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Abstract

Quantifying phenotypes is a common practice for addressing questions regarding morphological variation. The time dedi-
cated to data acquisition can vary greatly depending on methods and on the required quantity of information. Optimizing
digitization effort can be done either by pooling datasets among users, by automatizing data collection, or by reducing the
number of measurements. Pooling datasets among users is not without risk since potential errors arising from multiple
operators in data acquisition prevent combining morphometric datasets. We present an analytical workflow to estimate
within and among operator biases and to assess whether morphometric datasets can be pooled. We show that pooling and
sharing data requires careful examination of the errors occurring during data acquisition, that the choice of morphometric
approach influences amount of error, and that in some cases pooling data should be avoided. The demonstration is based
on a worked example (Sus scrofa teeth) using a combinations of 18 morphometric approaches and datasets for which we
identified and quantified several potential sources of errors in the workflow. We show that it is possible to estimate the ana-
lytical power of a study using a small subset of data to select the best morphometric protocol and to optimize the number of
variables necessary for analysis. In particular, we focus on semi-landmarks, which often produce an inflation of variables in
contrast to the number of available observations use in statistical testing. We show how the workflow can be used for opti-

mizing digitization efforts and provide recommendations for best practices in error management.

Keywords: data sharing; geometric morphometrics; interoperability; measurement error

Introduction

Quantifying and analyzing phenotypic variation have greatly
benefited from conceptual and analytical developments in mor-
phometrics, and from the development of new acquisition
methods and hardware. The large geometric morphometrics
toolbox [1] offers the possibility to use different methods to esti-
mate shape and size from a set of coordinates: e.g. various
Procrustes methods based on landmarks or sliding semi-
landmarks [2-4], or outline analyses on a collection of points
digitized along an outline, commonly addressed using elliptic
Fourier analysis [5, 6]. These geometric morphometric
approaches complement ‘traditional’ morphometrics mainly

based on collection of linear measurements. Not all these meth-
ods are similar in terms of data input and time spent on acquir-
ing primary data. While a simple set of inter-landmark distance
measurements or an outline mask allowing direct coordinates
extraction can be rapidly obtained, digitizing dense configura-
tions of points can be more time consuming. Recent years have
seen an important revolution in the discipline with the possibil-
ity to analyze dense datasets made by a large number of points
on surfaces or outlines (e.g. [7]). The inflation in the number of
variables collected for geometric morphometric studies (e.g.
[8, 9]) is often motivated by the necessity of capturing shape as
accurately as possible in order to detect the most subtle
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variation possible. But the resulting highly dimensional data-
sets may on the one hand lead to a dramatic increase in the dig-
itization time, and on the other hand potentially lead to
biologically inaccurate results and misleading interpretations
[9]. In addition, this data inflation does not guarantee an in-
crease of precision in inferences since highly dimensional data-
sets are not inherently devoid of error, and increasing the
number of variables do not necessarily temper digitization
errors.

The increase of time needed for acquiring data regarding
phenotypic variation and the necessity of having a sufficiently
large dataset could be partially mediated by the possibility of
pooling and sharing data among users. Indeed, like many other
fields, emerging repositories (e.g. https://www.morphosource.
org, https://morphobank.org, and https://morphomuseum.com)
facilitate data archiving and sharing. Pooling morphometric
datasets can be desirable to scale up and generalize phenotypic
studies leading to simultaneously larger scale analyses and re-
duced acquisition efforts. However, pooling datasets never
comes without risk and morphometrics makes no exception.

In that context, an increasing number of studies have begun
to pool datasets obtained from multiple operators and/or devi-
ces and even crowdsourcing phenotypic data acquisition for
geometric morphometrics has been used [10]. However, several
studies have highlighted the large influence of artificial, sys-
tematic, and sometimes directional, variation introduced by
inter-operator (IO) errors on these measurements (e.g. [11-15]).
While some studies have evidenced small variation between
multiple operators when compared with the targeted biological
signal (e.g. [16]) others have demonstrated that IO bias can lead
to substantial variation on geometric morphometric analyses
(e.g. [17]). IO measurement errors (MEs) can have dramatic
impacts on morphometric studies, especially when the pheno-
typic variation under investigation is subtle or varies in the
same direction as the explored biological variation [16]. This is
true particularly as the methods such as geometric morphomet-
rics (using coordinates of landmarks, curves, or surfaces) are es-
pecially used for detecting small-scale shape and size variation
[18, 19]. Several approaches have been proposed to assess error
in morphometrics based on replicated measurements [12, 20,
21]. Less studies have addressed the problem of pooling data
from various sources [13, 14, 16].

