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PARTIALLY DISSIPATIVE ONE-DIMENSIONAL HYPERBOLIC SYSTEMS
IN THE CRITICAL REGULARITY SETTING, AND APPLICATIONS

TIMOTHEE CRIN-BARAT AND RAPHAEL DANCHIN

ABSTRACT. Here we develop a method for investigating global strong solutions of partially
dissipative hyperbolic systems in the critical regularity setting. Compared to the recent
works by Kawashima and Xu, we use hybrid Besov spaces with different regularity exponent
in low and high frequency. This allows to consider more general data and to track the exact
dependency on the dissipation parameter for the solution. Our approach enables us to go
beyond the L? framework in the treatment of the low frequencies of the solution, which is
totally new, to the best of our knowledge.

Focus is on the one-dimensional setting (the multi-dimensional case will be considered in a
forthcoming paper) and, for expository purpose, the first part of the paper is devoted to a toy
model that may be seen as a simplification of the compressible Euler system with damping.
More elaborated systems (including the compressible Euler system with general increasing
pressure law) are considered at the end of the paper.

INTRODUCTION

The study of the global existence issue for so-called partially dissipative hyperbolic systems
of balance laws goes back to the seminal work of Kawashima [20]. Recall that a general n-
component systems of balance laws in R? reads:

d (w
) 243 250 ).

Here the unknown w = w(t, r) with t € R* and € R? is valued in an open convex subset O,,
of R" and @, Fj : R — O, are given n-vector valued smooth functions on O,,.

It is well known that classical systems of conservation laws (that is with Q(w) = 0) supple-
mented with smooth data admit local-in-time strong solutions that may develop singularities
(shock waves) in finite time even if the initial data are small perturbations of a constant solu-
tion (see for instance the works by Majda in [23] and Serre in [27]). A sufficient condition for
global existence for small perturbations of a constant solution w of is the total dissipation
hypothesis, namely the damping (or dissipation) term @Q(w) acts directly on each component
of the system, making the whole solution to tend to w exponentially fast. However, in most
evolutionary systems coming from physics, that condition is not verified, and even though
global-in-time strong solutions do exist, exponential decay is very unlikely. A more reasonable
assumption is that dissipation acts only on some components of the system. After suitable
change of coordinates, we may write:

@) 2w = ()

q(w)
where 0 € R™ q(w) € R™, nj,ne € N and n; + ng = n. This so-called partial dissipation
hypothesis arises in many applications such as gas dynamics or numerical simulation of con-
servation laws by relaxation scheme. A well known example is the damped compressible Euler
system for isentropic flows that we will be investigated at the end of the paper. For this system,
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2 TIMOTHEE CRIN-BARAT AND RAPHAEL DANCHIN

the works by Wang and Yang [31] and Sideris, Thomases and Wang [29] pointed out that the
dissipative mechanism, albeit only present in the velocity equation, can prevent the formation
of singularities that would occur if @) = 0.

Looking for conditions on the systems of the form — guaranteeing global existence
of strong solutions for small perturbations of a constant solution w goes back to the paper of
Shizuta and Kawashima [28], the thesis of Kawashima [20] and, more recently, to the paper of
Yong [37]. Their researches reveal the importance of a rather explicit linear stability criterion,
that is nowadays called the (SK) (for Shizuta-Kawashima) condition and of the existence of
an entropy that provides a suitable symmetrisation of the system. Roughly speaking, (SK)
condition ensures that the partial damping provided by acts on all the components of the
solution, although indirectly, so that all the solutions of (1)) emanating from small perturbations
of w eventually tend to w, while the paper by Yong provides tools to get quantitative estimates
on the solutions when Q(w) = 0. As observed by Bianchini, Hanouzet and Natalini [4], in
many situations, a careful analysis of the Green kernel of the linearized system about w allows
to get explicit (and optimal) algebraic rates of convergence in LP of smooth global solutions
to w. Let us finally mention that a more general approach has been proposed by Beauchard
and Zuazua in [2], that allows to handle partially dissipative systems that need not satisfy the
(SK) condition.

Recently, Kawashima and Xu in [34] and [35] extended all the prior works on partially
dissipative hyperbolic systems satisfying the (SK) and entropy conditions (including the com-
pressible Euler system with a damping term) to ‘critical’ non-homogeneous Besov spaces of L?
type. To obtain their results, they symmetrized the system thanks to the entropy hypothesis,
applied a frequency localization argument relying on the Littlewood-Paley decomposition and
used new properties concerning Chemin-Lerner’s spaces. They took advantage of the equiv-
alence between the condition (SK) and the existence of a compensating function so as to to
exhibit global-in-time L? integrability properties of all the components of the system.

The present paper focuses on the particular situation where the space dimension is d = 1
and the number of components is n = 2 (the multi-dimensional case will be investigated
in a forthcoming paper [§] for the whole class of partially dissipative systems verifying the
(SK) condition). Our goal is to propose a method and a functional framework with different
regularities for low and high frequencies. For the high frequencies, we do not really have the
choice as it is known that the optimal regularity for local well-posedness in the context of

3
general quasilinear hyperbolic systems, is given by the ‘critical’ Besov space B;l. The novelty
here is that we propose to look at the low frequencies of the solution in another space, not
necessarily related to L?. The advantage is not only that we will be able to consider a larger
class of initial data that may be less decaying at infinity, but also that one can easily keep
track of the dependency of the solution with respect to the dissipation coefficient, and thus

have some informations on the large dissipation asymptotics. Various considerations lead us
1

to think that a suitable space for low frequencies is the homogeneous Besov space I[.Bg’l (with,
possibly, p > 2) that corresponds to the critical embedding in L*°.
For expository purpose, we spend most of the paper implementing our method on a

simple ‘toy model’ that may be seen as a simplification of the one-dimensional compressible
Euler system with damping, and pressure law P(p) = %pQ, namely

Ot +v0,u + 0,0 =0 in R xR,
(T'My) O +v0,0+0u+ =0 in Rt xR,
(u,v)|t=0 = (uo,v0)- on R

Above, the unknown u may be seen as the discrepancy to the reference density normalized to 1,
(then, the first equation is a simplification of the mass balance), while the unknown v stands for
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the velocity of the fluid, and the second equation corresponds to the evolution of velocity with
a friction term of magnitude A > 0 (which could also be interpreted as a relaxation parameter).

