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PARTIALLY DISSIPATIVE ONE-DIMENSIONAL HYPERBOLIC SYSTEMS
IN THE CRITICAL REGULARITY SETTING, AND APPLICATIONS

TIMOTHEE CRIN-BARAT AND RAPHAEL DANCHIN

ABSTRACT. Here we develop a method for investigating global strong solutions of partially
dissipative hyperbolic systems in the critical regularity setting. Compared to the recent
works by Kawashima and Xu, we use hybrid Besov spaces with different regularity exponent
in low and high frequency. This allows to consider more general data and to track the exact
dependency on the dissipation parameter for the solution. Our approach enables us to go
beyond the L? framework in the treatment of the low frequencies of the solution, which is
totally new, to the best of our knowledge.

Focus is on the one-dimensional setting (the multi-dimensional case will be considered in a
forthcoming paper) and, for expository purpose, the first part of the paper is devoted to a toy
model that may be seen as a simplification of the compressible Euler system with damping.
More elaborated systems (including the compressible Euler system with general increasing
pressure law) are considered at the end of the paper.

INTRODUCTION

The study of the global existence issue for so-called partially dissipative hyperbolic systems
of balance laws goes back to the seminal work of Kawashima [20]. Recall that a general n-
component systems of balance laws in R? reads:

d (w
(1) %+28LU — Qw).
j=1

Here the unknown w = w(t,r) with t € R and x € R? is valued in an open convex subset O,
of R" and @, Fj : R — O,, are given n-vector valued smooth functions on O,,.

It is well known that classical systems of conservation laws (that is with Q(w) = 0) supple-
mented with smooth data admit local-in-time strong solutions that may develop singularities
(shock waves) in finite time even if the initial data are small perturbations of a constant solu-
tion (see for instance the works by Majda in [23] and Serre in [27]). A sufficient condition for
global existence for small perturbations of a constant solution w of () is the total dissipation
hypothesis, namely the damping (or dissipation) term @Q(w) acts directly on each component
of the system, making the whole solution to tend to w exponentially fast. However, in most
evolutionary systems coming from physics, that condition is not verified, and even though
global-in-time strong solutions do exist, exponential decay is very unlikely. A more reasonable
assumption is that dissipation acts only on some components of the system. After suitable
change of coordinates, we may write:

) 2w = ()

q(w)
where 0 € R™ g(w) € R™, nj,ne € N and n; + ny = n. This so-called partial dissipation
hypothesis arises in many applications such as gas dynamics or numerical simulation of con-
servation laws by relaxation scheme. A well known example is the damped compressible Euler
system for isentropic flows that we will be investigated at the end of the paper. For this system,
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2 TIMOTHEE CRIN-BARAT AND RAPHAEL DANCHIN

the works by Wang and Yang [31] and Sideris, Thomases and Wang [29] pointed out that the
dissipative mechanism, albeit only present in the velocity equation, can prevent the formation
of singularities that would occur if Q = 0.

Looking for conditions on the systems of the form (I))-(2]) guaranteeing global existence
of strong solutions for small perturbations of a constant solution w goes back to the paper of
Shizuta and Kawashima [28], the thesis of Kawashima [20] and, more recently, to the paper of
Yong [37]. Their researches reveal the importance of a rather explicit linear stability criterion,
that is nowadays called the (SK) (for Shizuta-Kawashima) condition and of the existence of
an entropy that provides a suitable symmetrisation of the system. Roughly speaking, (SK)
condition ensures that the partial damping provided by (2)) acts on all the components of the
solution, although indirectly, so that all the solutions of (I]) emanating from small perturbations
of w eventually tend to w, while the paper by Yong provides tools to get quantitative estimates
on the solutions when Q(w) = 0. As observed by Bianchini, Hanouzet and Natalini [4], in
many situations, a careful analysis of the Green kernel of the linearized system about w allows
to get explicit (and optimal) algebraic rates of convergence in LP of smooth global solutions
to w. Let us finally mention that a more general approach has been proposed by Beauchard
and Zuazua in [2], that allows to handle partially dissipative systems that need not satisfy the
(SK) condition.

Recently, Kawashima and Xu in [34] and [35] extended all the prior works on partially
dissipative hyperbolic systems satisfying the (SK) and entropy conditions (including the com-
pressible Euler system with a damping term) to ‘critical’ non-homogeneous Besov spaces of L?
type. To obtain their results, they symmetrized the system thanks to the entropy hypothesis,
applied a frequency localization argument relying on the Littlewood-Paley decomposition and
used new properties concerning Chemin-Lerner’s spaces. They took advantage of the equiv-
alence between the condition (SK) and the existence of a compensating function so as to to
exhibit global-in-time L? integrability properties of all the components of the system.

The present paper focuses on the particular situation where the space dimension is d = 1
and the number of components is n = 2 (the multi-dimensional case will be investigated
in a forthcoming paper [§] for the whole class of partially dissipative systems verifying the
(SK) condition). Our goal is to propose a method and a functional framework with different
regularities for low and high frequencies. For the high frequencies, we do not really have the
choice as it is known that the optimal regularity for local well-posedness in the context of

3
general quasilinear hyperbolic systems, is given by the ‘critical’ Besov space IB%%I. The novelty
here is that we propose to look at the low frequencies of the solution in another space, not
necessarily related to L2. The advantage is not only that we will be able to consider a larger
class of initial data that may be less decaying at infinity, but also that one can easily keep
track of the dependency of the solution with respect to the dissipation coefficient, and thus

have some informations on the large dissipation asymptotics. Various considerations lead us
1

to think that a suitable space for low frequencies is the homogeneous Besov space B;l (with,
possibly, p > 2) that corresponds to the critical embedding in L.
For expository purpose, we spend most of the paper implementing our method on a

simple ‘toy model’ that may be seen as a simplification of the one-dimensional compressible
Euler system with damping, and pressure law P(p) = % p?, namely

Ot + v0yu + 0,0 =0 in R xR,
(T'M)) O +v0,v+0,u+Av=0 in RT xR,
(u, ) |t=0 = (ugp, vy). on R

Above, the unknown u may be seen as the discrepancy to the reference density normalized to 1,
(then, the first equation is a simplification of the mass balance), while the unknown v stands for
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the velocity of the fluid, and the second equation corresponds to the evolution of velocity with
a friction term of magnitude A > 0 (which could also be interpreted as a relaxation parameter).

In order to have a robust method that can be adapted to more involved systems, we shall
not compute explicitly the solution of the linearized system (7'M,) about (0,0), but rather
use modified energy arguments (different from those of S. Kawashima in his thesis [20]) and
suitable change of unknowns. More specifically, we will introduce a ‘modified’ velocity that
plays the same role as the ‘viscous effective flux’ in the works of Hoff [I8] and, more recently,
of Haspot [17] dedicated to the compressible Navier-Stokes equations.

Our approach will enable us to obtain more accurate estimates and a weaker smallness
condition than in prior works (in particular |20, 37, 2 [36]). We will see that it is enough to
assume that the low frequencies of the data have Besov regularity for some Lebesgue index that
may be greater than 2. Also, we will improve the decay that was obtained for the compressible
Euler system with damping in [36] and, adapting an idea from Xu and Xin in [32] for the
compressible Navier-Stokes system will enable us to discard the additional smallness assumption
on the low frequencies that is usually required to obtain the decay estimates.

The rest of the paper unfolds as follow. In Section [II we present our main results for
(T'M,), namely the global existence of a solution corresponding to small data with optimal
estimates with respect to the dissipation coefficient, and time decay estimates. In the next
section, we focus on the particular case of data with regularity in Besov spaces built on L2,
and prove global existence in this case, as well as the time decay estimates. The method we
here propose is different than the one for the general case, and is more easily extendable to
the multi-dimensional setting. In Section Bl we propose another method that allows to get
our global existence result for a larger class of data, not necessarily in L? type spaces. The
next two sections are devoted to adapting our results, first for the isentropic Euler system with
damping, and next for a general class of one-dimensional systems of two conservations laws,
with partial damping. Some technical lemmas are proved in Appendix.

Acknowledgments. The second author is partially supported by the ANR project INFAMIE
(ANR-15-CE40-0011).

1. MAIN RESULTS

Before stating the main results, we need to introduce a few notations. First, throughout
the paper, we fix a homogeneous Littlewood-Paley decomposition (A;);ez that is defined by

Aj £ p279D) with (&) £ x(£/2) — x(&)
where x stands for a smooth function with range in [0, 1], supported in | — 4/3,4/3[ and such
that x = 1 on [—3/4,3/4]. We further set

S; 2 x(279D) forall j€Z

and define S; to be the set of tempered distributions z such that sz — 0 uniformly when
j — —oo.

Following [I], we introduce the homogeneous Besov semi-norms:

HZ”IB;’T = H2]8”A]Z”LT’(R) o (Z)’

then define the homogeneous Besov spaces B;T (for any s € R and (p,r) € [1,00]?) to be the
subset of z in S; such that ||z||, is finite.
p,T

To any element z of S}, we associate its low and high frequency parts with respect to
some fixed threshold Jy € Z, through

X2 5N Ajz=850z and 223 Ajz=(1d - S0
i<Jo 3>Jo
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In order to emphasize the dependency of the notation with respect to the threshold parameter
Jo, we use sometimes the notation 2%/ and 27, Likewise, we setll if r < oo

1 1
0,Jo & YERIVN r\" h,Jo & Js | A . T T.
i & (S [8],r) " wa g e (Ser s, r)

J<Jo JzJo
Whenever the value of Jy is clear from the context, we shall only write ||z

l
HB;W

For any Banach space X, index p in [1,00] and time T € [0,00], we use the notation
120l Le x) = HHZ”XHLP(O Ty If T = +o0, then we just write ||2][zs(x). In the case where 2 has
n components z; in X, we slightly abusively keep the notation ||z[| to mean >y . oy 125l x-

Throughout the paper, C' > 0 designates a generic harmless constant, the value of which
depends on the context. We use the notation p’ for the conjugate Lebesgue exponent of p.
Finally, we denote by (c;);ez nonnegative sequences such that > 7 c; = 1.

We can now state our main global existence result for (T'M)y).
Theorem 1.1. Let 2 < p < 4. There exist k = k(p) € Z and ¢y = co(p) > 0 such that for
3

1 i
Jy & |logaA| + k, if we assume that ué"h,fug"]A €B;, and ug"]*,vg"h € B3, with

I o, 00) [ + A7 [ (o, w0) |23 < o,

Bﬁl Bs,
then System (T M) admits a unique global solution (u,v) in the space E;> defined by
L .10 .3 .3
ut € C(R By ) N LR, B 7),  u™ € G(RTB,) 0 LY(RT, BS ),
1 L1 .3 .3
oo e G RYBE ) NLYRT, B, ), oM € GRYBS ) N LY(RY, B3 )
L1 L1
Mo+ 0,u € L'RY,BP ) and ve L*(RY,B?)).
Moreover we have the following a priori estimate:

Xp(t) < [1(wo, v0) [ + X7 (o, wo) |5 for all t >0,
B B

p,1 2,1
where
¢ — h — / h
Xpa(®) 2 1w, 0)|“ L AT )| AT Y+ ()
2 1 2
Lo (BP ) Ly (B2) LIBP) L}(B2)
A0+l 1 Az 1
LIBP)) L2(BP )

Remark 1.1. Somehow, the function Av + O,u may be seen as a damped mode of the system,
which explains its better time integrability. This is actually the key to closing the estimates
globally in time, and this enables us to prove similar results for more general systems (see

Sections[{) and[3).

Remark 1.2. Kawashima and Xu in [34] obtained a result in critical nonhomogeneous Besov
spaces built on L? for a class of system containing (T My). In their functional setting however,
it seems difficult to track the exact dependency of the smallness condition and of the estimates
with respect to the damping parameter \. Furthermore, whether a LP approach may be performed
for the whole classe of systems that is considered therein, is unclear.

Remark 1.3. In the L? case, the method we here propose is robust enough to be adapted to
higher dimension and to systems with more components, see [5] and [§].

