3D quadrilateral elements with 1 mm size. For all cases, the UC

has been subjected to an average or macroscopic stress (shear or normal) of 1.5 MPa.

The base material of the bricks is considered to exhibit an isotropic linear elasticity, an

isotropic steady state rate-dependent plasticity (secondary creep) and to obey the elastic

and viscoplastic constitutive equations given in section 2.

To characterise the homogenized elastic behaviour of the UC and to avoid the contribu-

tion of the viscoplastic strain when calculating the effective elastic stiffness of the structure,

first, purely elastic numerical simulations have been carried out. Then, viscoplastic numer-

ical analysis have been performed on the UC to characterise its homogenized viscoplastic

response. From figure 4, it can be seen that the periodicity of boundary displacements and
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stresses are satisfied due to the applied periodic boundary conditions. From the uniaxial

tensile and simple shear numerical tests of the UC subjected to macroscopic normal or

shear stress of 1.5 MPa, the macroscopic strain tensor and the effective material parameters

can be found.

Figure 4: Von Mises stress (in MPa) distribution in a periodic unit cell subjected to periodic
boundary conditions and (a) uniaxial tension along the x-direction (σxx=1.5 MPa), (b) uniaxial
tension along the y-direction (σyy=1.5 MPa) and (c) simple shear in the xy plane (τxy=1.5 MPa).

3.2.2 Macroscopic constitutive equations

Macroscopic elastic behaviour

The first goal is to define a relation between macroscopic stress tensor and macroscopic

elastic strain tensor (i.e. determine the effective elastic stiffness tensor of pattern B).

Due to the existence of open joints, the macroscopic elastic behaviour of pattern B is

orthotropic and can be described using equation 7. In the case of orthotropic linear elastic

materials, the macroscopic stress tensor is related to the macroscopic elastic strain tensor

through the macroscopic form of Hooke’s law as following [45]:

Σ = C e : E e (7)

where Σ and E e are the second order macroscopic stress and elastic strain tensors while,

C e is the fourth order macroscopic elastic stiffness tensor.

In equation 7, the second and fourth order tensors are symmetric and, therefore, they

can be respectively reduced to 6 × 1 and 6 × 6 matrices using the Voigt notations [41].

The effective elastic fourth order tensor is characterized by 9 nonzero components and

can be written in a matrix form, with respect to the principal material coordinate system,
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using Voigt notations as follows [45]:

C e =



1−ν̃23ν̃32
Ẽ22Ẽ334

ν̃21+ν̃31ν̃23
Ẽ22Ẽ334

ν̃31+ν̃21ν̃32
Ẽ22Ẽ334

0 0 0
ν̃12+ν̃13ν̃32
Ẽ11Ẽ334

1−ν̃31ν̃13
Ẽ11Ẽ334

ν̃32+ν̃31ν̃12
Ẽ11Ẽ334

0 0 0
ν̃13+ν̃12ν̃23
Ẽ11Ẽ224

ν̃23+ν̃13ν̃21
Ẽ11Ẽ224

1−ν̃12ν̃21
Ẽ11Ẽ224

0 0 0

0 0 0 G̃12 0 0

0 0 0 0 G̃13 0

0 0 0 0 0 G̃23



[MPa], (8)

with,

4 = 1− ν̃12ν̃21 − ν̃23ν̃32 − ν̃31ν̃13 − 2ν̃12ν̃23ν̃31

Ẽ11Ẽ22Ẽ33
(9)

In the above equations, Ẽ and ν̃ denote respectively the macroscopic or effective Young’s

modulus and the macroscopic or effective Poisson’s ratio. G̃ is the macroscopic or effective

shear modulus.

According to the average theorems, when a uniform stress is applied to the boundary

surfaces of the UC, the macroscopic stress is equal to the applied stress (i.e. σ = Σ) [41].

Another possible approach for calculating the macroscopic stress is to integrate the

local stress fields over the volume of the UC (VUC) according to Hill’s definition as

follows [38,46,47]:

Σ = 〈σ〉 = 1
VUC

∫
VUC

σdV (10)

From the simulated combination of uniaxial tensile and simple shear tests, the local

strains can be obtained from solving the boundary value problem of the UC subjected to

average normal or shear stress of 1.5 MPa. From the local elastic strains, the macroscopic

elastic strains can be calculated. Then, using equations 7 - 9, the 9 nonzero components of

C e can be found and the relation between the macroscopic stress tensor and macroscopic

elastic strain tensor can be established.

In previous studies, two main approaches have been used to calculate the macroscopic

strain fields [38, 46, 48–52]. The first approach is based on calculating the macroscopic

total strain by integrating the local total strain (ε t) over the volume of the UC according
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to [38,48–50]:

E t = 〈ε t〉 = 1
VUC

∫
VUC

εdV (11)

In the second approach, the macroscopic elastic strains are calculated from the average

change in the displacements of the UC’s corners (i.e. by dividing the change in displace-

ments of the corners by the initial dimensions of the UC) [46,51,52]. If there are neither

gaps nor cracks in the UC, both techniques converge to the same value. However, in the

case of joint pattern B, the macroscopic elastic strains cannot be computed by integrating

the micro (or local) strains over the volume of the UC (first approach). As, the presence of

open joints within the UC leads to discontinuous displacement fields (see figure 5), because

there is neither viscosity nor rigidity in the volume of the gaps (i.e. local strains within

the gaps are unknown) [38,46]. Therefore, in the present study, the second approach has

been used to calculate the macroscopic strains. The calculated 9 nonzero components

of C e are reported in table 2. Now, the relationship between macroscopic stresses and

macroscopic elastic strains is established. Further details on defining the macroscopic

viscoplastic behaviour law are given below.