In order to have a robust method that can be adapted to more involved systems, we shall
not compute explicitly the solution of the linearized system (7'M,) about (0,0), but rather
use modified energy arguments (different from those of S. Kawashima in his thesis [20]) and
suitable change of unknowns. More specifically, we will introduce a ‘modified’ velocity that
plays the same role as the ‘viscous effective flux’ in the works of Hoff [I§] and, more recently,
of Haspot [17] dedicated to the compressible Navier-Stokes equations.

Our approach will enable us to obtain more accurate estimates and a weaker smallness
condition than in prior works (in particular [20, 37, 2l [36]). We will see that it is enough to
assume that the low frequencies of the data have Besov regularity for some Lebesgue index that
may be greater than 2. Also, we will improve the decay that was obtained for the compressible
Euler system with damping in [36] and, adapting an idea from Xu and Xin in [32] for the
compressible Navier-Stokes system will enable us to discard the additional smallness assumption
on the low frequencies that is usually required to obtain the decay estimates.

The rest of the paper unfolds as follow. In Section [l we present our main results for
(T'M,), namely the global existence of a solution corresponding to small data with optimal
estimates with respect to the dissipation coeflicient, and time decay estimates. In the next
section, we focus on the particular case of data with regularity in Besov spaces built on L2,
and prove global existence in this case, as well as the time decay estimates. The method we
here propose is different than the one for the general case, and is more easily extendable to
the multi-dimensional setting. In Section [3] we propose another method that allows to get
our global existence result for a larger class of data, not necessarily in L? type spaces. The
next two sections are devoted to adapting our results, first for the isentropic Euler system with
damping, and next for a general class of one-dimensional systems of two conservations laws,
with partial damping. Some technical lemmas are proved in Appendix.

Acknowledgments. The second author is partially supported by the ANR project INFAMIE
(ANR-15-CE40-0011).

1. MAIN RESULTS

Before stating the main results, we need to introduce a few notations. First, throughout

the paper, we fix a homogeneous Littlewood-Paley decomposition (A;);ez that is defined by

Aj£p(277D) with (&) £ x(6/2) — x(&)
where x stands for a smooth function with range in [0, 1], supported in | — 4/3,4/3[ and such
that x = 1 on [—3/4,3/4]. We further set

S;2x(27/D) forall j€Z

and define §; to be the set of tempered distributions z such that S'jz — 0 uniformly when
j — —o0.
Following [I], we introduce the homogeneous Besov semi-norms:

HZHIBIS),’I‘ 2 HQJSHAJZHLP(R) o (Z)

then define the homogeneous Besov spaces B;T (for any s € R and (p,r) € [1,0]?) to be the
subset of z in S}, such that ||z, is finite.
p,T

To any element z of S;, we associate its low and high frequency parts with respect to
some fixed threshold Jy € Z, through

P Z Ajz = SJ0+1Z and 2" 2 Z Ajz = (Id - 5J0+1)z-
i<Jo 3>Jo
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In order to emphasize the dependency of the notation with respect to the threshold parameter
Jo, we use sometimes the notation 2“7 and 2"/, Likewise, we setﬂ if r < oo

1 1
K,J IS A r r h,J is . r T
”ZHB;,(; £ (Z(za AszLp) ) and ||z||B;’S = (Z@J AszLp) ) :

7<Jo J2Jo
Whenever the value of Jj is clear from the context, we shall only write HzH%S
p,T

For any Banach space X, index p in [1,00] and time 7' € [0, 0], we use the notation
2l Lo (x) = HHZHXHLP(O,T)' If T' = 400, then we just write ||z]|Lo(x). In the case where z has
n components z; in X, we slightly abusively keep the notation ||z[| to mean 37 . .y 125l x-

Throughout the paper, C' > 0 designates a generic harmless constant, the value of which

depends on the context. We use the notation p’ for the conjugate Lebesgue exponent of p.
Finally, we denote by (c;);ez nonnegative sequences such that > .7 c; = 1.

We can now state our main global existence result for (T'M)).
Theorem 1.1. Let 2 < p < 4. There exist k = k(p) € Z and cy = co(p) > 0 such that for
3

1 i
Jy 2 loga\| + k, if we assume that ug’J*,vg"]* €B;, and ug"]*,vg"]A € B3, with

l —
AT (w0, w0) 13 < o,

[ (w0, vo)]
B?, B3,

then System (T M) admits a unique global solution (u,v) in the space E;> defined by
ubr € Cy(RT; 18%31) N Ll(RﬂBifQ), u € Gy (RT; 132%1) NLYRT, 1332%1),
vih e Cb(RﬂBil) n Ll(Rtle“), v e Cb(RﬂBél) N Ll(RtEél)
M+ Qg € LI(RJF,BEJ) and v € L%R*,Bﬁl).

Moreover we have the following a priori estimate:

Xp () 5 l(uo, v0) |1 + A" [[(uo, w0y for allt >0,
BP

p,1 2,1

where

) — h,J — 0,J h,J
Xpa®) £ 1w, )17 27w, o) 5 AT ", A+ ),

2 1 2
L (B} 1) Lo (B3 1) Li(B), L;(B3,)
Hdo+ el Al
Li(Br ) LZ(Br )

Remark 1.1. Somehow, the function Av + O,u may be seen as a damped mode of the system,
which explains its better time integrability. This is actually the key to closing the estimates
globally in time, and this enables us to prove similar results for more general systems (see

Sections 4| and @

Remark 1.2. Kawashima and Xu in [34] obtained a result in critical nonhomogeneous Besov
spaces built on L? for a class of system containing (T My). In their functional setting however,
it seems difficult to track the exact dependency of the smallness condition and of the estimates
with respect to the damping parameter X. Furthermore, whether a LP approach may be performed
for the whole classe of systems that is considered therein, is unclear.