Yezerinac et al. [20] identified multiple sources of impreci-
sion in morphometric measurements including: not well-
defined measurements, structure flexibility, operator
experience, 10 and repeatability variation, non-human sources
precision, and lightning conditions. These can be summarized
into the three categories of methodological, instrumental, and
personal sources of error [14]. Unfortunately, MEs, both within
and among operators, are rarely evaluated and even more rarely
quantified and published.

When morphometric data are pooled, error likely increases
with the acquisition workflow complexity. For instance, mor-
phometric data can be acquired directly on the specimens using
calipers or a 3-D digitizer, but very often, these data are
obtained using an intermediate image, either in 2D or 3D
obtained with a camera or a 3-D model acquisition devise (e.g.
CT scan, photogrammetry). On these images, coordinates or
measurements are later obtained with 2-D, or 3-D digitizing
software. In the latter case, when an acquisition device is used,
error will be the result of variations in the object preparation (if
any), the device used, and the acquisition and post-processing
of the data. Furthermore, error can increase when data are

shared and multiple operators are involved, which is typical of
pooling data from different studies (Fig. 1A).

Common error quantification relies on the comparison of
the amount of variation among replicates of the same measure-
ments and between higher categories (e.g. individuals, popula-
tions, or species), ensuring that the explored variation
significantly exceeds the ME. Pooling data involves estimating
variation introduced by multiple operators, insuring that the
sum of errors (IO error and intra-operator MEs) does not alter
the interpretation of the results. In the simplest and ideal case,
pooling data among multiple operators introduces an excess of
variation that goes beyond the variation introduced by a single
operator. When operators introduce a systematic and direc-
tional bias, and when there is little overlap of common data ac-
quisition among operators disentangling operator effects and
true variation from pooled data can become difficult or
impossible.

Indeed, even if there is high reproducibility within a single
operator, the systematic error can be high by comparison to the
research question. Such case of autocorrelated pattern due to
user occurs, e.g. when an operator repeatably misplaces a spe-
cific landmark. One must therefore estimate whether ME intro-
duced by various users is significantly greater than intra-
operator based on a set of similar object. To do so we propose
the workflow illustrated in Fig. 1B. Error can be sensitive to both
the data acquisition procedure and the way that morphometric
parameters of shape and size are extracted from the data.
Different analytical approaches may lead to different amount of
error within and among operators even if based on the exact
same set of data (Fig. 1B). The proposed workflow represents
different steps for validating both the data acquisition protocol,
i.e. the choice of the position, number, and type of points (e.g.
landmarks, or points along curves or outlines) and the choice of
the analytic approach to be used (e.g. using or not sliding semi-
landmarks; elliptic Fourier analysis or sliding semi-landmarks,
and sliding semi-landmarks using the bending energy or not).
Both aspects should be carefully examined prior to pooling
datasets. This workflow is based on the comparison of the
intra-operator MEs (one per operator) with the IO error. The pro-
posed workflow comes in addition to already available work-
flows (e.g. [13]) by formalizing the specific context of pooled
datasets obtained from multiple operators.

Here, we demonstrate how to choose morphometric
approaches and datasets for conducting a morphometric analy-
sis and assess whether morphometric datasets can be pooled
without risk. We use an example based on the common prob-
lem of taxonomic identification based on morphometrics but
the approach can be easily transposed to other classification
questions, and more generally to many biological questions in-
volving morphometric data. To do so we used the workflow pre-
sented in Fig. 1B to assess different source of error when
pooling morphometric datasets such as the intra- and IO errors,
the importance of the choice of the analytical method, and the
impact of the number of variables in morphometric analyses.
After a selection of best approaches for a given problem (here
identifying two taxa), we show how to potentially reduce digiti-
zation efforts.