Figure 5: Displacement discontinuity in a periodic unit cell subjected to uniaxial tension along
the x direction. The displacement discontinuity is caused by the presence of open head joints
(vertical gaps).

Macroscopic viscoplastic behavior

The second goal is to define a macroscopic constitutive law to describe the viscoplastic

behaviour of joint pattern B. Time variations of the macroscopic total strains (instantaneous

elastic and viscoplastic) in a periodic UC subjected to uniaxial and simple shear constant
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stress loading conditions (σii = τij = 1.5 MPa) are shown in figure 6. It can be seen that

the macroscopic elastic viscoplastic behaviour of joint pattern B is orthotropic (due to

the presence of joints) and the homogenized mechanical responses of the material in the y

and z directions are similar (as there are no joints in the z direction, and joints in the y

direction are closed). In order to describe the macroscopic viscoplastic behaviour of joint

pattern B, an orthotropic creep equation is required. It should be noted that equation 4 is

suitable only for describing the local creep behaviour of isotropic materials such as joint

pattern C.

Figure 6: Macroscopic total strains in a periodic unit cell subjected to periodic boundary
conditions as well as constant stress uniaxial tension (in the x, y and z directions) and simple
shear loading (in the xy, xz and yz planes) (Σii = Σij=1.5 MPa). The macroscopic elastic
viscoplastic behaviour of the structure is orthotropic.

The orthotropic homogenized steady-state viscoplastic behaviour of heterogeneous

solids can be described using the macroscopic form of equation 4 developed by Tsuda et

al. [38, 39, 52, 53]. The main advantage of this constitutive law is that using the same

parameters of the base material, the orthotropic homogenized viscoplastic behaviour of

heterogeneous solids can be found. The constitutive law is obtained through averaging

the local fields (σ, ε̇ vp, σeq) over the volume of the UC and using a localization tensor

according to:

Ė vp = 1
2A (Σeq)n−1 N : Σ (12)

with A and n are materials parameters of the bricks, reported in table 1, Σeq and N are
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the macroscopic equivalent stress and a fourth order tensor with the same meaning of

the localization tensor. The N tensor accounts for the orthotropy and compressibility

(in the x direction, see figure 6) of the structure and enables using the creep parameters

of the constitutive material (i.e. bridge between the micro and macro scales). The N

tensor is symmetric and can be represented by 6 × 6 matrix using the Voigt notations.

N is characterized by 9 nonzero components and can be represented, with respect to the

principal material coordinate system, as:

N =



N11 N12 N13 0 0 0

N12 N22 N23 0 0 0

N13 N23 N33 0 0 0

0 0 0 N44 0 0

0 0 0 0 N55 0

0 0 0 0 0 N66



(13)

For heterogeneous solids, the macroscopic equivalent stress is written in terms of the

macroscopic stress tensor and N as [38,52,54]:

Σeq =
√

1
2
(
Σ
)T

: N : Σ (14)

Here
(
Σ
)T

is the transpose of the macroscopic stress second order tensor. The macroscopic

equivalent viscoplastic strain rate (Ėvp
eq ) is defined in terms of N and Ė vp as follows [38]:

Ėvp
eq =

√
2
(
Ė vp

)T
:
(
N
)−1

: Ė vp (15)

By combining equations 12 - 14 and using the combinations of uniaxial and simple

shear finite element numerical tests presented before, the 9 non-zero components of the

tensor N can be calculated and the macroscopic creep law can be defined.

Under uniaxial loading and periodic boundary conditions the shear components of the

macroscopic stress tensor vanish. Therefore, the first 6 components of N can be defined

as follows [38]:
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- Uniaxial tension along the x-direction

N11 = 2
( 1

Σxx

)2 (ΣxxĖ
vp
xx

A

) 2
n+1

(16)

N12 =
(
Ėvp
yy

Ėvp
xx

)
N11 (17)

N13 =
(
Ėvp
zz

Ėvp
xx

)
N11 (18)

- Uniaxial tension along the y-direction:

N22 = 2
(

1
Σyy

)2 (ΣyyĖ
vp
yy

A

) 2
n+1

(19)

N12 =
(
Ėvp
xx

Ėvp
yy

)
N22 (20)

N23 =
(
Ėvp
zz

Ėvp
yy

)
N22 (21)

- Uniaxial tension along the z-direction:

N33 = 2
( 1

Σzz

)2 (ΣzzĖ
vp
zz

A

) 2
n+1

(22)

N13 =
(
Ėvp
xx

Ėvp
zz

)
N33 (23)

N23 =
(
Ėvp
yy

Ėvp
zz

)
N33 (24)

Under shear loading and periodic boundary conditions, the normal components of Σ

vanish and the shear components of N are written as follows:

- Simple shear in the xy-plane:

N44 = 2
(

1
Σxy

)2 (ΣxyĖ
vp
xy

A

) 2
n+1

(25)

- Simple shear in the xz-plane:
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N55 =
( 1