Remark 1.3. In the L? case, the method we here propose is robust enough to be adapted to
higher dimension and to systems with more components, see [5] and [§].

1For technical reasons, we need a small overlap between low and high frequencies.
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Remark 1.4. In Section[] a statement similar to the above one is obtained for the isentropic
compressible Euler system with a damping term in the velocity equation. To our knowledge,
it is the first result (partially) in the LP setting for this system. Obtaining a similar result in
higher dimension is a work in progress.

The above theorem gives us for free some insight on the diffusive relaxation limit of (T'M))
in the case of fixed initial dataPl

Corollary 1.1. Under the hypotheses of Theorem[1.1], we have u — ug and v — 0 when X\ goes
to infinity. More precisely,
1
~1/2 i\
loll 1+ < CecoA and ||lu(t) —uollgp < Ceol ~ | -

L2(BP ) po1 A
Proof. The first inequality follows from the estimate for X,y in Theorem [T} For the second
inequality, we observe that by interpolation in Besov spaces and Holder inequality,

-3 2 o1 1
00l < 1007, ol with t21- L
P, Ll(]gé’yl) L2(B5,1
Since
10zl 1 Sl 4, + ol
le?) IRV L2y’
Theorem [I.1] gives us
_1
||8xU”LT(Eg’1) < CepA 2-
Similarly, we have
3735 45 1,1 1
1Oetll g ) S N0ull® % o, witn L2l L
xT L (]Bp,l) z Ll(B;’;—l) X Loo(]B:;l 1) T 2 2p

1 .
Hence, using that the product maps ]B%g’l x B, to Bg’l and Theorem !, we deduce that

1
. < oo T 2p.
el ) S 10, 3 10l < Ceor
Since dyu = —0,v — VO, u, we get the desired inequality for u(t) — ug, by time integration and
Holder inequality. O

Our second main result concerns the optimal decay estimates of the solution constructed
in the first theorem. For now, we only consider the case p = 2.

Theorem 1.2. Under the hypotheses of Theorem[I. 1| with p = 2, there exists a Lyapunov func-

tional associated to the solution (u,v) constructed there, which is equivalent to ||(u,v) 3 .

1
HIB%E,IH]B; 1
If, additionally, (ug,vo) € ]B%;gé for some o1 € (—%,%] then, there ezists a constant C

depending only on o1 and such that
[(u, v) (@)l g=o1 < C|[(uo, v0)llg=r, VE=0.
2,00 2,00

Furthermore, there exists a constant kg depending only on o1, A and on the norm of the data
(and that may be taken equal to one in certain regimes, see the remark below) such that, if

1 ¢ h
(t) 21+ Kot, a2 07+ 3 and Cy x £ )\1+°‘2||(u0,110)||]3§f§1 + |[(uo, vo)| _’;A,

2,00 51

2We actually expect our method to be appropriate for investigating the connections between the compressible
Euler system and the porous media equation, in the spirit of [19] 22] [33]. This is a work in progress.
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then we have the following decay estimates:
A [0, 0) (1)

a O+ 01
£ 5

g;/\ < CCO,)\’ (S [_O-la 1/2]7 «
1

[ 0)BI < CCox,

2,00
1/1
XM Sh, < CCo, a2 (54
2,00 2 2

Remark 1.5. Our proof reveals thaﬂ ko = 1 whenever the first term of Cop x is controlled by
the second one (which amounts to saying that the low frequencies of the data are dominated by
the high frequencies).

Remark 1.6. The fact that v undergoes direct dissipation and not u explains why the decay of
the low frequencies of v is stronger than that of u.

L1
Remark 1.7. In light of the embedding L' — By 3. the above statement with o1 = 1/2

encompasses the classical L' condition of [24]. Actually, choosing suitable exponents allows to
recover all the conditions used in [4] for getting decay estimates.

2. THE CASE p =2

The present section is dedicated to the case p = 2 in Theorem and to the proof
of Theorem The reason for looking first at p = 2 is that one can exhibit a Lyapunov
functional for (T'M)) that allows to treat the low and high frequencies of the solution together.
Throughout this section, we focus on the proof of a priori estimates for smooth solutions to
(T'M,), the reader being referred to the next section for the rigorous proof of existence and
uniqueness, in the general case.

Before starting, let us observe that (u,v) is a solution to (T'M,) if and only if the couple
(t,v) defined by
(3) (u,0) () 2 (@, ) (M, Aa)
satisfies (T'M7). Therefore, it suffices to establish Theorems and for A = 1, scaling back
giving the desired inequalities, owing to the use of homogeneous Besov norms.

In the rest of this section, and in the following one, we shall use the short notation (7'M)
to designate (T'My).

2.1. Global a priori estimates for the linearized toy model. Here we are concerned with
the proof of a priori estimates for the following linearization of (T'M):

O + wlpu + 0,0 =0 in R xR,
(LTM) O+ wlpv+0u+v=0 in RT xR,
(u,v)|t=0 = (up, vo) on R,

where the given function w : R x R — R is smooth.

In the following computations, we assume that we are given a smooth solution (u,v) of
(LTM) on [0,T] x R, and denote, for all j € Z,

(4) uj 2 Aju and vj £ Ajv.

