
HAL Id: hal-03097290
https://hal.science/hal-03097290v1

Preprint submitted on 5 Jan 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A new run-based Connected Component Labeling for
efficiently analyzing and processing holes

Florian Lemaitre, Lionel Lacassagne

To cite this version:
Florian Lemaitre, Lionel Lacassagne. A new run-based Connected Component Labeling for efficiently
analyzing and processing holes. 2021. �hal-03097290�

https://hal.science/hal-03097290v1
https://hal.archives-ouvertes.fr

A NEW RUN-BASED CONNECTED COMPONENT LABELING FOR EFFICIENTLY
ANALYZING AND PROCESSING HOLES

Florian Lemaitre and Lionel Lacassagne

Sorbonne University, CNRS, LIP6, France
fisrtname.name@lip6.fr

ABSTRACT

This article introduces a new connected component labeling and
analysis algorithm for foreground and background labeling that com-
putes the adjacency tree. The computation of features (bounding
boxes, first statistical moments, Euler number) is done on-the-fly.
The transitive closure enables an efficient hole processing that can
be filled while their features are merged with the surrounding con-
nected component without the need to rescan the image. A compar-
ison with existing algorithms shows that this new algorithm can do
all these computations faster than algorithms processing black and
white components.

Index Terms— Connected component labeling and analysis,
Euler number, adjacency tree, hole processing, hole filling.

1. INTRODUCTION & STATE OF THE ART

Connected Component Labeling (CCL) is a fundamental algorithm
in computer vision. It consists in assigning a unique number to each
connected component of a binary image. Since Rosenfeld [1], many
algorithms have been developed to accelerate its execution time on
CPU [2–4], SIMD CPU [5], GPU [6] or FPGA [7].

In the same time Connected Component Analysis (CCA) that
consists in computing Connected Component (CC) features – like
bounding-box to extract characters for OCR, or the first raw mo-
ments (S, Sx, Sy) for motion detection and tracking – has also risen
[8–12]. Parallelized algorithms have been also designed [13–15].
The initial Union-Find algorithm [16] has been also analysed [17]
and improved [18] with decision tree [19] and various path com-
pression/modification algorithms [20, 21].

Some other features – useful for pattern classification/recogni-
tion – are computed by another set of algorithms: the Euler num-
ber with Bit-Quads [22], the adjacency (also known as homotopy or
inclusion) tree [23] and more recently, foreground (FG) and back-
ground (BG) labeling (also known as B&W labeling) [24] and hole
filling [24] with also improvements in the last decade: [25, 26].

Section 2 provides a short description of LSL algorithm that is
used for our new algorithm, Section 3 introduces our new algorithm,
Section 4 presents a benchmark of existing algorithms and their anal-
ysis and Section 5 is the conclusion.

2. CLASSICAL LSL

We chose to base our new algorithm on LSL [10] because it is run-
based (segment processing) and thus is able to compute features very
quickly compared to pixel-based algorithms.

The specificity of LSL is to combined segments with line-
relative labeling to speed segment adjacency detection up. Like

0
0 1 2 3 4 5

3 4 6 8 9
2 10

0
0

6

1 1 1 3 3 52 4 64
0 0 1

0 1 2 3 4 5 6 7 8 9

1 1 1 1 1 1 1ERi

ERi-1
j

Xi

Xi-1

RLCi

RLCi-1
j

0 1 2 3 4 5 6 7 8 9j

0
0 1 2 3e

T 1 2 3

unification

0
0 1 2 3e

T 1 1 1

0 01 2 30
0 1ERAi

ERAi-1
er 0 1 2 3 4 5

Fig. 1: LSL tables for classic foreground labeling: the even relative
labels corresponding to background components are equivalent to
zero in ERA tables (they will be equivalent to other labels for the
proposed foreground and background labeling).

all direct CCA algorithms, it is split into two steps and performs a
single image scan.

The first step assigns a temporary/provisional label to each con-
nected component and computes its associated features. Equiva-
lences between labels are built when needed. It is composed of a
segment detection (Algorithm 1) and a segment Unification (Algo-
rithm 2 modified for B&W labeling). From two consecutive input
lines Xi−1, Xi, two relative labelings (ERi, ERi−1) are produced
where FG runs (or segments) have odd numbers and BG runs have
even numbers. The associated semi-open intervals are stored in ta-
bles RLC i−1, and RLC i. The table ERAi holds the translation
between Relative and Absolute labels: ea = ERAi[er].