Σxz

)2 (ΣxzĖ
vp
xz

A

) 2
n+1

(26)

- Simple shear in the yz-plane:

N66 = 2
(

1
Σyz

)2 (ΣyzĖ
vp
yz

A

) 2
n+1

(27)

In the previous equations, the values of macroscopic normal and shear stresses are equal

to the applied average stresses. The macroscopic viscoplastic strain rates are determined

from the time derivative of the macroscopic viscoplastic strain (E vp calculated from the

displacement of the corners of the UC as described before). The obtained values of the 9

none-zero components of N are reported in table 2. It can be observed that the y and

z components of the tensor are almost the same (due to the absence of joints in the z

direction, only one brick in the depth of the wall, and the absence of open joints in the

y direction). To compare the components of the N tensor of joint pattern B and those

of the constitutive material, the components of N tensor have been identified for joint

pattern C, using the same approach, and reported in table 2. It can be seen that, in the

case of pattern B, the y and z components of N tensor are almost equal to those of the

constitutive material of the bricks.

3.3 Joint pattern O

As presented earlier, in the case of pattern O, both head and bed joints are open. It can

be seen from figure 2 that the masonry structure is composed of an array of separated

bricks and the masonry structure is disconnected. For the purpose of computing the

effective mechanical parameters of the structure (elastic and viscoplastic), one cannot use

finite element-based homogenization approach (micro modelling) presented earlier because

the boundary value problem of the UC is not clearly defined. However, the mechanical

parameters of the constitutive material can be used to define the effective mechanical

properties of joint pattern O [14,15,36]. Due to the existence of open joints in the x and

y directions, the effective elastic and viscoplastic mechanical parameters of the masonry
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structure in the x and y directions are very small. Therefore, the effective Young’s modulus

and the components of N in directions x and y are zero (Ẽx = Ẽy = 0, see the coordinate

system in figure 3). In addition, the effective Young’s modulus and N components in

z direction are equal to those of the constitutive material due to the absence of joints

in the z direction (only one brick in the z direction). The C e and N tensors of joint

pattern O are reported in table 2. To facilitate the numerical computations and to avoid

numerical singularities and solution divergence, a very small value has been assigned to

Ẽx, Ẽy, ν̃xy, ν̃xz, ν̃yz and G̃xy instead of zero.

3.4 Joint pattern H

In the case of joint pattern H, head joints are closed whereas bed joints are open (see

figure 2). The masonry structure is composed of an array of separated courses of bricks

(in the y-direction). Thus, the structure has zero macroscopic stiffness in the y-direction

(due to the presence of open joints) while it has stiffness in the x (as all joints are closed

in this direction) and z-directions (only one brick in the z direction) [14,15,36]. Similar

to pattern O, one cannot use finite element-based homogenization approach presented

earlier because the boundary value problem of the UC is not clearly defined. However,

the mechanical parameters of the constitutive material can be used to define the effective

mechanical properties of joint pattern H. Since bed joints are open, the macroscopic

stiffness of the structure in direction y is very small and Ẽy is zero. Thus, the components

of N in the y direction are also equal to zero. However, the effective Young’s modulus and

N components in x and z directions are equal to those of the constitutive material due to

the absence of joints in the z direction and the absence of open joints in x direction. The

C e and N tensors of joint pattern H are reported in table 2.
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Table 2: Effective elastic and viscoplastic 4th order tensors of the four joint patterns.

Pattern C (MPa) N (-)

O

1 0 0 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0

11000 0 0 0 2.01 0 0 0
0 0 0 0 0 0

sym. 4583 0 sym. 6.01 0
4583 6.01

H

11485 0 2291 0 0 0 2.01 0 −0.99 0 0 0
1 0 0 0 0 0 0 0 0 0

11485 0 0 0 2.01 0 0 0
0 0 0 0 0 0

sym. 4583 0 sym. 6.01 0
4583 6.01

B

4430 1113 1103 0 0 0 6.25 −1.10 −0.49 0 0 0
11738 2560 0 0 0 2.01 −0.99 0 0 0

11733 0 0 0 1.99 0 0 0
3602 0 0 7.18 0 0

sym. 3315 0 sym. 8.25 0
4583 6.01

C

12222 3055 3055 0 0 0 2.01 −0.99 −0.99 0 0 0
12222 3055 0 0 0 2.01 −0.99 0 0 0

12222 0 0 0 2.01 0 0 0
4583 0 0 6.01 0 0

sym. 4583 0 sym. 6.01 0
4583 6.01

4 Joints closure and reopening criteria

As discussed above, each joint pattern has different homogeneous elastic viscoplastic

response. In normal operating conditions, the masonry is subjected to cyclic thermal or

mechanical loading and unloading. Thus, head or bed or both joints may close and reopen.

Consequently, the masonry structure changes from one joint pattern to another leading to

a change in the macroscopic elastic viscoplastic behaviour of the structure. In the present

work, this change has been taken into account by using suitable joints closure, reopening

and pattern transition criteria.