Material and methods
Worked example

We selected a dataset with relatively subtle morphometric vari-
ation and for which several morphometric approaches have
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Figure 1: (A) Classical workflow when data from different studies are shared. The dotted lines represent steps including error. (B) Analytical workflow for validating the
data acquisition protocol and the analytical approach to be used for pooling data obtained from multiple operators. We recommend to select a protocol for which the
intra-operator MEs exceed the IO ME. The protocol and analytical approach can be redefined recursively to reach this goal.

MTW

Figure 2: Data acquisition protocol for measuring pig lower third molar.
Geometric morphometric data consists of 12 landmarks (in black) and 87 sliding
semi-landmarks (in gray). Traditional metric data consists of two linear meas-
urements; maximum tooth length (MTL), and width (MTW). The anterior part of
the tooth is on the left.

been used in the past [22-24]. Distinguishing wild boar from do-
mestic pigs in the archaeological record is particularly challeng-
ing due to bone fragmentation and the close morphological
similarity between the two [25]. Traditional measurements
[maximum tooth length and widths (Fig. 2), especially of the
lower third molar] have been traditionally used to separate
small domestic pigs from the large wild boar (e.g. [26]). More re-
cently, 2-D landmark and sliding semi-landmark-based geomet-
ric morphometric approaches have been used for investigating
shape variation between and within the two taxa (review in
[27]). Pooling the data from these various datasets is the next
step forward for future research.

Two datasets were used to apply the proposed analytical
workflow. A first set of data was used to assess the intra and in-
ter-operator effects. This dataset corresponds to repeated mea-
surement on six third lower molars belonging to four adult wild
boars (two specimens have left and right teeth). Photographs of
the teeth were obtained using a Nikon D90 DSLR camera paired
with a 60-mm micro lens (AF-S Micro Nikkor), and the 2-D coor-
dinates of points (landmarks and sliding semi-landmarks) were

acquired following the protocols detailed in [23, Fig. 2) using the
tpsDig2 software (v2.18, [28]). Maximum tooth length and width
of the same teeth were measured using a caliper (Mitutoyo). A
second dataset was used to quantify the discrimination be-
tween wild and domestic pigs using various methods. Data
were publicly available ([24], http://dx.doi.org/10.6070/
H4ZK5DNC), measured with the same protocol (Fig. 2) and in-
clude measurements of the third lower molars of 42 domestic
pigs and 129 wild boars. In order to have a protocol that will be
suitable to identify the two taxa, this protocol should show re-
duced error variation and should discriminate between the two
categories.

All analyses were performed following 18 analytical mor-
phometric approaches (Table 1) including a single approach
based on linear measurement and various geometric morpho-
metric approaches (landmarks, sliding landmarks, and outlines)
based on complete or subsamples of the original datasets.
Analyses were performed for the two classical cases of data
pooling: (i) in the case that primary data are shared (i.e. pictures)
when only ME consist of multiple operators digitizing land-
marks and (ii) in the case that different users obtained primary
data independently (independent picture and landmark acqui-
sition). We also investigated the effect of data inflation (i.e.
number of points) in terms of relative quantity of error pro-
duced and of effort needed to discriminate between groups.

Assessing repeatability

First, ME of each operator (measurer measurement error, MME)
due to digitization practice was assessed. Five people with vary-
ing amounts of experience in morphometrics and pig tooth
anatomy (from novice to experienced) placed 12 landmarks on 6
specimen, 5 times each (Fig. 3). Five people also measured five
times the maximum tooth length and width using a caliper.
Then, in order to estimate simultaneously the effects of the
photography protocol and digitization, and to estimate total ME
(TME); three operators were asked to take five independent pic-
tures of six teeth and to digitize point coordinates on each of
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Table 1: List and description of R packages and options used to establish the 18 analytical approaches used in the study

Approach Description R Package Options

Al 12 landmarks Morpho Default

A2 8landmarks Morpho Default

A3 91 Sliding semi-landmarks geomorph Procrustes distance

A4 91 Sliding semi-landmarks geomorph Bending

A5 91 Sliding semi-landmarks Morpho Procrustes distance, tol =1e—-5
A6 91 Sliding semi-landmarks Morpho Bending, tol=1e-5

A7 91 Sliding semi-landmarks Morpho Procrustes distance, tol=1e—7
A8 91 Sliding semi-landmarks Morpho Bending, tol=1e—7

