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The key role of emotions in decision-making process of human beings has been highlighted recently. Our
research focuses on fear-related emotions and their positive impact on the survival capabilities of human
beings in case of crisis situations. In this paper, we proposed a new model of emotional contagion based
on some main findings in social psychology. This model was formalized mathematically, implemented and
tested in the GAMA agent-based simulation platform in the context of evacuation simulation. We assessed
experimentally the impact of three factors (emotion decay, environment, neighbors’ emotional contagion)
on emotion dynamics at individual and group levels. The experimental results allow us to understand the
emotional contagion of agent group in several scenarios. The proposed model will help us to better study
the impact of emotional contagion on evacuation safety in evacuation simulation.The entire theoretical
model has been implemented in the simulation platform GAMA.

Povzetek: Prispevek analizira čustva, povezana s strahom na primeru evakuacije.

1 Introduction

Emotions, these reflexes that push human beings to make
decisions quickly and without a deep and clear reasoning
process, have been considered for a long time contrary to
any other rational reasoning processes. Only recently the
key role of emotions in decision-making process has been
highlighted. We focus on fear-related emotions and their
positive impact on the survival capabilities of human be-
ings in case of crisis situations. Indeed, recent works have
shown that emotion is a very important factor in the un-
derstanding of human beings behaviours in crisis situations
(see [9, 10, 28, 4] for instance).

It has been studied for a long time in psychology and
in philosophy, and more recently in cognitive sciences (see
[27, 21, 31, 12] for instance). These works have shown the
narrow relationship existing between an emotional state in
a person and the action tendencies of this person. Indeed,
emotions play a central role in cognition, especially when
we need to react very quickly (what is the case in crisis
situation). Instantaneously, emotions provide us a set of
possible actions (called action tendencies for Lazarus [21])
that are strongly related to the situation. An emotion can
be viewed as a summary of the situation, how this situation
can affect ourselves, and what power we have on the real

world in the aim to change the present situation in a positive
one for us. So, emotions have a great power of explanation
of our actions in crisis situations.

In crisis situations, the most remarkable expression of
the fear is definitely panic behaviors. While early re-
searches on panic have presented panic as groundless fear
or flight behavior, others describe it as a crowd in dissolu-
tion. Nevertheless, in situation such as fire or disaster, [26]
has shown that it is in fact a very meaningful behaviour
and far from most conceptions of irrationality. The panic
behaviour exists but is in fact quite rare. It is an individual
behaviour, by opposition to a behaviour of the crowd, it is
not contagious and occurs in short duration. It is not easy
to be observed in crisis situations.

Some particular conditions of panic triggering have been
identified such as: perception of a great threat to self, a be-
lief that escapes from the threat is possible but is very hard
to achieve, and a feeling of helplessness [28, 14]. Some
additional factors may also have an influence on triggered
emotions such as experience in emergency situation and
information. Information is the key to make a successful
evacuation strategy during a crisis [29]. The sex and age of
an individual can cause a different fear level.

In addition, as it has been shown in [28], panic is not the
predominant emotion in crisis situation. A lot of reports
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(see [11] for instance) show that when the danger increases,
the mutual aid between humans exposed to this danger also
increases. The persons share emotions and information,
and they help each other, even if they were strangers each
other before. There is a very few cases of selfish. One of
the faces of this mutual aid is the constitution of groups of
persons. People in a group of friends or in a family try to
stay together every time it is possible. Sociological studies
show that groups increase our chances to be saved [9] (evo-
lutionary condition). In our previous work [32], we have
studied the impact of group on the evacuation process. In
this paper, we focus only on emotion contagion.

In the simulation area, a lot of works focus more specif-
ically on emotion contagion. For instance, in [24], the au-
thors present simulations about relationships between emo-
tions, information and beliefs. All members of a group can
absorb the emotion of other members (in the same group)
to create an average value of emotion. But they can also be
influenced by the members of other groups. In this case,
the average emotion of the group can be increased (am-
plification) or decreased (absorption). We can understand
the absorption of emotions as a bottom-up approach, and
the amplification of emotion as a top-down approach. The
authors propose the idea that agents with a high emotion
(above a high threshold) or a low emotion (under a low
threshold) will impact with different roles (increase or de-
crease) depending on the characters of agent like the open-
ness, the expressiveness, the capacity of receiving or ex-
pressing from/to others. Similarly, in [5], the authors give
another interesting orientation about the contagion of emo-
tion among a group.

In the GAMA agent-based simulation community [33,
17], several models (see [25, 22] for instance) have shown
the important role played by emotions in emergency situa-
tions. In [25], authors simulate the emotion dynamics in a
group. They give a new operational model of the emotion
contagion and implement the process of evacuation (avoid-
ing both obstacles and the other agents). They evaluate the
model with respect to the time of evacuation by applying
many criteria. When the emotion intensity changes, the
walking speed of the corresponding agents also changes
and impacts the evacuation time. But we can also criticize
here the fact that the emotion modeling is still very basic:
we need a more complex cognitive model of emotions if
we want to simulate agent behaviors as natural as possible.