To find out which labels of the previous line are connected to the
current segment (Unification), one has to read the value of relative
labels from table ERi−1 at the positions given by RLC i, and trans-
lates them into absolute labels to update the equivalence table T .
Features are also computed during this step and stored in table F .

The second step solves the equivalence table by computing the
transitive closure (TC) of the graph associated to the label equiva-
lence and merge the features together. Unlike for CCL algorithms,
the third step that performs a second scan to replace temporary labels
of each connected component with their final labels (Algorithm 4) is
usually avoided (but can be done for visual verification).

In order to differentiate temporary root and final root, we define
a (a ← Find(ea)) as the temporary root of the absolute label ea
used in Algorithm 2, while r used in Algorithm 3 and Algorithm 4
is the final root of the connected component.

ar
X

iv
:2

00
6.

09
29

9v
1

 [
cs

.C
V

]
 1

6
Ju

n
20

20

Algorithm 1: segment detection (LSL step 1a)
1 // prolog
2 RLC i[0]← 0
3 er ← 0
4 x1 ← 0 // previous value of X (x1 = Xi[j − 1])
5 for j = 0 to w − 1 do
6 x0 ← Xi[j] // current value
7 RLC i[er + 1]← j // will later be overwritten if f = 0

8 f ← x0 ⊕ x1 // edge detection
9 er ← er + f

10 ERi[j]← er
11 x1 ← x0 // register rotation

12 // epilog
13 RLC i[er + 1]← w
14 ner i ← er + 1
15 return ner i

3. LSL AND HOLE PROCESSING

Our goal is to propose a new all-in-one algorithm that finds holes
and processes them efficiently by computing the adjacency tree be-
tween foreground and background connected components. Then,
filling holes only consists in modifying the adjacency tree and the
equivalence table, without modifying pixels or labels in the image
(the same approach can be used to apply arbitrary connected opera-
tors [27]). We also want our algorithm to be able to compute statis-
tical features on-the-fly, to relabel the whole image and to compute
adjacency features like the Euler number – or just a subset.

In the following, a “component” means a Connected Compo-
nent, either foreground or background.

3.1. Holes and adjacency tree

A component C1 is surrounded by another component C2 – written
C1 @ C2 – if and only if all paths from C1 to the exterior of the
image contain at least one pixel from C2. A hole is a background
component that is surrounded by a foreground component.

The adjacency tree is encoded in a new table I . For a label e1
associated to a component C1, e2 = I[e1] is one of the temporary
labels of the unique component C2 that is both adjacent to C1 and
surrounding C1 (C1 @ C2). I[e1] = −1 if e1 = 0, or e1 is not a
root label (T [e1] 6= e1). In short, the table I represents the adjacency
tree whose edges are directed according to the surrounding relation.

We considered two methods to build the adjacency tree and the
surrounding relation: detecting closing pixels [28], or looking at the
adjacency at exterior pixels [26].

A closing pixel is a pixel neighboring both ends of a path (using
4-adjacency for BG and 8-adjacency for FG). Figure 2a shows the
patterns of a closing pattern while it is being processed. The sur-
rounding C1 @ C2 where C1 and C2 are adjacent can be detected
during the Unification when C2 is unified with itself. If C2 is FG
(8-adjacency), the pixel above the closing pixel is in C1. If C2 is BG
(4-adjacency), the upper-left pixel is in C1.

The other method relies on the adjacency at exterior pixels. In
our case, we consider the top most pixels of a component because
those require the creation of a new label which is easy to detect. Ev-
ery time a new label is created, the label directly above the current
pixel is recorded in I as its initial adjacency and speculative sur-
rounding. It is actually simpler to look for the label on the left that is
necessarily from the same component as above (Figure 2b). When
two labels a < b are unified, the initial adjacency I[b] is discarded

FG:
a ≡ c or
d ≡ c

ca
d

c
d

a c
x x x

BG: d ≡ b
b

d x

(a) Closing pixel patterns

FG: x

BG: x

(b) New label pat-
terns

Fig. 2: Patterns demonstrating how surroundings are detected when
the current pixel x is processed. Foreground is 8-adjacent and back-
ground is 4-adjacent.

in favor of I[a]. The order on labels implies that top pixels of a
are higher than top pixels of b – or at least at the same height. It
means that the higher initial adjacency and speculative surrounding
is kept while the other is discarded. Once a component has been
fully scanned, the only initial adjacency kept for this component is
the one from the root label which is, by construction, the label of top
most pixels, and thus on the exterior of the component. The remain-
ing initial adjacency and speculative surrounding is thus necessarily
a true surrounding.