Inspired by the work of the second author in [9] T3], we consider the following functional:

(5) L;= \/Iluj'lliz + llvil17 + 1102w 1172 + 100051172 + /Rvj Ouj.
Al(uo,v0) 1573+l (o, w0) 17573\ ——2 -
5 ) B o 83/ 01+1/2.
The exact value is ro = (wa? w0 w0l 73, +|<uo,vo>|;gfé)

2,00 2,1
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Applying operator Aj to (LT M), simple computations lead to

1d . . . .
5 7l v 72 + o7 + /R (&)(wdr) Aju+ Ay (wd,w) Agw) =0,
1 d . . . .
5 37105 0c0) s+ 100 + [ (8,00 (w0,0)) As0ru-+ By (0(wdr)) A0i0) =0,

d . . . .
/vj 8muj+/ vj azuj+||61uj||%2—||8xvj|%2—|—/ (Ajax(w&ru)Ajv+Aj(w@zv)&vAﬂO =0
dt Jr R R

Using the fact that
(6) Aj(wdy2) = wdpzj + [Aj,w]0pz  for z =u,v

and integrating by parts, we see that

/A](w@ﬁz) A]z:_1/8$w]z]’2+/[A],w]aggzzj
R 2 Jr R

Hence, using the classical commutator estimate recalled in the Appendix and the embed-
.1
ding B3, < L, we get an absolute constant C' > 0 such that for all j € Z,

/A w@zAz

< Ccj2™ 2H8 w|| ! ||z|| .l A 2|2 with chzl.
P2 JEL

Likewise, we have, thanks to an integration by parts,
) . 1 .
/ A0 (wByp2) AjOyz = / Dpw (0z2;)* + / 02[Aj, w)0p2 Dy 2.
R 2 Jr R
.1
Hence, using (81) and B3, < L,

'/Aa w(?zA@z

< Ce;27 3|0, wH 1 HZH 1||3 22| 2
Finally, integrating by parts reveals that
/R (&0, (wdw) Ao+ & (wd,w)d,Agu) = /R (A, w]duv Ouj — /R (A, w]dpu dyv;.
Hence, using ,
/R<Aj3x(w3xu)Ajv + Aj(waxv)axAju)

_1
< Cej272 (Jull g 10zv5ll2 + 10l 3 190usllz2) 10zl g )-

2,1 By, 2 1

In order to conclude the proof of estimates for £;, one can observe that there exist two absolute
constants C' and c¢ such that

(7) CH (g, 055 Oaug, 0nvj)|I72 < L3 < Cll (g, 05, oy, Ovvj) 172
and |jv;]|%, + %(H@xuﬂiz + 1102051125 + [ vj Onu; dx) > cmin(1, 22j)£?.
Consequently, putting together with the above inequalities, we obtain

1d ; j
— L2 + cmin(1 ,22])Cj2~ < ch2_%||('“)waB% | (w, v, Ogu, Oxv)]| .
31
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Then, integrating on [0,t] for ¢ € [0,7] and using Lemma yields
(9) 2% (g, v, Dyij, D) (1) 2 + min(1, 2%9) %/ [z, 05, Optjs Dwvj)| 2

. t
sc(mmwmﬁmwﬁwmmmrylqumu@mmw%erH;)
2

Since (direct) damping is present in the equation for v, one can expect v to have better decay
and time integrability properties than u. In fact, as explained at the beginning of Section [3] it
is even better to consider the function z £ v 4+ dyu that satisfies:

Oz + 2+ wdypz = —0%,v — Opw Ou.

Now, applying Operator Aj to the above equation, then using the basic energy method gives:

1d
gl sl = = [ 2080, — [ Aywoie) s — [ A0
R

The last term may be handled thanks to the decomposition @, integration by parts (as above)
and Inequality with s = 1/2. This gives

1d

thszHL? 11241122 < llzgllz2 (102050122 + C2 3¢ wH 1 HZII y 1400w du)|2)-

21

After time integration (use Lemma[A ), we end up for all ¢ € [0, T] with

. . t .
2 A 2
MW@M+%AHMHSWM®MQ

2

e24 [ 108yl [ o102l 5 + 100l )
B3, 2.1
.1
Hence, summing up on j < 0 and using the stability of the space B22,1 by product yields
¢ . ‘ L
10) ||=(¢ +/z < |29 —}-C’/v +C/8w1 1+ |Ozull 1 )
(10) | ()IIBQ%1 ; | ”Bél | ”Bél ; o]l 3, [0z w]] sh 121l 5, 102 HB?Q)

1

Let us sum @D on j € Z, then add ([10) multiplied by a small enough constant. Using ([7]) and
denoting X (t) = ||(u, v, Opu, O,v)(t )”B% , we eventually get

0U—ﬂﬂ+AMWmW; a0l + o+ 0uuly ) < ( /Haw% )

Let us revert to our toy model, assuming that w = v. Then, denoting by Y (¢) the left-hand
side of , we get

Y(t) < C(X(0) + Y*(¢).

As Y (0) = X(0), a continuity argument ensures that there exists ¢gp > 0 such that if

(12) X(0) ~ ||(uo, vo)ll.

18 < ¢,
IB2,1”532,1

then we have

Y (t) <2CX(0) forall tel0,T].
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2.2. Proof of Theorem |1 For getting decay estimates without any additional smallness
condition, the first step is to prove that the extra negative regularity for low frequencies is
preserved through the time evolution. This is stated in the following lemma which is an
adaptation to our setting of a result first proved by J. Xu and Z. Xin in [32] for the compressible
Navier-Stokes system.

Lemma 2.1. Let oy €]—3, 3]. If, in addition to the hypotheses of Theorem I| (wo, UO)HB*H
is bounded then, for all t > 0, we have

0 0) (1) e < C 0, v0) g
Proof. Applying Aj to (T'M) yields

Oty + 0rv; = —vu; + [v, A0,
Oyvj + Opuij + v = —v0p05 + [v, Aj]0p0.