This article provides a new model of emotions dynamics.
We focus here only on fear because this emotion plays an
important role in crisis situations. We propose to model
the emotion following three main findings both in cognitive
psychology and in social psychology:

1. Emotions have triggering conditions (see [27, 21] for
instance): this is a cognitive appraisal of these condi-
tions that determines if they are fulfilled or not1. Fol-
lowing these authors, fear is triggered when we per-

1By this assumption, we suppose here that emotion is in cognition:
this is the point of view of the great majority of psychology community

ceive a danger for our own life. Here, perception can
be direct (an agent sees a fire or hears an alarm) or
indirect (some other agents having fear influence the
fear level of this agent).

2. Emotion intensity decreases with time: when trigger-
ing conditions are not longer satisfied, an emotion
does not disappear instantaneously (it is a process that
takes time).

3. Finally, new perceptions from the environment (fires,
alarms, influence of others) can modify the intensity
level of fear that can increase or decrease.

As far as we know, there is no model that takes into account
all these factors in an intuitive manner. More precisely, a lot
of factors may impact the emotion, but here we only take
into account three main ones: environment (crisis percep-
tion), emotional decay and contagion. The emotion model
is implemented in GAMA 2 and is a part of a project about
evacuation simulations in crisis situations.

This paper is organized as follows. We first describe the
model of emotion dynamics in Section 2. In Section 3, we
assess the impact of the three factors (emotion decay and
contagion, environment) on the emotion dynamics. Then
we conduct the sensitivity analysis of the emotion model
in Section 4. Finally, we conclude our work with some
perspectives.

2 Model of emotion dynamics

2.1 Agent structure
As presented above, this article focuses only on one emo-
tion and its diffusion. So, the environment is described in a
simple manner. In particular, there is neither obstacles nor
exit doors (because both of them do not have any impact
on our results). It will only contain some fire and human
agents.

Let AGT = {i, j, k, ...} be the finite set of human
agents used in the simulation, FIRE = {f1, f2, ...} the
finite set of fires and TIME = {t0, t1, ...} the finite set
of time points where t0 is the initial state of the sim-
ulation. The set of all the entities of the simulation is
ENT = AGT ∪ FIRE . We denote by card(E) the car-
dinality of the set E. So, card(AGT ) for instance is the
number of agents and tcard(TIME)−1 is the final state of
the simulation.

Each agent i at time t is characterized by the 6-tuple
〈posi, visualRadiusi, neighbRadiusi, emDecayCoeff i,
fireInflCoeff i, agtInflCoeff i〉 where:

(see [21, 27, 12, 31] for instance) and this view is called “cognitive theory
of emotion”.

2GAMA is a (open-source) generic agent-based modeling and simula-
tion platform. It provides a lot of powerful tools to develop easily agent-
based models, in particular using geographical data. In addition, GAMA
allows the modeler to run simulation in either an interactive or a batch
mode. This will allow us to launch experiment design in order to explore
the model.
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– posi : TIME −→ R × R is the function that maps,
for each time point t, the position posi(t) of agent i
at time t. We extend this function to any entity e ∈
ENT .

– visualRadiusi : TIME −→ R is the function
that maps, for each time point t, the visual radius
visualRadiusi(t) of i at time t.

We consider here that each agent has its own percep-
tion radius and that this perception radius can change
during the evacuation process (because of smoke, fire,
obstacle, etc.).

In some scenarios, we suppose that the value d of vi-
sual radius does not change over time and we note
visualRadiusi = d.

– neighbRadiusi : TIME −→ R is the function that
maps, for every time point t, the neighborhood ra-
dius neighbRadiusi(t) of i at time t. We impose
that neighbRadiusi(t) ≤ visualRadiusi(t) for every
agent i and time point t.

In some scenarios, we suppose that the value d of
neighborhood radius does not change over time and
we note neighbRadiusi = d.

– emDecayCoeff i ∈ [0, 1] is the decay coefficient of i’s
emotion intensity (see Section 2.2). From a psycho-
logical point of view, agents are more impressionable
than others. It depends on personologic data [11] and
we suppose here it does not change over time.

– fireInflCoeff i ∈ [0, 1] is the fire influence coefficient
on i. Due to the fact that some agents can be more ex-
perienced in some dangers (as fire, for instance) than
other agents, the impact of a given danger depends on
the agent who faces this danger. The more an agent
is experienced in a danger, the less its fire influence
coefficient is high.

– agtInflCoeff i : AGT −→ [0, 1] maps for ev-
ery agent j ∈ AGT , the coefficient of influence
agtInflCoeff i(j) of agent j on i. It is well-known
in social influence literature (see [19, 15] for instance)
that we are influenced by others from the point of view
of beliefs, desires, norms, etc.