We chose to use the initial adjacency method as it saves one
extra branch and one extra Find within the Unification compared
to the closing pixel method. Moreover, the update of I when an
adjacency is discarded is actually not necessary as I is accessed only
for root labels whose initial adjacencies are kept by construction.
While the adjacency is a local property, the surrounding is not and
thus is defined and correct only when the component has been fully
scanned. Consequently, initial adjacency builds a speculative I that
is correct only at the end of the image scan and that cannot be worked
on beforehand.

3.2. New Black and White LSL

Our new algorithm – LSL BW – extends the unification and the tran-
sitive closure steps to support B&W labels and the adjacency tree
(Algorithm 2 and Algorithm 3). B&W labels require to process both
odd and even segments instead of just odd ones (in Algorithm 2 and
4). Consequently, ERAi table does not necessarily have zeros at
even indices anymore. The first encoded segment is always a BG
one, but might have 0 length if the first pixel is FG. Thus, the uni-
fication needs a prolog (Algorithm 2, lines 1 to 5) to skip the first
segment if empty, and an epilog (Algorithm 2, lines 39 to 44) to at-
tach the first segment and the last segment if it is BG to the exterior.
The transitive closure need no modification to handle Black&White
labels.

In addition, the correction of coordinate and indices are now de-
pendant on the parity of the segment being processed (Algorithm 2,
lines 13 and 18). Note that Algorithm 2 implements the algorithm
using 8-adjacency for FG and 4-adjacency for BG. The line 11
should be modified to c8 ← p ⊕ 1 if one wants the complementary
adjacency (4-FG, 8-BG).

The construction of the adjacency table requires only a few mod-
ifications to the algorithms to set the initial adjacency (Algorithm 2
line 37) and to convert temporary labels into final labels within the I
table (Algorithm 3 line 11). Hole filling is done during the transitive
closure (Algorithm 3, lines 3 to 5).

Like for classical LSL, the computed features for each FG and
BG components are the bounding-box and the first statistical mo-
ments S, Sx, Sy .

Algorithm 2: B&W Unification (step 1b)
1 ers ← 0 // starting segment
2 if RLC i[1] = 0 then
3 ERAi[0]← 0
4 ers ← 1

5 // White-only would have ers = 1 and step = 2
6 for er = ers to ner i − 1 step 1 do
7 // semi open interval segment extraction [j0, j1[

8 j0 ← RLC i[er]
9 j1 ← RLC i[er + 1]

10 p← er mod 2 // parity of current segment
11 c8 ← p // if current segment is 8-C, c8 = 1

12 f ← ComputeFeatures(i, j0, j1)
13 // fix extension in case of 8-connected component
14 j0 ← max(j0 − c8, 0)
15 j1 ← min(j1 + c8, w)
16 er0 ← ERi−1[j0]
17 er1 ← ERi−1[j1 − 1] // right compensation
18 // fix label parity: BG segments are even, FG segments are odd
19 er0 ← er0 + ((er0 mod 2)⊕ p)
20 er1 ← er1 − ((er1 mod 2)⊕ p)
21 if er1 ≥ er0 then
22 ea ← ERAi−1[er0]
23 a← Find(ea)
24 for erk = er0 + 2 to er1 step 2 do
25 eak ← ERAi−1[erk]
26 ak ← Find(eak)
27 if a < ak then // Union: min propagation
28 T [ak]← a

29 if a > ak then // Union: min extraction
30 T [a]← ak
31 a← ak

32 ERAi[er]← a // the global min
33 F [a]← F [a] ∪ f // update features
34 else // new label
35 ERAi[er]← ne
36 F [ne]← f
37 I[ne]← ERAi[er − 1] // Initial adjacency
38 ne ← ne + 1

