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Abstract. Rain gauges are unevenly spaced around the world
with extremely low gauge density over developing countries.
For instance, in some regions in Africa the gauge density is
often less than one station per 10 000 km2. The availability
of rainfall data provided by gauges is also not always guaran-
teed in near real time or with a timeliness suited for agricul-
tural and water resource management applications, as gauges
are also subject to malfunctions and regulations imposed by
national authorities. A potential alternative is satellite-based
rainfall estimates, yet comparisons with in situ data suggest
they are often not optimal.

In this study, we developed a short-latency (i.e. 2–3 d)
rainfall product derived from the combination of the Inte-
grated Multi-Satellite Retrievals for GPM (Global Precipita-
tion Measurement) Early Run (IMERG-ER) with multiple-
satellite soil-moisture-based rainfall products derived from
ASCAT (Advanced Scatterometer), SMOS (Soil Moisture
and Ocean Salinity) and SMAP (Soil Moisture Active and
Passive) L3 (Level 3) satellite soil moisture (SM) retrievals.
We tested the performance of this product over four regions
characterized by high-quality ground-based rainfall datasets
(India, the conterminous United States, Australia and Eu-

rope) and over data-scarce regions in Africa and South Amer-
ica by using triple-collocation (TC) analysis. We found that
the integration of satellite SM observations with in situ rain-
fall observations is very beneficial with improvements of
IMERG-ER up to 20 % and 40 % in terms of correlation
and error, respectively, and a generalized enhancement in
terms of categorical scores with the integrated product of-
ten outperforming reanalysis and ground-based long-latency
datasets. We also found a relevant overestimation of the rain-
fall variability of GPM-based products (up to twice the ref-
erence value), which was significantly reduced after the inte-
gration with satellite soil-moisture-based rainfall estimates.

Given the importance of a reliable and readily available
rainfall product for water resource management and agri-
cultural applications over data-scarce regions, the developed
product can provide a valuable and unique source of rainfall
information for these regions.

Published by Copernicus Publications on behalf of the European Geosciences Union.



2688 C. Massari et al.: A daily 25 km short-latency rainfall product for data-scarce regions

1 Introduction

Rainfall is the main driver of the hydrological cycle (Oki
and Kanae, 2006) and plays an essential role in water re-
source management and agricultural applications (Vintrou
et al., 2014; Gibon et al., 2018), drought monitoring (Gar-
reaud et al., 2017) and flood forecasting (Maggioni and Mas-
sari, 2018).

Ground networks of rain gauges are considered the most
accurate (and as a reflection the most used) rainfall observa-
tions across many regions of the world. However, the diffi-
culty and the costs associated with their maintenance along
with the timeliness of their data availability are critical ob-
stacles for their use in real-time and seasonal applications.
Moreover, while in developed regions the rain gauge distri-
bution is sufficiently dense and supported by well-organized
and well-funded organizations, in developing countries the
data coverage is extremely poor.

The number of gauges around the world has been esti-
mated to range between 150 000 and 250 000, but their dis-
tribution is far from being homogeneous (Kidd et al., 2017).
For instance, in regions like Africa, South America and cen-
tral Asia the gauge density is often less than one station
per 10 000 km2, which results in large interpolation errors of
gauge-based gridded rainfall products. This is an interesting
paradox, since gauges are insufficient exactly where they are
more needed. In these areas the only source of “observed”
rainfall with a timeliness suited for applications is derived
from satellite rainfall estimates (SREs) and meteorological
models.

SREs are normally derived from sensors on board low-
Earth-orbiting (LEO) and geostationary satellites (Kidd and
Huffman, 2011; Serrat-Capdevila et al., 2014). While geo-
stationary satellites use visible and infrared sensors to re-
trieve the precipitation signal with high spatial and tem-
poral resolutions (e.g. 1–3 km and 15–30 min), low-Earth-
orbiting satellites use passive microwave observations to pro-
vide global precipitation measurements with a frequency of
about two observations per day with a spatial resolutions typ-
ically larger than 25 km. The latter are normally more accu-
rate as they provide a more direct measurement of precip-
itation. A large number of techniques have been developed
that exploit the synergy between polar-orbiting retrievals and
geostationary observations (Huffman et al., 2007; Hsu et al.,
1997; Joyce et al., 2004; Kubota et al., 2007).

The long history of research in the area led in 2014
to the Global Precipitation Measurement (GPM) mission
(Hou et al., 2014), launched by NASA and JAXA (Japan
Aerospace Exploration Agency) in coordination with the
Goddard Earth Sciences Data and Information Services Cen-
ter (GES DISC). The mission introduced a new concept for
rainfall retrieval based on a multi-sensor integration. Within
GPM, multiple observations from different instruments are
intercalibrated, merged and interpolated with the GPM Com-
bined Core Instrument product to produce half-hourly pre-

cipitation estimates on a 0.1◦ regular grid over the 60◦ N–S
domain through the Integrated Multi-Satellite Retrievals for
GPM (IMERG; Huffman et al., 2018). The mission provides
three L3 (Level 3) products which are based on different level
of timeliness and calibration configurations (the Early Run –
IMERG-ER, the Late Run – IMERG-LR – and the Final Run
– IMERG-FR; see Sect. 2.1.2 for further details).

Although extremely useful, one of the problems with SRE
is the instantaneous nature of the measurement, which, along
with the intermittent character of the rainfall, make SRE
prone to errors (Kucera et al., 2013). For example, precip-
itation type and rate (Behrangi and Wen, 2017) along with
satellite orbit and swath width (and thus the number of satel-
lite snapshots available) all play an important role in de-
termining the sampling error magnitude (Nijssen and Let-
tenmaier, 2004; Ciabatta et al., 2017b; Gebremichael and
Krajewski, 2004). Other problems are associated with sea-
sonally dependent biases, light rainfall estimation, and de-
tection over snow- and ice-covered surfaces (Ferraro et al.,
1994; Ebert et al., 2007; Kidd and Levizzani, 2011; Tian
et al., 2007; Gottschalck et al., 2005). Although these prob-
lems have been reduced with the advent of the GPM mis-
sion thanks to the new Dual-frequency Precipitation Radar
(DPR), recent works show that there is still room for im-
provement (Tan et al., 2016; O et al., 2017; Gebregiorgis
et al., 2018b).

Model reanalysis datasets, such as the European Cen-
tre for Medium Weather Forecast (ECMWF) Interim Re-
analysis (ERA-interim; extensively described in Dee et al.,
2011) and the new ERA5 (European Centre For Medium-
Range Weather Forecasts, 2017), are the obvious alternative
to ground- and satellite-based rainfall products. Although
they offer good performance in simulating synoptic weather
systems, they often misrepresent the variability of convective
systems, mainly due to their relatively low resolution and
deficiencies in the parameterization of sub-grid processes
(Roads, 2003; Ebert et al., 2007; Kidd et al., 2013; Beck
et al., 2017). Although reanalysis datasets perform relatively
well globally (Massari et al., 2017a) and provide consistent
long-term precipitation estimation (which is paramount in
many research fields), they are normally released with a la-
tency that does not suit water resource and agricultural appli-
cations.

Despite these inherent limitations, SRE and reanalysis
products are still the only valuable alternative to gauge-
based observations within gauge-scarce regions, and the ef-
forts to improve these datasets by merging procedures or
by including other ancillary information has been signifi-
cantly increasing in the last decade. For instance, Beck et al.
(2017) released Multi-Source Weighted-Ensemble Precipita-
tion (MSWEP), a dataset with a 3-hourly temporal resolution
that covers the period 1979 to the near present. MSWEP is a
unique product, as it exploits the complementary strengths of
gauge-, satellite- and reanalysis-based data to provide rain-
fall estimates over the entire globe. Other notable exam-
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ples are the CHIRPS (Climate Hazards Group Infrared Pre-
cipitation with Station data) rainfall estimates (Funk et al.,
2015), which are based on a combination of gauges and in-
frared cold cloud duration (CCD) observations. However,
these datasets rely upon the availability of gauge observa-
tions, which constitute the “land” or the “bottom-up” per-
spective of the precipitation signal (i.e. the precipitation that
effectively reaches the land surface), in contrast to satellite
(and reanalysis) estimates, which are more informative about
the precipitation in the atmosphere layers (i.e. by cloud and
atmospheric models). Where gauges are very sparse or to-
tally missing or their functioning is not guaranteed in near
real time, the quality of SRE and models can be significantly
affected as the bottom constraint provided by gauges weak-
ens.