It is the same with emotional states. But, due to the
personality of each person, one can be more or less
influenced by others. This coefficient of influence
agtInflCoeff i(j) takes into account this aspect and
the more this coefficient is high, the more agent i is
influenced by the point of view of agents j.

So, we are able to define the following abbreviations (for

every e, e′ ∈ ENT , t ∈ TIME and i ∈ AGT ):

distance(e, e′, t)
def
= ||
−−−−−−−−−−→
pose(t)pose′(t)||

detectedFiresi(t)
def
=
{
f ∈ FIRE :

distance(i, f, t) ≤ visualRadiusi(t)
}

minDistFiresi(t)
def
= min

({
distance(i, f, t) :

∀f ∈ detectedFiresi(t)
})

Ni(t)
def
=
{
j ∈ AGT :

distance(i, j, t) ≤ neighbRadiusi(t)
}

distance(e, e′, t) is the distance between the positions of
entity e and entity e′ at time t.

detectedFiresi(t) is the set of fires in the visual radius
of agent i at time t.

minDistFiresi(t) is the minimal distance between agent
i and all the fires it perceives at time t. We suppose here
that, the more a fire is close to us, the more we are afraid by
it. So, for the sake of simplicity, we suppose that the emo-
tional reaction with respect to distant dangers is subsumed
by the emotional reaction with respect to the closest dan-
ger(s) that we perceive. So, only the closest fires are taken
into account here.
Ni(t) is the function that maps, for each time point t, the

set of neighbors of agent i at time t.
Finally, we will define in the next section the function

fear i(t) that computes the fear level of the agent i for each
time point t. At the initial time t0, fear i(t0) is fixed for
each agent i. The fear level at time t > t0 is computed
dynamically during the simulation steps.

More precisely, the fear intensity change from time t−1
to time t (that is, the change from fear i(t− 1) to fear i(t))
is a three steps process depending on three different suc-
cessive functions:

1. ∆fearDecay i(t) describes the lost of emotion inten-
sity from t − 1 to t due to time. If fear i(t − 1) =
0 (that is, the fear level at time t − 1 is 0), then
∆fearDecay i(t) = 0; else, ∆fearDecay i(t) is the
value that correspond to the lost of emotion intensity
between t− 1 and t (see Section 2.2);

2. ∆fearEnv i(t): if the current fear level after decay
is equal to 0 then a value (computed from a sigmoid
function) is returned, else the variation of the fear be-
tween t−1 and t is added. This variation is computed
from the derivative of the sigmoide between t− 1 and
t and corresponds to the effect of the fires that agent
i detects around itself (if fires are detected) on its fear
level (see Section 2.3);

3. ∆fearNeighbi(t): it is the variation of the fear (that
can be positive or negative) coming from the influence
of i’s neighbors. If these neighbors have a fear level
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that is lower than the fear level of i (after decay and
influence of the environment), then the fear level of i
will decrease, else it will increase (see Section 2.4).

Finally, fear i(t) is the final new value of fear intensity at
time t. It is defined as a composition of the above three
components. Note that we could compute the fear level as
the sum of three independent functions: one for the decay
process, one for the environment influence process, and one
for the neighborhood influence process. But such a sum
could be less than 0 or to be greater than 1 (whereas we
require that fear level is between 0 and 1). So, we prefer to
compute the resulting emotion intensity as a composition of
functions because it avoid such situations where the results
could not be between 0 and 1.

2.2 Emotion Decay over Time

As highlights in the literature [27, Chap. 4], without any
stimulus, agents’ fear intensity will decrease over time.
This decay is often described as faster for higher values
of emotion intensity, and it slows down when the emotion
intensity is low.

At time t and for every agent i ∈ AGT , the value
of the fear decay (the loss of emotion intensity) is noted
∆fearDecay i(t). This value is a function of the previ-
ous emotion level at time t − 1 (fear i(t − 1)) and of
emDecayCoeff i ∈ [0, 1] (the decay coefficient that de-
pends on some attributes of each agent like genre, age, sex,
etc. [11]). Moreover, we suppose that this decay coefficient
does not vary over time.

These requirements lead us to use the following function
for emotion decay over time (see Figure 1):

∆fearDecay i(t)
def
=

− emDecayCoeff i × fear i(t− 1)
(1)

We can first notice that, if fear i(t − 1) = 0 (e.g. at the
simulation initial step) then ∆fearDecay i(t) = 0 and then,
fear i(t) (the emotion level at time t) will not be modified
by (1). So it does not trigger any emotion, but only de-
creases its value with time.

Moreover, the more emDecayCoeff i is great, the more
emotional level decreases quickly.

Finally, note that the emotion decay has the same shape
as the “activation level decreasing” in the Anderson’s the-
ory of central cognition [3]. It could certainly be oversubtle
but this form has the advantage to be computationally in-
teresting.

In Figure 1, the fear function is limited to the fear de-
cay effect (what we call fearDecay i(t)), so its evolution is
described by

fearDecay i(t) = fear i(t− 1) + ∆fearDecay i(t).