Hence, an energy method, followed by time integration (use Lemma |A.1)) gives
t
[[(ug, v5)(8)]] 2 +/0 [vjllzz < Il(uy,v5)(0)| 2
1t t ) t )
w3 | W0l )z + [ 1o Aosulzn + [ e 0,000

Omitting the second term in the left-hand side, and using the commutator estimate that
is valid provided —1/2 < —o7 < 3/2, we get
t

(s ) ()l 1 < [l (0, vo)llgon +C ||<9 UH 1 H(U g,

Hence, by Gronwall lemma,

t
O e e uaxvuﬁél)-
Since the term in the exponential is small (as X (0) is small), we get the lemma. O

The second ingredient is that one can work out from the computations we did in the

.1 .3
previous paragraph, a Lyapunov functional that is equivalent to the norm of (u,v) in 18322’1 ﬂIB%il
To proceed, observe that, on the one hand, Inequality implies that for all ¢ > 0,

t t
(t)+c/ H<£O)+C [ o). £
0 0 IB27,1

with £ £ ZQ%EJ- and H = 22% min(1,2%)L;
JEZ JET

and that, on the other hand, gives us

t
(v + Opu) (t)° Hv+3 ul®y < oo+ Opuol®y +C [ vt
B3, B2, 0

3
B3,

t
+C [ ol L.
0 BQ,l

1
2
2

Hence, there exist 7 > 0 and ¢/ > 0 such that, denoting £ £ £ + nllv + 0, u||e 1 we have

21

~ tN ~
c(t)+c’/Hg£ +c/ o0l £ with H £ ot o+ oyl
0 2

}wa—‘

1
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Observe that H > ||0,v]|. 3 - Since the previous step ensures that £ < X(0), one can conclude
B

2,1
that the last term of the above inequality may be absorbed by the second term of the left-hand
side provided X (0) is small enough. So finally, taking ¢’ smaller if need be, we discover that

~ t ~ ~
£t +c'/ 7 < £(0).
0
Clearly, one can start the proof from any time ¢y > 0 and get in a similar way:
~ toth _
E(to+ 1) +c'/ 7 < Z(to), h>0.
¢

0

This of course ensures that £ is nonincreasing on R* (hence differentiable almost everywhere)
and that for all tg > 0 and A > 0,

_ 1 to+h _
L(to + h) — L(to) +C// <o
h A

Consequently, passing to the limit h — 0 gives

0

d~  ~
(13) ££+CIH <0 a.e on RT.

We thus come to the conclusion that:

Lemma 2.2. There exist two functionals L and D satisfying

L~ ||(u,v 1 .3 and D ~ ||ul’ + ()™ + |v]|. 3
(R lullyg + My +lvl 3

and such that if ||(ug, vo)||. .

b
Bg,NB 4

1s small enough then is satisfied.

One can now tackle the proof of decay estimates. Let us denote

Co = H(Uovvo)\lfé;vl + ||(anvo)|!;g
0 2,1

As a first, observe that interpolation for homogeneous Besov norms gives us:

90 1—90
2
RS £ ‘ ith 0p2 > .
oy < (oot ) (n(u,v)nﬁil) with 602 =2

Therefore, owing to Lemma there exists ¢ > 0 such that
¢ -1 ¢ :
u, v >cCy O (||(u,v 1-6o
Il ey (Il )
Note that our definition of Cy and the estimates we proved for (u,v) in the previous paragraph
also ensure that

_970 1
Il v)%y 2 Co ™" (I vty )=
B2 B2
2.1 2.1
Hence, thanks to the above lemma, we have,

%

d ~ _ 1 _
SL 4 cC 0 FTe <0 with e |[(u,0)]

1 3.
B3 NB3,
Integrating, this gives us

0,

£(t) < (14 rot) " £(0) with Hoéclgog (EC(O)> .
— Yo 0
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Rewriting 6y in terms of o1 and using that |[(uo, vo)| . 1
B3 B

(14)  [l(w,0)®)],

1 3
3 Am2
By NB3 4 By NB3 4 2

1 1
<CU+)™ (o w)l,y .y with a1 2 (014 3)-

In order to get the decay rate in Bgl for all 0 € (—01,1/2), we just need the interpolation
inequality
1/2 -0

—_ 0,1).
1/2+ale(’)

a0 g <l 0) | g (102 )13 with 61 £

2 1
In the end, we get (since ko < 1):
_gta 1-6
1(a, 0) (D) g, < C(L+rot)™ 2 [[(wo, v0) 5o, [l (w0, w0) I3
’ B o0 Bz 101322,1

In order to improve the decay for the damped component v, let us start from

Ov+v= —%&E(vg) — Ogu.

As vf is in B, 2¢ for some o7 €] — 1. 3], we get

t
¢ - ¢ —(t—
(15) H’U(t)HB;o'l <e '5||1)()HE~B;U1 —|—/0 e~ (=7 H(&ch,@ u HB o1 dr.

It is important to observe that, as 1 — o1 > 1/2,
)4 ¢
(16) 10715y % N1

Hence, multiplying by (t)** and using the product laws in Besov spaces recalled in Propo-
sition [A73] yields:

t t
)4 L —(t— 1 —(t— 2
KO ()01 < llvollg—o1 +/ ()1 e™ " lullfar, dT+/ By e jolf?, dr,
2,00 2,00 0 2,00 0 B

2,1

and one can conclude as above that

B o®llg;m < lluos vo)llg a1 + (o, v)ll g g -
BQ,lmBQJ

.3
Let us finally exhibit the (optimal) decay rate of the high frequencies for the norm in B3 ;.
Recall that for 7 > 0, we have

d
aﬁi + Ly S L0 oo + 527 5X 1|8,

1
B2
21

Hence, using Lemma multiplying by 2% summing up on j > 0 and remembering that

S o2iL;~ ||(u, v)Hhs ;

j>0

we get

(17) (s o) ()%

5
B2, B2

t
_ h Ce(i—
Se ooy + [ e ol @ o,
2.1 0 Bs,

3
B,
Multiplying both sides by (t)2%1, we get
2 ()@ 53 S @2 |

(uo, v0)|" 4
BQ 1

<<t) =) () o

(7) ) ()™ o)l )