A potential solution to circumvent this problem is the use
of satellite SM observations as a source of rainfall ground
information (Crow et al., 2009, 2011; Pellarin et al., 2008;
Brocca et al., 2013; Pellarin et al., 2013; Wanders et al.,
2015; Zhan et al., 2015; Ciabatta et al., 2015; Massari et al.,
2019). In practice, SM can be used as a trace of precipita-
tion, as the SM signal after a rain event persists from a few
hours to several days. In other words, SM contains informa-
tion about the amount of water stored in the soil after rainfall.
This information can be then exploited to retrieve spatial and
temporal characteristics of the precipitation that has effec-
tively reached the land surface. For instance, Brocca et al.
(2013, 2014) proposed a direct inversion of the soil water
balance equation and used two consecutive satellite SM ob-
servations to estimate rainfall fallen within the time interval
between the two satellite passes. The underlying idea of this
method, known as SM2RAIN, is the use of “soil as a natu-
ral rain gauge”, as the difference in the water contained in
the soil can be directly related to rainfall. This information
was used to improve SRE by Ciabatta et al. (2017a) and
Massari et al. (2019). Other techniques that exploited SM
observations relied upon data assimilation approaches based
on sequential filtering techniques, like Kalman-filter-based
methods (Soil Moisture Analysis Rainfall Tool – SMART;
Crow et al., 2011) and particle filters (Pellarin et al., 2013;
Zhan et al., 2015; Román-Cascón et al., 2017). All of them
demonstrated a real benefit for flood forecasting applications
(Alvarez-Garreton et al., 2016; Chen et al., 2014; Massari
et al., 2018). In all but two cases (Chen et al., 2014; Tarpan-
elli et al., 2017), one single SM product was combined with
the SRE, a possible limitation if that product does not per-
form relatively well in the area of interest.

In general, the main advantage of using satellite SM as an
indirect measure of ground rainfall information is its uniform
temporal and spatial coverage, availability in near real time,
and the fact that it transcends national boundaries. Draw-
backs are the low spatial resolution and the relatively low
quality in mountainous areas, frozen soils and dense forests,
which, however, is also an issue in the case of ground-based
observations (due to uneven spatial distribution and data

transmission issues in inaccessible areas, undercatch prob-
lems, and the cost of maintenance). As these problems im-
pact the type of the sensor (active or passive) and the retrieval
in different way, their combination would allow for exploit-
ing their relative strengths for improving SRE.

In this study, we developed a short-latency (2–3 d depend-
ing on the region) rainfall product derived from the combi-
nation of IMERG-ER with multiple-satellite SM-based rain-
fall products. The latter are obtained from the inversion of
the SM retrievals derived from (1) the Soil Moisture Active
and Passive (SMAP; Entekhabi et al., 2010) mission, (2) the
Advanced Scatterometer (ASCAT; Wagner et al., 2013), and
(3) the Soil Moisture and Ocean Salinity (SMOS; Kerr et al.,
2001) mission via SM2RAIN. The integrated product is ex-
plicitly designed for operational water resource management
and agricultural applications over data-scarce regions where
rainfall observations from hydrometeorological networks are
scarce or totally absent.

The integration method we adopted is the optimal lin-
ear combination (OLC) approach (Bishop and Abramowitz,
2013; Hobeichi et al., 2018), which is based on a tech-
nique that provides an analytically optimal linear combina-
tion of rainfall products and accounts for both the perfor-
mance differences and error covariance between the prod-
ucts. We tested the performance of the product (1) over
four key regions, namely, India (IN), the conterminous
United States (CONUS), Australia (AU) and Europe (EU),
where high-quality ground-based hydrometeorological net-
works are available, and (2) in Africa and South America
by using a triple-collocation (TC) analysis (Stoffelen, 1998).
The validity of TC and the consistency of its results with re-
spect to those obtained against classical validation was pre-
liminary tested over the four regions mentioned in point 1
(Massari et al., 2017a).

The key strengths of this integrated product are the follow-
ing:

1. The simultaneous use of multiple-satellite SM observa-
tions derived from active and passive sensors. This ex-
ploits the advantages of each sensor in improving SRE.
Note that ASCAT is on the Metop (Meteorological Op-
erational) satellites, which are part of the space seg-
ment of the EUMETSAT (European Organisation for
the Exploitation of Meteorological Satellites) Polar Sys-
tem (EPS) that will secure the continuation of meteoro-
logical observations from the polar orbit in the 2022–
2043 timeframe.

2. The short latency (2–3 d, potentially lower in the near
future and with Level 2 – L2 – products). This is of
paramount importance for operational applications like
flood forecasting (for medium to large catchments, i.e.
> 20000 km2), water resource management, agricul-
tural planning and vector-borne disease control.

https://doi.org/10.5194/hess-24-2687-2020 Hydrol. Earth Syst. Sci., 24, 2687–2710, 2020



2690 C. Massari et al.: A daily 25 km short-latency rainfall product for data-scarce regions

3. Independence from rain gauge observations. This is a
key factor for data-scarce regions like Africa.

The paper is divided as follows. Section 2 provides a brief
overview of the ground-based and satellite observations used
in the study. Section 3 describes algorithms and methods
used as well as the integration methodology and the valida-
tion strategy. Results are presented in Sect. 4 followed by the
discussion and conclusions.

2 Data

In this section we describe the datasets used for the inte-
gration of IMERG-ER with SM2RAIN rainfall estimates, as
well as the datasets used to validate the integrated product.

2.1 Regional rainfall datasets

Different ground-based rainfall datasets were used for the
four different regions to cross-validate the integrated product,
namely, the Australian Water Availability Project (AWAP)
in Australia, the ECA&D (European Climate Assessment &
Dataset) rainfall dataset E-OBS (ENSEMBLES daily grid-
ded observational dataset) gridded dataset in Europe, the Na-
tional Centers for Environmental Prediction (NCEP) Stage
IV dataset over CONUS and the India Metrological Depart-
ment (IMD) rainfall gridded dataset over India. Below we de-
scribe the main features of these datasets (readers interested
in more details can refer to the related publications).

1. The Australian Water Availability Project (AWAP) rain-
fall product is generated via spatial analyses on the qual-
ity-controlled daily rain gauge measurements from the
Australian Bureau of Meteorology daily rain gauge net-
work. AWAP daily rainfall for a given day is the 24 h to-
tal rainfall from the day before at 09:00 local time to the
current day at 09:00. The rainfall fields are gridded on a
0.05◦×0.05◦ grid and spatially resampled to the desired
0.25◦ grid by taking area-weighted averages. Although
this product is characterized by a relatively high quality,
it suffers also from known shortcomings (the reader in-
terested can refer to Contractor et al., 2015, for further
details).

2. The ECA&D rainfall dataset E-OBS gridded dataset is
derived through interpolation of the ECA&D (European
Climate Assessment & Data) station data. The station
dataset comprises a network of 2316 stations, with the
highest station in northern and central Europe and lower
density in the Mediterranean, northern Scandinavia and
eastern Europe. The E-OBS dataset is derived through a
three-stage process (Haylock et al., 2008), which brings
it to different resolutions and grids. In this analysis, we
used the 0.25◦ regular latitude–longitude grid.

3. The National Centers for Environmental Prediction
(NCEP) Stage IV (Lin and Mitchell, 2005) is based on

the Next Generation Weather Radar (NEXRAD) mea-
surements, optimally merged with hourly gauge-based
observations by using the Multisensor Precipitation Es-
timator (MPE; Seo et al., 2010). This hourly dataset has
a spatial resolution of approximately 4 km. The hourly
gauge observations in the NCEP Stage IV estimates are
derived from the Hydrometeorological Automated Data
System (HADS). Stage IV is characterized by a negligi-
ble amount (< 1 %) of missing data over south-eastern
CONUS, whereas about 90 % of the data are missing
over the northwest corner of CONUS (roughly between
43–50◦ N and 115–125◦). In this study we aggregated
the product by averaging all the 4 km pixels falling
within the 0.25◦× 0.25◦ footprint. Daily data were ob-
tained by the accumulation of hourly observations. In
the accumulation procedure, if any missing hourly ob-
servations were found for the day, the resulting daily
rainfall was discarded.

4. The India Metrological Department rainfall gridded
dataset is prepared from daily rainfall data of 6955 sta-
tions, archived at the National Data Centre, IMD, Pune,
by using the Shepard method (Pai et al., 2014). Out
of these 6955 stations, 537 stations are the IMD ob-
servatory stations, 522 stations are under the hydro-
meteorology programme and 70 are agrometeorolog-
ical stations. Remaining stations are rainfall-reporting
stations maintained by state governments. The product
has been released with a 0.25◦×0.25◦ spatial resolution
since 1856.

2.1.1 Satellite soil moisture products

In the following we describe the main characteristics of the
satellite SM products used in the study. They are the follow-
ing:

1. The Advanced Scatterometer (ASCAT) on board the
Metop-A, Metop-B and Metop-C satellites is a scat-
terometer operating at the C band (5.255 GHz). It pro-
vides a SM product characterized by a spatial sam-
pling of 12.5 km and from one to two observations per
day depending on the latitude (Wagner et al., 2013).
In this study, the SM product provided within the EU-
METSAT project (http://hsaf.meteoam.it/, last access:
24 April 2020) denoted as H115 was used.