Figure 1: Fear decay with emDecayCoeff i = 0.02 for any
agent i and without any other stimulus.

2.3 Environment Influence on Emotion
The environment contains dangers (fires for instance),
warnings (alarm...) or other elements (smoke...) that may
have an impact on emotions. In particular, dangers may
trigger a fear emotion or increase the fear intensity.

In the following, we consider two distinct processes: a)
emotion is triggered when the agent does not feel fear yet
and b) the fear level is updated when an agent is already
feeling fear and has to face a hazard.

Emotion triggering (when fearDecay i(t) = 0). When
agent i does not feel fear at time t just after the emotion
decay computation (fearDecay i(t) = 0) and perceives a
hazard or hears an alarm, this stimulus appraisal will trigger
an emotion. We make the assumption that both the distance
to the danger and the number of dangerous elements the
agent has perceived influence the intensity of the triggered
emotion.

The fear degree function should be an increasing func-
tion of the number of hazards, but a logarithm-like function
to capture the fact that the difference in terms of intensity
is greater if the agent observes a small number of fires (for
instance, 2 fires instead of 1) rather than if it observes a
huge number (for instance, 102 fires instead of 101). In
addition, we consider that the intensity should also be a de-
creasing function of the distance to hazard and we assume
that the relevant distance minDistFiresi(t) at time t from
agent i to hazards is here the distance to the closest hazard
and not the average distance to all fires in i’s neighborhood
(see Section 2.1).

As a consequence, emotion triggering when fires occur
in the perception radius visualRadiusi(t) of agent i at time
t is formalized as follows. When fearDecay i(t) = 0, we
define the intensity of the triggered fear by:

∆fearEnv i(t)
def
=

1

1 + e
−λi(1−

minDistFiresi(t)

visualRadiusi(t)
)

(2)

Clearly, ∆fearEnv i(t) is a sigmoid function where λi
characterizes the steepness of the curve. λi should increase
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together with the number of fires in the i’s perception
area at time t (that is, formally, card(detectedFiresi(t)))
and it also depends on the fire influence on agent i
(fireInflCoeff i). So:

λi
def
= fireInflCoeff i ×(

1− 1

card(detectedFiresi(t)) + 1

) (3)

Note that fireInflCoeff i could depend on the knowledge
about and the experience with fire of i [23].

Figure 2 illustrates the impact of the number of fires and
of their distance on the initial fear level.

Note that (2) ensures that ∆fearEnv i(t) ∈ [0, 1]. We
have chosen here a sigmoid function because this type of
function illustrates perfectly the switch between a low level
of the fear intensity3 and the triggering of fear. We use
here a particular steepness λi that must be easily changed,
depending of the experimental situation.

In Figure 24, fear at time t is computed only from the en-
vironment influence (neither emotion decay is applied nor
neighbors influence). It is supposed here that the more
time increases, the more fires number decreases. Sev-
eral simulations have been executed, corresponding to sev-
eral minimal distances between agent i and fires (that is:
minDistFiresi(t) ∈ {0.0, 5.0, 10.0, · · · , 40.0}). So, its
evolution is described by

fearEnv i(t) = ∆fearEnv i(t).

Note that the more minDistFiresi(t) is low, the more the
intensity of fear is high when the number of fires is maxi-
mal.

Emotion update (when fearDecay i(t) > 0). When
fearDecay i(t) > 0, fear has already been triggered and we
assume that the perception of fires must change this previ-
ous fear level. So, we use the derivative (4) of the previous
sigmoid described in (2) to update step by step the emotion
level.

For convenience’ sake, let be

λ′i
def
= λi ×

(
1− minDistFiresi(t)

visualRadiusi(t)

)
.

So, ∆fearEnv i(t) is just the variation of fear following
from the environment influence on the emotion level at time
t. That is:

∆fearEnv i(t)
def
=

fearDecay i(t).(1− fearDecay i(t)).λ
′
i

(4)

when 0 < fearDecay i(t) < 1

3By low level, we means a level that is under the triggering threshold
of fear.

4The numerical values chosen in this section have been chosen with a
case study of the size of a supermarket in mind. For the other coefficients,
they have been chosen in order that results to be good illustration of the
equations. The exploration of the various values of parameters is provided
in the Section 4

∆fearEnv i(t) is here the variation of i’s fear level at
time t after the influence of the environment on the emotion
level (without taking into account the emotion decay).

Figure 3 presents the evolution of the fear level under
the single influence of the environment (fire).The fear evo-
lution is thus described by the equation:

fearEnv i(t) = fearDecay i(t) + ∆fearEnv i(t).

2.4 The Neighbors’ Emotional Contagion
The two previous subsections focused on the individual
part of the emotion. We consider here its social aspect:
emotions can spread among neighbors. This has already
been investigated in many works, such as [13, 5] where the
emotion of an agent tends to the average value of all the
agents over time (as in our model).