39 // first and last BG segments shall be connected to 0

40 a← Find(ERAi[0])
41 T [a]← 0
42 if ner i is odd then // last segment is BG
43 a← Find(ERAi[ner i − 1])
44 T [a]← 0

Algorithm 3: B&W Transitive closure (step 2)
1 for e = 0 to ne − 1 do
2 a← T [e] // ancestor
3 if Hole filling and e = a then // If label is root
4 i← I[e] // label of the surrounding component
5 if T [i] > 0 then a← T [e]← i

6 if a < e then
7 r ← T [a]
8 T [e]← r // Transitive Closure
9 F [r]← F [r] ∪ F [e] // Feature merge

10 else // e is a root
11 I[e]← T [I[e]] // point adjacency to root

Algorithm 4: B&W Relabeling (step 3)
1 for i = 0 to h− 1 do
2 j0 ← RLC i[0] // j0 is 0

3 // White-only would have have step = 2 and unconditionally store
the BG label for even er

4 for er = 0 to ner i − 1 step 1 do
5 e← ERAi[er] // provisional label
6 r ← T [e] // final label
7 j1 ← RLC i[er + 1]
8 Ei[j0, j1[← r
9 j0 ← j1

3.3. Example

Figure 3 shows how our algorithm builds the equivalence table T and
the adjacency tree I on a simple, yet complete, example. It shows
the input image with initial labels and their speculative surrounding
(FG in gray and BG in white), as well as a graph representing both
the equivalence table T and the adjacency tree I .

On the first three lines (i = 0, i = 1 and i = 2), five new labels
are created 1 , 2 , 3 , 4 and 5 . Their initial adjacency is set as
their speculative surrounding: 1 @ 0 , 2 @ 1 , 3 @ 1 , 4 @ 2
and 5 @ 3 .

At i = 3, two new labels are created with the following spec-
ulative surroundings: 6 @ 4 and 7 @ 5 . In addition, 3 ≡ 2
is detected. Consequently, the speculative surrounding of 3 is dis-
carded in favor of 2 @ 1 .

At i = 4, as 5 ≡ 4 , the speculative surrounding 5 @ 3 is
discarded.

At i = 5, two new equivalences are detected: 2 ≡ 0 and
7 ≡ 6 . Consequently, the speculative surroundings of 2 and 7
are dropped. The component 0 2 3 has no more surrounding as
0 is the exterior of the image. While the algorithm is not capable

to detect it, we can see that the surrounding 6 @ 4 is no more
speculative and is actually final.

At i = 6, the last equivalence 4 ≡ 1 is detected and the
speculative surrounding 4 @ 2 is discarded, and the surrounding
1 @ 0 is kept.

This leads to the final state before transitive closure where all
remaining surroundings (6 @ 4 and 1 @ 0) are no more specu-
lative and are actually true surroundings. When holes are filled, the
adjacency edge 6 @ 4 is replaced by an equivalence edge 6 ≡ 4 .
Note that our algorithm actually fills hole during transitive closure
and not beforehand.

4. BENCHMARK & PERFORMANCE ANALYSIS

We measured the performance of our algorithms using a protocol
similar to [29]. We tested randomly generated 2048×2048 images
with varying density and granularity on a Skylake Gold 6126 Xeon
@2.60GHz. Grana’s [4] and Diaz’ [30] works have been ran and
measured on our machine. We also ran the CCA algorithms from [2]
on our machine and kept three of them: Rosenfeld+F as the refer-
ence, He HCS2+F and LSLSTD+F as the fastest pixel-based and
run-based algorithms at this time. The other ones have been esti-
mated from their paper. To have comparable results across machines,
we give all the results in cycles per pixel (cpp) that is the execution
time multiplied by the clock frequency and divided by the number
of pixels.