1For technical reasons, we need a small overlap between low and high frequencies.
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Remark 1.4. In Section[]] a statement similar to the above one is obtained for the isentropic
compressible Fuler system with a damping term in the velocity equation. To our knowledge,
it is the first result (partially) in the LP setting for this system. Obtaining a similar result in
higher dimension is a work in progress.

The above theorem gives us for free some insight on the diffusive relaxation limit of (T'M))
in the case of fixed initial data?

Corollary 1.1. Under the hypotheses of Theorem[I 1], we have u — ug and v — 0 when X goes
to infinity. More precisely,
1
—1/2 AN
lv] 1 < Cec and |lu(t) —uollgo < Ceo| v+ ] -
L2(BP ) Pl A
Proof. The first inequality follows from the estimate for X, y in Theorem [[.Il For the second
inequality, we observe that by interpolation in Besov spaces and Holder inequality,

1-1 1 ) 1 1
Ha:cUHLT-(BO )g”aﬂcv” p,l [0z v]|” 1, with _él_z_’
! LY (BP)) L2BP, ) r p
Since
O 1 <o)t + [Jv]|"
sl g3 Sl + I g
Theorem [L.1] gives us
Ha‘rv||Lr(B271) S CCO)\_%
Similarly, we have
1 i+t 1 1 1
10zull 7o ) S 102 U|| O X R with =2 o —
T vty L@ ro2o

Hence, using that the product maps Bg’l X B;l to Bg’l and Theorem [[.1] we deduce that
< . ~3
||Uamu||Lr(]Bgyl) ~ HUHH(BP%l HamUHLr(Bg)l) < Cegh 2

Since dyu = —0,v — VI, u, we get the desired inequality for u(t) — ug, by time integration and
Holder inequality. O

Our second main result concerns the optimal decay estimates of the solution constructed
in the first theorem. For now, we only consider the case p = 2.

Theorem 1.2. Under the hypotheses of Theorem[I1l with p = 2, there exists a Lyapunov func-
tional associated to the solution (u,v) constructed there, which is equivalent to || (u, v)|| ? .
]B

2 1
If, additionally, (ug,vo) € Bigol for some o1 € (—%, %} then, there exists a constant C
depending only on o1 and such that

1, ) (Ol o1 < C (w0, v0)llgor s VE20.

Furthermore, there exists a constant kg depending only on o1, A and on the norm of the data
(and that may be taken equal to one in certain regimes, see the remark below) such that, if

1
(1) £ 1+ mot, axLort g and Cox & N2 (uo, wo)l|522, + l(uo,v0) "3,

2,00 51

2We actually expect our method to be appropriate for investigating the connections between the compressible
Euler system and the porous media equation, in the spirit of [19] 22} [33]. This is a work in progress.
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then we have the following decay estimates:
A O+ 01

M @ )OI < CCon o€ o1/, a

100 ()N < CCon,

2,00
3 0,J 1/1
NGNS, < CCox a2 5[5+ o)
Remark 1.5. Our proof reveals thaf] ko ~ 1 whenever the first term of Co x is controlled by

the second one (which amounts to saying that the low frequencies of the data are dominated by
the high frequencies).

Remark 1.6. The fact that v undergoes direct dissipation and not u explains why the decay of
the low frequencies of v is stronger than that of u.

.1
Remark 1.7. In light of the embedding L' — B, 5% the above statement with o1 = 1/2

encompasses the classical L' condition of [24]. Actually, choosing suitable exponents allows to
recover all the conditions used in [4] for getting decay estimates.

2. THE CASE p =2

The present section is dedicated to the case p = 2 in Theorem [[L1] and to the proof
of Theorem The reason for looking first at p = 2 is that one can exhibit a Lyapunov
functional for (T'M)) that allows to treat the low and high frequencies of the solution together.
Throughout this section, we focus on the proof of a priori estimates for smooth solutions to
(T'M,), the reader being referred to the next section for the rigorous proof of existence and
uniqueness, in the general case.

Before starting, let us observe that (u,v) is a solution to (7'M,) if and only if the couple
(t,?) defined by
(3) (u,0)(t, ) 2 (3, )(M, A2)

satisfies (T'M7). Therefore, it suffices to establish Theorems [Tl and [[.2] for A = 1, scaling back
giving the desired inequalities, owing to the use of homogeneous Besov norms.

In the rest of this section, and in the following one, we shall use the short notation (7'M)
to designate (T'Mj).

2.1. Global a priori estimates for the linearized toy model. Here we are concerned with
the proof of a priori estimates for the following linearization of (T'M):

Ot + wOpu + Opv = 0 in R xR,
(LTM) Ov+wopv+du+v=0 1in RT xR,
(u,v)|t=0 = (ugp, vo) on R,

where the given function w : R x R — R is smooth.

In the following computations, we assume that we are given a smooth solution (u,v) of
(LTM) on [0,T] x R, and denote, for all j € Z,

(4) uj 2 Aju and v; £ Ajv.

Inspired by the work of the second author in [9] T3], we consider the following functional:

(5) L; = \/HUJH%Q + ||Uj||%2 + Hamujuiz + ||8ijH%2 + /Rvj Oy uj.

£,J h,J
>\H(onvo)llmlfz+||(u0,v0)\\].¥3/§ ﬁ
3The exact value is Ko = o 22,“ 2 lh,h
A2l (ug,vo)ll 23, +(uwo,vo)ll 35
By oo Ba1
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Applying operator Aj to (LT M), simple computations lead to

1d . . . .
gl + ol + [ (850w Bgu+ &y o) By0) =0,
5 771l(@xg, 0up)l[ 1 + 10205 2 + A(%%(w@u» B0+ (0 (w00)) A0,v) =0,

d . . . .
—/vj amuﬁ—/ vj amuj+\|8muj\|%z—||8wvj\|%2—|—/ <Aj8w(w8xu)Ajv+Aj(w@wv)amAju) =0
dt Jr R R

Using the fact that
(6) Aj(wdy2) = wdypzj + [Aj,w]dpz  for z =u,v
and integrating by parts, we see that
. . 1 .
/Aj(w(‘)xz) Ajz= —g/ﬁxw |22 —i—/[Aj,w](‘)xzzj.
R R R

Hence, using the classical commutator estimate (79) recalled in the Appendix and the embed-
1

ding 15%2571 — L, we get an absolute constant C' > 0 such that for all j € Z,

/ Aj(wdyz) Ajz
R

< Ce2 2 0pwll g Izl y I1Aszle with S ej=1.
Bgl B2y JEZL

Likewise, we have, thanks to an integration by parts,
. . 1 )
/ A0 (w,2) Ajo,z = | / Do (Du2;)? + / Du[Ay, w]duz Dz,
R R R
.1
Hence, using (8I) and B, < L,

< Ce27%]0, wil g Nz,

21

10225 L2
1

/A@ w@zA@z

B2

2

Finally, integrating by parts reveals that
/R<Aj8w(w8xu)Ajv+Aj(waxv)amAju) = /R[Aj,w]amv Opttj — /R[Aj,w]amuamvj.

Hence, using (79),

/ <Aj8x(w8xu)Ajfu + Aj(waxv)(‘)xAju>
R

< Cej27 2(IIUH y 10z05llc2 + Noll g 10zusllz2) 10zl g )-

21 2 21

In order to conclude the proof of estimates for £;, one can observe that there exist two absolute
constants C' and ¢ such that

(7) CH (g, 05, Oauy, 0pvj) 172 < L7 < Cll(ug,v5, 0auy, 05v))|I72
and [o;[2: + %(uamujué 1000sl122 + fi s Doy dx) > cmin(1,2%9) L2,
Consequently, putting together with the above inequalities, we obtain

1
2y emin(1,29)C2 < Cey274 )0, wlly v, 0p, 0,0

(8) 1 L.
24t 7 B2, B2,
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Then, integrating on [0,t] for ¢ € [0, 7] and using Lemma [AT] yields
I . 2j\o 1 ¢
(9) 27| (uy, vj, Oxij, Opv) (1) || L2 + min(1,27)22 | |[(uz, vj, Oxuij, Oxvj) | 12
0

j t
< (28105050005, 0.0) 012 + [ 510,000,001, 100l )
2,1

2,1

Since (direct) damping is present in the equation for v, one can expect v to have better decay
and time integrability properties than u. In fact, as explained at the beginning of Section Bl it
is even better to consider the function z £ v + dyu that satisfies:

Oz + 2+ whpz = —89%9611 — Opw Oz .

Now, applying Operator Aj to the above equation, then using the basic energy method gives:

1d . .
sl sl = = [ 200 = [ Aoz - [ A0,
The last term may be handled thanks to the decomposition (@), integration by parts (as above)
and Inequality (79) with s = 1/2. This gives
1d
2dt

_I A
121172 + llzil72 < ll2jll 2 (103,12 + C2 2ejll0swll g N2ll, g+ 1124 (Osw o)l 2)-

1
2
21 2,1

After time integration (use Lemma [A.T]), we end up for all ¢ € [0, T] with
. - ,
i i i

22 ||z;(t)[| 2 + 22 /0 1zl 2 < 22|12 (0) | 2

et ¢
J
+22 9% v, —I-C'/c'aw, z|| 1+ ||0zwOpull 1 )-
[ 10lez € [ es(1only Dol + 10w ocul 3 )
.1
Hence, summing up on j < 0 and using the stability of the space B3 ; by product yields

t t t
umuamwl+/WmK1gumwl+c/WM%5+c/uaww1uw»-ﬂmuwl-
1322,1 0 le Bg,l 0 I532?,1 0 ’ IB322,1( 1322,1 ; 1322, )

1

Let us sum (@) on j € Z, then add (I0) multiplied by a small enough constant. Using (7)) and
denoting X (t) & H(u,v,(‘)xu,(‘)xv)(t)HB% , we eventually get

2,1
t t
(1) Xawy/(mmmwﬁ-+wmww3+wv+@mwl)sc(xm»y/umwwlx)
0 B2, B2, BZ, 0 B3,

Let us revert to our toy model, assuming that w = v. Then, denoting by Y (¢) the left-hand
side of (II), we get

Y(t) < C(X(0) + Y*(t).
As Y (0) = X(0), a continuity argument ensures that there exists ¢y > 0 such that if

(12) X(0) = [|(uo,vo)|| < ¢,

25 a3
Bs,NBg
then we have

Y (t) <2CX(0) forall te|0,T].
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2.2. Proof of Theorem For getting decay estimates without any additional smallness
condition, the first step is to prove that the extra negative regularity for low frequencies is
preserved through the time evolution. This is stated in the following lemma which is an
adaptation to our setting of a result first proved by J. Xu and Z. Xin in [32] for the compressible
Navier-Stokes system.

Lemma 2.1. Let oy €]—3, %], If, in addition to the hypotheses of Theorem I, [ (o, vo)ll5 o

s bounded then, for all t > 0, we have
1t 0) ()51 < C oo, w0) g
Proof. Applying Aj to (T M) yields

Oyuj + Opv; = —v0,uj + [v, Aj]ax_u’
Ovj + Ozuj + vj = —v0,v; + [v, Aj]0pv.