A9 12 landmarks + 87 Sliding semi-landmarks geomorph Procrustes distance

A10 12 landmarks + 87 Sliding semi-landmarks geomorph Bending

All 12 landmarks + 87 Sliding semi-landmarks Morpho Procrustes distance, tol =1e-5
A12 12 landmarks + 87 Sliding semi-landmarks Morpho Bending, tol=1e-5

A13 12 landmarks + 87 Sliding semi-landmarks Morpho Procrustes distance, tol=1e—7
Al4 12 landmarks + 87 Sliding semi-landmarks Morpho Bending, tol=1e—7

A15 Outline (91 coordinates) Momocs 9 harmonics

Al6 Outline (91 coordinates) Momocs 6 harmonics

A17 Outline (91 coordinates) Momocs 2 harmonics

A18 Traditional metrics (MTL, MTW)

MTL and MTW, maximum tooth length and width; Tol, tolerance.

&2
2
‘4’3 —Measurer ME (MME)

6 specimens

NOR c«’q
\§8) &2 - Total ME (TME)

Figure 3: Protocol design for estimating the different sources of error when shar-
ing morphometric data. We estimate the MME which correspond to the case
when pictures or models are shared and only the error in landmarking is consid-
ered, as well as the TME combining error in acquiring the medium and in land-
marking. For both protocol, we compare the individual ME for each operator
with the IO ME.

these pictures. This allowed for the quantification of the relative
importance in photograph positioning and landmarking (both
included in TME). For both approaches, we quantified the error
of each operator (ME) before quantifying the 10 ME.

Morphometric methods, packages, and computation
options

The 18 different possible combination of approaches and data-
set are given in Table 1. The first two approaches are based on
true landmarks only and include either the 12 landmarks (A1) de-
scribed in Fig. 2, or only the 8 landmarks (A2) localized in the in-
ner part of the tooth, excluding the 4 landmarks on the outline.
Generalized Procrustes Analyses (GPA) was performed with the
package Morpho (Schlager, 2017 [29]). Approaches (A3)-(A8) in-
clude the sliding semi-landmarks only with one true landmark
(landmark 10) and 90 sliding semi-landmarks and were per-
formed using Morpho (ProcSym function) and geomorph (gpa-
gen function [30]). Approaches (A3)-(A8) were performed using
the Procrustes and bending options of both functions and we
also tested two levels of tolerance modified it in the ProcSym
function of Morpho package (we first used the default threshold
of 107 and then decreased that threshold to 10~” while other

parameters were set to default). Approaches (A9)-(A14) com-
bined landmarks and sliding landmarks and used the same varia-
tion in options outlined previously. Approaches (A15)-(A17)
correspond to elliptic Fourier approaches applied to the outlines
(using the Momocs package, efourier function [31]) and vary in
the number of Fourier harmonics (9, 6, and 2) kept as descriptive
variables to capture the outline. Finally, approach (A18) corre-
sponds to the traditional metrics, with maximum tooth length
and width analyzed jointly using Mosimann’s log shape ratio
[32].

Subsampling

We used approach (A5) (sliding semi-landmarks analyzed with
the package Morpho, the Procrustes distance sliding procedure,
and the tolerance set to 10°~°) to explore the effect of the num-
ber of sliding semi-landmarks on both the error and the dis-
crimination power. Initial number of sliding semi-landmarks
was progressively subsampled from 90 to 10 points.

Error quantification

Detailed quantification of among- and within-operator varia-
tion relies on repeated measurements of the same object. The
percentage of error relative to inter-individual variation was
computed following the ANOVA design presented in [20, 33]. In
this approach, mean squares are used to estimate the respective
proportion of variance associated with replication measure-
ment and inter-individual variation. This percentage has the
advantage of being comparable between different studies and
approaches [20, 33]. Percentage of error is calculated as the ratio
between the variance within a specimen (between the repli-
cates, s>within) and the sum of the within and among variances
(s®within + samong), expressed as a percentage (i.e. multiplied
by 100). Our design was balanced and allowed the use of least
squares estimates. For unbalanced designs, we remind the
reader that estimation of variances can be done via the use of
maximum likelihood as it is now routinely obtained with soft-
ware or libraries designed for mixed effect models [34].
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Figure 4: Level of MME (percentage of total variance) for the 18 explored approaches (numbers in brackets refer to Table 1). For each set of bars (separated by a space):
the first bar on the left represent the IO error while the five next bars on the right represent the error of the five operators (ME). mes., measurements.