3
By,

N’ m\w
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Taking advantage of for bounding the norms in the time integral, one ends up with the
desired decay estimate for [|(u, v)(t)Hh% . This completes the proof of Theorem
B

2,1

.1
Remark 2.1. In the same way, making the slightly stronger assumption that US € 1532712, we get

O @Il -3 < ool
1

1
—32
]BQ, IB22,1

+ || (o, vo) |

By NB3 4

3. PROOF OoF THEOREM [L.1]

An explicit computation in the Fourier space of the solution to (LTM) with w = 0 reveals
that:

e In low frequencies, the matrix of the system corresponding to frequency £ has two real
eigenvalues that tend to be equal to 1 and to &2, for £ going to 0;

e In high frequencies, two complex conjugated eigenvalues coexist, that are, asymptoti-
cally, equal to %(52 +14€).

Consequently, one can expect that the low frequency part of System (7'M) is solvable in some
LP type functional framework with, possibly, p # 2, whereas going beyond the L? framework
in high frequency is bound to fail. A similar dichotomy has been observed for the compressible
Navier-Stokes equations (see in particular [0, [7, [I7]) but the behavior of the low and high
frequencies in our situation is exchanged.

In order to extend the results of the previous section to the LP framework for low frequen-
cies, we shall adapt [I7] to our setting, introducing an ‘effective velocity’ that reads z = v+9d,u
and may be seen as an approximate dissipative eigenmode of the system, in the low frequency
regime.

The bulk of the proof consists in establishing estimates in the functional framework of
Theorem [1.1]for (LT'M). This will be carried out in the first two subsections of this part. Then,
we will prove the existence part of the theorem and, finally, the uniqueness of a solution.

3.1. Low frequencies estimates in LP. The main result of this section reads as follows.

Proposition 3.1. Let (u,v) be a smooth solution of (LT M) on [0,T]. Then, for all1 < p < oo,
we have

t t
¢ l ¢
(18) o)D) s + / Jull o+ [ T+ 0
1

Proof. Let us set z £ v + d,u. We observe that the couple (u, z) satisfies
ou — 6§$u + wipu = — 0,2,
Oz + 2+ wdpz = 0>

rxrr

19
19) u — 02,2 — Opw Dy,

In low frequencies, we expect the linear terms of the right-hand side to be negligible, so that
we will look at the first equation as a heat equation with a convection term, and at the second
one as a damped transport equation.

Now, applying Aj to the first equation of yields
Ouj — 02, uj = —Aj(wdyu) — 8,2
= _wa:puj - &vzj + [wa Aj]al"u
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Multiplying by |u;|P~?u; and integrating in space, we get

Gty = [ gl
= —/8xzj|uj|p2uj —/w&muj|uj|p2uj+/[w,Aj]6xu ]uj]p’2uj
R R R

Hence, integrating by parts, using Cauchy-Schwarz inequality and Proposition [A-] gives

1 d ; 1 : 1
i sl + 2 sl < sl o sl + (10225l o + |l Aglae| ) 75"

Multiplying by 27, summing up on j < Jy and using Lemma we obtain

t
¢ ¢
@ +cp / lall 1.
B;f,l 0 ]Bs”

1 t ¢ 3 t .
< ol + [ IS [ ocwl )+ 3725 [l Ajlon
B, P 0 B?, <o 0

The commutator term may be bounded according to Inequality with s = 1/p. Hence,
1

Lp

remembering that IB%E — L, we end up with

20 Ol +a / el < ol / ol 1+ / el
P

Let us next look at the second equatlon of . We have for all j € Z,
Ovzj + 2j +wdpzy = 02 uj — 02,2 — Aj (0w Opu) + [w, Aj]0, 2.
Multiplying by z;|z;|[P~2 and adapting what we did for the for the first equation of (LT M), we

obtain
1 t ¢
/ 20y < ol / Il / el = [ ol el
p p p
/ZQP wA@z /H@w@u”;.
j<J() p,1

— L and

'B'U\H

Combining Proposition |A.2] the commutator estimate . the embedding IB
Proposition we discover that

t t
@) =01, AL Ay <leolly + [ 1l [
p p ]Bp,l 0 ]prl 0 BP,I
t t
+ w1 2l 2 + Orw| 1 ||Ozull 1
L Iy Il | 1o, Iy 10l

At this stage, the key observation is that, owing to Bernstein inequality, there exists an absolute
constant C' such that for any couple (0,0’) € R? with o < ¢/, we have

(22) 1£ 1, < C2PC 11,

p,1

Consequently, if Jy is chosen small enough, then after adding up and , we just get

¢ l
w2015 + / (Il e + 121 ) S o, 20

pl 1 B

F m»-‘

1
P
p,1
t

+ wl 1 wl| 1., +||u
[l g (] g0+ e,

p,1 p,1

+ =

1

1 1 )
BP R P
p Bp,l
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Because
zl 1 <Jul 1., +]lv|]| + and v£7<2£7+u£7
| HBgle HB;F | ”Bé’,l | HBE’,I S HB;},l I HBE’J’
we conclude to the desired inequality. O

3.2. High frequencies estimates in L2. Our second task is to bound the high frequencies
of the solution of (LT'M). Although the functional framework for high frequencies is the same
as before, one cannot repeat exactly the computations therein since the terms (wd,u)" and
(wdyv)" contain a little amount of low frequencies of w, u and v, that are only in spaces of the
type I['Bf,’l with p > 2 (and thus not in some Bgl,l) To overcome the difficulty, we have to study
more carefully the commutators coming into play in the proof (see Lemma .