Before loading, head and bed joints are open and the masonry structure can be fully

described by pattern O. Under compression loads, the thickness of head or bed or both

joints decreases gradually from the initial value (g0, around 0.1 to 0.2 mm) to zero and

the structure changes from pattern O to either pattern H (when head joints close) or
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pattern B (when bed joints close). In addition, the structure may change from pattern O

to pattern C if both head and bed joints close. Based on the instantaneous thickness of

the joints g, head and bed joints are considered to be open as:

Joint open if gbed or head > 0 (28)

As the equivalent material properties of the masonry are piecewise constant, the

displacement increment at every point in the structure linearly depends on the increment

in the macroscopic quantities [14, 15]. Thus, the instantaneous thickness of the head and

bed joints can be written in terms of the macroscopic components of total strains in the x

(Et
xx) and y (Et

yy) directions as:

ghead = g0, head +MxE
t
xx (29)

gbed = g0, bed +MyE
t
yy (30)

Where gbed and ghead are the instantaneous thickness of bed and head joints, respectively.

g0,bed and g0,head denote the initial thickness of bed and head joints, respectively. My and

Mx are parameters with the same meaning of the localization tensor, and they depend

on the dimensions of the brick (My = hb and Mx = lb). Et
yy and Et

xx are the macroscopic

total strains (elastic and viscoplastic strains) in the y and x directions.

With regard to joints reopening criterion, head and bed joints can reopen if the normal

stress to the surface of the joint (head or bed) is higher than zero (i.e. tensile stress). In

other words, a head joint can reopen if σxx > 0 and a bed joint can reopen if σyy > 0. As

the macroscopic stresses are linearly dependent on local stresses (see equation 10), joints

reopening criterion can be rewritten in terms of macroscopic stresses using localization

tensor Σyy −→ σyy and Σxx −→ σxx. The joints closure, reopening and transition criteria

from joint pattern O to pattern H, joint pattern H to pattern B, joint pattern H to pattern

C, joint pattern B to pattern C, and the opposite are presented in figure 7.
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Figure 7: Schematics of all possible joint patterns of mortarless refractory masonry structure
and joints closure and reopening criteria due to loading and unloading. Joints closure criteria
are written in terms of macroscopic total strains. Joints reopening criteria are defined in terms
of macroscopic stresses.

5 Results and discussion

5.1 Comparisons between the micro and macro modelling

The main aim of this section is to assess the accuracy of the developed macroscopic elastic

viscoplastic numerical model. For this purpose, the equivalent material model (hereafter

will be called macro model) has been implemented in the finite element code, Abaqus [55],

with a user material subroutine UMAT. Then, it has been used to simulate uniaxial, simple

shear and biaxial numerical experiments. Two different loading conditions have been

considered namely, constant stress (creep) and constant strain loading (stress relaxation).

For both loading conditions, comparisons between results from the macro and micro models

are performed. In the case of macro modelling, the bricks and the joints are replaced by

an equivalent homogeneous medium and the macro constitutive laws (equations 7 - 27)

are used. Whereas, in the case of micro modelling, the bricks and joints are considered

and the micro constitutive laws (equations 1 - 6) are used.
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For joint pattern B, comparisons between average total strains (elastic and viscoplastic

strains) obtained from the micro and macro models for both constant stress uniaxial tensile

load in the x, y and z directions and simple shear load with respect to the xy, xz and yz

planes are shown in figure 8. The comparisons are presented for three constant stress levels

in the respective direction. Good agreements between the results obtained from the macro

and micro models can be observed. In addition, it can be observed that the macroscopic

elastic viscoplastic behaviour of pattern B is orthotropic due to the presence of open joints.

In the case of uniaxial loading in the y and z directions, values of the macroscopic total

strains (Et
yy and Et

zz) are almost the same because there are neither open joints in the

y direction nor in the z direction. However, Et
yy and Et

zz are less than Et
xx, because the

presence of open joints in the x direction leads to a decrease in the effective stiffness of

the structure and compressibility in the respective direction.
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Figure 8: Comparisons between average total strains obtained from the detailed micro model
(bricks and joints are considered) and macro model (bricks and joints are replaced by equivalent
homogeneous medium) for constant stress uniaxial tension (in the x, y and z directions) and
simple shear loadings (in the xy, xz and yz planes).

It should be noted that the previous constant stress loading conditions (uniaxial and

simple shear) are used to identify the elastic viscoplastic parameters of the structure and,

therefore, the agreements between the micro and macro models results are predicted. To
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further examine the macro model and the identification technique, comparisons between

the results of the micro and macro model under two different loading conditions (from

those used in the identification) are carried out. The two loading conditions are biaxial

constant stress loading and constant strain rate uniaxial loading. In the biaxial constant

stress loading case, the following combination of compressive and tensile stresses are

considered: compressive stress of 3 MPa in the x direction and tensile stress of 1 MPa

in the y direction (Σxx = −3 MPa and Σyy = 1 MPa). Comparisons between average

total strains obtained from the micro and macro models are presented in figure 9. Good

agreements between the micro and macro models are observed.

Figure 9: Comparisons between average total strains obtained from detailed micro model
(bricks and joints are considered) and macro model (bricks and joints are replaced by equivalent
homogeneous medium) for constant stress biaxial loading (compression in the x direction and
tension in the y direction).