2. The Soil Moisture and Ocean Salinity (SMOS) mission
provides a SM product through a radiometer operating
at the L band (1.4 GHz) with 50 km of spatial resolution
and one observation every 2–3 d (Kerr et al., 2001). In
this study, version RE04 (Level 3) provided by the Cen-
tre Aval de Traitement des Données SMOS (CATDS,
https://www.catds.fr/, last access: 24 April 2020) was
used. The version is gridded on the 25 km EASEv2
(Equal-Area Scalable Earth) grid and distributed in the
netCDF (Network Common Data Form) format.

Hydrol. Earth Syst. Sci., 24, 2687–2710, 2020 https://doi.org/10.5194/hess-24-2687-2020
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3. For SMAP L3, the Soil Moisture Active and Passive
(SMAP) mission SM product is obtained by L-band ra-
diometer observations (1.4 GHz) with 36 km and one or
two observations every 3 d depending on the location
(Entekhabi et al., 2010). In this study, the version 5 of
the Level 3 SM retrievals was used.

4. For AMSR2, the Advanced Microwave Scanning Ra-
diometer 2 (AMSR2) on board the Global Change Ob-
servation Mission for Water satellite is a radiometer op-
erating in the microwave band. Soil moisture retrieval
from AMSR2 is obtained from the C and X bands,
which allow for obtaining a spatial–temporal resolu-
tion of 25 km daily (Kim et al., 2015). In this study,
we focused on the X-band SM product obtained by the
application of the Land Parameter Retrieval Model to
AMSR2 brightness temperature data (Parinussa et al.,
2015). Note that AMSR2 was inverted to obtain rainfall
via SM2RAIN, but the resulting rainfall was not used in
the integration, whereas it was used in the validation via
TC as an auxiliary dataset.

2.1.2 Global rainfall datasets

In addition to satellite SM products, different rainfall datasets
were used in the study both for cross-comparison purposes
and as a part of the integration procedure. In the following
the main characteristics of each dataset are provided.

1. The First Guess Daily product provided by the Global
Precipitation Climatology Center (GPCC; Schamm
et al., 2014) is a ground-based rainfall dataset, which
has been available since 1 January 2009 with a spatial
sampling grid of 1◦. This dataset is used within the pro-
cessing chain of in many gauge-corrected satellite rain-
fall products. Being based on gauge observations, this
dataset is very accurate where the station density is rel-
atively high like in Europe, Australia and the United
States, whereas it suffers from serious interpolation er-
rors in areas uncovered by stations. For the sake of com-
parison, for GPCC we assumed the same rainfall ob-
served at 1◦ on the 0.25◦× 0.25◦ sub-pixels.

2. ERA5 is the latest climate reanalysis produced by
ECMWF, providing hourly data on many atmospheric,
land-surface and sea-state parameters together with es-
timates of uncertainty. The rainfall variable used in this
study is characterized by a spatial resolution of 36 km
and an hourly temporal resolution. ERA5 is available
from the Copernicus Climate Change service (https:
//climate.copernicus.eu/climate-reanalysis, last access:
24 April 2020). Daily observations of rainfall were
computed as the difference between total precipitation
and snowfall. ERA5 was regridded to the ASCAT grid
(25 km) through the nearest-neighbour method to have
consistent spatial observations with the satellite SM
datasets (see Sect. 3.3).

3. The IMERG algorithm, firstly released in early 2015
(Huffman et al., 2018), is run at 0.1◦× 0.1◦ spatial
and half-hourly temporal resolutions in three modes,
based on latency and accuracy: Early Run (IMERG-
ER; latency of 4–6 h after observation), Late Run
(IMERG-LR; 12–18 h) and Final Run (IMERG-FR;
about 3 months). The Early Run and the Final Run are
differentiated by their calibration scheme and the fact
that IMERG-ER has a climatological rain gauge adjust-
ment, whereas the IMERG-FR uses a month-to-month
adjustment based on GPCC data.

3 Methods

3.1 The SM2RAIN algorithm

SM2RAIN (Brocca et al., 2014) is a method of rainfall esti-
mation from SM observations. It is based on the inversion of
a one-layer water balance equation with appropriate simplifi-
cations valid only for liquid precipitation. Assuming a layer
characterized by a soil water capacity (soil depth times soil
porosity) Z∗, the water balance equation can be written as

Z∗ds(t)/dt = p(t)− r(t)− e(t)− g(t), (1)

where s(t) is the relative saturation of the soil or relative SM;
t is the time; and p(t), r(t), e(t) and g(t) are the precipita-
tion, surface runoff, evapotranspiration and drainage rates,
respectively. Under unsaturated soil conditions, assuming a
negligible evapotranspiration rate during rainfall and Dun-
nian runoff, solving Eq. (1) yields

p(t)= Z∗ds(t)/dt + as(t)b. (2)

Note that in Eq. (2) the drainage rate function is of the
type g = asb as in Famiglietti and Wood (1994), with a

and b being two fitted model parameters. Once two consec-
utive SM observations are available and the parameters a,
b and Z∗ are known, then Eq. (2) can be used to estimate
the rainfall within the time between the two observations.
The SM2RAIN parameters a, b and Z∗ are commonly ob-
tained by calibration as described in Ciabatta et al. (2018).
For further details on the calibration procedure used within
this study, the reader is referred to Sect. 3.3.

3.2 The optimal linear combination approach

The optimal linear combination (OLC) approach (Bishop
and Abramowitz, 2013; Hobeichi et al., 2018) provides an
analytically optimal linear combination of ensemble mem-
bers (rainfall estimates in this case) that minimizes the mean
square error when compared to a dataset that is assumed to
be accurate enough to be considered as a calibration dataset
YREF and thus accounts for both the performance differences
and error covariance between the rainfall products. The opti-
mal linear combination is therefore insensitive to the addition

https://doi.org/10.5194/hess-24-2687-2020 Hydrol. Earth Syst. Sci., 24, 2687–2710, 2020
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of redundant information. This weighting approach has two
key advantages: (1) it provides an optimal solution for inte-
grating different rainfall datasets, and (2) it accounts for the
error covariance between the different datasets (caused by
the fact that single datasets may share a similar information);
that is, they may not provide independent estimates. Given
an ensemble of N + 1 rainfall estimates and a corresponding
calibration dataset YREF, the weighting builds a linear com-
bination of the N + 1 ensemble members that minimizes the
mean square difference with respect to YREF such that

N∑
j=1
(YREF−w

T Y PROD)
2 (3)

is minimized, where

Y PROD = [yIMERG,ySM2RAIN1 ,ySM2RAIN2 , . . .,ySM2RAINN ] (4)

represents the different SM2RAIN products plus the
IMERG-ER product. The vector of coefficients w is calcu-
lated using

w =
A−1

1TA−11
, (5)

where A is the (N + 1)× (N + 1) error covariance matrix of
Y PROD with respect to YREF and 1T = [1,1,1, . . .,1] a vector
of N + 1 elements. The integrated product is then calculated
as

PR+SM = w
T Y PROD. (6)

Note that for the OLC method to be analytically optimal,
a bias correction of the ensemble members in Y PROD (i.e.
yIMERG, ySM2RAIN1 , ySM2RAIN2 , . . . , ySM2RAINN ) in Eq. (4)
with the YREF (i.e. the temporal mean of each member of
Y PROD and the mean of YREF must be equal) is required. In
Bishop and Abramowitz (2013) this bias correction was addi-
tive; however, for the nature of the precipitation signal (with
a considerable amount of null values), a multiplicative bias
correction is more appropriate (Hobeichi et al., 2018). Thus,
the latter requires the calculation of appropriate multiplica-
tion factors (see Sect. 3.3 for further details).

In addition, it is worth mentioning that the rainfall in-
formation brought from different SM2RAIN products to
IMERG-ER is potentially redundant especially when the SM
estimates from SMAP, ASCAT and SMOS agree each other.
The OLC method is particularly advantageous in this sense,
as it accounts for both performance differences and error co-
variance between the rainfall products and is therefore insen-
sitive to the addition of redundant information. Other more
sophisticated methods can be also applied, although there is
no guarantee that such methods would lead to better results.
For instance, Brocca et al. (2016) found that simple integra-
tion methods performed equally well and in some cases even
better than more complex methods. Future developments will
explore new and more complex integration techniques, such
as the one in Massari et al. (2019).

3.3 Integration strategy

This section describes the four steps necessary for obtaining
the integrated product PR+SM (Fig. 1). This involves the fol-
lowing:

a. pre-processing of the soil moisture and rainfall products
used in the integration (Sect. 3.3.1)

b. selection of the parameters of SM2RAIN (Sect. 3.3.2)

c. selection of the multiplication factors (Sect. 3.3.2)

d. calculation of the coefficients of OLC via Eq. (5)
(Sect. 3.3.3).

Note that a unique calibration dataset, YREF will be used to
perform steps (b)–(d). As YREF must be characterized by a
relatively high accuracy, we performed a preliminary analy-
sis for its proper selection that is described ahead in Sect. 4.1.
Once YREF is selected, it can be used to obtain the coeffi-
cients and parameters described in points (b)–(d) (i.e. cali-
bration phase of 2015–2017), which can produce integrated
rainfall estimates for an independent time period (e.g. 2018
onward) with a latency of 2–3 d.