.1 .3
Proposition 3.2. Let (u,v) be of solution of (LT M) with u§,v§ € B, and ub,vh € B3, for
some 2 < p < 4. Define p* by the relation 1/p + 1/p* = 1/2. Then, the following a priori
estimate holds for some constant C' depending only on Jy:

t t
h h h h
)OIy + [ Nl S o)y + [ (1wl o)
]B271 0 } 0

3
B2
B3, B3, By,

h
1 111G, 8x0)l oo flll

2
¢
Hlwll 1y 105w, 0:0)

p*,1

+ ||(3xu73mv)llé1_% H@xwllef_p%)-

1 p,1 IBp”‘,l

=

1 3
P 2
BP, 2,

Proof. We localize System (LT M) by means of Aj, getting
atuj + agﬂ)j + Sj_lw &qu = le
O + Opuj + v + Sj—lw Opvj = Rjz'
with

le- = Sj_lw Opuj — Aj(w Oyu) and R? = Sj_lw Opvj — Aj(w Oy 0).

The remainder terms le» and RJQ- will be bounded according to Lemma . To handle the
left-hand side of the above localized system, we introduce the following functional, designed
for high frequencies:

@éWmew@+Aw%%

and get

1/d ~+ ) )

5 (dtcg + £§> + /Rax((sj_lw Opttj) Opuj + Oy (Sj-1w Dyv;) Oy,
X . 1

+/R(Sj1w8xvj6xuj + Oy (ijlwaxuj)vj) = /R(axR]laxUj + axRiamUj + B (@cR}Uj + R?@muj))

Using integration by parts and multiplying by 2 then yields

d ~ ~ .
£c§+£§+ / 0w Sj—1w ((0zus)* +(0xv5)?) = / (R3 0puj — R} Oyv; — 2R} Oouj — 2R3 92v;)-
R R

From this, using Cauchy-Schwarz inequality, that Ej ~ ||(0zuj, Oxvj)| 2 and Lemma , we
get for all ¢ > 0 and j > Jy,

- t - t - ) t
z:j(t)+/ cjsc(/ Haxw\|Loocj+2J/ \|R},R§\|L2>,
0 0 0
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with C' depending only on Jy. Hence, multiplying by 2% and summing up on j > Jy,

(23) [I(w,0)(®)]" 52, /II uv)l!hg S Mo, vo) |5

B,
2
o [ el Nl + 5 28 )
7>Jo
At this stage, taking advantage of Lemma with s = 3/2 to bound the sum, we conclude to
the desired inequality. O

3.3. Global a priori estimates for the toy model. We are now ready to establish the
following proposition which is the key to the proof of the existence part of the theorem.

Proposition 3.3. Let (u,v) be a smooth solution of (T'M) on [0,T]. Then, still assuming that
2 < p < 4, there exists a constant C' and an integer Jy (corresponding to the threshold between
low and high frequencies) such that for all t € [0,T], we have

Xp(t) < C(Xpo+ X(t))

with Xp0 £ [[(uo, vo)l[° 1 + || (o, vo)[" 5 and
Bé)l BQI
X)) 2w 1 H o)) s
PB2,) Lpe(B3,)
Hlul® s Flo+dad 0 ol o))" s
LiEr ) Li(BP, 287 HELM)

Proof. As a first, let us observe that ||vH 1 is dominated by the other terms of X,,(¢) (let us
L3(B} )

denote them by Xp( )). This is clearly the case of the high frequency part since, by Bernstein
. Lstl 1
inequality, Holder inequality and the embedding B3 ; — IB%S P2 with s = 3/2,

< v < v v v
I 3 S gy STl S Il Tl g

pl pl

For the low frequency part, we write that
ol <loeul® 1 +2l° 1 with 22 v+ d,u.
By LB, L3 B)))
By Holder inequality and interpolation, we have

1
ol o S (lal oy Ml 4 )T and 2l s S (e el
L} (B 1) Ly@y,) Li@By, ) L (B, 1) LE®y,) LBy,

D=

)

1

As the low frequencies of z in L§® (E;,l) may be bounded by )Z'p(t), we proved that
(24) o 1 < Xp(t) forall teRY.

Let us also notice that by Sobolev embedding and Bernstein inequality,

lv+ 0z UH s Sl g+ l0eul”
Lj (B, Li(B3,) Ll(Brfl)

Therefore, adding up the inequalities from Propositions [3.1] and [3.2) for w = v and observing

that 2 < p < p*, we get

t
X,(t) € Xpo + /0 (w0}l By, 050)]|

1
p
BPJ

h ¢ h ¢
1025 ) (ol b Il Y / ol
2 2

,1 pl

:G.U\D—‘
ﬁmu

1



16 TIMOTHEE CRIN-BARAT AND RAPHAEL DANCHIN

Since
¢ ¢ l
llvll* st = < v+ G| b +Cllull 14,
p 1 p,1
we conclude that the inequality of Proposition is satisfied. ]

3.4. Proof of the existence part of Theorem (1.1} The proof relies on the following classical
result about the local existence of strong solutions for hyperbolic symmetric systems of type

0S) AU + Yi—y AR(U)ORU + Ao(U) = 0,
Ult=o = Uy,
where Ag, k= 0,...,d are smooth functions from R™ to the space of n x n matrices, that are

symmetric if k& # 0.

d
Theorem 3.1. [I, Chap. 4| Let Uy be in the nonhomogeneous Besov space Bg’Yl(Rd;R”).

d d
Then, (QS) admits a unique mazimal solution U in C([O,T*[;ijl) N Cl([O,T*[;IBBiI), and
there exists a positive constant ¢ such that