In the second loading case, comparisons between average stresses obtained from the

micro and macro models for constant strain rate uniaxial tensile loading in the x, y and z

directions and simple shear with respect to the xy, xz and yz planes are shown in figure

10. The comparisons are presented for three constant strain rate levels. Good agreements

between the results obtained from the macro and micro models can be observed. Overall,

the stresses increase sharply due to load application and then, during holding, there is a

decay due to stress relaxation. Again, similar values of macroscopic stresses have been
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observed in the case of uniaxial loading in the y and z directions. However, Σyy and Σzz

are higher than Σxx, because the effective stiffness of the structure in the x direction is

lower than that in the y and z directions.

Figure 10: Comparisons between average macro stresses obtained from detailed micro model
(bricks and joints are considered) and macro model (bricks and joints are replaced by equivalent
homogeneous medium) for constant strain rate uniaxial tension (in the x, y and z directions)
and simple shear loadings (in the xy, xz and yz planes).
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5.2 Modelling of masonry structures subjected to different loading conditions

The previous results have shown the capability of the developed model to describe the

orthotropic and rate-dependent homogenized behaviour of the four periodic joint patterns

of mortarless masonry structure described before. The focus now is to model masonry

structures subjected to different loading conditions and to take into account joints closure

and reopening due to loading and unloading and their impact on the elastic viscoplastic

behaviour of masonry structures.

In order to validate the present numerical models, comparative studies with experimen-

tal results reported in [14,56–58] of Magnesia Chromite refractory masonry walls subjected

to biaxial compression load at room temperature and 1200 °C are carried out. The biaxial

compression test setup is shown in figure 11. Magnesia Chromite bricks with length of 124

mm, height of 76 mm and depth of 185 mm are periodically arranged in a running bond

texture. The mechanical parameters of the constitutive material of the bricks are reported

in table 3. The size of the wall is 1100× 1100× 185 mm3 and it is made up of 15 courses,

all of them are active. The wall is surrounded by four ceramic plates, two of them are

fixed while, the other two can move thanks to two hydraulic jacks.

For the purpose of measuring the displacement in the x (perpendicular to the contact

surfaces of head joints) and y (perpendicular to the contact surfaces of bed joints) directions,

four linear variable differential transformers (LVDT) are used (see Fig. 11).The testing

procedures were as following: first a pre-compression load was applied to the two moving

ceramic plates at the same time and then, it was stopped in the direction for which the

LVDTs detected a displacement while continuing in the second direction until the LVDTs,

in the corresponding direction, detected a displacement. Finally, monotonically increasing

loads were applied to both directions at the same time. For the high temperature test,

the test field was covered by a heating hood. The temperatures of the top face (hot face)

and bottom face (cold face) were measured. During heating, the masonry wall was free

to expand. Once the wall reached the thermal steady state, the compression loads were

applied similar to the room temperature test. The temperatures of the hot and cold faces

during load application were around 1200 °C and 800° C, respectively. Further details
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about the experimental setup are reported in references [14,56–58].

Table 3: Mechanical properties of Magnesia Chromite bricks at different temperatures [31,56,
58,59].

Temperature (°C) Y (GPa) ν (-) n (-) A (S−1MPa−n)

25 28.5 0.2 ——–
800 15.4 0.2 ——–
1000 10.6 0.2 ——–
1100 9.8 0.2 2.86 1.18× 10−16

1200 9.1 0.2 2.86 2.77× 10−16

Figure 11: Setup of the biaxial compression tests a) at room temperature and b) 1200 °C of
Magnesia Chromite refractory masonry wall [14, 56–58].

The finite element models of the room and high temperature tests were developed

using ABAQUS software and the wall was meshed with 3D quadrilateral elements. The

four ceramic loading plates (fixed and moving) are replaced by rigid plates. The masonry

(bricks and dry joints) is replaced by an equivalent material model whose mechanical

properties depend on the state of bed and head joints (open or closed). The effective

elastic and viscoplastic parameters of the four joint patterns are computed using FE based

nonlinear homogenization technique, described in section 3.2, and are reported in tables

A1 and A2 in the appendix. For room temperature test, the mechanical behavior of the

masonry is assumed to be elastic while, for high temperature test it was assumed to be

elastic-viscoplastic. In both cases, the macroscopic behavior changes with the change of

joint pattern (i.e., closure of bed, head or both joints).

Comparisons between experimental and numerical stress-strain diagrams of masonry
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walls subjected to biaxial compression at room temperature and 1200 °C are reported

in figure 12. The strains, in the x and y directions, are calculated from the average

displacements measured by the LVDTs and the stresses were determined from the resulting

reaction forces of the two moving ceramic loading beams. It can be noticed that the present

multi scale numerical model can reproduce, with reasonable accuracy, the mechanical

behavior of the masonry structure under biaxial compression at either room temperature or

1200 °C. It can be noticed from figure 12 that the macroscopic mechanical behavior in both

x and y directions is orthotropic. This can be attributed to that the number of joints in

the x and y directions, the length and height of the bricks are different. Furthermore, the

macroscopic behavior of the wall is nonlinear due to change of the macroscopic mechanical

parameters of the masonry with the gradual closure of the joints. As compared to room

temperature test, the strains (and displacements, see figures 13 and 14) in the x and y

directions are higher. This can be attributed to that the decrease of the material stiffness

at high temperature and viscoplasticity. Joint patterns by the end of load application

step of the two tests are presented in figure 15. Higher percentage of closed bed and head

joints are noticed in the case of the test at 1200 °C as compared to room temperature test.