Hence, an energy method, followed by time integration (use Lemma [AT]) gives
¢
(g, v5) ()] 2 +/0 [0l < [l(uj,05)(0)]] 2
1 [t ¢ ) ¢ )
w3 | 0ol + [ e Aol + [ e 800000

Omitting the second term in the left-hand side, and using the commutator estimate (80) that
is valid provided —1/2 < —07 < 3/2, we get

t
(e, V) (Bl 21 < [l(i0, v) o1 + € ||8 vll g3 N 0)lig; -

21

Hence, by Gronwall lemma,

t
) Ol < N0l xo (€ [ 100l )
2,00 2,00 0 IBSQ’1
Since the term in the exponential is small (as X (0) is small), we get the lemma. O

The second ingredient is that one can work out from the computations we did in the

.1 .3
previous paragraph, a Lyapunov functional that is equivalent to the norm of (u,v) in 18322’1 01832271.
To proceed, observe that, on the one hand, Inequality (8) implies that for all ¢ > 0,

t t
(t)+c/ H<0)+C [ o1 £
0 0 ]Bg,l
with £23°22£; and H 2 22 min(1,2%)L;
jEL JEZ

and that, on the other hand, (I0) gives us
t t
Io-+2a0@l, + [ o+ ully <l dulfy +0 [ty + [l g £
B2 B2 0o B2 0 B,
2 2 2,1 ’

Hence, there exist 7 > 0 and ¢/ > 0 such that, denoting £ £ £ + nllv + 0. uH p o we have

21

c with H 2 ’H-H?”U—i-auH

,’"mh—t
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Observe that # > [|0,v]. 1 - Since the previous step ensures that £ S X (0), one can conclude
B

2.1
that the last term of the above inequality may be absorbed by the second term of the left-hand
side provided X (0) is small enough. So finally, taking ¢’ smaller if need be, we discover that

~ t ~ ~
£ +c'/ 7 < £(0).
0
Clearly, one can start the proof from any time ¢y > 0 and get in a similar way:
~ toth _
Elto+ h) +c'/ H < E(ty), h>0.
t

0

This of course ensures that £ is nonincreasing on Rt (hence differentiable almost everywhere)
and that for all tg > 0 and h > 0,

_ to+h _
Lot =Lt 1 [y
h h J;

Consequently, passing to the limit h — 0 gives

0

(13) %E—F dH<0 a e on RY.

We thus come to the conclusion that:

Lemma 2.2. There exist two functionals L and D satisfying

Loy 5 and D uly +Ilul’y +Ilvll
’ ]BZQ:I BE@ B;l B;l IB;J
and such that if ||(uo,vo)|l. 1 .3 s small enough then (I3) is satisfied.
B, NBs

One can now tackle the proof of decay estimates. Let us denote

Co £ [|(u0, v0) Iy + | (0, v0) |
2,00 B

1

N

As a first, observe that interpolation for homogeneous Besov norms gives us:

90 1—6()
2
¢ < ¢ ¢ : a ‘
w0y 5 (Mol ) <H(u,v)HB§1) with 6y & 2

Therefore, owing to Lemma 2.1 there exists ¢ > 0 such that
__% 1
¢ -6, l i—o-
U, V >cC, O (] (u, v =00
w0l 2 eC ™ (10 )

Note that our definition of Cy and the estimates we proved for (u,v) in the previous paragraph
also ensure that
— % 1
I )%y 2 Gy ™ ()l )=
]B2'1 2,1

Hence, thanks to the above lemma, we have,

) 1

d ~ T1=e, & . 5
—L+cCy " LT% <0 with £~ |(u,v)].1 3.
dt B2, NBZ,
Integrating, this gives us

[4

Py -+ ~ . A 0o E(O) =09
< 0 s _
L(t) < (1+kot) %L(0) with ko cT % ( o
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Rewriting 6 in terms of 1 and using that ([(uo,vo)]| 3
B2, N

(14)  [[(w,0)@)].

1 3
3 B
BsNB3 4 By NBg 4 2

1 1
<CU+ ™ (o,wo)lly g with a1 2 (o1 + 5)-

In order to get the decay rate in B%l for all 0 € (—01,1/2), we just need the interpolation
inequality
1/2 -0

—_ 0,1).
1/2+016(,)

1-6 :
1w, )lgg =< l(w, v)|2 B 1w, v)IIB2 ' owith 6 £
2,00 2,1

In the end, we get (since ko < 1):
o+o _
[ 0)(®)llag, < COUL+mot) ™= (o, w05, (o, wo) 1157y -
2,1 B, . 2?,101322,1

In order to improve the decay for the damped component v, let us start from
1
Ov+v= —§8x(v2) — Ogu.

As vf is in B, 2. for some o €] — %, %], we get

t
(15) [v(E)l5-0r < e vl +/ e~ || (902, Bpu) HB n dr.
2,00 2,00 0
It is important to observe that, as 1 — oy > 1/2,
l 14
(16) 19021y I

Hence, multiplying (I5) by (¢)** and using the product laws in Besov spaces recalled in Propo-
sition [A3] yields:

t t
et o Oy < lollizrs + [ 0% fully drt [t ol ar,
2,00 2,00 0 2,00 0 B

2,1

and one can conclude as above that

U v(@)|| .o UuQ, v 7a+ UuQ, v 3.
O 1@l S Dol + ol s
.3
Let us finally exhibit the (optimal) decay rate of the high frequencies for the norm in B3,
Recall that for 5 > 0, we have

d
Eﬁ? + L5 S L30p0] oo + 27 X ||0,0]].

1
B2
21

Hence, using Lemma [A. 1] multiplying by 23 , summing up on j > 0 and remembering that

S o2tL; | (u v)llhs ;

7>0
we get
t
(17) 0@y S e oy + [ e ol 5 o)l -
2 1 Bs 1 0 Bs By,

Multiplying both sides by (t)2*1, we get

2 h 2 — h
ey o) ®ls S 026 o )y

2,1

+AKQ)M1<tq<wmm§xumm%w«>-

3
By,



12 TIMOTHEE CRIN-BARAT AND RAPHAEL DANCHIN

Taking advantage of (I4)) for bounding the norms in the time integral, one ends up with the
desired decay estimate for [|(u, fu)(t)Hh% . This completes the proof of Theorem
B

2.1

.1
Remark 2.1. In the same way, making the slightly stronger assumption that US € 1832712, we get

@ @I -3 < llvoll -y + [1(wo, vo)ll 5

3 .
55
2,1 2,1 5.1 MB35,

1

3. PROOF OoF THEOREM [[.1]

An explicit computation in the Fourier space of the solution to (LT M) with w = 0 reveals
that:

e In low frequencies, the matrix of the system corresponding to frequency £ has two real
eigenvalues that tend to be equal to 1 and to £2, for ¢ going to 0;
e In high frequencies, two complex conjugated eigenvalues coexist, that are, asymptoti-
cally, equal to %(52 +1i€).
Consequently, one can expect that the low frequency part of System (T'M) is solvable in some
LP type functional framework with, possibly, p # 2, whereas going beyond the L? framework
in high frequency is bound to fail. A similar dichotomy has been observed for the compressible
Navier-Stokes equations (see in particular [6, [7, [I7]) but the behavior of the low and high
frequencies in our situation is exchanged.

In order to extend the results of the previous section to the LP framework for low frequen-
cies, we shall adapt [I7] to our setting, introducing an ‘effective velocity’ that reads z = v+ 9d,u
and may be seen as an approximate dissipative eigenmode of the system, in the low frequency
regime.

The bulk of the proof consists in establishing estimates in the functional framework of
Theorem [T for (LT'M ). This will be carried out in the first two subsections of this part. Then,
we will prove the existence part of the theorem and, finally, the uniqueness of a solution.

3.1. Low frequencies estimates in LP. The main result of this section reads as follows.

Proposition 3.1. Let (u,v) be a smooth solution of (LT M) on [0,T]. Then, for all1l < p < oo,
we have

t t
(18) J(wo)®l s + / lall 1,0+ / o+ Bsull s
IB;I 0 IB;’J 0 Bg’l

t
V4
§C<||(anvo)\|.; + [ ool ||wu.;ﬂ>-
Bp,l 0 Bp,l Bp,l

Proof. Let us set z £ v + d,u. We observe that the couple (u, z) satisfies

ou — 8§xu + wdpu = —0, 2,
(19) 5
0z + 2 +wopz = O

2
g — Opp? — OpW Oz .

In low frequencies, we expect the linear terms of the right-hand side to be negligible, so that
we will look at the first equation as a heat equation with a convection term, and at the second
one as a damped transport equation.

Now, applying Aj to the first equation of (I9) yields
8tu]' - 8396'&] = —Aj(w(?xu) - 8952]'
= —wlyu; — Op2j + [w, Aj]ﬁwu.
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Multiplying by |uj[P~%u; and integrating in space, we get

Gl = [ Bl
= [ oty — [ b gl P+ [ Ao s
R

Hence, integrating by parts, using Cauchy-Schwarz inequality and Proposition [A.1] gives

1 d ; 1 ; 1
g Ml 02 g < 0kl g+ (10025 + |, A5J00] ) s 55"

Multiplying by 2% summing up on j < Jy and using Lemma [A. 1] we obtain

Z
ol +o [ el .
P

t t ; t
1 i .
l l l
§||U0||,% [ b 10wl Sy + Y28 [ Ao
BP,I 0 BP,I pJo Bp,l 7<Jo 0

The commutator term may be bounded according to Inequality ([9) with s = 1/p. Hence,
1

L

remembering that IB%E — L, we end up with

20 Ol +a / el 0 < ol / el 00+ / o sl

Let us next look at the second equatlon of (IIQI) We have for all j € Z,
Ovzj + 2j +wdpzy = 2 uj — 02,2 — A (0w Opur) + [w, Aj]0, 2.
Multiplying by 2;|2;|P~2 and adapting what we did for the for the first equation of (LT M), we

obtain
1 t ¢
/ 40y < ol / 0 / el o+ = [ ol el
P P P

/Zzp /||8w6u||%.

i<Jo
Combining Proposition [A2] the commutator estimate (79), the embedding IBBP 1
Proposition [A.3], we discover that

t t
RO / a0y < Mol + [ el goat [Tl
p p ]BPJ 0 ]BPJ 0 Bp,l
t t
+/ leoll 1 N2l 2 +/ l0swll 1+ [19sul 1
o B sy, Jo o R, BP,

At this stage, the key observation is that, owing to Bernstein inequality, there exists an absolute
constant C such that for any couple (o,0’) € R? with o < ¢/, we have

(22) IFI1S,, < C2lo@ =) |14, .
p,1 p,1

1
P
P

'G 'mu

wA 8,2

— L™ and

Consequently, if Jy is chosen small enough, then after adding up (20) and (2I]), we just get

V4 V4
[[(u, )OI 1 /(HUH 1+2+HZH 1) S M uo, 20)|° 2
]Bppl 0 pl pp,l ]Bpp,l
t
Ml g (lull g+ el o+ 120 10)-
0 By, By, By, By,
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Because
)4 l l
12l 1 Sl 1en + ol 2 and ol Szl o+ flull 1
p,1 BP,I ]Bp,l ]Bp,l BP,I BP,I
we conclude to the desired inequality. O

3.2. High frequencies estimates in L2. Our second task is to bound the high frequencies
of the solution of (LT M). Although the functional framework for high frequencies is the same
as before, one cannot repeat exactly the computations therein since the terms (wd,u)" and
(wd,v)" contain a little amount of low frequencies of w, u and v, that are only in spaces of the
type BZ’I with p > 2 (and thus not in some Bgl,l) To overcome the difficulty, we have to study
more carefully the commutators coming into play in the proof (see Lemma [A.3]).

.1 .3
Proposition 3.2. Let (u,v) be of solution of (LT M) with u§,v§ € B, and ult,vh € B3, for
some 2 < p < 4. Define p* by the relation 1/p + 1/p* = 1/2. Then, the following a priori
estimate holds for some constant C' depending only on Jy:

t t
h h h h
0@y + [ 1ol $lwowlty + [ (ol Iwol
B3, 0 B3, B3, 0 B3,
|

h l l
s+ 100w, 020) [ oo w0l g + 1Pt Bp0) [y 1 100w — 1)
B B P P

1_
P
BPJ 2,1

2
¢
Hlwll 1y 1050, 050)

p*,1 Pl Bp*,l

Proof. We localize System (LT M) by means of Aj, getting
{ Oyuj + Opvj + Sj_lw Opuj = le-
Oyvj + Oputj + v + Sj_1w Dyvj = Rjz-
with
le- = Sj_lw Optj — Aj(w Ou) and R? =S Sj_lw Oy — Aj(w 0z 0).