0 1 0

2 3

4 5

6 7

i = 0

i = 1

i = 2

i = 3

i = 4

i = 5

i = 6

i = 0:
i = 1:
i = 2:

1 @ 0 ,
2 @ 1 , 3 @ 1 ,
4 @ 2 , 5 @ 3

0

1

2 3

4 5

i = 3:
6 @ 4 ,
3 ≡ 2 ,
7 @ 5

0

1

2 3

4 5

6 7

i = 4: 5 ≡ 4
0

1

2 3

4 5

6 7

i = 5:
7 ≡ 6 ,
3 ≡ 0

0

1

2 3

4 5

6 7

i = 6: 4 ≡ 1
0

1

2 3

4 5

6 7

Final state
0

1

2 3

4 5

6 7

Hole filled
0

1

2 3

4 5

6 7

Adjacency BG equivalence
Adjacency discarded FG equivalence

Fig. 3: Step by step example of our new B&W labeling focusing on
equivalences building and adjacency setting.

Table 1 shows the minimal and maximal processing time of our
new labeling algorithm. The first line corresponds to a base process-
ing: foreground and background CC labeling and computing their
adjacency tree. The next lines provide the extra times to do extra
computations like Euler or Hole Filling and B&W Feature Compu-
tation. The extra times are the worst case we measured for doing this
extra computation. One can then estimate the total processing time
for all the computations they are interested in just by adding all the
extra times.

On this table, we can observe that the minimal extra time for
all computations but relabeling is 0. This is a property of run-based
algorithms: those computation times depend on the number of seg-
ments – which is 1 per line for empty images. Euler number compu-
tation and Hole filling are really inexpensive using our approach. On
the opposite, relabeling is very expensive, almost doubling the total
time, and should be avoided if not required.

Figure 4 shows the processing time of the labeling with hole fill-
ing and either relabeling or feature computation depending on both
granularity and density. We can see that the processing time quickly
decreases with higher granularity. Random images with g = 1 are
highly artificial but are useful to stress the algorithms where they ap-
pear to be slowest. Our labeling is much faster at g = 4 with an aver-
age time of 5.3 cpp. This is interesting because natural images (like
SIDBA database) usually have an average processing time close to
the processing time of random images with granularity greater than

min max
B&W + Adjacency 2.80 15.3

+Euler number + 0 + 0.66

+Hole Filling + 0 + 0.74

+Feature Computation + 0 + 10.3

+Relabeling + 0.59 + 13.2

Table 1: Minimal and maximal processing time in cpp of our base
B&W algorithm and extra computation for 2048×2048 random im-
ages.

Relabeling Features g = 1 g = 2 g = 4

5 10 15
granularity

0

5

10

15

20

25

30

av
er

ag
e

tim
e

(c
pp

)
(a) Average processing time
over foreground density for
g ∈ [1, 16]

0% 25% 50% 75% 100%
density

0

5

10

15

20

25

30

pr
oc

es
si

ng
tim

e
(c

pp
)

(b) Processing time depending
on foreground density for g ∈
{1, 2, 4}

Fig. 4: Processing time in cpp of hole filling with either feature
computation or relabeling.

4, according to [2].

In Table 2, each State-of-the-Art algorithm are compared to one
configuration of our new algorithm that computes at least as much.
The execution time of our algorithm is close to the best classical
foreground CCL algorithm [4] despite computing background labels
and adjacency tree in addition. This is possible thanks to our light-
weight adjacency-tree computation and the use of segments that al-
lows a symmetric computation of BG and FG components.

Our work outperforms both existing B&W algorithms [30, 31]
or CCL algorithm with Euler number computation [28]. While we
compute much more, Euler computation is faster than dedicated al-
gorithms [25,32]. Our run-based algorithm is faster than pixel-based
CCA algorithms, like already observed in [2] with classical LSL.
Classical LSLSTD+F – the base of our algorithm – remains obvi-
ously faster. The most noticeable difference is for the maximum
processing time: our BW algorithm needs to process twice as much
segments than classical LSL.

5. CONCLUSION

In this article, we have introduced a new connected component la-
beling and analysis algorithm that is able to do in one single pass
of the image, both the Euler number computation but also a double
foreground and background labeling with the adjacency tree com-
putation. The modified transitive closure algorithm enables an effi-
cient hole processing: holes can be filled and the surrounding con-
nected components are updated on-the-fly. Our approach can easily
be adapted to other connected operators like filtering out components
based on their statistical features.