Amounts of error were obtained for each operator separately
(with five replicates/photos measured per specimen) before
quantifying the IO error by pooling the replicates of each opera-
tor resulting in five or three replicates (for MME and TME,
respectively).

Quantification of discrimination power

Because one of the main objectives of the study was to pool
multiple bioarchaeological datasets to identify wild and domes-
tic pigs, we contrasted the error estimates with the discrimating
power of the different approaches. Percentages of accuracy, i.e.
correct cross-validation, were obtained from predictive Linear
Discriminant Analyses (LDAs) on shape variables paired with a
leave-one-out cross-validation procedure. When the number of
variables exceed the number of specimens we applied the ap-
proach proposed in [35, 36] in which raw variables are replaced
by the first principal component analysis (PCA) scores which
number maximize the rate of leave-one-out cross validation
[35]. Moreover, because the number of wild boars highly exceed
the number of domestic pigs in our datasets we used the ap-
proach proposed in [22](Evin et al. 2013) providing a mean cross
validation and a 90% confidence interval calculated from a dis-
tribution of cross validation percentages (CVP) based on 100 bal-
anced resampled datasets.

Results
MME

Analysis of ME linked with digitalization show strong differen-
ces between approaches and datasets (Fig. 4). The two
approaches including only landmark data (A1 and A2) have par-
ticularly high proportion of total variance accounted by IO error.
Approaches A9-A14 combine landmarks and sliding-semi land-
marks and show much higher percentages of error when multi-
ple operators acquired the data. Outline approaches (A15-A17)
show relatively low percentage of individual operator errors but
high variation between operators. Linear measurements (A18)
show an intermediate pattern with relatively a high percentage
of IO error and variable amount of individual operator error.
High heterogeneity between operators should be noted for
some approaches, e.g. (A2), with one operator showing a partic-
ularly low level of ME. Such cases where intra-operator errors

are relatively low compared with the IO amount of error likely
reveal a systematic error for at least one of the operators. This is
particularly noticeable for the two approaches including only
landmarks data (Al and A2). Finally, approaches based on slid-
ing semi-landmarks (A3-A8) show low percentage of 10 and
intra-operator errors, with the I0 ME being even smaller than
any intra-operator error for the approach including the use of
the package Morpho, the Procrustes distance criterium for the
sliding procedure and the threshold set to 1077 (A7).

TME

Analysis of the TME (Fig. 5) combining error in acquiring the pic-
tures and the landmark coordinates reveals a very similar pat-
tern to the MME. Approaches including landmarks (A1, A2, and
A9-A14) and outlines (A15-A17) show high IO error, as well as
the traditional metrics (A18). Again, on the contrary, approaches
based on sliding semi-landmarks (A3-A8) show lower percent-
age of IO errors; however, none of the approach show smaller
percentage of 10 error than any intra-operator error.

Correlation between MME and TME

We explore the correlation between errors in landmarking only
(MME) and the cumulative effect of landmarking and photo-
graphing (TME) for both the IO error and for the mean of the
intra-operator errors. In both cases, MME and TME are highly
correlated (IOs: adjusted R*> = 0.71, P=7e ®, mean intra-
operators: adjusted R? = 0.85, P = 3e®) (Fig. 6) highlighting again
that the choice of analytical approach deeply influences error,
and the importance of the point coordinate acquisition in error
measurement. A large majority of tested approaches show
higher TME than MME (Fig. 6), showing that the photography
process also induces error measurement. This is especially true
for the outline approaches (A15-A17, Fig. 6, left) when the IO er-
ror is assessed, while in other cases, error in point coordinate
acquisition greatly influences intra-operator error (e.g. A2-8
landmarks, Fig. 6, right). Therefore, the relative importance of
error in photographing and landmark coordinate acquisition
varies depending on the analytical approach used.
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Correlation between error and discriminant power

Though error and discriminant power correspond to two differ-
ent aspects of the study we ultimately aim at identifying at the
same time the approach minimizing error and maximizing the
discrimination between two known groups. In our working ex-
ample, the discriminant power varied from 64.7% (A19, tradi-
tional metrics) to 89.3% (A16, outline with six harmonics) in
mean, depending on the approach used (Supplementary Fig.
S1). The lowest CVPs were obtained for approaches including 8
(A1) and 12 (A2) landmarks only, outline analysis using the two
first harmonics only (A17), and traditional metrics (A18). All
other distributions largely overlap around 87.6% in mean
(Supplementary Fig. S1).