The remainder terms le» and Rjz- will be bounded according to Lemma [A.3l To handle the
left-hand side of the above localized system, we introduce the following functional, designed
for high frequencies:

@éww%ww@+4wm%

and get

1/d~ . .

3 (EQ + £§> + /R O ((Sj—1w Optuj) Dpuj + 0y (Sj—1w Dyvf) Oyv;)
X . 1

+/R(Sj_1w6mvj8xuj + Oy (Sj_lwﬁxuj)vj) = /R(%R}@wuj + &ER?@mvj + B (aijl-Uj + R?@muj))

Using integration by parts and multiplying by 2 then yields

%E§+Z§+ / 9w Sj—1w ((0puy)* +(9pv5)?) = / (R3 0yu; — R} Opv; — 2R} OZuj — 2R} 2v;)-
R R

From this, using Cauchy-Schwarz inequality, that Ej ~ ||(9zu;, 02v;)| 12 and Lemma [AT] we
get for all £ > 0 and j > Jy,

. t t » ) t
ﬁj(t)+/ ﬁjgc</ Haxw”mﬁjw]/ |yR;,R§HL2>,
0 0 0
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with C depending only on .Jy. Hence, multiplying by 2% and summing up on j > Jp,

t
h h h
@) o)l + [ Nl < ol
IBSQ’1 0 IBS2 B

2,1
o [ ol Nty + [ 28 8o
Jj=Jo
At this stage, taking advantage of Lemma [A.3] with s = 3/2 to bound the sum, we conclude to
the desired inequality. O

3.3. Global a priori estimates for the toy model. We are now ready to establish the
following proposition which is the key to the proof of the existence part of the theorem.

Proposition 3.3. Let (u,v) be a smooth solution of (T M) on [0,T]. Then, still assuming that
2 < p <4, there exists a constant C' and an integer Jo (corresponding to the threshold between
low and high frequencies) such that for all t € [0,T], we have

Xp(t) < C(Xpo + X5(1))

with Xp0 2 |[(uo,v0)|“1 + [|(uo,v0)[|" 3 and
BP B2
p,1 2,1
Xo(t) 2 [[(w,0)|° 1+ [[(w,0)]” 3
emry) < Bs5y)
+HUH 1y T+ 0s UH ool )| s
L@r) LIBY ) L2(BP ) LB,

Proof. As a first, let us observe that ||v|| L5 s dominated by the other terms of X, (¢) (let us
Li (]B;?,l)
denote them by X,(¢)). This is clearly the case of the high frequency part since, by Bernstein

1

. . s+
inequality, Holder inequality and the embedding B3 ; < IB%S P2 with s = 3/2,

[ [ ||v|| 3 ||v|| 3 IUII 3
211 WD £ 1 B3 L)
For the low frequency part, we write that
l
+ |2

bol, s <l8wul’, | ,
po1 Ly (B} ,) L} (B} 1)

with z £ v + O u.

By Holder inequality and interpolation, we have

1
l 4 2 l l
Sl g Wl g )™ and a0, S
LeBr) LIBE,T) L(BP)) L (B

1
p,1 t(;?,l

N

-l E.
51) (351

As the low frequencies of z in L{® (Bg’l) may be bounded by )Z'p(t), we proved that

(24) o 1 < X,(t) forall teRY.
L} (B,)
Let us also notice that by Sobolev embedding and Bernstein inequality,
h
[0+ O UH Sholl” s + 110 UH
]Bp 1 Ly ]B2,1 3, 1)

Therefore, adding up the inequalities from Propositions 3] and B.2 - 2| for w = v and observing
that 2 < p < p*, we get

t
X,(t) € Xpo+ /0 (1w o)1 1B, Bu0)]|

1
P
Bp,l

h l h ¢
V)l g )(H’UHB%HH\UH / HUH

1 2,1 p,1

'P S
“ wIH
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Since
l 0 l
ol 3 < o Drtly, + Ol .o
p,1 p,1 p,1
we conclude that the inequality of Proposition 3.3 is satisfied. O

3.4. Proof of the existence part of Theorem .1l The proof relies on the following classical
result about the local existence of strong solutions for hyperbolic symmetric systems of type

©08) U + 30 Ap(U)aU + Ag(U) =0,
Ult=o0 = Ub,
where Ag, k= 0,...,d are smooth functions from R™ to the space of n x n matrices, that are

symmetric if k # 0.

d
Theorem 3.1. [I, Chap. 4| Let Uy be in the nonhomogeneous Besov space Bf’fl(Rd;R"),
d

d d
Then, (QS) admits a unique mazimal solution U in C([0,T*]; ijl) N Cl([O,T*[;Bil), and
there exists a positive constant ¢ such that

C
y
HUOHBngl

Furthermore,
T*
T*<oo:>/ VU] oo = 0.
0

The proof of the existence part of Theorem [[Tlis structured as follows. First, we multiply
3

the low frequencies of the data by a cut-off function in order to have data in B;l- One can
then use the above theorem to construct a sequence of approximate solutions, that are shown
to be global. We prove uniform estimates in the space E, for those solutions, pass to the limit
up to subsequence by means of compactness arguments, and finally check that the limit is a
solution of (T'M) with the required properties.

1
First step. Construction of approximate solutions. Let (ug,vg) be such that ué,vé €B), and

.3 3
ug, vg € 1832271. Since (ug, vp) need not be in Bil, we set for all n > 1,

ug 2y SJ0_5u0 + (Id — SJO_5)u0 and vy 2y SJ0_5UO + (Id — SJ0_5)UO

1

with x, £ x(n~!-), where y stands (for instance) for the bump function of Section [l

It is obvious that the sequences (ug)nen and (vf)nen tend to ug and vg in the sense of
distributions, when n tends to infinity. Moreover, as ué and ,Ug are in Eil, the low frequencies of
the data are in L°°, and the spatial truncation thus guarantees that wug, vj € Bz%r Hence, Theo-
rem [3.J] provides us with a unique maximal solution (u™,v™) € C([0, T,][; 2%1) NCL([0, T, ]; 1832%71).

We claim that we have for zg = ug, vo,

25 2 1 < laollfs Izl
(25) HOHBl \IoIIB§1N\| o||IBgl | 0||B§,1

S =

1
P
P,



PARTIALLY DISSIPATIVE ONE-DIMENSIONAL HYPERBOLIC SYSTEMS 17

1
Indeed, since |[xn||“1 =~ ||x]|°1 < oo, owing to the invariance of the norm in B, , by spatial
B, - 7

P,
dilation (see e.g. [1, Rem. 2.19]), we may write

S |

4 4
nf - .
< |[xn Suoszo|| 3 +]|1d = Sups)z0 3
Il < [ Sip-szol| 3+ (1 = S0l 3.
14
Sleoll’s Ixnll,y + 2ol 3
]Bp’l ]Bp,1 prl
Sllzollfs +ll2oll"s -
]B::J ]Bz,l

Next, we see that

h < h . h
1201105 < lxn Sr-s20lllg +[I(1d = Sp-5)z0]
B B B

3 .
2
2,1 2,1 2,

1

It is obvious that the last term may be bounded by HZQ”}.L% . For the other term, the important
Bg,

observation is that for j > Jy, we have

Aj(XnSJo—E)ZO) = Z Aj(sj’+2SJo—5ZOAj’Xn)'
J'Z3-3

.3
Hence, owing to the scaling properties of the space B3,

S 1S s0-s520llzo< I xall.
1 B

)

IXn Sso—520]"
B 1

s <n Yzl 1
i Sn 7ol g

which eventually yields (25).

Second step. Uniform estimates. Since, for all T' > 0, the space C([0, T; IBSQ%’l)ﬂCl([O, TY; Bzé,l) is
included in our ‘solution space’ E,(T') (that is, E,, restricted to [0,77), one can take advantage
of Proposition [3.3] for bounding our sequence. From it and (23], we get, denoting X’ the
function X,, pertaining to (u",v"),

(26) Xy < C(Xpo+ (X)%):
It is clear that if
(27) 2C’X;‘(t) <1,

then Inequality (26) implies that

Xp(t) <20Xpp0.
Then, thanks to a classical bootstrap argument, we can conclude that if X, o is small enough
then (27)) is true as long as the solution exists. Hence, there exists a constant C' such that

(28) X,y(t) <CXpo forall n>1 and te€0,T,].
In order to show that the above inequality implies that the solution is global (namely that
T, = ), one can argue by contradiction, assuming that 7,, < oo, and use the blow-up

criterion of Theorem 3.1l However, we first have to justify that the nonhomogeneous Besov

3
norm B22,1 of the solution is under control up to time T,. Now, applying the standard energy
method to (T'M) yields for all ¢t < T,,,

t
2 2 2
1", o) (Ol Ze < ll(ug, v5)lz2 +/0 1020 | oo [[("; 0™z -

.1 .1
Since ([28) and the embedding of B} ; and B3, in L ensure that 9,v" is in L%FR(LOO), using

3
Gronwall lemma gives that (u",v") is in L3 (L?), and thus in L% (B3 ;) owing, again, to (28).
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It is now easy to conclude : for all ¢g ,, € [0, T},[, Theorem Bl provides us with a solution of
(T'M) with the initial data (u(ton),v(ton)), on [ton, T +toxs) for some T' that may be bounded
from below independently of ¢y ,. Consequently, choosing ¢, such that ¢y, > T, — T, we see
that the solution (u",v™) can be extended beyond T,,, which contradicts the maximality of 7),.
Hence T}, = 400 and the solution corresponding to the initial data (ug,vg) is global in time
and satisfies (28)) for all time.

Third step. Convergence. We have to show that (u™,v™),cn tends, up to subsequence, to some
(u,v) € E, in the sense of distribution, that satisfies (T'M).

The proof that we here propose rests on Ascoli Theorem and suitable compact embeddings.
Let us explain how it goes for (u™),en, the convergence of (v™),en being similar. From (28]
and elementary embedding, we know that :

1
e (0,u")pen and (9,v™),en are bounded in LQ(IBB;’J),
1
e (0")nen is bounded in L>(B) ;).

1
Hence, both (v"0,u")nen and (9;v™)pen are bounded in L?( ;’71), which implies that (Gpu™)pen
1

is bounded in L?( f 1)- This means that (u"),ecn viewed as a sequence of functions valued in
1

B, , is locally equicontinuous on RT.

.3 L1
Moreover (u™"),en is bounded in C(RY, B3 ), (u™")nen is bounded in C(RY, B),) and
we know, thanks to a result of [I Chap. 2|, that the embedding from F' = {u € S' u® €

IB% 1 and u® € B 1} to B p71 is locally compact. Therefore, one can combine Ascoli Theorem

and the Cantor dlagonal extraction process to deduce that there exists a distribution u such
1

that, up to subsequence (¢u™),en converges to ¢u in C(R™; B;E,l) for all function ¢ compactly
supported 1n Rt x R” Then, using the Fatou property (cf. [I], chapter 2) we obtain that

ut € L°°( Py N LT Jr2) and u € L=(R 2%1) N LY(E 2%71), with norms bounded by the right-
hand side of 29). One can argue similarly for establishing the weak convergence of (v")nen to
some distribution v fulfilling the desired properties of regularity up to time continuity.

Finally, passing to the limit in (7°M) is not an issue, since we have strong convergence
(after localization) in norms with positive indices of regularity.

Last step. Proving that (u,v) € E,. The only property that misses is the time continuity.
It may be obtained by looking at u and v as solutions of transport equations. Indeed, by
construction, we have

Ou +vo,u = —0zv and O + vov +v = —Ju.

1
The properties we proved so far for v and v ensure that d,u and 0,v belong to L2( ) ")

Hence, the standard properties for the transport equation (see e.g. [I, Chap. 3]) give us that
s
(u,v) € C(RT;B) ).

3
To show that (u,v)" € C(R™; Bg 1), one can mimic the proof for general symmetric hy-
perbolic systems, summing up only on high frequencies, as presented at [I p.196| for instance.
In the end, we thus have proved that (u,v) is a global solution of (T'M), that verifies the
desired properties of regularity and X,(t) < CX,p for all t € RT.