Figure 12: Stress-strain diagrams of refractory masonry wall subjected to biaxial compression
load at a) room temperature and b) 1200 °C: experimental and numerical results.
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Figure 13: Horizontal displacement fields, in the x direction, in refractory masonry wall
subjected to biaxial compression load at a) room temperature and b) 1200 °C. The word fixed
indicates the location of the fixed rigid plates, while the arrows indicate the location and load
direction of the moving rigid plates. The interactions between the contact surfaces of the wall
and the fixed and moving rigid plates are considered using frictional contact.

Figure 14: Vertical displacement fields, in the y direction, in refractory masonry wall subjected
to biaxial compression load at a) room temperature and b) 1200 °C. The word fixed indicates
the location of the fixed rigid plates, while the arrows indicate the location and load direction of
the moving rigid plates. The interactions between the contact surfaces of the wall and the fixed
and moving rigid plates are considered using frictional contact.
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Figure 15: Joints pattern in a refractory masonry wall subjected to biaxial compression load at
a) room temperature and b) 1200 °C. The word fixed indicates the location of the fixed rigid
plates, while the arrows indicate the location and load direction of the moving rigid plates. The
interactions between the contact surfaces of the wall and the fixed and moving rigid plates are
considered using frictional contact.

Schematics of the masonry structure geometry subjected to uniaxial compression in x

and y directions as well as the boundary conditions are presented in figure 16. Refractory

bricks with length of 250 mm, height of 76 mm and depth of 185 mm are periodically

arranged in a running bond texture. The base material of the bricks is Bauxite based

refractories with material parameters reported in table 1. The size of the masonry structure

is 1100× 1100× 185 mm3 and it is made up of 14 courses. All the courses are active as

the loads are applied to the simulated rigid plates, see figure 16. Friction forces between

the rigid plates and the masonry and between the masonry and the ground are taken

into account by considering friction contact between their adjacent surfaces (coefficient of

friction = 0.5). The number of dry bed and head joints is 14 and 4 joints, respectively, with

0.1 mm thickness. The structure is assumed to be laid on the ground (xy- plane) and the

gravity effects are considered. Two loading, holding and unloading (LHU) conditions are

considered, to predict the creep and stress relaxation behaviour of the structure, namely

constant displacement load and constant stress load. The loading, holding and unloading

steps are as follows: displacement or stress load is applied (first step, loading), then kept

constant for a specific time (second step, holding) and finally unloading (third step, load

removal).
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Figure 16: Schematics of masonry structures subjected to uniaxial compression in a) y- direction
and b) x-direction: geometry and boundary conditions.

Gradual closure and reopening of joints in masonry structures subjected to uniaxial

displacement LHU in the x and y directions are shown in figure 17 (points a to d are

corresponding to points a to d in figure 18). Initially (figure17-a), all bed and head joints

are open and the masonry structure is in pattern O (in both cases, x and y-LHU). In

the case of y-LHU, the thickness of bed joints decreases gradually, with the increase of

the applied displacement in the y direction, until joints closure while head joints are still

open. Therefore, the masonry structure changes from pattern O to pattern B (figure17-b).

During the holding step, bed joints remain closed (figure 17-c). Finally, during unloading,

few bed joints near the fixed rigid plate reopen and, thus, the masonry structure change

from pattern B back to pattern O. Similarly, in the case of x-LHU, with the gradual

increase of the applied displacement in the x direction, head joints close gradually while

bed joints remain open and, therefore, the masonry structure changes from pattern O

to pattern H. Also, during holding step, there are no joints opening. However, during

unloading, some head joints near the fixed rigid plate reopen and, as a result, there is a

change to pattern O. In both cases (x and y-LHU), as expected, joints near the moving

rigid plates close before those near the fixed rigid plate.
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Figure 17: Gradual closure and reopening of joints in masonry wall subjected to uniaxial
compression loading (displacement), holding and unloading in the y and x directions. (a) All
joints are open (pattern O) at time = 0 seconds. (b) Gradual closure of joints due to the applied
displacement. (c) All bed or head joints remain closed during the holding step. (d) Some joints
reopen due to unloading.

Time variations of global displacement and stress of masonry structures subjected to

constant uniaxial displacement LHU in the x and y directions are shown in figure 18. The

global displacements are determined from those of the surfaces in contact with the moving

rigid plates (i.e. y = 1100 mm in the case of y− loading and x = 0 mm in the case of

x−loading, see figure 16, and the stresses are calculated from the reaction forces of the

moving rigid plates. During the first 180 sec., a displacement of 1.7 mm has been applied

to the moving rigid plates (loading), then the displacement has been kept constant for the

next 1000 sec. (holding) LHU and finally the rigid plates have been returned back to the

initial position (unloading). During loading and holding steps, as can be seen from the

figure 18, the global displacement of the masonry structure is equal to the displacement

of the moving rigid plates (increases gradually to 1.7 mm during loading then remains

constant during holding). However, during unloading, the masonry structure does not

return back to its initial position and there is permanent deformation even after unloading

(global displacement of the structure after unloading is around 1.5 mm). The reason

for this behaviour is twofold; first, after unloading only few joints reopen and their final
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thickness is very small as compared to the initial one (0.1 mm), second, the permanent

deformation caused by viscoplasticity of the structure (see figures 19 and 20). As can be

seen from figures 19 and 20, in the case of x-LHU, Evp
xx is higher as compared to Evp

yy in the

case of y-LHU, because Σxx > Σyy and according to equation 12, the viscoplastic strain

rate increases with the increase of the stress.