Contrasting the discrimination power with the TME and the
MME (Fig. 7) provide similar patterns with: approaches with
high error and/or low CVP (A1, A2, A18, A19); approaches with

moderate error and/or moderate discriminant power (A9-A17);
and approaches with the lowest error and highest CVP (A3-A8).
Both the MME and the TME slightly correlate with the mean
CVP of the approaches used (P=0.01 and adjusted R? = 0.27,
P=0.04 and adjusted R? = 0.19, respectively) revealing a rela-
tively small, but significant, link between the discriminant
power and the percentage of error in our worked example.
These correlations became non-significant when landmarks
approaches (Al and A2) are discarded.

Impact of subsampling

Protocols including 90 sliding semi-landmarks were sub-
sampled down to 10 points coordinates. The discriminant
power correlates with error (adjusted R? = 0.8, P=0.0005), with
the smaller the number of coordinates included, the smaller the
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Figure 7: Relationship between discriminant power (CVPs) and 10 error (TME on the left, MME on the right). Numbers in brackets refer to Table 1.
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Figure 8: Evolution of CVPs and error (TME) in relation to the number of sliding
semi-landmarks (down sampling from 90 to 10) used to measure the tooth
shape. Data were obtained using approach A7. Dots represent the mean CVP
while the vertical bars represent 90% of the CVP distributions. Visualization of
the mean shapes is depicted for various number of sliding semi-landmarks (see
Fig. 2 for the initial tooth shape).

discriminant power and the higher the error (Fig. 8). This is es-
pecially true when fewer than 40 points were used. From 90 to
40 points, the CVPs of the discrimination between the two
known categories remain stable despite an increase in error
rate. As expected, details in tooth shape decrease with the num-
ber of points along the external outline: angles become steeper
and the lateral sides flatten (Fig. 8). In our worked example, we
identify 40 points as a good compromise between landmarking
effort, error rate, and discriminant power.

Discussion

The proposed workflow was used to determine an analytical ap-
proach offering the possibility of sharing morphometric data us-
ing an optimized protocol and minimizing acquisition effort by
ensuring high repeatability, while preserving the biological sig-
nificance of the results.

Worked example

In our worked example of wild and domestic pigs, the aim was
to validate the possibility of sharing point coordinates and/or 2-
D pictures. We aimed at identifying a morphometric protocol
which would allow sharing data obtained by multi-operators or
published by different studies. We tested 18 analytical
approaches and demonstrated that not all of them can be used
for data sharing. Pooling data from different operators always
increase error rate and data should not be pooled in some cases.
A rule of thumb could be to avoid pooling data when the IO error
rate exceeds the error of any of the individual operators. In such
instances, it could be wise to either exclude some of the opera-
tors or to keep the data separated. In our worked example,
approaches based solely on landmark data could not be used for
combining datasets obtained from various studies since the
inter-operator error appears in some case at least four times
higher than any of the individual operator error rates. On the
contrary, other approaches, such as the ones based on sliding
semi-landmarks only offer good repeatability and sometimes
even buffer the inter-operator error rate. The approach used in
previous published work (A11 with 12 landmarks and 87 sliding
semi-landmarks) offer good intra-operator repeatability, but the
high amount of 10 repeatability due to the presence of landmark
data prevent it from being confidently used on pooled data. We
identified the best approach providing at the same time low in-
tra- and IO errors, with the IO error being even smaller than any
intra-operator errors in landmarking (i.e. MME) and similar in
the TME combining the error in landmarking and picturing. For
the case of pig teeth discrimination, we therefore recommend,
if the data has to be shared, to use approach A7 based only on
sliding semi-landmarks along the outline of the teeth, the pack-
age Morpho, and a threshold for GPA convergence fixed to 10~7.
In the specific case of pig lower third molar morphometric
analysis, we also highlight the possibility of optimizing the
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number of landmarks used in the protocol and recommend the
use of 40 sliding semi-landmarks. This number offers a good
trade-off between digitalization effort, error rate, and discrimi-
nation power. In this example, reducing the number of land-
marks by more than half compared with the initial approach
does not alter the biological information explored here, i.e. the
discrimination between two taxonomical groups. This optimi-
zation can reduce the time dedicated to recording point coordi-
nates. This protocol, applied only to a relatively small set of
modern specimens (though the biggest available so far for these
taxa and this methodology), has been identified specifically for
our case study and may provide different results if applied to
other datasets (either species or skeletal element). We highly
recommend applying the same workflow before starting a study
or pooling data between operators.