3.5. Proof of uniqueness. Consider two solutions (u1,v;) and (ug,ve) of (T'M) (not neces-
sarily small) in the space E,, that correspond to the same initial data (ug,vp). The proof of
uniqueness will follow from stability estimates involving suitable norms. The difficulty is that
our functional framework is not the standard one for the low frequency of the solution, so that
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one cannot follow the classical proof for hyperbolic symmetric systems. Here we shall estimate
(0u, ) := (ug — uy1,v2 — v1) in the space

(20) (D) 2 (= cc(o.TlBy, ) : 2 e e(o.T1 B3, )

The reason for this choice is the usual loss of one derivative when proving stability estimates for
quasilinear hyperbolic systems (hence the exponent 1/2 for high frequencies). The exponent
for low frequencies looks to be the best one for controlling the nonlinearities. Before starting
the proof, we introduce the notation

O (t) 2 11(du, o) ()1 5y + (B, &)(t)\lg%

p,1 2,1

Step 1. Proving that (du, ) € F,(T). Remember that dyu; = —0,v; — v;05u; for i = 1,2. By
interpolation in Besov spaces and Holder inequality with respect to the time variable, since
.1 .l

dpuf and dyvf are in L°(RT;B) )N LY (RT;BY, ), we get
(30) Dpul, dpvf € L(RT; B%_l) with 222141

rhe e r 4 2p
It is clear that the same property holds for the high frequencies of d,u; and 0, v;, since they
belong to Ll(IB%” )N L™ (IB%” ). We also know that v; belongs to L>(R*; IB%” Therefore, from
the product laws in Besov spaces that have been recalled in Proposfmonm we gather that
9,v; and v;0,u; are in L"(R™; IB%” 7). Hence, Oyu; is in L"(R™; IB%” 7) and thus

1

L2 1
(31) (u; —ug) € ClOC(RJF;IB%I’;l 2).

Proving the result for v; is almost the same, except that we have to handle the damping term.
To overcome it, we notice that

O (e'v;) = —e'v; Opv; — e Oyu;.

1
Arguing as above, we get that d;(e'v;) € LT (R™; IB%” 1 ?), whence

loc
.21

(32) (e'v; —vg) € CZOC(R"F;IB%;1 2).

From (31)) and (32)), we conclude that (du, ) € F,(T') for all finite 7'

Step 2. Estimates for the low frequencies. The system satisfied by (du, %) reads:

{ y0u + Opdv = —8v Dyuq — vg Oydu,

(33)
at&i + v + 895&& = -0 890211 — V2 amdv

Then, we follow the computations leading to Proposition B.Ilwith w = 0, looking at —dv d,uq —
vg Oz0u and —& O, v1 — v9 0,0 as source terms, and working at the level of regularity 2/p —1/2
instead of 1/p (since the left-hand side of (B3)) is linear with constant coefficients, this shift of
regularity does not change the proof). Omitting the time integral in the left-hand side of the
Inequality given by Proposition [3.1], we find that

t
(0, &) 2 1 < / (llév 8, U1HZ g Fllv20s &LHZ _y 0o, leZ g Fllv2ds 50H 2 )
pp,l 0 pl pl p1 pl
In order to bound the right-hand side, we may use that Proposition [A.4] yields
(34) labll 23 < llall s 110l 2-

1
p
Pl p pl
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. . . . ) .
as well as the following inequality that is a consequence of (84]) in the appendix (take s = -3
therein):
0
(35) ladl sy Slall y e I8l 23-
p 1 p,1° Tp,1 p,1

In the end, choosing a = v9 and b = 0, u or J,dv, we get

36 @)l sy < [ (I 0ol 34 13,

pl

el )y
p p,1' Tp,1 p,1
Step 3. Estimates for the high frequencies. We look at the system satisfied by (du,dv) under
the form:

00U + v9 Op0u + O 0v = —dv &Dul,
O 4+ v + v9 Op 0 + 00U = —dv Oy v1.

This is System (LT M) except for the source terms in the right-hand side. Clearly, following
the computations leading to (23), but using the index 1/2 instead of 3/2 gives

(37)  [I(du, 6v)(t) IIh /II8 va| Los || (u, 5v)||h

,1

t
/ S 2 ([[ua, AjJudiul 2 + 02, AjJ0uboll2) + /0 (160 Bpun |

1
2
§>Jo B3

+ H&)a:cvl|’}.Ll
B3,

).

Let p* 2 2p/(p — 2). Lemma [A.3 tells us that, for z = du, &,

J A h
> 22 [U2’Aj]amz‘L2§H8wU2HLOO 12l 3 +110s2]] el S
3>Jo Bsa By o
+11022llp21 ||v2|| y 10 ZII 1 [ S
i 21 p] B * 1

Hence, using obvious embedding and the fact that

and [|0;v2]® 1 S o]’

P
1 By B

l )4 l l
19220 1 Szl ays Neell i S ||v2||B

= ~a|~
T e

p,1 ]Bp,l Bp 1 1

yields for z = du, v,

(38) L H[W,Aj]awz

Jj=Jo

¢
| S (el

. +||vzllgg)(llzllf 1+||Z||h )

1 2,1 B, B},

iSRS

The last two terms of (37) may be bounded thanks to Inequality (85)): we get for z = uq, vy,
(39) 16v O ZHh (H&WZ St H&JHh ) (110 ZHZ 1y +[18s ZHh )
21 pl 2,1 pl 21

Plugging ([B8) and ([B9)) in ([37), and using also the fact that

10zv2lze < Iloall®y + H’U2Hg% :

1 2,1

&
ST

we end up with

(40) (@0, /0 (I, on, o)+ anson, 00" )0

1
P
B,y 2,1
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Step 4. Conclusion. Putting ([30) and (40) together yields

t
() < C / (1, o, 02)ll s+ (g, vn, 02)[75 + [[(@otr, son)].
0

p
B,y B3, By,

_ )(Y]dT.

Knowing that (u;,v1) and (ug,v2) are in E,(T) and remembering (B0), we get,

T
/ (l(ur, o0, 0)[€ 1+ | (an, 01, 0275 ) < oo.
0 P B2

]Bp,l 2,1

Hence, applying Gronwall lemma allows to conclude that &U = 0 on [0,7]. In other words,
(u1,v1) and (ug,v2) coincide on [0,7] x R. Since T is arbitrary, uniqueness is proved. O

4. COMPRESSIBLE EULER SYSTEM WITH DAMPING

As pointed out in the introduction, System (7'M) may be seen as an approximation of

the damped isentropic compressible Euler system with pressure law P(p) = %- Here we want

to adapt the method of the previous sections to the true damped compressible Euler system :
Oi(pV) + 0x(pV?) + 0:(P(p)) + ApV =0,

supplemented with initial data (pg, Vp) that is a perturbation of some constant state (p,0) with

p > 0. The (given) pressure function P is assumed to be smooth and such that :

(41) Case 2 < p <4:P(p) =ap? for some positive a and v in a neighborhood of p.
Case p =2 :just P'(p) > 0.

Note that, performing a suitable normalization reduces the study to the case p = P'(p) = 1
(hence a = 1/ in the first case), which will be assumed from now on.

a2 [ Ea

S

Consider the new unknown

Since our assumptions on the pressure guarantee that p — n(p) is a smooth diffeomorphism
from a neighborhood of 1 to a neighborhood of 0, one can rewrite (F) under the form
on +Voyn+ 9,V +G(n)o,V =0,
OV + Vo,V +0,n+ AV =0,

where G(n) is defined by the relation(] G(n(p)) = P'(p) — 1.

Theorem 4.1. Under hypothesis (A1), there exist k = k(p) € Z and ¢y = co(p) > 0 such that
for Jy 2 |loga\| +k, if we assume that (ng, Vo) fulfills the same conditions as in Theorem [I1,
then System ([@2) admits a unique global solution (n,V') verifying the same properties as the
solution therein. Furthermore, Corollary L1l and Theorem [I.2 hold true (with the same decay
rate).

(42)

Proof. Performing the rescaling (B) reduces the proof to the case A = 1, and we are thus left
with bounding for all ¢ > 0, the functional

¢ h
502 (@I eIy
LB, 1) L (B3,)
¢ h
+||n 1., +[|(n,V 3 ||V +0zn 1 + |V 1
Il s IOy + IV H0ml  + IV

4In what follows, we shall only use that G is a smooth function vanishing at 0.
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in terms of

Xp0 2 [[(no, VoI + Il(no, Vo)l 5
B,y B3y
Remember that |[V| 1 and |V +8,n|" 1 are bounded by the first four terms of X,
LE (B, Li(By,

(see (24)).

Low frequencies estimates. We follow the method we used for (T'M), looking at G(n)d,V as a
source term. Owing to Propositions [A.3] and [A.4] we have
1G(n)d. V|

1
P
]Bp,l

Shnll s 0=V,

1
P
P

'F 'mu

1

Therefore, mimicking the proof of Proposition Bl we end up again for all t > 0 with
) VIO, l/wwlﬁ /uv+aw;
p p,1

<o(lma oy + [ .0 i Vi)
P p,1

pl

High frequencies estimates. One has the following proposition:

Proposition 4.1. Let (n, V') be a smooth solution of ([A2) on the interval [0,T], under assump-
tion @I)). Define p* by the relation 1/p + 1/p* = 1/2. There exists a constant C' depending
only on the threshold Jy between the low and high frequencies such that for all t € [0,T],

t
mmm@w3+/mewgsw%%
1322,1 0 IB322,1

.3
B2
2

/megnmnavm -wwnavmlwaW|_)
0

p*l pl pl p*,1

/uawmwm>wg /(WmmmmﬁwuavulfwavulH@amw;)'

p,1 p,1 ]Bp*,l
Proof. We localize System (42]) by means of Aj, getting
(44) 8tnj + Sj_lvaxnj + 895‘/] + Sj_lG(n)aij = le- + R}l,
OV +8;1VO,Vy + 0 + V= Rjz-
where
le =S Sj_lvamnj — AJ(V&En), Rll =S Sj 1G( )6mVj — AJ(G(n)&EV)
and R} 2 8;_1Vo,V; — Aj(V,V).
The only difference with (T'M) is the appearance of S;_1G(n)d,V; in the first equation and
of the commutator R;l. To handle the former term, one has to add a suitable weight in the

definition of the functional we used for (T'M): for j > Jy and n = n(Jy) > 0 (to be chosen
small enough), we set

B2 [@mP+ (4G +n [ Vo,
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Differentiating in time this quantity and performing several integration by parts yields:
(15) ST+ /R 0u i1V ((0eny)?+(1+ 851 G(n))(9:V5)°)
- [ 0:5,46) 5,V 0V = [ 0.V)2015,46(n)
+2 /R(aw(R} + R 0nj 4+ (14 Sj-1G(n))0. R 0,V;) + 1 /R(ax(}z; + RNV, + R 0,nj)-

with 72 £ oyl + 2 =) [ (14 §52G)@.V52 +n [ Vidun,.
R R
To continue, let us assume that
(46) In|lzee + [|V]|ze <1 on [0,T].

Then, since G(0) = 0, we have, using the mean value theorem and the uniform boundedness
of operator S;_; in all Lebesgue spaces:

151G () |z S lInfle= < 1,
and thus, if 7 is small enough,
(47) L2 = |[(8ny, 0, V)) |32 and HE = ||(9uny, 0:V))|[72  for all j > Jo.
Let us also observe that
9;G(n) = G'(n)oyn
=—-G'(n)(VIzn+ (1 + G(n))o,V).

Owing to assumption (46l and to the mean value theorem, we thus get

(48) 10:G ()L S N0:V | oo + [V ]| oo |02 | oo
Proceeding analogously, we obtain
(49) 10:G (1)l poe S |02l Loe

Hence, from inequality ([45) and (47), we get for some small enough ¢ and large enough C,

d ~ ~ ~ . ~
(50) Eﬁ? +cL; < C(1(8:V,0an)| L= L5 + 27 ||(R}, R}, R3)||12) £; for all j > Jo.