3.3.1 Step 0: soil moisture and rainfall pre-processing

Global SM and rainfall products come with different resolu-
tions and grids. Moreover, the application of the SM2RAIN
algorithm to SM observations requires preliminary process-
ing. In step 0, we resampled all the datasets to the same
0.25◦×0.25◦ grid over land between±60◦ by using nearest-
neighbour interpolation on the ASCAT grid (25 km). In par-
ticular, the IMERG products, characterized by a resolution
of 0.1◦, were upscaled to 0.25◦ using a box-shaped kernel
with antialiasing, an approach that was found to outperform
simple spatial averaging. Rainfall accumulations were aggre-
gated to daily scale (from 00:00 to 23:59 UTC).

As satellite SM data are not provided regularly spaced
in time and contain gaps (for instance we did not include
in the analysis observations characterized by frozen soils,
snow presence or radio interference contamination; by us-
ing the specific flags for each product), they were linearly in-
terpolated at 00:00 UTC to produce SM2RAIN daily rainfall
from 00:00 to 23:59 UTC (see step 1). Note that we limited
the interpolation to a maximum of 2 d; beyond that we as-
sumed SM2RAIN rainfall were missing (in these cases only
IMERG-ER is used in the integrated product as better de-
scribed in Sect. 3.3.3). Note that the amount of missing data
is generally dependent upon the location. Locations where
the quality of satellite SM observations is poor are charac-
terized by a lot of missing data, and the integrated product is
basically close to IMERG-ER.
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Figure 1. Integration scheme used for the calculation of the integrated rainfall product PR+SM. In step 2, SM2RAINcSMAP , SM2RAINcSMOS ,
SM2RAINcASCAT and IMERG-ERc refer to the SM2RAIN products with climatological correction (using the calibration dataset).

3.3.2 Steps 1 and 2: calibration phase

Step 1 refers to the calibration of SM2RAIN for the selec-
tion of the optimal parameters distribution pixel by pixel. All
the parameters described in Sect. 3.1 were selected by using
YREF. For that, we minimized the daily root mean squared
error (RMSE) between the SM2RAIN rainfall applied to
the specific SM product and YREF during 2015–2017. Note
that as RMSE calibration is a variance-minimization tech-
nique, it is subjected to conditional biases, which can po-
tentially determine a reduction of the temporal variability
of the estimated precipitation and, thus, underestimate ex-
treme values. To partially solve this issue, other metrics
can be used, e.g. the Kling–Gupta efficiency (KGE) in-
dex (Gupta et al., 2009), which are theoretically superior
in this respect. However, to ensure homogeneity among all
the calibration steps (see OLC theory in Sect. 3.2), we
chose to use RMSE, keeping in mind that the results ob-
tained here could be further improved. The products so ob-
tained are referred to as SM2RAIN-ASCAT if the satellite
SM observations were derived from ASCAT, SM2RAIN-
SMOS if derived from SMOS and SM2RAIN-SMAP if de-
rived from SMAP. In addition to these products, we also

produced SM2RAIN-ASMR2* and SM2RAIN-ASCAT*, by
using satellite SM observations derived from AMSR2 and
ASCAT with non-calibrated parameters; i.e. we used con-
stant parameters globally derived from previous studies as
in Massari et al. (2017a). Remember that these two last prod-
ucts were not used within OLC but will serve then only for
validation purposes with TC.

As depicted in Sect. 3.2, the application of OLC re-
quires unbiased ensemble members. This implies match-
ing the long-term temporal mean of YREF with the ones
of IMERG-ER, SM2RAIN-ASCAT, SM2RAIN-SMOS and
SM2RAIN-SMAP by using a different (and temporally con-
stant) multiplication factor for each member (i.e. a factor
that multiplied by the mean of the member guarantees the
matching with the mean of the calibration dataset). How-
ever, applying this procedure resulted in an overall reduc-
tion of the quality of the SM2RAIN members because a
temporally constant multiplication factor deteriorated the
quality of light rainfall (< 5 mm d−1) with an increase of
the false alarms (due to the noise contained in the satel-
lite SM time series). To overcome this issue, we adopted
a slightly different strategy which, despite not guarantee-
ing a perfect matching of the long temporal means and
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thus not being theoretically optimal, limited the problem
of the increase of false alarms. In practice, for each mem-
ber (i.e. SM2RAIN-ASCAT, SM2RAIN-SMOS, SM2RAIN-
ASCAT, SM2RAIN-SMAP and IMERG-ER), we calculated
the ratio between its mean monthly rainfall (i.e. mean of all
the Januaries, mean of all the Februaries and so on) and the
monthly mean of YREF (obtaining one multiplication factor
per month per pixel for a total of 12 multiplication factors
for each grid point). These factors were then used to multi-
ply the daily rainfall observations of each member (relative to
the desired month) to obtain a monthly based rescaled daily
rainfall estimate.

This procedure is in principle a climatological correction
rather than a bias correction because it uses the climatology
of YREF as a reference. It guarantees a more consistent spa-
tial pattern of rainfall among the members prior to the appli-
cation of OLC, which helps also to avoid spatial inconsisten-
cies when different combinations of members are used within
the integrated product. Note that this operation does not con-
strain the variability of the precipitation from year to year to
the one of YREF, as it only redistributes rainfall within the
year and guarantees all the members to be realigned to the
same climatology. Note also that a similar procedure is used
for the production of IMERG-ER and IMERG-LR products
(Huffman et al., 2018) and can be easily implemented for its
use in near real time once the 12 factors for each member are
known. From here onward we will refer to this procedure as
a climatological correction.

3.3.3 Step 3: application of OLC

For the application of OLC (i.e. integration), we proceeded
by considering these three methodological aspects:

1. First off, we performed a quality check, by comparing
the correlation coefficient of each SM2RAIN product
with the calibration dataset (YREF). When the correla-
tion was found less than 0.4 (i.e. no correlation), the
product was automatically excluded, and OLC was ap-
plied on the reminder of them. If all the SM2RAIN
products correlation fall below this threshold (for ex-
ample in dense forests or high mountainous regions),
only IMERG-ER was retained. The value 0.4 was set to
exclude the poor performance of SM2RAIN products
at such thresholds, which could potentially impact the
overall quality of the integrated product. To select this
value, we performed ad hoc experiments (not shown)
over CONUS, Australia, Europe and India and found
0.4 as a good compromise to exclude problematic ar-
eas like those impacted by high RFI (radio frequency
interference) in the SMOS SM product. However, its
overall impact on the final results was found to be very
small and only limited to some specific regions (e.g.
high RFI, dense forests and desert areas, which were
already masked out by the validation mask).

2. The calculation of the OLC coefficients in Eq. (5) is not
computationally demanding and uses the full calibration
time series (2015–2017). In particular, Eq. (5) provides
the specific coefficients to be used in Eq. (6) at each time
step. If one of the SM2RAIN products is not available
at a specific time step for the reasons described in step
0 (see Sect. 3.3.1), we linearly redistributed the coeffi-
cients to the products available at that time step so that
their sum is one (to ensure unbiased estimates).

3. The application of OLC among the SM2RAIN products
and IMERG-ER was carried only when IMERG-ER
values are larger than zero, taking advantage of the en-
hanced rain–no-rain detection accuracy of IMERG that
uses DPR (Gebregiorgis et al., 2018a), whereas when
IMERG-ER was zero, this value was kept in the merged
product. This tactic mitigates the degradation of rainfall
estimates during low-rainfall time steps as demonstrated
by Massari et al. (2019).

4. The final product is then composed of multiple rain-
fall datasets weighed according to Eq. (6). IMERG-
ER is always present, whereas the presence of the
three SM2RAIN rainfall estimates derived from AS-
CAT, SMOS and SMAP depends on their relative ac-
curacy (if they satisfy the threshold) and availability in
time and space.

The success of the overall procedure described above is
dependent upon the quality of YREF. Although the calibration
phase seems very intensive, it will be demonstrated in Sect. 4
that if YREF has a relatively good accuracy, its effect on the
final quality of the integrated product is very low. However,
its choice is strategic in some regions, as will be shown in
Sect. 4.1, and thus deserves a careful investigation.

3.4 Validation strategies

For the validation of the integrated product, two different
strategies were followed. First, we selected four key re-
gions characterized by different climates and landscapes (i.e.
CONUS, AU, EU and IN) where ground-based observations
(derived from rain gauges and rain gauges plus radar) are
very dense and of a high quality (see Sect. 2.1). Both con-
tinuous and categorical scores are considered, as commonly
used in a classical validation of global precipitation products
(see Maggioni et al., 2016, for further details).