How can we pool morphometric data?

Error is ubiquitous

Error is ubiquitous in morphometric data acquisition, can never
be completely avoided, and can be a major problem when the
explored variation is relatively small and subtle [21]. Error can-
not be estimated without replicates, and any error testing proto-
col has to be carefully thought out and implemented as the first
step of any morphometric study. It could even be recommended
to perform the tests at several stages of the study, especially if it
is spread over a long period of time, since operators may pro-
gressively, and unconsciously, change the way they acquire
data. If possible, tests should be performed using the exact
same set of reference specimens. That being said, error should
always be interpreted in the context of the biological question
explored [14, 21, 37]. The amount of acceptable error will indeed
depend on the data used and the comparisons being made [17,
21, 38, 39]. For example, error could be too important to compare
populations but acceptable when higher taxonomical ranks are
explored such as, e.g. species or genera. Though not limited to
2-D data, 3-D data either obtained directly on the objects or via
3-D models are not free from error and different approaches
(e.g. photogrammetry versus CT-scans), different devices (e.g.
different surface scans) [40], or different software’s used for the
model reconstructions can induce biases and should not be
pooled without prior assessing of error rate. Reducing impact of
error can be made by replicating multiple times (at least twice)
the measurements and averaging those data prior to analysis
[21, 39]. Finally, when there is a doubt on repeatability and
when datasets do not overlap between users, it is also possible
to remove the effect of the origin of the data by introducing this
as a factor in the analysis (e.g. [16]) but this requires the critical
assumption that the variation of the hypothetical bias is not in
the same direction as the biological variation explored. This can
however be done in trying to keep balanced data among data
providers for avoiding violating “the marginality principle” in
linear modeling. The ME performed in this study does not dis-
entangle random from systematic errors, the two main types of
error [40]. However, we detected a likely case of systematic er-
ror, with one operator who digitalized one of the landmarks in a
systematic and different manner than the other operators. This
could have been identified and mitigated through a careful ex-
amination of the position of the landmarks on the pictures prior
to the analyses. We therefore recommend, when possible, a
careful examination of the coordinate positions on the initial
images or 3-D models.

Identifying and classifying sources of error

We explored and compared: (i) the error linked with landmark-
ing only with several operators having digitalized several times
the same set of pictures, which is typical when pictures are
shared between studies, and (ii) the cumulative error linked
with both 2-D picture acquisition and landmarking, which cor-
responds to the case where raw coordinates are published and
pooled between studies.

We have found a general positive correlation between land-
marking (MME) and total error (photographing and landmark-
ing, TME) across morphometric methods but only when
protocols comprising fuzzy points, the landmarks, were in-
cluded in the analysis. Overall, our results reveal the impor-
tance of landmarking and the relatively limited effect of
photographing in the amount of error. Here, though based on a
very limited number of operators (not enough for statistical
testing), “experts” show slightly lower amount of error than
more “beginners” operators. As a consequence, if pig teeth data
have to be shared, special attention has to be given to the coor-
dinate acquisition step. Importantly, once identified, error can
be reduced by training as demonstrated by noticed differences
between expert and novice operators [42]. Operators must be fa-
miliar with both the specimens under study and the way the
data are acquired [39]. Prior to performing a morphometric
study, the operator has to have an idea of the range of variation
that will be included in the study and sufficient practice in data
acquisition so they will have no, or very limited, hesitation
when performing the data acquisition. Here, all operators used
the same photographic equipment excluding the inter-device
bias that may occur when data from multiple studies are
combined.

Optimizing data acquisition

Minimizing the impact of ME can be done in several ways in-
cluding by; reducing the number of steps between the specimen
and the data, thoroughly standardizing protocols of data acqui-
sition across specimens (ideally the same equipment should be
used throughout the data collection process within a single
study), calibration, insuring quality of equipment, -adaptation
of the dataset/protocols to the question, and repeated measure-
ments [43].