At this point, taking advantage of Lemma [A ] yields
_ t t ot
60 Lre [ 5250 +0 [ 1ovoml £+ e [ RE Rl

Now, multiplying (5I)) by 2%, using (A7) and summing up on j > Jy gives us

t
(52) [, V)OI + / I W)y S llno, VoI
183271 0 B B

+ [ 10Vl 0Ny + [ 3 2% )RR
2

i>Jo
The terms R]l and R]Z may be bounded exactly as in the proof Proposition As regards R;l,
Lemma [A3] gives us
3.
> 22| R |2 £ 110:G(n)]| |0 V||h1 VI 1[G )llg1+ |
Jj=Jo 2 ! By P*, 1
+H0:CVHL<>°HG(H)Hh + 102 VHZ1 L 0:Gm)ll°_,

p 1 ]Bp*,l

3" m\w

Using ([@9) completes the proof of the proposition. O
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Global-in-time a priori estimate. We claim that granted with Inequalities (43]) and the above
proposition, we have, whenever Condition (@) is satisfied on [0, T,

(53) Xp(t) S Xpo+ X2(t) forall te0,T].

Inequality (@3]) is exactly the same as for (T'M). Hence, the terms in X, (t) corresponding to
the low frequencies of (n, V) are bounded by X2 (). Note also that ||v|| .1 may be bounded
L} (B,

according to (24, and thus eventually by X2(t).

In order to handle the high frequencies, we shall proceed differently depending on whether
P(p) = p?/~v or P is a general pressure law with P’(1) = 1. In fact, to handle the latter case,
we need to assume that p = 2.

1. Case P(p) = p”/y with v > 0. Then, G(n) = (7 — 1)n and the inequality of Proposition
1] reduces to

[[(n, V)(t H 3 +/ [(n, V H 3 < l(no, Vo) H g H (Gzn, 8:V) 3 Il(n, V)H 3
21 21
/mewnmnavmlfwmnavmlwWW| +)
0 <1 By Bpa * 1
t
/(wmpuaw 10V Tl )
0 Pl pl B * 1
Compared to our study of (7'M ), only the last line is new. However, one can use the fact that
| Sl s VI
/ BY; nah ek,
¢ 1 1
||8 V|| e 1 [|0: n|’ 7% ||V|| el s as 1—— 2> -
1 (Bpl ) L B))) p* P

The terms on the right may be bounded by X2(t). Hence we have (53).

2. Case of a general pressure law with P'(1) = 1. For p = 2, Proposition ] together with the
o1 i .3 .
embeddings B | — ngl < L™ and B3, — IBS}X,’1 give us

(COAGIOILS /anugswm% " /Wanavw%anug
2 2 2 2

B2,
/nwg VIl + |mvuwm g3 /nnc s W1,y
2 21 1

Since, by Proposition [A.4] and Cauchy-Schwarz inequality, we have

/H0WMHG

/nnG L5 IVl Shall, g VI,
22 BZ, L3(BF) L?(Bf,l)

/W@wguwg 101, ox Il s
Bs 1 B3, L;® 21) Li(B2,)

N m\w

one can conclude that (B3] is satisfied.
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Uniqueness. As for (T'M), we look at the system satisfied by the difference (dn,dV) := (ngy —
ny, Vo — V1) between two solutions, namely:

(54) Orn + 0z OV + Vo 0p0n + G(n2) 0z 0V = —&V 0yn1 — (G(n2) — G(n1))0: Vi,
OV + &V + 0pon + Vo 0,0V = —0V 0, V1,

and estimate (dn, V') for all T > 0 in the space F},(T') defined in (29). Compared to the proof
of uniqueness for (T'M') we have to handle the two terms containing the function G.

Let us first explain how to estimate the low frequencies. We have to bound the additional
2 1

terms G(n2)0,0V and (G(n2) —G(n1))0, Vi in Bﬁ;i Now, according to (34]) and (35]), we have
(G (n2) = G(n1))0, V1H 23 SNG2) =Gl 2 0=Vl 2y

Pl Pl p,1
[G(n2)0; 5VH 23 Slinall s .1+1H5 5VH 2 3.
pl Pln pl
From the relation
1
(55) Glns) — G(ny) = oo / G (ny + 7o) dr,
0

and Propositions [A.3] and [A4] we find out:
1G(n2) — G(n)|

1
p
B,

S llonll,

'P 'mu

Therefore, we eventually have

(56) H(MW)()HE 1 N/O (II(aznl,&cVﬁH.%%IIWH.

1+ Vel 1 ﬂ.%Hll(&mW)llB%f%)

pl pl p,1 p,1 p,1
/ (10 VAll 3y Il + el gy IV, 5 y)

pl p p,1 p,1

.1 .
Let us next estimate the high frequencies of (én,dV) in 22 Applying operator A; to (B4), we
get for all j > Jy,

Oudn; + adV; + S-1Va Oo; + 5i-1G(n2) 06V
= —A;(V 0yn1 + (G(n2) — G(11))0: V1) + 6R} + 0R7,
OV + &V; + Dudin + Sj1Va 0a0V; = —A;(V 0:VA) + 0R3,

Vf/ith 5Rj1 =S Sj_l%am&nj — Aj(Vgamél’L% 5R;1 A 'j_lG(nQ)am(SVj — Aj(G(ng)ax(SV) and 5R]2 =S
i1 VadaVi — A, (VadydV).

Arguing as in the proof of Proposition .1l we consider the functional
[ @ung o (14 851G ) 0up) 4 1 [ o, 0u6y
R R
and follow the computations therein, with regularity exponent 1/2 instead of 3/2. We get

(60, V) (2] / Bz B Va) o= (G0, V)|I", + / S 2% (Jl6RY | 2| R 2+ 0B 12)

1
B2
By, j=>Jo

1
B2
2

H(G(n2)_G(n1))axV1Hg%

t
+ [ amllly + 10 2V + )
0 2 21
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The terms with 5le and 5R§ may be bounded as in the proof of uniqueness for (T'M). Regarding
5R’l, we use Lemma [A.3] with s = 1/2, and get

> 28 0B 12 S 110G na) e |V, + 10, WVl 3 LG

2} e
Jj=Jo 2 pl p* 1
h l
HOzV L= lG(r2)ll Ly + 100V . 102G (na)|I°_ .
21 pl Bp I,)l

To continue the proof, we have two distinguish two cases depending on whether P(p) = p7/~v
and 2 < p <4, or P is a general pressure law with P’(1) = 1, and p = 2. In the first case, we
have G(n) = (7 — 1)n, so that G(n2) — G(n1) = (v — 1)dn. Now, in light of (85]), we have

100 0:alEy, S (el sy 4 llnlEy Y10Vl 2 +110a Vil )-

1
B2
2,1 pl By p,l 2 1

As all the terms with G(n2) in the estimate for R;l are proportional to ne, we arrive at

(57) [l(én, V)(@)]"

2,1

t
S/ (1, m2, Vi, Va) | +||(n1,n1,V1,V2)Hhs + 1921, 0: V1] 2
0

; 3@
]B;:l 2 1 p 1
In the case p = 2 with P/(1) = 1, then one may proceed essentially as in the proof of Proposition

41l to bound the terms with G(nz) in the estimate for R;l, and one can use Proposition [A.4]
combined with product laws and Relation (55) to eventually arrive at

I(Glna) ~ GmNOVAlLy < 0]y .14
2

1
1 2,1 B

1

Consequently, (&7 still holds true.
In all cases, putting (56) and (57) together yields

[1(én, V)| 5,0
<C/ (I nlanz,Vl,Vz)H 1 +H(n1,nz,V1,V2)Hh3 +1(0zna, 0, V1)H 2. )H(5n V)7,

p1 21

and using Gronwall lemma completes the proof of uniqueness.

Decay estimates. Here, we assume that p = 2 and follow the same approach as for (T'M).
Step 1: estimating the solution in IB%2 . This is only a matter of handling the additional term
G(n)0,v. Applying A to the system satisfied by (n, V) yields

Ouny + 0aVy = 00y — G0,V + [V, Aj]0un
OV 4 Opnj + Vj = =V, V; + [v,A;]0, V.

So, considering G(n)0,V as a source term, we get

125, V3) (¢ HL2+/ Villze < [(nj, V;)(0 HL2+/ 102V [ o< (725, V)| 2

+ [l [ 10 A0+ A Gma)]| Il

We have

S [18:VI,

G0V o < IG )l

1
B2
21
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In order to bound G(n) in BQ_ 2%, one cannot readily use Proposition [A.4] since —o; may be
negative. However, from Taylor formula, we know that there exists a smooth function H
vanishing at 0 such that
G(n) =G 0)n+ H(n)n
Hence, combining product and composition estimates gives
IG5, < Il o (1+ Il )
2 1

In the regime we consider, HnH 3 is small. Hence we conclude that
2 1

t
12, V@)l < Nl (R0, Vo)l +C Ha VH 1 H(n Vllgy =

which ensures after using Gronwall lemma and the bound of ||8wV|| v 1 : in terms of Xy,
L (Bg

that
vt € B, (0, V)(O)lgoer < Cllino. Vo)l

Step 2: Lyapunov functional. We aim at exhibiting a Lyapunov functional that is equivalent
to [|(n, V)]|. T The high frequency part of the solution has already been treated efficiently
B2, "B

2,11 W3
with £;. To bound the low frequency part, consider the evolution equation for z L2V 4+ 0n:

Oz + Vo2 + 2= =02V — 0,VOn — 0,(G(n)d, V).
Following the computatlons we did for (T'M) leads to

O 4 IIzIIZ < ||ZOHE || VIIZ
B2
2 21

+c/ 0:V1y Izl +0/ .V, 10enl] /||a A
0 Bm 2 2 2

The last term may be bounded. by ||G(n)d, VH 1 Then, using Propositions [A.3]and [A.4] one

21

1

ends up with

t
69 0 / 1215y <l / V15, +0 [ 10V g 1 oamly
21 21

21

Next, using the fact that
omn +Voyn — 02,.n=—G(n)d,V — 0,2,
we get
¢ L ¢ ! ¢ !
(59)  n@®I , +/ Inll 5 < linoll’ 1 +/ 10zl 1 +C [ 0V 3 lInll_ 5 -
BF, 0 Bzﬁ,l B2, 0 ’ B3, 0 ’ B, B3,
The high frequency part of the solution may be bounded according to (BI). Hence, setting
L2y 25 ||(Ajn, Aj2)| 2 + > 252, and H2|V+0, n||fl +||V||h3 +||n||f —|—||n||h
7<Jdo i>Jo 2 1 2 1 ,1 2 1
and bounding le-, R}l and R? as in the proof of Proposition .1 we discover that if taking Jy

negative enough, then all the linear terms in (58) and (59) may be absorbed by H, so that we
have for some suitably small positive c,

. t~ . t
(60) Ety+e [ A<LO+C [ oV, gL+ ||n|| 1 1V,
0 0 2 2
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Above, we used that £ ~ ||(n, V)”B% .3 and that H > H(%VHB

5183,

. Now, since furthermore

1
2
2,1

H > > i
H 2 HzHBél and £ 2 HZ”BQ%J’ one may write
Inll s IVILy <lnl?s +linll g Iz
31 BS, B3, B3, B3,
Slnlly Il s+ nll?s )2+ lnlls 2l 3 +lnll”s ll2 3
]BZ?,I 2?‘2,1 ]BZ?,I ]BZ?,I IB322,1 ]BZ?,I IB322,1

SLHA+LH+ LH+ HEL.
Hence, if EN(O) is small enough then, combining (60]) with a bootstrap argument yields
~ t ~ ~
£(t)+g/ H < £(0) forall t>0.
0

Step 3: Proof of decay estimates. From this point, one can repeat word for word the proof of
decay estimates for the low frequencies of the solutions to (TM).