Next, since many areas of the world like Africa, South
America and central Asia have a highly variable density of
rain gauges, validation was also performed using a TC anal-
ysis as proposed by (Massari et al., 2017a; Khan and Mag-
gioni, 2019; see Sect. 3.4.2). TC offers a viable way to val-
idate rainfall products in data-scarce regions by providing
(theoretical) error and correlation of each product with the
“unknown” truth. Note that we tested the validity of the TC
validation by applying it to the same key regions where the
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classical validation was carried out. Then, TC was applied to
Africa and South America to validate the integrated product
and the other datasets that are part of the analysis. The vali-
dation with TC was carried out in 2018 (only 1 year), which
is independent from the calibration period (2015–2017).

3.4.1 Classical validation

Both continuous and categorical error metrics were adopted
for validating daily rainfall. The continuous scores are the
following:

1. Pearson correlation coefficient (R).

2. Root mean squared error (RMSE).

3. Additive bias (BIAS).

4. Variability ratio (γ ). This is where γ is the ratio of the
standard deviation of the rainfall estimate σs and the one
of the benchmark σo. The optimal value of γ is 1.

5. Kling–Gupta efficiency index. KGE is a modified ver-
sion of the classical Nash–Sutcliffe (NS) efficiency in-
dex commonly used for evaluating discharge simulation
estimates. KGE is composed of three terms: correla-
tion, variability ratio and bias. KGE varies from −∞
to 1. KGE values close to 1 denote perfect model es-
timates, whereas values of KGE<−0.41 indicate that
the estimate deteriorates upon the mean rainfall bench-
mark (Knoben et al., 2019). With respect to NS, KGE
gives more weight to the variability component and is
less impacted by conditional bias. In this study, we used
the version of KGE proposed by Beck et al. (2019). For
further details on the topic, we refer the reader to Gupta
et al. (2009).

In addition, three categorical scores were considered: the
probability of detection POD=H / (H +M), which mea-
sures the likelihood of the rainfall estimate to detect an
event when it in fact occurs; the false alarm ratio FAR=
F /(F +H ), which measures the likelihood that a precipi-
tation event does occur when a reference does not estimate
rain; and the threat score (TS), which is an integrated mea-
sure of POD and FAR. All these scores are based on the
contingency table (Table 1). In the table, H represents hit
cases when both the precipitation estimate and reference are
greater than or equal to the rain–no-rain threshold percentile
(th); F represents false alarms, when the precipitation esti-
mate is greater than or equal to th but when the reference
is less than th; M represents missed events, when the refer-
ence is greater than or equal to th but when the precipitation
estimate is less than th; and Z represents correct no-rain de-
tection, when both the precipitation estimate and reference
are less than th. N is the sample size, i.e. the total number of
observed events and N =H +M +F +Z.

Table 1. Contingency table commonly used for characterizing de-
tection errors of precipitation products.

Rprod ≥ th Rprod < th

Rref ≥ th H M

Rref < th F Z

3.4.2 Triple-collocation analysis applied to rainfall
observations

In this study, TC analysis (Stoffelen, 1998) was applied to
estimate the correlation and the error of the rainfall estimates
when a reliable reference is missing like in Africa. Here we
present a summary of the theory behind TC, while the reader
interested in more details can refer to Massari et al. (2017a).

Suppose we have three measurement systems Xi , observ-
ing the true variable t characterized by an additive error
model

Xi =X
′

i + εi = αi +βi t + εi, (7)

where the variables Xi (i = 1, 2, 3) are collocated measure-
ment systems linearly related to the true underlying value t
with additive random errors εi , respectively, while αi and
βi are the ordinary least-squares intercepts and slopes. As-
suming that the errors from the independent sources have
zero mean (E(εi)= 0) and are uncorrelated with each other
(Cov(εi,εj )= 0, with i 6= j ) and with t (Cov(εi, t)= 0), the
variance of the error of each dataset can be expressed as (Mc-
Coll et al., 2014)

σ ε =


√
Q11−

Q12Q13
Q23√

Q22−
Q12Q23
Q13√

Q33−
Q12Q23
Q12

 , (8)

where Qij = Cov(Xi,Xj ) is the covariance within the vari-
ables Xi .

In addition, McColl et al. (2014), using the definition of
the correlation and covariance, demonstrated that

R2
TC(t,X) =


Q12Q13
Q11Q23
Q12Q23
Q13Q22
Q13Q23
Q12Q33

 , (9)

where R2
TC(t,X)

is the squared correlation coefficient between
t and Xi (McColl et al., 2014).

Note that the error (and correlation) calculated via TC is
generally lower (higher) than those calculated using the clas-
sical validation, given that it does not include the reference
uncertainty.

3.4.3 Validation mask

Although the integrated product is potentially available ev-
erywhere, we found that where the quality of satellite SM
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observations is very low like in forests, frozen soils and
mountainous areas, OLC coefficients associated with the
SM2RAIN products were very small, and the integrated
product was mainly constituted by IMERG-ER. Therefore, to
avoid any misinterpretation about the real benefit of integrat-
ing IMERG-ER with satellite SM observations, we limited
the validation of the integrated product to the ASCAT com-
mitted area (Hahn, 2016). The area is limited to low and mod-
erate vegetation regimes, unfrozen and no snow cover, low to
moderate topographic variations, no wetlands, no coastal ar-
eas, and no deserts (see Fig. S3 of the Supplement). Outside
of this area, satellite SM observations might suffer from sev-
eral problems and are weighed much less by OLC (although
we also found benefits here; see Sect. 4.1.1). In addition, for
the sake of product distribution and use, we can ensure opti-
mal results only over this area, and thus we associated a flag
to the pixels which fell outside it in the netCDF file included
in the Supplement.

4 Results

Both the calibration of SM2RAIN and the OLC implementa-
tion need a calibration dataset as described in Sect. 3.3 (i.e.
YREF). The choice of this dataset is strategic for obtaining
a good-quality integrated product. Section 4.1 describes the
process of the selection of YREF considering different poten-
tial candidates. Section 4.1.1 and 4.1.2 describe the valida-
tion over US, IN, AU and EU by using the hydrometeoro-
logical networks described in Sect. 2.1 and the validation in
Africa and South America by using TC (Sect. 3.4.2), respec-
tively.

4.1 Calibration dataset selection

The choice of a calibration dataset is strategic for both the
SM2RAIN parameters selection and the OLC coefficients
calculation. Thus, it has to be carefully selected based on
(i) accuracy (i.e. low error and high correlation with “true”
rainfall), (ii) homogeneous performance in time and space,
and (iii) continuous spatial and temporal coverage (as well
as spatial and temporal resolution closer to the one of the
rainfall to be estimated). Potential candidates are:

1. GPCC. This has potentially high accuracy and low bi-
ases where the rain gauge coverage is good but can be
unreliable when the rain gauge distribution is scarce
(e.g. Africa and South America). It might also suffer
from time dependence performance as a function of rain
gauge availability.

2. ERA5. This provides full coverage and generally homo-
geneous performance all over the world.

3. IMERG-FR. This is a gauge-corrected satellite product
and potentially highly accurate where rain gauges dis-
tribution is dense. The drawback is that it is highly de-

Table 2. Triple-collocation correlation obtained by using triplet (A)
GPCC–IMERG-ER–SM2RAIN-ASCAT, (B) GPCC–IMERG-ER–
ERA5, (C) GPCC–ERA5–SM2RAIN-ASCAT for the period 2015–
2018. The numbers refer to median values.

A B C

GPCC 0.7079 0.7144 0.6976
ERA5 – 0.8136 0.8262
IMERG-ER 0.6671 0.6558
SM2RAIN-ASCAT 0.7032 – 0.6791

pendent upon IMERG-ER where rain gauge observa-
tions are scarce. For this reason, we initially excluded
this product from the list of potential candidates and fo-
cused only on the other two.

To explore the performance of ERA5 and GPCC, we applied
TC as described in Sect. 3.4.2 during the whole period 2015–
2018. The following triplets were used (by keeping in mind
the need to satisfy the assumptions of TC highlighted above):

1. GPCC, IMERG-ER and SM2RAIN-ASCAT*
(triplet A)

2. GPCC, IMERG-ER and ERA5 (triplet B)

3. GPCC, ERA5 and SM2RAIN-ASCAT* (triplet C).

Note that SM2RAIN-ASCAT* above is not the one used
in the integration, but it was produced using constant param-
eters a, b and Z all over the world (i.e. it is not regionally
calibrated) as in Massari et al. (2017a) to avoid a potential
violation of the TC assumptions. On the other hand, even
using SM2RAIN-ASCAT (the calibrated dataset), similar re-
sults were obtained (not shown), as we found a negligible
effect of the calibration on TC results (in terms of TC corre-
lations).

Table 2 shows results for triplet A, B and C. Different con-
figurations of the triplets provide similar results, suggesting
that TC can be considered reliable. In particular, ERA5 per-
forms the best among all, but it also suffers from significant
uncertainty over convection-dominated systems like in west-
ern Africa and the Sahel (see Fig. 2). Elsewhere, the perfor-
mance is relatively good except over north-western CONUS
and tropical forests of Africa and Indonesia. The GPCC prod-
uct provides relatively good performance over Europe, east-
ern Asia, Australia and Canada, but its performance are very
low over Africa.