Figure 18: Time variations of a) global displacement and b) stress of masonry wall subjected to
uniaxial compression displacement loading, holding and unloading in the x and the y directions.
In both cases (x and y), the applied displacement load is equal. However, resulting stresses are
different due to the orthotropic elastic-viscoplastic behaviour of the masonry structure.

Figure 19: Contours of viscoplastic strain and final head joints thickness (in mm) after unloading
in mortarless masonry structure subjected to constant uniaxial compression displacement loading,
holding and unloading in the x direction. After unloading, few head joints reopen (ghead > 0)
and their thickness is very small as compared to the initial thickness (0.1 mm).
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Figure 20: Contours of viscoplastic strain and final bed joints thickness (in mm) after unloading,
in mortarless masonry structure subjected to constant uniaxial compression displacement loading,
holding and unloading in the y direction. After unloading, few bed joints reopen (gbed > 0) and
their thickness is very small as compared to the initial thickness (0.1 mm).

Regarding time variations of stresses in the masonry structures, it has been noticed

that, under the same applied displacement load (for both x and y-LHU), macroscopic

stresses in the x direction (Σxx) are higher than stresses in the y direction (Σyy). This

behaviour clearly illustrates the macroscopic orthotropic behaviour of the structure. In the

case of x-LHU, during the first 75 seconds Σxx values are very small, because during this

period gradual closure of head joints is occurring and the masonry structure is changing

from pattern O to pattern B (i.e. material stiffness is very low). After closure of joints

Σxx increases at higher rate to reach a peak of around 7.5 MPa by the end of loading

step. Then during holding, a decrease in Σxx can be noticed due to stress relaxation and,

finally, after unloading Σxx returns to zero. Similarly, in the case of y-LHU, at the first

170 seconds Σyy is very small as during this period bed and head joints are open (material

stiffness is very small). Then, after bed joints closure, Σyy increases at higher rate to reach

a peak of 2.5 MPa. Finally, a stress decay has been noticed due to stress relaxation.

It should be noted that, the peak in Σxx is much higher as compared to the peak in

Σyy. Also, the time period during which Σyy is almost zero is longer as compared to this

of Σxx. This can attributed to that the number of head joints is less as compared to the

number of bed joints (4 head joints and 14 bed joints, see figure 16). Therefore, the closure

of all head joints (due to gradual increase of applied x displacement) and the increase

of macroscopic stiffness in the x direction of the material occurs faster as compared to
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the closure of all bed joints (due to gradual increase of applied y displacement) and the

increase of the material stiffness in the y direction.

Schematics of masonry structure geometry subjected to constant stress uniaxial com-

pression in the x and y directions as well as the boundary conditions are presented in

figure 16. Time variations of homogenized total strains in masonry structures subjected to

constant uniaxial stress LHU conditions in the x, first loading case, and y, second loading

case, directions are presented in figure 21. In both cases, the total strains in the normal

directions to the surfaces of the dry joints are reported (i.e. Et
xx and Et

yy). The loading

steps are: first, applying constant stress of 1.5 MPa, second, holding for 50, 000 seconds

and finally, unloading. Overall, it has been observed that total strains, in the loading

direction, increases instantaneously due to load application, then increases at constant

rate due to creep and finally it decreases slightly due to unloading. In addition, after load

removal, the recovered strain (in the loading direction) is very small as compared to the

instantaneous strain (due to the applied load at t = 0 sec). This can be attributed to that,

first, during unloading, only few joints reopen and their final thickness is very small as

compared to the initial joint thickness, second, the permanent deformation resulting from

the viscoplastic behaviour of the structure.

Moreover, in the first loading case (x-LHU), the resulting instantaneous strain, in the

loading direction (Et
xx at t = 0 seconds), is less as compared to the resulting instantaneous

strain, in the loading direction (Et
yy at t = 0 seconds), in the second loading case (y-LHU).

The reason for this is that the number of bed joints is higher than the number of head

joints. Consequently, under the same applied stress level, all head joints close faster than

bed joints and the increase of the macroscopic stiffness of the masonry in the x direction

(during load application step) occurs faster as compared to the increase of the structure

stiffness in the y direction. This leads to lower values of resulting instantaneous strain

under the same applied stress level.
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Figure 21: Time variations of macroscopic total strains in masonry structure subjected to
constant stress loading, holding and unloading in the x and y directions. The total strains in the
normal directions to the surfaces of the dry joints are reported. In both cases (x and y), the
applied stress load is equal (1.5 MPa). However, resulting total strains are different due to the
orthotropic elastic-viscoplastic behaviour of the masonry structure.