In our model, an agent detects its neighbors at time t
based on its visual radius (see Ni(t) in Section 2.1). So,
the emotional influence of agent j on agent i at time t is
the difference between the emotion level of i and the emo-
tion level of j at time t. This influence is weighted by the
influence coefficient agtInflCoeff i(j) of j on i. So, for-
mally:

InfluenceOf j i(t)
def
=
(

fear j(t− 1)−

fearEnv i(t)
)
× agtInflCoeff i(j)

(5)

agtInflCoeff i(j) depends on the relationship between i
and j: stronger theses relationships are, higher this value
is. This equation is based on the bounded confidence model
of [18]. Some equations have been proposed in the social
network analysis area (see [7, 20, 19, 16, 30] for instance)
corresponding to the modelling of different situations.

Note that if fear j(t − 1) > fearEnv i(t) then
InfluenceOf j i(t) > 0: it means that the fear level of
i will increase. Conversely, if fear j(t− 1) < fearEnv i(t)
the i’s fear level will decrease. If the levels are the same, it
means that i is not influenced by j (InfluenceOf j i(t) =
0).

So, we are now able to compute the influence of all the
i’ neighbors that is the average value of all the individual
influences:

∆fearNeighbi(t)
def
=

1

card(Ni(t))
∑

j∈Ni(t)

InfluenceOf j i(t)
(6)

Note that the influence of neighbors is computed as the av-
erage value of each neighbor.

Without the decay and without the environment influ-
ence, the emotion of all simulated agents reaches average
values as illustrated in Figure 4. It corresponds to the fol-
lowing equation:

fearNeighbi(t) = fearEnv i(t) + ∆fearNeighbi(t)

Depending on agtInflCoeff i(j) for every neighbor j of
i, the time to reach this equilibrium can be different.
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Figure 2: Fire number and distance impact on the emotion level (with visualRadiusi = 40,fireInflCoeff i = 1).

Figure 3: Emotional level dynamics only influenced by
environment (emDecayCoeff i = 0) with (for every
i ∈ AGT and t ∈ TIME ): fireInflCoeff i = 0.1,
card(detectedFiresi(t)) = 2, minDistFiresi(t) = 10,
visualRadiusi(t) = 40 and with fear i(t0) = 0.05.

2.5 The Emotion Level Global Equation
The new emotion level of agent i at time t, after the decay
due to time (see Section 2.2), the influence of the environ-
ment (see Section 2.3), and the influence of i’s neighbors
(see Section 2.4) is nothing else that:

fear it = fearNeighbi(t) (7)

(It is due to the fact that we have chosen to compute fear at
time t as a composition of functions.)

2.6 Additional Influences of the
Environment on Emotion

Some other factors may impact agents’ emotions in differ-
ent manners. For instance, the influence of smoke is similar

Figure 4: Fear level dynamics of every agent i un-
der the only influence of emotion contagion process
(emDecayCoeff i = 0 and fireInflCoeff i = 0), with
agtInflCoeff i(j) = 0.02 (for every neighbor j of i),
card(AGT ) = 10. The inital fear value is chosen ran-
domly in [0, 1].
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Figure 5: Emotion evolution of all the agents under the only
effect of emotional contagion.

to the fire one but the impact coefficient can be different.
The influence of alarm does not depend on the distance as
we could suppose that all people could hear the alarm.

Finally, we can also mention as additional factors influ-
encing agents’ emotions: the fear reduction due to a secu-
rity agent, the impact of the perception of an exit door, or
the impact of the help received from others.

3 Experiments on the emotion
dynamics

In this section, we assess the impact of various possible
combinations of the three factors (emotion decay, conta-
gion and environment) on the emotion dynamics. We first
only investigate the emotion dynamics and then couple it
with a second dynamics: agents’ moves. (Note that in the
following, i’s visual radius does not change over time and
we note it: visualRadiusi.)

3.1 Emotion Dynamics with Unmoving
Agents

The following results are computed with card(AGT ) =
20 and card(FIRE ) = 10 and with the follow-
ing values of agent parameters (for every agent i ∈
AGT ): emDecayCoeff i = 0.02, fireInflCoeff i = 0.1,
agtInflCoeff i(j) = 0.04 for every j ∈ Ni(t) and every
t ∈ TIME , and visualRadiusi = 40. Neither the agents
nor the fires move.

3.1.1 Emotional Contagion

In these simulations, we first check the impact of the ran-
dom distribution of agents in the environment on the con-
tagion. As they have a limited perception radius, agents are
not able to diffuse their emotion to all other agents. We
initialize agents’ fear level to a random value in [0, 1]. The
result is presented in Figure 5. We observe that the agents’
emotion tends towards a limited number of values. Each

Figure 6: Emotion evolution of all agents under both the
decay and the contagion effects.

of these values correspond to a spatially clustered set of
agents.