Figure 2a plots the number of stations used for the GPCC
First Guess 1.0◦ product for the years 2015–2018, whereas
Fig. 2b and c show the TC temporal correlation of the GPCC
and one of ERA5 for the period 2015–2018. An interesting
feature is that lower correlations of GPCC closely match with
areas of low station density (by comparing Fig. 2a and b),
whereas ERA5 shows a more homogeneous and higher cor-
relation over all the globe. It has also to be noted that the
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Figure 2. (a) Number of stations used for the GPCC First Guess
1.0◦ product for the years 2015–2018. (b) TC correlation of the
GPCC First Guess 1.0◦ product in Africa during 2015–2018 using
the triplet GPCC, ERA5 and SM2RAIN-ASCAT*. It can be seen
that lower correlation areas closely match with areas of low station
density. (c) TC correlation of the ERA5 reanalysis during 2015–
2018 for GPCC, ERA5 and SM2RAIN-ASCAT*.

number of stations used by GPCC in Africa during this pe-
riod is very low with areas totally uncovered, which likely
leads to significant interpolation error. The uneven rain gauge
spatial distribution seems to significantly impact the GPCC
quality and in turn can potentially cause sub-optimal perfor-
mance if used as a calibration dataset. ERA5 relies less on

observation density and shows a more homogeneous perfor-
mance pattern with respect to GPCC. Thus, ERA5 was se-
lected as YREF. This selection does not guarantee optimal so-
lutions, but it is the best we can do with the available datasets
considering that other potential candidates can be affected
from other or similar issues, which could result in a very dif-
ferent global precipitation estimate (Herold et al., 2016). The
solution to this problem is not straightforward, but a possible
way forward would be the integration of GPCC and ERA5 or
the use of available integrated products (Beck et al., 2017).
The advantage of relying only on a single rainfall source (as
to ensure homogeneity) however will be lost in that case.

Note that, except for CONUS where rain gauge infor-
mation is ingested into ERA5 (Lopez, 2011), the integrated
product is totally independent of the rain gauge. This allows
for independently cross-validating the integrated product in
EU, IN, AU and CONUS during 2015–2017 against high-
quality ground-based rainfall observations (see Sect. 4.1.1).
The latter serves to understand if the entire procedure of inte-
gration described in Sect. 3.3 is correct and provide an over-
all idea of the maximum potential performance that can be
obtained by the integrated product (being performed in the
same period used for calibration).

4.1.1 Classical validation over key regions using
high-quality ground-based observations

Figure 3 summarizes the products used in PR+SM pixel
by pixel for the different key regions. While for In-
dia and Australia, SM2RAIN-ASCAT, SM2RAIN-SMOS
and SM2RAIN-SMAP are present almost everywhere, over
CONUS and Europe there exist areas where SM2RAIN-
SMOS was not used either because radio frequency inter-
ference which was too high was found in the SMOS prod-
uct or because of its relatively low performance (Chen et al.,
2018). In the figure, we did not superimpose the mask de-
scribed in Sect. 3.4.3 to show that the areas in dark blue (i.e.
where only IMERG-ER is retained) almost coincide with
the ASCAT-committed area. For instance the north-eastern
CONUS region is known to be a challenging area for satellite
SM products, and, as a result, here PR+SM relies on IMERG-
ER alone. Similarly, the coastal areas are mostly charac-
terized by dark-blue pixels, which indicates no integration
with any SM2RAIN product. Note however that the ASCAT
committed area does not always match the area where only
IMERG-ER is present, e.g. north-eastern Africa. Here, the
ASCAT SM product is known to perform relatively poorly
due to volume scattering (Wagner et al., 2013), whereas pas-
sive products perform relatively well (in orange, the presence
of only passive sensors integrated with IMERG-ER can be
seen). Although in areas like this we still have an improve-
ment of IMERG-ER, they could be considered part of the
integrated product we preferred to be conservative and guar-
antee the product reliability only over the mask described in
Sect. 3.4.3.
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Figure 3. Products used in the integration over CONUS (a), Eu-
rope (b), India (c) and Australia (d). The results refer to 2015–2017
period.

Table 3 shows R, RMSE, BIAS and KGE of the different
rainfall products obtained by using the ground-based obser-
vations described in Sect. 2.1 as references. The short-latency
products (less than 2–3 d) are shown in light blue, whereas
the long-latency ones (larger than 2 months) are left white.
The integrated product PR+SM outperforms both IMERG-
ER (significantly) and in some cases long-latency products
in terms of R and RMSE (see for instance PR+SM correla-
tions in Australia, Europe and India vs. ERA5 correlations).
This suggests that the selection of the calibration dataset is
not necessarily a major limiting factor in the proposed frame-
work, as satellite SM contains inherent information about
rainfall, as long as its quality is sufficiently high. However,
this is not always true for all the scores. For instance, in terms
of bias, results are not optimal in India. Here, ERA5-based
climatological correction is probably the reason for the sub-
optimal performance of the integrated product due to the rel-
atively high bias of ERA5 over India. For other regions, re-
sults are overall good in terms of bias for PR+SM, although
they are slightly worse for CONUS. The bias for IMERG-

ER is particularly relevant over CONUS and Europe, as well
as for IMERG-FR in Europe. On the other hand, GPCC and
ERA5 biases over these regions and in Australia are very low,
which is expected due to the large amount of gauge stations
shared with the references.

In terms of the variability ratio, we did not observe signif-
icant conditional biases of the PR+SM product in Europe and
CONUS, although the use of RMSE as a calibration score
of SM2RAIN (see Sect. 3.3.2) and in the OLC procedure
(see Sect. 3.2) would systematically suggest it. Rather, we
observed the ability to reduce the high variability of IMERG-
ER bringing it to values closer to one. Only for Australia is
γ about 30 % lower than one, but this difference is not too
far from the range of values observed for the other products
(especially GPM-based products). The reason for that can be
twofold. First, the integration was carried out only on non-
zero rainfall values (thus the impact of SM2RAIN calibration
with RMSE is overall lower than expected; see Sect. 3.3.2).
Second, the lower variability of SM2RAIN products is in this
case beneficial as IMERG-ER shows variability which is too
high.

KGE results provide an integrated measure of the scores
discussed above. PR+SM KGE values range around 0.6 for all
the key regions. Lower performance is obtained for IMERG-
ER with respect to PR+SM due to its high variability, except
for India where the higher bias of PR+SM determines sub-
optimal KGE. For long-latency products, KGE measures are
relatively good for GPCC, except in India where its lower
correlation determines a decrease of KGE. IMERG-FR suf-
fers from a large variability ratio in Europe (in addition to
high bias) and CONUS, which causes relatively low KGE
values. ERA5 KGE values are sub-optimal over CONUS
(due to a high bias and low variability ratio) and in India
(due to high bias).

Figure 4 shows, for AU, the increase in temporal
correlation (2015–2017) with respect to IMERG-ER ob-
tained by integrating the latter with one (either AS-
CAT or SMAP or SMOS), two (either ASCAT+SMOS,
SMAP+SMOS or ASCAT+SMAP) or three SM2RAIN
products (ASCAT+SMAP+SMOS). The addition of mul-
tiple products, though beneficial, gets smaller as we ingest
more SM2RAIN-based rainfall estimates. This is due to the
redundancy of information provided by SM, which causes no
further improvement. Although this might suggest that using
a single SM2RAIN product is equivalent to using multiple
products, the use of multiple products always guarantees op-
timal performance per pixel and is useful where one of the
products does not perform well, as shown in Fig. 3. Results
for the other key regions provide similar overall conclusions
and are not shown here.

Figure 5 shows the correlation and RMSE differences
in percentage obtained between the integrated product and
IMERG-ER. Blue areas are those characterized by improve-
ments, whereas red denotes deterioration. There is an overall
improvement for both scores over the study areas. Larger im-
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Table 3. Median correlation (R), root mean square error (RMSE), daily bias (BIAS), variability ratio γ (i.e. ratio between the standard
deviation of the estimated rainfall and that of the benchmark) and the Kling–Gupta efficiency (KGE) index obtained with the comparison
of the different rainfall products against gauge-based AWAP (Australia), Stage IV (CONUS; gauge and radar), E-OBS (Europe) and IMD
(India) during the period 2015–2017. PR+SM refers to the integrated product. Asterisks refer to short-latency products, while values in bold
denote the best performing product in the region according to the specific score on the left.