A common question when starting a study is about how
many landmarks or measurements should be used to accurately
quantify variation. The answer is never straightforward and as
this study shows, more is not always better [9, 37]. Measuring
effort should be contrasted with the aims of the study and the
number of coordinates acquired depends on the complexity of
the structure measured. There is a trend for increasing number
of variables, but adding too many can bias the results of the
analyses [9, 44, 45]. While a high ratio between sample size (N)
and number of variables (P) is often recommended this is not al-
ways the case in geometric morphometric studies (Cardini, 2020
and references there in). Between group CVPs were obtained
from [22] which provide a careful examination of the sensitivity
of discriminant analyses to both unequal sample size and num-
ber of shape predictors. Selecting the minimum number of prin-
cipal component scores to be included in the discriminant
analyses allows simultaneously maximizing the cross-validated
accuracy of the classification but also reducing unwanted varia-
tion (noise) in the data while simultaneously removing, through
the PCA, collinearity problems [13, 34]. As a consequence, in-
cluding fewer or more principal component scores will result in
lower, or at best similar, between group CVPs. Acquisition effort
should be therefore contrasted with the complexity of the

020z Jequiedaq /| uo jsenb Aq £Ze£865/c20eeda/|/S/a01MB/SPOYIOWIOIG/WOD dNODlWapeo.//:SA)Y WOl) PaPeojumMod



studied object, the subtlety of the targeted differentiation, and
the number of specimens available for the study. We show that
adding sliding-semi landmarks, that capture variation in
landmark-free regions, to “true” landmarks greatly improve
classification accuracy while simultaneously mitigate the
amount of error, a likely result of the generalized Procrustes su-
perimposition that distributes error over all point coordinates.
With the exception of the landmarks localized on the outline of
the tooth, the landmarks used to capture pig molar shape corre-
spond to type III landmarks on Bookstein typology [46]. We
show here that while these landmarks can be used when a sin-
gle measurer operate, they have to be avoided for multi-
operator comparisons. Here, these landmarks provide informa-
tion on shape changes on the occlusal surface of the tooth, not
located on the outline and thus not captured by outline analy-
ses. As a consequence, removing those points will allow to gain
10 repeatability but at the same time result in a loss of biological
information. One could decide to fix an error cut-off but it would
require to compare the amount of error removing the land-
marks one by one and contrast the gain in repeatability with
the biological information carried by the data. Outlines analyses
appeared more influenced by the picture on which the coordi-
nates were obtained than the sliding semi-landmarks
approaches suggesting important differences in data process-
ing. Slight differences between pictures have more impact in
the elliptic harmonic coefficients than on superimposed sliding
semi-landmarks coordinates. We show that not all datasets are
equal in terms of discrimination power nor in terms of error
they embed. We show also that it is possible to simplify data-
sets without affecting discrimination up to a satisfying, opti-
mized, level. For datasets purely made of landmark coordinates
or linear measurements, it is also possible to iteratively jack-
knife variables by starting to remove points or measurement
that increase overall amount of error while simultaneously not
decreasing statistical power. One should keep in mind that
more is not always better and that artificially inflating the num-
ber of variables by adding more points along curves or on surfa-
ces can be in fact statistically counterproductive in terms of the
statistical power researched.

Conclusion

Combining datasets requires simultaneously minimizing the
impact of ME and maximizing the reproducibility under the uni-
versal constraint of minimizing data acquisition effort. Our
worked example shows that not all morphometric approaches
are suitable for data sharing, but the workflow presented here
allows for carefully determining those that allow pooling data-
sets obtained by different operators. We therefore recommend
to: (i) systematically measure error at the beginning of any mor-
phometric study and throughout its duration; (ii) evaluate how
various sets of alternative methodological approaches can help
to provide good predictions; and (iii) optimize data acquisition
by downgrading the number of variables to its minimal number
while maintaining discriminatory power, to insure enough sta-
tistical power to solve the research question.

Supplementary data

Supplementary data are available at Biology Methods and
Protocols online.

Optimizing digitalization efforts in morphometrics | 9

Data accessibility

MEs and a set of photos for assessing intra-operator ME are
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