For the high frequencies, starting from (50), using Lemma [A.3] and integrating gives

t
h —ct h —c(t—7)
1, V@I S e Ml (no. Vo)l 5 +/0 e (”VHB% [[(n, VI

2,1 2,1 2,1

3 + ||V, nj.z )
g TVl Tl )

Compared to (I7), there is one more term. However, as for (T'M), Steps 1 and 2 together

imply that
[1(n, V)(@)I.

< ()T,
Bz%,lﬂﬁzg,l < ()

Hence, one may easily conclude that
I V)OI, < 72,
]B2,1

This completes the proof of the theorem (up to the proof of existence, which is totally analogous

as for (TM)). O

5. A MORE GENERAL 1D MODEL

In this section, we consider a more general class of one dimensional systems, namely

(61) Owu + adyv + V3dgu+ Whow =0,

040 + BOu + V20u + W20,v 4+ Av + kAvd = 0
wherd]  is a real parameter, ¢ > 2, an integer, V! = V!(v) and V2 = V?2(v) are smooth
functions vanishing at 0, W! = Wl(u,v) and W? = W?2(u,v) are smooth functions vanishing
at (0,0), and «, 8, A are strictly positive constants.

Theorem 5.1. Let the data (ug,vo) satisfy the assumptions of Theorem [0 with Jy £ |loga )|
and p = 2. Then, System (61l) admits a unique global solution (u,v) verifying the same prop-
erties as the solution therein. Furthermore, Corollary L1 and Theorem [1.2 hold true.

Remark 5.1. If VY, V2, W and W? are ‘general’ smooth functions, then it is unlikely that a
LP theory may be worked out. We need a very specific structure of the nonlinear terms in order
that the LP estimates of the low frequencies fit with the L? reqularity of the high frequencies.

Remark 5.2. We do not know how to handle terms like uO,u in any equations of the system
(this is the reason why we assumed that V' and V? only depend on v). In fact, although the
system is locally well-posed if V' and V? also depend on w, the time integrability of u is not
good enough for global estimates.

5In the case q =3 and k > 0, kv? is a classical representation of a drag term.
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Elements of proof. We just explain how to find a Lyapunov function and to control the norm in

B, 2L of a smooth solution (u,v) of (Il on [0,7], in terms of the data. Proving existence and

uniqueness is essentially the same as for the systems we treated before (uniqueness is easier
somehow since we assumed p = 2). Although the system under consideration is no longer
symmetric if o + W' # B+ V2, it is symmetrizable (see [3, Chap. 10]).
Note that performing a suitable rescaling reduces our problem to the case
(62) a=0=A=1.
Indeed, if we set
- - A
(1w, 0)(t,2) = (Vo /B2 (0, = ).
then (u,v) satisfies (61]) if and only if (u,v) satisfies a similar system with (62)), parameter

kB 2" and slightly modified functions Vi, Vo, W; and Ws (the modification depending only on
a and (). So we will assume (62) in the rest of this section.

A priori estimates. We adapt the method we used for (T'M) in the case p = 2. The terms
V10,u and W29,v are a slight generalization of v0,u and v9,v and may be treated similarly.
To handle W'0,v and V?20,u, we need to introduce suitable weights in the definition of the
Lyapunov. Finally, v? may be seen as a harmless nonlinear source term.

Let us start the computations : we assume that we are given a smooth function (u,v) of
(©I) on some time interval [0, 7] such that for some suitably small n > 0,
(63) Sup [[(u, v)(t)

)

HBil <,

and, still denoting u; = Aju and v; = Ajv, we set for all j € Z,

1/2
£ 2 (Mol + [ woeus + [ v2 @2+ [+ whio.m?)
We shall use repeatedly that (G3)) implies that
(64)
e max (|[u(®) |z, o)z, 1V Ol VA Iz, W@z, [WO]~) <1,
S )

which in particular entails that

(65) L; 2 ||(uj, vj, Otij, 205 | 2
Now, applying A; to (6I)-(©2) yields for all j € Z,
Oyv; + (L+ V) yu; + W20,v; + v = RS — kA (v?)

with
le- 2 WV Aj0pu+ W Ajlopv  and R? 2 V2 Aj10.u + W2, A ]0,0.

In order to compute the time derivative of E?, we need the following obvious identities:

1d

1
5@”(%%)”%2 + llvsl|72 — 3 /R((uj)zaxv1 + (0j)20:W?) + /R(Wlujaxvj + V?0;0,u;)

= /R(Rgl'uj + Riv; — k(Ajv7)vy),

d
—/Ujaxufr 10151172 — (1025172 +/Uj5xuj

+ / ((VV2 - Vl)ﬁwuj O0rvj + V2(amuj)2 — Wl(amvj)2) = / (R?@muj - leﬁwvj — /Q(Ajvq)amuj)-
R R



30 TIMOTHEE CRIN-BARAT AND RAPHAEL DANCHIN
1
3 LA V@ + [+ VA000,070) + [ (14 V000,014 Wos0,)
R R R
1
— /(1 + V)00, R} + = / V2 (Dpuj)?.
R 2 Jr

23 LOF W@+ [ (W0, W00) + [ (14 W0s00.((1 + Vs
R R R

. 1
+ /R (1+WhH(0,v5)* = /R (1+ W00 (0. R} — s0:Aj0%) + 3 /R W (0pv5)°.

The fundamental observation that justifies our using those very weights in the definition of £;
is that the third integrals in the last two relations compensate. Consequently, denoting

1 1 1
122 oyl + 5 [ vt + 0euslBa + [ (W04 3) @y,
R R

and using the fact that

we arrive at
1d
2dt

1

1
+§/R((v1—w2)axuj axvj—v2(axuj)2+wl(axuj)2)+§A(axuj)2(vlaxv2—(1+v2)axv1)

/V2’Ujaxu]' = —/ V2uj8xvj—/ujvj8xv2,
R R R
1

e = [(@raw s wravh + [

ujv;0; V2 + / (VZ — Whu,0,0;
R

R

+% / (00;)* (W20, W' — (1 4+ W0, W?) +% / ((02u;)?0 V2 + (9,v;)*0,WH)
R R
1 1
+/ (uj — §8mvj)RJ1» + / (Uj + §amUj)R? + / ((1 + Vz)&pujamR]l- +(1+ Wl)axvjamR?)
R R R

1 . .
—/i/ ((’Uj + §8xUj)Aj’Uq + (1 + Wl)é)xAjvq(‘)xvj>-
R
Since
V2= —(VH' (1 +V?)0pu + W20 + v + kv?),
remembering (64]), we have
10:V 2| oo S [|0zull oo + [, v) || oo 000l Lo + [[0]| oo
and, similarly,
18:W H I zoe S 100l poe + (1820l poo + [[0]] oo

Observe also that

10V 1o < ||0pv]|ze and [0 W 1o < ||(Oput, Opv)||poe for i=1,2,
whence, in particular

/R wj0;05V2 < 1050 oo il 210 2.

Therefore,

1d
5@'6? + M5 S 1w, v) || oo 10205 p2ll (g, Batg, Ozv5)| £z + [[0]] oo 1000517 2
10zl oo || (v5, Ozt Oxv)||7 2 + |00 oo | (1, v5, Bpis, Ozvj)||7 2
+[[(Rf, B 12l (u, v, i, 8205) || p2 4 1102 R}, 0 RE)| 2]l (O, Oxv;) || 12

+I (v, Bz 2218507 2 + 10001112 1028507 2.
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Then, remembering (65) and using lemma [A] we discover that for all j € Z and t € [0, T,

(67) ﬁj(t)+cmin(1,22j)/0tﬁj < £;(0)
+ C/Ot(llaxvllmﬁj + [10aullzee 051l 2 + (v, Qow) Lo 10z 5] 2 + [ (w, v, Op ) | Loe 100 | 2)
[ 180,80+ 0 [ IR R 0. 0, R

To bound the commutator terms, let us use (79) that yields
1R} 22 S 272 (10 VL Tl

21

+110:WH Il

21

) for all j € Z.

1 1
B2 B2
2 21

Clearly, since v is small in B22 1, VI =V(v) and V1(0) = 0, Proposition [A.4] entails that
(63) CASRECENg

2,1 2 1
In order to bound the term with W1, we use the fact that there exist two smooth functions
G = G(u,v) and H = H (u,v) vanishing at (0,0) and such that

W = 8,W(0,0)8,u + 0, W (0,0)0,v + G(u, v)dyu + H(u, v)dy0.

.1
Consequently, using the stability of the space B22,1 by product and results in [26, Section 5.5]
for bounding G(u,v) and H (u,v), we get

(69) 10971, S W@ B0l (14 )y )
2,1 2.1 2,1
So finally, remembering (63]), we have
_z
(70) 1Rjllze < ej27 2 (Ilull 3 18]l +HUH H(a w00y )
Bs, By, 21

Bounding R? works exactly the same. Next, in light of (IE[I), we have
_J
10: R} |2 S 272 ([10:V1] 53 10zul,

2

112y 10wvll g ),
2

1
B2
2 21

and a similar inequality for &BRg. Hence repeating the above arguments for bounding 9, V1,

0,V?2, 0,W?' and 0,W?, we end up with
i _I
(71) 10 Rj 12 S ;272 HaxUHBélH(axua Oa0)|.

3
By,

. i=1,2.

!
Now, reverting to (67)), using the embedding 18322’1 — L and that
(72) Hj = [(vj, Ozuj, Opv5) || 12

we get, denoting ‘
L2y 2ty

JEZL
two positive constants ¢ and C' such that

(73) L(t)+¢)_ min(1,2%) %/ L; < L(0 +C/ 10| %
j 2

+C ||v||,% |0z ul| . . +C/ (|0 u||2 +C’/ |(v?, Opv?) H i
0 IB%2,1 2 21
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As for (T'M), we need better properties of integrability for v in order to close the above estimate.
The situation is a bit more complex since the second line above was not present. Nevertheless,

it is still possible to exhibit a control of z £ v + dyu in L'(R; 15%2%71) (which, as we saw in (24])
yields a bound for v in L*(R; IBBQ%’I)) Indeed, we have

(74) Oz 4 2+ V3,2 = (VI = W?)dpv — V20,u — 92,0 — 0,V 0pu — 8, (WOv) — kv
which, as in the proof of (I0) leads to

t
l l 0 ¢
01 /Hﬂ < ol /n vw%+c/nmww%ww%
By, 2 1 By, B3, B34

/Wawavwé /wwg
2 2

Using product and composition estimates and remembering (63]), we get

Iv? —WZ)asz.% S Gl g 1020y

/H W2av+v2au+avlauu"

1
B2
2

2 21 2
V20, uH Hvl! [ uH .
2 21 21
10V 0pull .y < 10s vll 3 10wull y -
o eg Y B7, B7,

Since only low frequencies are involved, we have

1 l < 1 <
|02 (W 8scv)llﬂ.gz%1 S W &cvllBé S w0y 19sv]],

3
1 31 By,

Hence, using also (68]), we get

1) 1=l /Hw; leoll 3 /H ol
2 2 2

e Hawlumvzauul+c/ww ozl /HM\
21 21

In order to close the estimates for the solution, it suffices to add up (73] to e-(0) with sultably
small €. More precisely, setting

= £—|—€HzHZ and H—chln 221)22£ —|—gHz” p
B3, JET B3,

we get for all ¢ € [0,7] if € has been chosen small enough,

- 1 t - t 5
<m>c@+§éﬁgc@+040@w§c+Wunz+w%%mm%y

1 2,1 2,1

¢
v [ 0,000
0 ’ 1322,1
Let us emphasize that
L= ||(u, v, dpu, D z0)ll 3 and Hoe s+ ully + o+ 0, UIIZ + v
B2 BZ B2

2 1 2,1 2,1 2 1 2,1

Hence in particular, we have ||0, v|| 1 S H and, as explained in the previous section (just
2 1

replace n by u and V' by v),
(77) loll, 3 19zull,

21

LH.