Algorithm Their Our
compute min max compute min max

Grana [4] WR 3.40 25.7
BWAR 3.41 28.9

Diaz [30] BWAR 18.4 59.0

He BW [31] BWER 9.00 79.7
BWAER 3.41 29.0

He combined [28] WER 16.6 48.0

He run-based [32] E 5.54 36.5
BWAE 2.80 15.9

He bit-quad [25] E 2.87 23.7

Rosenfeld+F∗ [2] WF 4.68 48.0
BWAF 2.80 24.8He HCS2+F∗ [2] WF 4.33 38.6

LSLSTD+F [2] WF 2.69 14.4

B : Black labeling (BG) A: Adjacency tree F: Feature Computation
W: White labeling (FG) E: Euler number R: Relabel
∗ : standard CCL algorithms transformed into 1-pass CCA algorithms (features only)

Table 2: Performance comparison between State-of-the-Art algo-
rithms (“Their”) and this work (“Our”). The “compute” columns
show what is computed by the algorithms. “min” and “max”
columns show the minimum and maximum processing time in cpp
measured for each algorithm.

As far as we know our algorithm is faster than B&W labeling
algorithms and algorithms computing features related to hole pro-
cessing.

6. REFERENCES

[1] A. Rosenfeld and J.L. Platz, “Sequential operator in digital
pictures processing,” Journal of ACM, vol. 13,4, pp. 471–494,
1966.

[2] L. Cabaret and L. Lacassagne, “What is the world’s fastest
connected component labeling algorithm ?,” in IEEE Interna-
tional Workshop on Signal Processing Systems (SiPS), 2014,
pp. 97–102.

[3] L. He, X. Ren, Q. Gao, X. Zhao, B. Yao, and Y. Chao, “The
connected-component labeling problem: a review of state-of-
the-art algorithms,” Pattern Recognition, vol. 70, pp. 25–43,
2017.

[4] F. Bolelli, S. Allegretti, L. Baraldi, and C. Grana, “Spaghetti
labeling: Directed acyclic graphs for block-based connected
components labeling,” Transactions on Image Processing, vol.
PP, pp. 1–14, 2019.

[5] A. Hennequin, I. Masliah, and L. Lacassagne, “Designing
efficient SIMD algorithms for direct connected component
labeling,” in ACM Workshop on Programming Models for
SIMD/Vector Processing (PPoPP), 2019, pp. 1–8.

[6] D. P. Playne and K. Hawick, “A new algorithm for parallel
connected-component labelling on GPUs,” IEEE Transactions
on Parallel and Distributed Systems, 2018.

[7] M. Klaiber, D. Bailey, and S. Simon, “A single cycle parallel
multi-slice connected components analysis hardware architec-
ture,” Journal of Real-Time Image Processing, 2016.

[8] D. Bailey and C. Johnston, “Single pass connected component
analysis,” in Image and Vision New Zeland (IVNZ), 2007, pp.
282–287.

[9] L. Lacassagne and A. B. Zavidovique, “Light Speed Labeling
for RISC architectures,” in IEEE International Conference on
Image Analysis and Processing (ICIP), 2009.

[10] L. Lacassagne and B. Zavidovique, “Light Speed Labeling: Ef-
ficient connected component labeling on RISC architectures,”
Journal of Real-Time Image Processing (JRTIP), vol. 6, no. 2,
pp. 117–135, 2011.

[11] J. W. Tang, N. Shaikh-Husin, U. U. Sheikh, and M. N. Mar-
sono, “A linked list run-length-based single-pass connected
component analysis for real-time embedded hardware,” Jour-
nal of Real-Time Image Processing, 2016.

[12] L. He, X. Ren, X. Zhao, B. Yao, H. Kasuya, and Y. Chao,
“An efficient two-scan algorithm for computing basic shape
features of objects in a binary image,” Journal of Real-Time
Image Processing, vol. 16, pp. 1277–1287, 2019.

[13] L. Cabaret, L. Lacassagne, and D. Etiemble, “Parallel Light
Speed Labeling for connected component analysis on multi-
core processors,” Journal of Real-Time Image Processing (JR-
TIP), vol. 15, no. 1, pp. 173–196, 2018.