This convergence state with several stable values be-
comes quite common in the related field of social opin-
ion dynamics. In particular, [8] has proposed the bounded
confidence model that uses continuous opinion value and
an acceptability threshold. When two agents (represent-
ing individuals moving in an abstract environment) meet
each other they share their opinions. If they are not too
far (distance in terms of opinion below a given threshold),
opinions are altered in order to come closer. Depending on
parameters (interaction frequency, initial opinion distribu-
tion, or even interaction network topology), various kinds
of convergence can appear: either convergence to an inter-
mediate consensus or to one or two extremist opinions. In
our case, we recognize basically the same pattern, the ac-
ceptability threshold of [8] is for us the perception radius
that will limit the agents that can interact together.

3.1.2 Coupling Emotion Decay and Contagion

As we do not take into account the process triggering
emotions from environment stimuli, we initialize randomly
fear i(t0) ∈ [0, 1] for every agent i ∈ AGT and test the in-
fluence of the two decay and contagion factors.

The result is presented in Figure 6. With no influence
of fires, the fear level of each agent i converges (due to
the emotional contagion) and tends towards 0 (due to the
decay). Nevertheless we can notice that even without stim-
ulus, the fear level of some agents starts increasing due to
the contagion dynamics before finally decreasing when the
decay becomes the dynamics that have the greatest influ-
ence on the system.

3.1.3 Coupling Emotion Decay and Environment

Let be fear i(t0) = 0 for every i ∈ AGT . The emotion
will be triggered by the perception of fires. The result is
presented in Figure 7. We first observe that fear level of
some agents keep or tend towards 0, because they can not
perceive any fire. The main observation is that fear i(t)
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Figure 7: Emotion evolution of all the agents under both
the decay and the environment effects.

Figure 8: Emotion evolution of all agents under both the
environment and the contagion effects.

reaches a stable value for each agent i when t increases.
This value depends on the number of fires and the distance
to them. This shows that the simulation reaches an equi-
librium between the two processes influencing the emotion
dynamics. In addition the stable value is always smaller
than the maximum value due to the effect of the decay.

3.1.4 Coupling Environment and Emotion Contagion

Again we conside the situation where fear i(t0) = 0 for ev-
ery i ∈ AGT and the emotion will be triggered by fires in
the environment. We consider in this case the coupling be-
tween the emotion triggered by fire and the emotion conta-
gion among agents. The result is plotted in Figure 8. With-
out emotion decay, agents fear tends to reach the maximal
value (i.e. 1). Time to reach it depends on the distance to
fires and the number of neighbours. Nevertheless we can
again observe a stability of the results.

In addition, due to emotional contagion over agents, no
agent has its fear level staying at the value 0. Even agents
that cannot perceive the danger start to feel fear because of
their neighbors.

Figure 9: Emotion evolution of all the agents under the
decay, the environment and the contagion effects.

Figure 10: Impact of all the factors (decay, environment,
contagion) on the emotion intensity in case of moving
agents.

3.1.5 Coupling Emotion Decay, Environment and
Emotion Contagion

Finally we couple the three processes in a single model.
Figure 9 displays the results. The results show again that
fear levels tend to a stable value. This value is obviously
lower than the value obtained without decay (see Figure 8).
But it is interesting to note that the fear level values are
also lower than the ones in the case without contagion (see
Figure 7). The contagion process indeed drives fear level
values to the average value which induces a decrease of the
maximum value.

3.2 Emotion Dynamics with Moving Agents
The previous results come from simulations with static
agents and environment, providing, as expected, stable re-
sults. In this section we will introduce agents mobility. We
launch the simulations in the same conditions as the pre-
vious ones, except that we have 10 agents. Agents move
randomly in the environment: they pick a random target in
the environment, move to it and when they reached it they
choose a new one. Figure 10 displays each agent emotion
evolution.

We can observe that the results are not stable anymore.
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Figure 11: Impact of only the emotion contagion on the
emotion intensity in case of moving agents.

Indeed as the agents can move they will be sometimes close
to fires, increasing their level fear, and sometimes far from
them, decreasing their fear level.

If we activate only the emotional contagion, we observe
in the Figure 11 with moving agents that each agent fear
level converges toward the same value. Contrarily to the
results in Figure 5, we can observe here a convergence hav-
ing moving agents removes the cluster effect that can occur
when agents do not move.

4 Sensitivity analysis

In this section, we explore the model behavior with respect
to parameters variations. We only focus here on the three
following coefficients for a given agent i: emDecayCoeff i,
fireInflCoeff i and agtInflCoeff i, that characterize the
three processes making emotion dynamic during the simu-
lation. So, we will measure the maximum, minimum, aver-
age and standard deviation values of the agents’ fear level
at the end of the simulations. In addition we will com-
pare results between two cases: with and without moving
agents.

We initialize simulations with card(AGT ) = 50,
card(FIRE ) = 10, randomly located. For each parame-
ters tuple

〈emDecayCoeff i,fireInflCoeff i, agtInflCoeff i〉

(where i ∈ AGT ) we run 10 simulations and measure the
maximum, the minimum, the average and standard devia-
tion values of the agent fear level at the step number 100.
When agents can move, they choose a random target, go
to it and when reached the target it picks randomly a new
target.