In the first loading case (x-LHU), gradual closure of joints is similar to those presented

in figure 17-b (change from pattern O to pattern H due to load applications). As explained

earlier, in the case of joint pattern H, the components of C e and N in the y direction

are equal to zero. It can bee seen from figure 21 that during the whole period (LHU),

Et
yy = 0 and, therefore, bed joints remain open. In the second loading case (y-LHU), bed

joints close due to load application and the structure changes from pattern O to pattern

B (see figure 22). Since the x components of C e and N have values, it can be seen that

Et
xx increases with the passage of time. Consequently, as depicted in figure 22, head joints

close gradually and the structure changes from pattern B to pattern C. The closure of

head joints is mainly due to viscoplasticity (creep). At around 30,000 seconds, all head

joints are closed and they remain closed until the end of the holding step. After unloading,

some joints reopen and the recovered strain in the y direction is very small as compared

to the instantaneous strain. In addition, there is no strain recovery in the x direction,

because it is mainly caused by the viscoplasticity of the structure.
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Figure 22: Gradual closure and reopening of joints in masonry wall subjected to 1.5 MPa
constant stress LHU in the y direction. Points a to e are indicated in figure 21. (a) Gradual
closure of bed joints due to the applied load. (b) All bed joints are closed by the end of the
loading step. (c) Head joints close gradually due to creep. (d) All bed and head joints are closed.
(e) Joints reopening due to unloading.

6 Conclusion

In the present study, computational homogenization of elastic viscoplastic refractory

masonry with dry joints is performed. Four possible joint patterns are predefined based

on the state of bed and head joints. Each joint pattern has different homogeneous elastic

viscoplastic response which has been identified using nonlinear homogenization technique.

The homogenized elastic viscoplastic response of the first three patterns (patterns

pattern O, pattern H and pattern B) is orthotropic due to the presence of open joints

whereas, the homogenized response of the last joint pattern (pattern C) is isotropic and

similar to the mechanical response of the base material of the bricks because all joints are

closed. It has been shown that the presence of open joints leads to a significant reduction

in the effective elastic stiffness of the structure and orthotropic viscoplastic behaviour.

Suitable macroscopic orthotropic constitutive laws are used to describe the homogenized

elastic viscoplastic behaviour of the joint patterns. To assess the accuracy of the developed

macro model, several finite element simulations of uniaxial, simple shear and biaxial

loadings are carried out. Then, comparisons between average mechanical responses from

the detailed micro model and the macro model are performed. Good agreements between

the results from the micro and macro models are observed.

During operation, the masonry structure changes from one joint pattern to another

leading to a change in the macroscopic elastic viscoplastic behaviour of the structure.

This change is taken into account by employing suitable joints closure, reopening and
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pattern transition criteria. The joints closure and reopening criteria are written in terms

of macroscopic stresses and strains.

Several finite element simulations of mortarless masonry walls subjected to constant

stress and constant strain uniaxial loading, holding and unloading are performed. It has

been shown that the macroscopic elastic viscoplastic behaviour of mortarless masonry walls

is orthotropic and nonlinear due to joints closure, reopening, creep and stress relaxation.

In addition, after unloading only few joints reopen and the recovered strain is very small

as compared to the instantaneous applied strain due to the viscoplastic behaviour of the

structure and the final small joints thickness after unloading.

The presented numerical model takes into account the orthotropic, nonlinear, elastic

viscoplastic behaviour of refractory masonry structures at high temperature and the

presence of dry joints. It can be used to model and predict the homogeneous mechanical

response of many high-temperature large sized industrial applications such as steel ladles

and furnaces.
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Table A2: Effective viscoplastic 4th order tensor of the four joint patterns of Magnesia Chromite
refractory masonry wall at different temperatures.

Pattern N (−)

Temperature 1100 °C 1200 °C

O

0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0

1.27 0 0 0 2.01 0 0 0
0 0 0 0 0 0

3.79 0 6.03 0
3.79 6.03

H

1.27 0 -0.6 0 0 0 2.01 0 -0.98 0 0 0
0 0 0 0 0 0 0 0 0 0

1.27 0 0 0 2.01 0 0 0
0 0 0 0 0 0

3.79 0 6.03 0
3.79 6.03

B

4.24 -0.7 -0.6 0 0 0 6.61 -1.1 -0.92 0 0 0
1.26 -0.6 0 0 0 2.02 -0.98 0 0 0

1.27 0 0 0 2.01 0 0 0
5.36 0 0 8.30 0 0

6.21 0 9.63 0
3.79 6.03

C

1.27 -0.6 -0.6 0 0 0 2.01 -0.98 -0.98 0 0 0
1.27 -0.6 0 0 0 2.01 -0.98 0 0 0

1.27 0 0 0 2.01 0 0 0
3.79 0 0 6.03 0 0

3.79 0 6.03 0
3.79 6.03
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[44] P. Henyš, L. Čapek, and J. Březina, “Comparison of current methods for implementing

periodic boundary conditions in multi-scale homogenisation,” European Journal of

Mechanics, A/Solids, vol. 78, no. July, p. 103825, 2019.

[45] J. N. Reddy, Mechanics of laminated composite plates and shells: theory and analysis.

CRC press, 2003.

46



[46] A. Iltchev, V. Marcadon, S. Kruch, and S. Forest, “Computational homogenisation

of periodic cellular materials: Application to structural modelling,” International

Journal of Mechanical Sciences, vol. 93, pp. 240–255, 2015.

[47] R. Hill, “The essential structure of constitutive laws for metal composites and poly-

crystals,” Journal of the Mechanics and Physics of Solids, vol. 15, no. 2, pp. 79–95,

1967.

[48] M. Hori and S. Nemat-Nasser, “On two micromechanics theories for determining

micro-macro relations in heterogeneous solids,” Mechanics of Materials, vol. 31, no. 10,

pp. 667–682, 1999.
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