[14] A. Hennequin, Q. L. Meunier, L. Lacassagne, and L. Cabaret,
“A new direct connected component labeling and analysis algo-
rithm for GPUs,” in IEEE International Conference on Design
and Architectures for Signal and Image Processing (DASIP),
2018, pp. 1–6.

[15] D. G. Bailey and M. J. Klaiber, “Zig-zag based single-pass
connected components analysis,” Journal of Imaging, vol.
5,45, pp. 1–26, 2019.

[16] R.E. Tarjan, “Efficiency of good but not linear set union algo-
rithm,” Journal of ACM, vol. 22,2, pp. 215–225, 1975.

[17] R.E. Tarjan and J. Leeuwen, “Worst-case analysis of set union
algorithms,” Journal of ACM, vol. 31, pp. 245–281, 1984.

[18] Z. Galil and G.F. Italiano, “Data structures and algorithms for
disjoint set union problems,” ACM Computing Survey, vol.
23,3, pp. 319–344, 1991.

[19] K. Wu, E. Otoo, and K. Suzuki, “Optimizing two-pass
connected-component labeling algorithms,” Pattern Analysis
and Applications, vol. 12, pp. 117–135, 2009.

[20] F. Manne and M.A. Patwary, “A scalable parallel union-find
algorithm for distributed memory computers,” in Parallel Pro-
cessing and Applied Mathematics, LNCS 6067 Springer, Ed.,
2009, pp. 186–195.

[21] M.A. Patwary, J.R. Blair, and F. Manne, “Experiments on
union-find algorithms for the disjoint-set data structure,” in
International symposium on experimental algorithms (SEA),
LNCS 6049 Springer, Ed., 2010, pp. 411–423.

[22] S. B. Gray, “Local properties of binary images in two dimen-
sions,” Transactions on Computers, vol. 20, 5, pp. 551–561,
1971.

[23] A. Rosenfeld, “Digital topology,” The American Mathematical
Monthly, vol. 28, 8, pp. 621–360, 1979.

[24] L. He, Y. Chao, and K. Suzuki, “A new algorithm for label-
ing connected-components and calculating the euler number,
connected-component number, and hole number,” in Interna-
tional Conference on Pattern Recognition (ICPR), 2012, pp.
3099–3102.

[25] B. Yao, L. He, S. Kang, Y. Chao, and X. Zhao, “Bit-quad-
based euler number computing,” Transaction on Information
and Systems, vol. E100-D,9, pp. 2197–2204, 2017.

[26] F. Diaz del Rio, H. Molina-Abril, and P. Real, “Computing the
component-labeling and the adjacency tree of a binary digital
image in near logarithmic-time,” in Workshop on Computation
Topology in Image Context(CITIC). Springer, 2019, pp. 82–95.

[27] Philippe Salembier and Michael Wilkinson, “Connected oper-
ators,” Signal Processing Magazine, IEEE, vol. 26, pp. 136 –
157, 12 2009.

[28] L. He and Y. Chao, “A very fast algorithm for simultaneously
performing connected-component labeling and euler number
computing,” Transaction on Image Processing, vol. 24,9, pp.
2725–2735, 2017.

[29] F Bolelli, M. Cancilla, L. Baraldi, and C. Grana, “Toward reli-
able experiments on the performance of connected components

labeling algorithms,” Journal of Real-Time Image Processing
(JRTIP), pp. 1–16, 2018.

[30] F. Diaz del Rio, P. Sanchez-Cuevas, H. Molina-Abril, and
P. Real, “Parallel connected-component-labeling based on ho-
motopy trees,” Pattern Recognition Letters, vol. 131, pp. 71–
78, 2020.

[31] L. He, Y. Chao, and K. Suzuki, “An algorithm for connected-
component labeling, hole labeling and euler number comput-
ing,” Journal of Computer Science and Technology, vol. 28,3,
pp. 468–478, 2013.

[32] B. Yao, L. He, S. Kang, X. Zhao, and Y. Chao, “new run-based
algorithm for euler number computing,” Pattern Analysis and
Applications, vol. 2, pp. 49–58, 2015.

	1 Introduction & State of the Art
	2 Classical LSL
	3 LSL and Hole processing
	3.1 Holes and adjacency tree
	3.2 New Black and White LSL
	3.3 Example

	4 Benchmark & Performance Analysis
	5 Conclusion
	6 References