Australia CONUS Europe India

R (–) PR+SM
∗ 0.770 0.705 0.679 0.740

IMERG-ER∗ 0.704 0.604 0.563 0.703
IMERG-FR 0.767 0.665 0.630 0.737
GPCC 0.878 0.696 0.898 0.595
ERA5 0.720 0.647 0.699 0.603

RMSE (mm d−1) PR+SM
∗ 3.043 3.562 3.016 5.074

IMERG-ER∗ 4.520 6.381 5.474 6.100
IMERG-FR 3.509 4.689 4.542 6.142
GPCC 2.306 3.446 1.751 6.669
ERA5 3.330 4.027 2.888 6.867

BIAS (mm d−1) PR+SM
∗ 0.090 0.135 −0.035 −0.238

IMERG-ER∗ −0.238 −0.195 −0.394 −0.067
IMERG-FR −0.076 −0.008 −0.457 −0.129
GPCC 0.002 0.072 −0.118 −0.047
ERA5 0.087 0.129 −0.031 −0.237

Variability ratio γ (–) PR+SM
∗ 0.73 1.01 1.01 0.86

IMERG-ER∗ 1.24 1.82 1.78 1.14
IMERG-FR 1.11 1.41 1.59 1.26
GPCC 0.88 1.03 0.99 1.03
ERA5 0.92 1.18 1.00 1.08

KGE (–) PR+SM
∗ 0.651 0.572 0.607 0.585

IMERG-ER∗ 0.551 0.274 0.277 0.623
IMERG-FR 0.702 0.462 0.445 0.651
GPCC 0.785 0.603 0.799 0.545
ERA5 0.654 0.469 0.638 0.529

provements are obtained in terms of RMSE, which in some
cases (i.e. CONUS) are larger than 40 %. In terms of R, the
improvement spans from 5 % to 15 % with larger values ob-
tained for Europe and Australia. There are also spots over
north-western CONUS characterized by deterioration. We
attributed this to the low agreement between stage IV data
and ERA5 data (used as calibration dataset), which can be
also found in Beck et al. (2019). Note this is a challenging
area for Stage IV data, as also demonstrated by Tian et al.
(2007), who found significant performance differences of the
Tropical Rainfall Measuring Mission (TRMM) 3B42 rainfall
product in north-western CONUS when compared either to
the CPC (Climate Prediction Center) Unified Gauge-based
Analysis of Global Daily Precipitation (Higgins et al., 2000)
product or with the Stage IV dataset.

To understand the benefit of integrating SM-based rainfall
with IMERG-ER as a function of the topographic complex-
ity, Fig. 6 shows the median differences, in terms of correla-
tion (panel a) and RMSE (panel c), obtained by PR+SM with
respect to IMERG-ER for CONUS. The topographic com-

plexity comes along with the ASCAT H115 product and is
computed as the normalized standard deviation of elevation
using GTOPO30 data (Hahn, 2016). It ranges between 0 %
for flat areas and 100 % for very complex terrain. The in-
tegrated product is able to improve the quality of IMERG-
ER over flat areas better than complex terrain. This result is
somehow expected, as we know that the topographic com-
plexity impacts the quality of the SM retrieval.

The benefit of the integration was also computed as a func-
tion of land cover (panels b and d in Fig. 6 for CONUS). Land
cover information comes from the ECOCLIMAP dataset (a
global database of land-surface parameters at 1 km resolution
Champeaux et al., 2005), provided at 1 km spatial resolution.
We have simplified the original land use classes into eight
categories: bare land, rocks, urban, forest, wooded grass-
land, shrubland, grassland and crop. Except for urban, rock
and bare soil (with a percentage of pixels within CONUS of
less than 0.5 %), the integrated product performs better over
shrubland, grassland and crop, whereas lower performance is
obtained over forests. This result is also expected as the qual-

https://doi.org/10.5194/hess-24-2687-2020 Hydrol. Earth Syst. Sci., 24, 2687–2710, 2020



2700 C. Massari et al.: A daily 25 km short-latency rainfall product for data-scarce regions

Figure 4. Correlation increments obtained by ingesting ASCAT,
SMOS and SMAP SM2RAIN-based rainfall estimates into the
IMERG-ER product. Values in bold inside the box plots refer to
the median increments expressed in terms of percentage. The box
plot refer to the 25th and 75th percentiles, while the whiskers refer
to the minimum and maximum values. Outliers are not shown in the
plot.

ity of the satellite SM product can be highly impacted by the
presence of dense vegetation for the difficulty of the retrieval
in separating the effect of the soil water content from the wa-
ter contained in leaves.

Figure 6 refers to CONUS, as we found highly represen-
tative of different landscape complexity and land cover type.
Results for AU, EU and IN show very similar findings and
are reported in the Supplement (Figs. S4 and S5).

Figure 7 shows the differences in terms of POD, FAR and
TS between the integrated product PR+SM and IMERG-ER
as a function of the rainfall percentiles. As the correction of
IMERG-ER was only carried out for positive rainfall values
and SM2RAIN-based rainfall lower than 1 mm was assumed
unreliable (to exclude the possibility of interpreting satellite
SM noise as rainfall; Zhan et al., 2015), the differences with
respect to IMERG-ER are visible only above the 50–60th
percentiles.

After the 50–60th percentiles, a significant increment of
POD is evident for all the study regions, whereas the differ-
ences in FAR denote a deterioration from the 50th to 80th
percentile across CONUS, EU and AU (very small) and in
IN (much larger). The latter seems caused by more noisy
satellite SM observations over India, which directly impacts
the quality of SM2RAIN estimates (causing higher FAR; see
also Zhan et al., 2015 and Massari et al., 2019). This prob-
lem could be faced by de-noising satellite SM observations
with methods similar to the ones proposed by Massari et al.
(2017b) and Su et al. (2014, 2015) or by selecting a higher
rainfall threshold below which only IMERG-ER is retained
(i.e. larger than 1 mm selected above). The improvement in
terms of FAR becomes significant for higher rainfall accu-
mulations (i.e. 95th percentile). The overall improvement is

shown by the TS score, which is generally positive, suggest-
ing that the integrated product helps to improve IMERG-ER
in terms of categorical scores especially for the 70–90th per-
centiles.

4.1.2 Validation over data-scarce regions using TC

Prior to the assessment of the rainfall products over Africa
and South America with TC, we run TC analysis over AU,
CONUS, EU and IN, where R and RMSE scores obtained
with the classical validation are available. Results are de-
scribed in Supplement Sect. S1 and show that TC provides
similar conclusions to a classical validation and can therefore
be used as a robust validation tool over data-scarce regions.

Figure 8 shows the product combinations for each pixel
of the study areas used for obtaining PR+SM in Africa and
South America. These combinations and the associated OLC
coefficients (including the SM2RAIN parameter calibration)
were obtained during the calibration period 2015–2017. Ar-
eas where all SM2RAIN products are ingested match with
those characterized by a relatively good quality of satel-
lite SM observations, i.e. those not characterized by dense
forests, desert areas and frozen soil, as well as snow-covered
areas. This suggests that the integration is robust and mean-
ingfully excludes low-quality SM information.

Unlike the results presented in Sect. 4.1.1, here we validate
the products during 2018, independent from the calibration
period (i.e. 2015–2017). As in Africa and South America, the
rain gauge distribution is scarce (see Fig. 2a), with the valida-
tion being carried out via TC, using three triplets built among
ERA5, SM2RAIN-ASCAT*, PR+SM, GPCC and IMERG-
ER:

1. ERA5–GPCC–IMERG-ER

2. ERA5–GPCC–SM2RAIN-ASCAT*

3. ERA5–GPCC–PR+SM

Figure 9 shows R2
TC (left) and TC-RMSE (right) over

Africa obtained by triplets 1 (ERA5–GPCC–IMERG-ER)
and 3 (ERA5–GPCC–PR+SM). In particular, panels a-d re-
fer to the short-latency products, while the rest of them are
long-latency ones (> 2 months). The integrated product out-
performs both IMERG-ER and long-latency products like
GPCC and ERA5, as we found in Sect. 4.1.1. ERA5 is char-
acterized by lower performance in the Sahel region as high-
lighted in Fig. 2b, whereas GPCC is strongly affected by the
uneven rain gauge distribution, as depicted in Fig. 2c. Simi-
lar results are obtained for South America in Fig. 10, where
the central eastern part gets greener (higher correlation) and
whiter (lower error) after integration with SM2RAIN-based
rainfall estimates. In South America the performance of
ERA5 is higher than the one obtained in Africa and consis-
tently more homogeneous.

Figure 11 summarizes the results obtained in the two re-
gions by considering only the committed area (panels a and
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Figure 5. Percentage differences in correlation (1R in percentage; panels a, b, c, d) and in root mean square error (1RMSE in percentage;
panels f, g, h, i) between the integrated product PR+SM and the IMERG Early Run (IMERG-ER) product over CONUS, Europe, India and
Australia for the period 2015–2017. Grey areas represent the masked areas based on what is described in Sect. 3.4.3.

b) and all the pixels of the analysis (non-masked by the com-
mitted area; panels c and d) also in terms of boxplots. It can
be seen that in Africa (panels a and c) the integrated product
is always the best both in terms of error and correlation. In
South America (panels b and d), ERA5 outperforms the in-
tegrated product if no mask is used (panel d). A reason for
that is the lower skill of IMERG-ER over dense forests es-
pecially in terms of error, which impacts the overall quality
of the integrated product. In particular, relatively good per-
formance is obtained in Africa over the Sahel region and in
South America over eastern Brazil.