Figure 12: Impact of emDecayCoeff i (for every i ∈
AGT ) on the fear level of moving agents in case of
fireInflCoeff i = 0.05 and agtInflCoeff i = 0.01.

4.1 Exploration in the Case of Moving
Agents

4.1.1 Exploration of the Impact of the Decay
Coefficient emDecayCoeff i

For every agent i ∈ AGT , let fireInflCoeff i =
0.05, agtInflCoeff i = 0.01 and emDecayCoeff i ∈
{0.01, 0.02, 0.03, 0.04, 0.06}. We measure the 4 indicators
presented above and denoted them max, min, mean and
standard deviation. We observe the results in Figure 12.
We can observe that when emDecayCoeff i increases, the
fear level tends toward 0. This means that when the decay
coefficient is more important, the decay process has more
influence on the simulation results.

4.1.2 Exploration of the Impact of all the Parameters

The previous Section 4.1.1 shows the impact of the
emDecayCoeff i parameter single-variation on the fear
level. We launch now an exhaustive exploration of the
model with (for every agent i ∈ AGT ):

– emDecayCoeff i ∈ {0.01, 0.02, 0.03, 0.04, 0.06}

– fireInflCoeff i ∈ {0.05, 0.1, 0.2, 0.3, 0.5}

– agtInflCoeff i ∈ {0.01, 0.06, 0.1, 0.2, 0.3}

For each parameter tuple

〈emDecayCoeff i,fireInflCoeff i, agtInflCoeff i〉

we launched 10 simulations and store the average value of
each indicator. The complete results are summarized in
Figure 13 and Figure 14.

These figures display the scatter plots of all possible
pairs of parameters and indicators. For example in Fig-
ure 13, the upper-right frame plots the max indicator with
relation to the emDecayCoeff i parameter5. All the bullets

5This has been plotted using the R software: https://www.
r-project.org/
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Figure 13: For every agent i ∈ AGT , max indicator depending on emDecayCoeff i, fireInflCoeff i and agtInflCoeff i

values.

Figure 14: max, min, mean and standard deviation values depending on emDecayCoeff i, fireInflCoeff i and
agtInflCoeff i values for every agent i ∈ AGT .
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Figure 15: Impact of emDecayCoeff i on the fear level
of unmoving agents when fireInflCoeff i = 0.05 and
agtInflCoeff i = 0.01 (for every agent i ∈ AGT ).

correspond to the projection of tuples

〈emDecayCoeff i,fireInflCoeff i, agtInflCoeff i,max〉

(for every i ∈ AGT ) in a 2 dimensions plan. This repre-
sentation allows the modeler to isolate the influence of one
single parameter evolution on one single indicator.

In addition, still looking at the upper-right frame, we can
observe possible values of the emDecayCoeff i parameters
on the right and the value range of the max indicator on the
top.

We can thus observe that (for every i ∈ AGT )
fireInflCoeff i has a huge influence on the max indicator:
when fireInflCoeff i is high (0.5) the maximum fear lev-
els are also very high (between 0.7 and 1). And this re-
sult is independent from the other parameter values. When
fireInflCoeff i is low (0.01 and 0.02) the maximum is lower
and close to 0.

Similarly we can observe that the emDecayCoeff i pa-
rameters have an effect on the boundaries of the max in-
dicator: for every i ∈ AGT , when emDecayCoeff i is
high, the maximum of the max indicator is limited to 0.8
whereas, with the lowest value of this coefficient, the limit
is around 1, and many plots are concentrated around this
value. We can notice that for intermediate values of the
emDecayCoeff i coefficient, plots are concentrated around
0.0 and 0.8. We thus have a polarization of the results
around two main values, corresponding to the minimum
and maximum values that the max can take.

We can also observe that agtInflCoeff i does not have
a visible impact on the max indicator: with high or low
values of this coefficient, the max indicator takes values
everywhere in [0, 1].

Looking at Figure 14, we can also notice that
fireInflCoeff i has a smaller influence on the min indica-
tor, but emDecayCoeff i has a higher one. In particular,
when emDecayCoeff i increases the min indicator takes
lower values.

It is also interesting to notice that, when we consider
emDecayCoeff i, the distributions of min and mean plots

are very close, whereas when we consider fireInflCoeff i,
max and mean plot distributions are close (and different
from the min distribution). This means that, in average,
plots are closer the min (resp. the min) plot distribution.

Finally we can observe that, even if the agtInflCoeff i

does not have a significant influence on the max and mean
indicators, it tends to reduce the standard deviation. That
means that the emotional contagion tends to level fear level
values.

4.2 Exploration in the Case of Unmoving
Agents

We run simulations with the same initial conditions as in
the previous section but agents don’t move now. The re-
sults are quite similar to the results in case of moving agent
(Figure 15).

This is due to the high number of agents and the chosen
visual radius (visualRadiusi = 40 for every i ∈ AGT ).