1
B2
2
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Furthermore,
10zul?y S (losul ), ) + (0l )
]B2,1 2,1 BQ,l
Slull®y llull® s+ (lul®s )* S LH.
2.1 2.1 IB§2,1
Finally, Lemma [A.3 and (T7) together ensure that
[ e
13221 ]BZ%I
1
Sty (l=ll g +10zully )
le le 21
SLUH A+ LT 2||v|| 1 [10zull 1
21 221
<L
and
-1 « Fg-147
100y S NOzvll g ol S L7 H.
T 15;27’1 €z Bg,l 1532%’1

Consequently, Inequality (76]) reduces to

L(t) + % /Otﬁ < £(0) + C/Ot(/er LIYH.

Now, applying a bootstrap argument, one may conclude that there exists a small constant 7
such that if £(0) < n, then

(78) vt € [0,7), /’H<£

This gives the desired control on the norm of the solution and, in addition, that Lisa Lyapunov
functional.

Decay estimates. Granted with a Lyapunov functional that has the same properties as in the
previous sections, in order to get the whole family of decay estimates, it suffices to establish a
uniform in time bound in By o2 for the solution. The starting point is that, for all j € Z,

O+ 0pv; + V79'opu; = [V, Aj10, — Aj(W',v),
Ov; + Opuj +vj = —A;(W20,0) — Aj(V20pu) — kA jv0.
Applying an energy method, using Lemma [A.T] and Inequality (80) eventually delivers:
¢
10,0 Ollss oy < 1001y +C [ 10V 100l

2 1
t
+/0 (W00l + [W2Ouvlly-er + V2 Orully-r + K0 e )
Using for ¢ = 1,2, the decomposition
Wi(u,v) = (8uWi(0,0) + Gi(u,v))u + (avWi(O, 0) + H'(u,v))v

where G' and H' are smooth functions vanishing at (0,0), we get thanks to results in [26]
Section 5.5] and Proposition [A3]

W' 2Vllgzes S 110, v)llgze 1000

”B B2
2

Proposition [A.3] also implies that

2
ol S 102l o Hqu :
21
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In order to estimate the term with v?, we use that v = z — 9,u and get the decomposition:
v? = o + b)) + 2 (0" — 9put) + (Dpub)?
By Proposition [A.3] and interpolation, we thus have

h 0 0 4 44 4
Hvzll]B 71 Sy o+ o + (1ol + 10su Tl )20 g+ (100w II]QB,})_(%,Q)
2 oo oo oo 2 31

h l Y4
Sl Tollgze + v)HBlezll + [Jull fallM
Bm 2,1

B

N m\m

1

Hence we have

-2
1ol 72 S ol M, )HWH
2,1

Finally, using the decomposition
1
V2(0)8pu = VZ(0)du + V2(2)0u’ — </ V(2 — T@xu)> <8xu£8xu£ + (95,;1/696uh>7
0

we get by similar computations that

||V26mu||B o1 S 1w v) e H.

s

Therefore, in the end, we get

1, 0)®)llgzes < 1o, o)l +C/ (L 1ol ") s ) 1

]BZI

which, combined with (78]) and Gronwall lemma implies that

sup | (u, 0)(#)llg;o1 < [l(wo, vo)llg s
te[0,T

At this stage, completing the proof of decay estimates is left to the reader. O

APPENDIX A.

Here we gather a few technical results that have been used repeatedly in the paper. The
first one is a rather standard lemma pertaining to some differential inequality.

Lemma A.1. Let p > 1 and X : [0,T] — RT be a continuous function such that X? is differ-
entiable almost everywhere. We assume that there exists a constant B > 0 and a measurable
function A : [0,T] — RT such that

1d
X+ BXP < AXP™L g on [0,T].
p

Then, for all t € [0,T], we have
t t
X(t)+B/ X§X0+/ A.
0 0

Proof. The case p = 1 being obvious, assume that 1 < p < co. Then, we set X, = (X? +Ep)l/p
for € > 0, and observe that

1d
_EXP + BXP < AXP™' 4 Be? ae. on [0,7].

Dividing both sides by the positive function X? _1, we get

d e \P!
—X.+BX. <A+ Be| —
g e T hAes AT bE <Xa> ’
whence, as ¢/ X, <1,

d

- Xe + BX: <A+ Be.
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Then, integrating in time and taking the limit as € tends to 0 yields the desired inequality.
The following result from [I0] has been used in the proof of Proposition Bl

Proposition A.1. If Supp(Ff) C {€ € R : R\ < |€] < RyA} for some 0 < Ry < Ry then,
there exists ¢ = ¢(d, Ry, R2) > 0 such that for all p € [2,00], we have

2 (p—1 _ 20 p1p—2 _ _ -2
o () [ <o-n [ vseir == [ gansp

The proof of the following inequality may be found in e.g. [1, Chap. 2].

Lemma A.2. Let 1 < p,q,r < oo be such that % + % = % Let a be a function with gradient in
LP and b, a function in L1. There exists a constant C' such that

| 1&y.a]| <027 | Vallyo bl for att ez

The following estimates are proved in [I, Chap. 2| and [12], respectively.

Proposition A.2. Assume that d =1 and that 1 < p < oo. The following inequalities hold:

: 1 1 1
) [fse]—mm(;,y),;—l—l}, then

(79) 29° | fw, AjJoro|| < Ceiopwl s lolls,, with > e =1.
B 2 ,
.1 JEZ
e [fse [—min (%’1%) ,%—Fl[, then
(80) sup 27°|[w, A1)l v < Clldpwl| 1 Ilvll, -
JEL BY, P,o0

e [fse ]—1 —min(%, 1), l], then we have

(81) |

Onfw Al |, < Cez7 0l y lollgy, with Do e;=1.
p,1 JEZL
The following product laws in Besov spaces have been used several times.

Proposition A.3. Let (s,p,r) €]0,00[x[1, 00]?. Then, IB%;,’T, N L™ is an algebra and we have

(52) lablls, < C(lallz Iols, + lalls, bl):
If, furthermore, —min(d/p,d/p’) < s < d/p, then the following inequality holds:
(53) sy, < Clal g Il
We have, if —min(d/p,d/p’) < s <d/p+1,
L < ool
(5) bl S el s ol
In the case d =1 and 2 < p < 4, we have
85 ab) 1 < (lall®s , + llal” Iy 1 +||b)"y )
(53 ol g S Qg+ sy Y(BIEy + 01 )

Proof. The first two inequalities are direct consequences of the results stated in [I, Chap. 2].
To prove the third one, we need the following so-called Bony decomposition for the product of
two tempered distributions a and b (whenever it is defined):

ab=Tyb+ Téa with T,b 2 Z Sj_la Ajb and Téa = Z Sj+2b Aja.
JEZ JEZL
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Now, using Bernstein inequality and the results of continuity for 7" and T” stated in [I, Chap.
2|, we may write:

‘< o < oo ||B] s
ITablE, % ITablss s < e Dl
and, provided, s — 1 < d/p and s > —min(d/p,d/p’),

HTI;GHBZJ 5 ||a|| . %+1 HbH]B;*ll

p,1
This gives (84]).
For proving (85]), we combine Bony’s decomposition and decomposition of a and b in low
and high frequencies, writing
ab = TIb" + TIb" + Tyea® + Tya" + Tya.

All the terms in the right-hand side, except for the last one, may be bounded by means of
the standard results of continuity for operators 7' and 7" (see again [I, Chap. 2|). Setting

p*=2p/(p —2), we get:

|1 Tb" 4 S HCLH P [ 2o Slall s 1HbH’“}1+1,
2 pl B p*,1 Bp,l pl
IITéthIB% S ||aHL°°||b||}.L% :
2,1 2,1
[ Tyea|l y <0
]BZ,I pl

Tya" < |b a” .
Tialyy < Ils] HB;

Finally, since af = SJO+1CL and b" = (Id — SJO+1)b we see that
Tbha = SJOb AJO+1CL .

Consequently,

ITonalll g S NAG 10" oo 1800 122 S lallzee o]l

1
2
21 2,

1

Adding up this latter inequality to the previous ones gives

h
labll 3 < llallze= 1Bl
]BQ

¢ h ‘
+lall o013 ol g+

1
2
By 1 pl pl 21 pl

1
. L
Then, using Bernstein inequality, 2/p — 1/2 < 1/p and the embeddings B3, — L* and
.21 i
B, ® < LP" completes the proof of (8. O
The following result for composition in Besov spaces may be found in [1].

Proposition A.4. Let f be a function in C*°(R) such that f(0) = 0. Let (s1,5s2) €]0,00[* and
(p1,p2,71,72) € [1,00]*. We assume that s1 < il or that s1 = p% and r = 1.

Then, for every real-valued function u in IB%;} " IB%;% ry VL, the function f owu belongs
to IB%;} 0 IB%;Z s VL, and we have in particular

Ifoulsse . < C(F Jullp) lullgze for k € {1,2),
The following result is the key to Theorem [[.1]in the general case.

Lemma A.3. Assume that d = 1. Let p € [ ,4] and s € [1/2,3/2[. Define p* £ 2p/(p — 2).
For all j € Z, denote Rj & S;_1w 0, Az — Aj(wdy2).
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There exists a constant C' depending only on the threshold number Jo between low and
high frequencies and on s, such that

j h l
Y (@0 IR ) < C(II&CwIILm 1922l + 19021l 3o llwll 12

3>Jo p.1 B 1
11022l g wllle + 102,11 10w] 1)'
e S T A
’ p*,

In the case s = 3/2, we have

i3 h ¢
S (22 IRz < (100wl e 10:21%y + 105203 ol

i>Jo Pl B 1

h l )4
1002l e ol + 02l oy 0l ):
B B P 13

%
2,1 p,1 Bp*,l
Proof. From Bony decomposition recalled above, we deduce that

Rj = —Aj(Téxzw) — Z [Aj, Sj/_lw]ﬁwAj/z — Z (sz_lw — Sj_1w> AjAj/&cz
7' —=j|<4 3/ =dl<1
=R} + R +R5.

To estimate le-, we decompose w into low and high frequencies, getting
Tézzw = Tézzwé + Témzwh.

Because 1/p + 1/p* = 1/2, the classical results of continuity for paraproduct and remainder
operators (see e.g. [I, Chap. 2|) ensure that

12 ¢
1T, 2w IIBQ%1 SN0zl g-allw’ll s,

p,1 ]Bp*,l
and we have

h h : h
15, 0" g5, S 1022l - llw™ll 3 10 <s<3/2, and 1T, 0" |

00,00

3 3 S [0azllze "] g -
21 B3, Y By

14

Observing that Téz ,w" contains only low frequencies so that its norm in Bg’l is controlled by

1
its norm in B3 ; if s > 1/2, we deduce that

) if 1/2<s<3/2,

o

w|

86) > (2[R}l ) <C(l0n2]_y- PR X e (P

]ze% H ]HL2 € ]B::’ll B;jﬁ’ x IB%OO,ZO Bgl
3,

87 S (28 R ) <C (1021 ao [ 1o s + 10020 e [ 5 ):

i B, B, % B3,

Next, taking advantage of Lemma [A.2] we see that if j' > Jy and |j — j'| < 4, then we have
2°)|[Aj, SjrawlpA izl g2 S 1001wl pe 27V 10,402 2
while, if j' < Jy, j > Jg and |j — j'| < 4,
. . . . 4 . g 11 .
29°|[[A;, Sy 1w]dpAjiz| 2 S 27 ||0pSjyw]| e 20T TR 0,402 1o
Therefore,

68) X (2IR3Le) < O(I0mwly 10s2 s + 10020,y g 0wl )

7>Jo Pl B
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Finally, for all j > Jy and |j/ — j| < 1, we have
294 (Sy 1w = Sj1w)AjA ;02| 2 < V[ Ajzrw]pee 2TV 0,A 5 A2 12
< C||Aje10pw]| o 277D [0,A 2] 2.

Hence
(&) > (27 11R ) < Clloswloloezlya.
J=Jo ,
Putting (88), (87), (88) and (89) together completes the proof. 0
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