5 Discussion and conclusions

In this study, we have developed a procedure to obtain a
short-latency (less than 2–3 d), daily 25 km satellite-based
rainfall product based on the integration of IMERG-ER with
SM2RAIN-based rainfall estimates derived from three differ-
ent satellite SM products (i.e. SMOS, SMAP and ASCAT).
With this latency – potentially reduced to about 1 d via the
use of L2 products – the product targets agricultural and wa-

ter resource management applications over data-scarce re-
gions like Africa, South America and central Asia.

To merge SM2RAIN-based rainfall estimates with
IMERG-ER, we used the OLC approach previously used
by Bishop and Abramowitz (2013) to combine different cli-
mate model estimates. The procedure optimally merges mul-
tiple estimates of the same variable by minimizing the er-
ror with a calibration dataset. The choice of this calibra-
tion dataset was discussed and analysed in detail by apply-
ing triple-collocation analysis to different candidates leading
to the choice of the ERA5 reanalysis rainfall product. In the
procedure, no gauge information was directly used either in
the calibration of SM2RAIN or in the integration of estimates
via OLC; therefore the developed product is totally indepen-
dent from ground-based observations of rainfall (except the
inherent gauge information contained in IMERG-ER).

The integrated product was cross-validated with high-
quality ground-based rainfall observations in Australia, In-
dia, Europe and the conterminous United States and cross-
compared in the same regions against long-latency products
(i.e. released with a time span of 1–2 months and thus not
suited for operational applications). The validation entailed
different continuous and categorical scores and was carried
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Figure 6. Difference in median correlation (1R) and in median root mean square error (1RMSE) between the integrated product PR+SM
and IMERG-ER as a function of the topographic complexity (a, c) and as a function of the land cover type (b, d) over CONUS. The results
refer to the 2015–2017 period. The text boxes on the top show the percentage of the area occupied by the specific topographic complexity or
land cover type.

out for different land cover classes and as a function of the
topographic complexity. In this respect, we found the follow-
ing:

1. The integrated product performed relatively well and of-
ten better than the long-latency products, which are de-
signed to obtain best performance, as they ingest many
observations and use gauges (often the same used here
for validation). The best product in regions with high-
density rain gauge observations was found to be GPCC
(although this product is obviously correlated with the
ground reference). An interesting feature was the better
performance of the integrated product with respect to
the calibration dataset which highlights the high value
of information provided by SM. These results are rele-
vant given that the integrated product can be potentially
released within 2–3 d.

2. The improvement of IMERG-ER was relevant and
ranged from 10 % to 15 % in terms of correlation and
up to 40 % in terms of RMSE. A smaller impact of
the integration was obtained over very dense forests
and complex terrain given the inherent limitations of
satellite-based observations over these areas. We also
observed deterioration in correlation in some areas of
north-western CONUS and India which need further
analysis.

3. An ability to reduce the variability ratio which was
too high was observed in the IMERG-ER product. One
of the reasons for this was also related to the lower
variability of SM2RAIN-based rainfall estimates, which
were produced by minimizing the RMSE with the cali-
bration dataset (i.e. ERA5). Despite being beneficial in
this case, this issue can be relevant and could also im-
pact the ability in the prediction of extreme values and
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Figure 7. Difference in categorical indices (probability of detection
– POD, false alarm ratio – FAR – and threat score – TS) between
the integrated product PR+SM and the IMERG-ER as a function
of the rainfall classes for Australia (a), CONUS (b), Europe (c) and
India (d) for the period 2015–2017. The bars refer to median values.

a modification of the true rainfall distribution. However,
a closer look at the distributions of the reference and
the estimated rainfall (not shown) suggests that the in-
tegrated product was not impacted too much form this
issue.

4. An improvement of the KGE score as a consequence
of the improvement of the correlation (mainly) and the
variability ratio was found in all cases except India.
Here, despite the better correlation, the integrated prod-

Figure 8. Products used to integrate IMERG-ER with SM2RAIN
products derived from the setup during the calibration period in
South America. When low correlation was found between the refer-
ence dataset (i.e. GPCC) and the SM2RAIN product, the latter was
excluded from the analysis, and only IMERG-ER was retained.

uct was characterized by a higher bias and lower vari-
ability, which drew KGE to values lower than the ones
of IMERG-ER.

5. An additional validation, totally independent from the
calibration, was carried out in Africa and South Amer-
ica. Here, due to the lack of a reliable benchmark
dataset, we adopted TC analysis (after having validated
it) to calculate error and correlation of the integrated
product, IMERG-ER, GPCC and ERA5. Results con-
firm the values of those obtained via classical validation
with the integrated product outperforming IMERG-ER.
Moreover, in data-scarce regions, the integrated product
outperforms GPCC and provides similar performance to
ERA5 (better in the Sahel region).

Despite the good performance achieved by the product,
several aspects need further investigation.

1. The short time records of some of the satellite-
based observations used in the integration (i.e. SMAP
and IMERG-ER) limited the length of the calibra-
tion period which could impact the calculation of the
climatological-correction procedure and the OLC coef-
ficients shown in Methods. It also shrinks the length of
the validation period, which was restricted to 2018. The
relatively short period of calibration has therefore po-
tential impacts on the ability of the products to repro-
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Figure 9. Triple-collocation squared correlation (R2
TC; panels a, d) and root mean square error (RMSETC; panels f, i) in millimetres per day

for IMERG Early Run (IMERG-ER; panels a and f), the integrated product (IMERG Early Run and SM2RAIN applied to ASCAT, SMAP
and SMOS; PR+SM; panels b, g), the Global Precipitation Climatology Center product (GPCC; c, h) and the reanalysis product ERA5
(ERA5, d, i). Grey areas represent the committed area of ASCAT which we excluded from the analysis. The results refer to the validation
period (i.e. 2018). Grey areas represent the masked areas based on what is described in Sect. 3.4.3.

duce correct climate patterns. Thanks to the recent avail-
ability of the IMERG-ER product from 2000 onwards,
this aspect will be further investigated in the future ver-
sions of the product.

2. Although TC is a possible (and likely the only) alter-
native for evaluating rainfall estimates over data-scarce
regions, it does not provide a thorough evaluation of
the rainfall estimates, as it does not provide informa-
tion about categorical scores and bias. Therefore, over
these regions it is not guaranteed that the integrated
product performance is optimal in this respect. Future
work should focus on testing the product for applica-

tions like flood prediction, water resource management,
crop modelling and risk insurance. Note that first at-
tempts in using the product for flood prediction (not
shown in this study) are providing promising results.

3. The integration is not possible everywhere given the
low quality of the satellite SM observations over dense
forests and the lack of SM information over frozen sur-
faces. We can only have confidence in the optimal per-
formance of the integrated product over the area de-
scribed in Sect. 3.4.3. This of course does not exclude
the possibility that the product might work well outside
of this area.
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Figure 10. As in Fig. 9 but for South America.

4. Daily 25 km temporal–spatial sampling might be not ad-
equate for small-scale applications. Future work should
therefore take into account satellite SM products with
a higher spatial resolution (e.g. Piles et al., 2011;
Merlin et al., 2012; Malbéteau et al., 2016; Bauer-
Marschallinger et al., 2018a, b; Chan et al., 2018) and
shorter revisit times. Note that with the current constel-
lation of the Metop A, B and C satellites in addition
to the future Scatterometer (SCA; Rostan et al., 2016)
or with the potential availability of geosynchronous C-
band radars, we will have the opportunity to collect
multiple-satellite SM observations within the day which
could be used to calculate sub-daily rainfall estimates
from SM observations.

5. Despite 2–3 d of latency being fine for many applica-
tions, it might not be sufficient for rainfall monitoring
in real time and flood forecasting in medium to small
basins. In this respect, IMERG-ER, with its 4–5 h of la-
tency, is the only satellite product potentially providing
rainfall observations that could be used for such appli-
cations, although in that case not only the latency is
important but also the spatial resolution. Future work
should focus on the integration of L2 satellite SM prod-
ucts with IMERG-ER also using alternative integration
schemes and products with respect to those used in this
study.

6. The record length of the product is restricted to the
GPM and SMAP eras (i.e. 2015 onward). This poten-
tially limits the use of the products for drought and flood
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Figure 11. Box plots of triple-collocation squared correlation (R2
T

; left axis in blue) and root mean square error (RMSETC; right axis in red)
in millimetres per day obtained during validation period (i.e. 2018) in Africa over the committed area mask (a) and over the whole study
area (b). Panels (c) and (d) refer to the same results but in South America. The box plot refers to the 25th and 75th percentiles, while the
whiskers refer to the minimum and maximum values.

frequency analysis. However, the integration procedure
does not rely upon the availability of the above prod-
ucts but can be applied to any other long-term rainfall
and soil moisture dataset available. Note that all the
IMERG products are now reprocessed back to the start
of the TRMM (Tropical Rainfall Measuring Mission)
era (from March 2000 to present), and SM observations
are available back to 1978 (Dorigo et al., 2017). There-
fore, there is a large potential for developing a long-term
integrated product specifically targeted at climate appli-
cations.
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