We continue to expand this experiment by changing
emDecayCoeff i, fireInflCoeff i and agtInflCoeff i(j) (for
every agent i and every j ∈ Ni(t)). The comparison is
presented in Figure 16(a), Figure 16(b), Figure 16(c) and
Figure 16(d).

We can observe that there is only a small difference in the
emotion level values between both cases. It seems that the
emotion of agent in these cases do not depend on moving
or unmoving agents.

It can be explained by the higher value of the visual ra-
dius: an agent can detect more agents, so it will be influ-
enced by more of them. Evidently, an agent moving has
more opportunity to detect the others. But with a large vi-
sual radius, there is not much difference between 2 types
of agent. And one thing important, we don’t account into
the influence of neighbours, therefore the distance between
agents when they move, does not play an important role.

Nevertheless we go a little deeper in the comparison be-
tween simulations with moving and unmoving agents. We
aim at evaluating the time for fear levels to converge under
the influence of the emotional contagion process only and
the influence of agtInflCoeff i(j) (for every j ∈ Ni(t)) on
the convergence.

We run simulations and stop them when the standard de-
viation indicator becomes lower than 0.01. We count the
number of simulation steps necessary to reach this state.
The results are shown in Figure 17.

We can observe that the number of steps to reach the
equilibrium is higher for unmoving agents case than for
moving agents one: moving agents tend to meet more other
agents and this mix fasten the emotion convergence. This
mix has a huge impact when agtInflCoeff i(j) (for every
j ∈ Ni(t)) is low, but decrease when the parameter value
increases.
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(a) Unmoving agents in case of changing emDecayCoeff i while
fireInflCoeff i = 0.1 and agtInflCoeff i(j) = 0.01 for every
j ∈ Ni(t).

(b) Unmoving agents in case of changing emDecayCoeff i while
fireInflCoeff i = 0.1 and agtInflCoeff i(j) = 0.08 for every j ∈
Ni(t).

(c) Moving agents in case of changing emDecayCoeff i while
fireInflCoeff i = 0.1 and agtInflCoeff i(j) = 0.01 for every
j ∈ Ni(t).

(d) Moving agents in case of changing emDecayCoeff i while
fireInflCoeff i = 0.1 and agtInflCoeff i(j) = 0.08 for every
j ∈ Ni(t).

Figure 16: Comparing moving and unmoving agent in case of changing 3 factors emDecayCoeff i, fireInflCoeff i and
agtInflCoeff i(j)

Figure 17: Relationship between agtInflCoeff i(j) (for ev-
ery j ∈ Ni(t)) and time in the case where all the agents
reach to the equivalent emotion.

5 Conclusion and future works

In this article we proposed a model of fear level dynam-
ics based on some main findings from social psychology.
Our aim here is to provide an intuitive formalization of the
computational process for emotion modeling.

The model was implemented in GAMA agent-based
simulation platform. We conducted an intensive experi-
ments to find the equivalent value of three coefficients that
have impact on the emotion intensity of agent group. We
presented our results about the impact of decay, environ-
ment, and agents neighbors factors (i.e. emotional conta-
gion) on emotion intensity.

We shown how emotion evolves over time and the role
played by each variable of the simulation by using several
scenarios. In particular, the impact of the environment (in
case of the fire perception) has a great influence on the max-
imum fear level, whereas the emotional contagion tends to
bring closer emotions in the agent population.

Although this paper context is about crisis situation and
evacuation, the study remains abstract: the purpose of this
article is mainly to focus on the emotion dynamics model
and its exploration.

The next step will be to integrate this emotional frame-
work into a simulation of evacuation in crisis situation.
Emotions will be used at several steps: physical properties
of agents (strong emotions can make people move faster
or slower), decision-making process (it is now established
that emotions help to make decisions and often fasten the
decision-making process with a risk of making less effi-
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cient decisions), and social process (in particular the group
constitution and the effects of the group on the group mem-
bers). The main objective will be to provide more realis-
tic evacuation simulations, in terms of human behaviors,
and thus to reach decision-support systems to support cri-
sis managers. We thus attempt to make simulations more
realistic by improving the human agents behaviors (in line
with [1, 6]).

More particularly, two application cases can be very in-
teresting. First it could help architects and urban planners
to better design public spaces to help people to better evac-
uate taking into account cognitive attitudes such as emo-
tions or social binds and not only simple physical flow
of individuals. Second we plan to apply this framework
on the cases study of Australian bushfires simulations [2].
This case of bushfires has killed hundreds of people and
has been deeply studied, in particular through interview of
most of the survivors. An important conclusion of this sur-
vey was that civilians have not reacted and acted as ex-
pected by authorities in charge of the preparedness against
fires and rescue to victims. First models of the evacua-
tion has been implemented, with a focus on the distinction
between objective and subjective civilian capabilities and
perception of the environment. We argue that it could be
improved by introducing emotional capabilities that can in-
fluence these biases in the representation of the world.
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