C
5> ———
1Woll 4+

21

Furthermore,
T*
T < % =>/ VU, = oo,
0

The proof of the existence part of Theorem is structured as follows. First, we multiply
3

the low frequencies of the data by a cut-off function in order to have data in Bg,l‘ One can
then use the above theorem to construct a sequence of approximate solutions, that are shown
to be global. We prove uniform estimates in the space E,, for those solutions, pass to the limit
up to subsequence by means of compactness arguments, and finally check that the limit is a
solution of (T'M') with the required properties.

t
First step. Construction of approximate solutions. Let (ug,vp) be such that ué,vé € By, and

.3 3
ug,v(’} €BJ,. Since (up, vp) need not be in B3, we set for all n > 1,
ul = xn SJO,5u0 + (Id — S"JO,5)u0 and vl = X, SJO,E,UO + (Id — S’JO,5)UO

with x, £ x(n~!-), where y stands (for instance) for the bump function of Section

It is obvious that the sequences (uf)nen and (vf)nen tend to ug and vg in the sense of
distributions, when n tends to infinity. Moreover, as Uo and 1)0 are in IB%” 1, the low frequencies of
the data are in L°°, and the spatial truncation thus guarantees that ug, vy e 1832 1- Hence, Theo—

rem.prov1des us with a unique maximal solution (u™,v™) € C([0, T}, ]; 18322 O)NCH[0, T, ; IB%2 1)-

We claim that we have for zg = ug, vo,

12 l
(25) Izo1]" S [zl

+ ||28 ].13 1
Iy % ol

+ 20 H

1

&
SIRST
P’m\w

1
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1
Indeed, since |[xn||“1 =~ |[x]|°1 < oo, owing to the invariance of the norm in B, by spatial
B, ) '

Db,
dilation (see e.g. [I, Rem. 2.19]), we may write

S

. ¢ . ¢
2811 < ‘XnSJ 75ZO] s H(Id—SJ f5)zo‘ 0
B;,l ’ IBIZJDJ ’ 35,1
l
Szl 1 lIxell 1 + 20l 2
p p P
]BPJ ]prl IBgp,l
Y4 h
Szl 1 + 20l s
By, By,

Next, we see that

h . .
1261% 5 < lxn Ss-s20l"s + [1(1d = S—5)25 .
B B2 B

3 .
2
2,1 2,1 2,

1
. For the other term, the important

It is obvious that the last term may be bounded by | zo]|"
B 1

Mol

observation is that for j > Jp, we have

Aj (Xn SJ0—5ZO) = Z Aj(Sj’-&-QSJOfE)ZO Aj’Xn)'
§'>j-3
.3
Hence, owing to the scaling properties of the space B3 ,,

Y

1Xn So—520]"
B 1

S HSJo—sZOHLOOHXnH]B

S|zl
1 B

3 3 1
2 2 P
2, 2,1 P,

which eventually yields .

2 1
Second step. Uniform estimates. Since, for all T' > 0, the space C([0, T'; IB%Q%J)OCl([O, T];B%I) is
included in our ‘solution space’ E,(T') (that is, E, restricted to [0,T7]), one can take advantage
of Proposition for bounding our sequence. From it and , we get, denoting X' the
function X, pertaining to (u",v"),

(26) Xy < C(Xpo + (X3)%):
It is clear that if
(27) QC’X;(t) <1,

then Inequality implies that

Xy (t) <2CXpp0.
Then, thanks to a classical bootstrap argument, we can conclude that if X, o is small enough
then is true as long as the solution exists. Hence, there exists a constant C' such that

(28) X, (t) < CXpo forall n>1 and te[0,Th].

In order to show that the above inequality implies that the solution is global (namely that

T, = o), one can argue by contradiction, assuming that 7,, < oo, and use the blow-up

criterion of Theorem However, we first have to justify that the nonhomogeneous Besov
3

norm IB%%l of the solution is under control up to time T,. Now, applying the standard energy
method to (T'M) yields for all ¢ < T,,,

t
2 2 2
1", ") (D2 < [l (ug, v6)IZe +/0 100" oo [I(w", 0™ L2 -

L1 L1
Since and the embedding of B, and B3| in L> ensure that O,v™ is in Lflpn(Loo), using
3
Gronwall lemma gives that (u",v") is in LF (L?), and thus in L% (B3,) owing, again, to ([28).
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It is now easy to conclude : for all ¢g 5, € [0, T}, ], Theoremprovides us with a solution of
(T'M) with the initial data (u(ton), v(ton)), on [ton, T +to ] for some T' that may be bounded
from below independently of ¢y ,. Consequently, choosing ¢, such that ¢y, > T,, — T, we see
that the solution (u",v™) can be extended beyond T,,, which contradicts the maximality of T),.
Hence T}, = 400 and the solution corresponding to the initial data (ug,vg) is global in time
and satisfies for all time.

Third step. Convergence. We have to show that (u",v"),cn tends, up to subsequence, to some
(u,v) € E, in the sense of distribution, that satisfies (T'M).

The proof that we here propose rests on Ascoli Theorem and suitable compact embeddings.
Let us explain how it goes for (u™),en, the convergence of (v™),en being similar. From
and elementary embedding, we know that :

1
o (0,u™)neny and (9,0")pen are bounded in L2 (IB%;I),

1
e (0")nen is bounded in L>(B) ).
1
Hence, both (v"0,u"),en and (9;v™),en are bounded in L?( ;’71), which implies that (O;u")nen

1
is bounded in L? (B, 1)- This means that (u")nen viewed as a sequence of functions valued in
1
IBB;’I is locally equicontinuous on R™T.

.3 1
Moreover (u™"),en is bounded in C(R*,B3,), (u™")nen is bounded in C(R*,B),) and
we know, thanks to a result of [I, Chap. 2|, that the embedding from F = {u € &', u’ €
1

.1 .3 .1
B, and ul € B3} to B, is locally compact. Therefore, one can combine Ascoli Theorem

and the Cantor diagonal extraction process to deduce that there exists a distribution w such
1

that, up to subsequence (¢u"),en converges to ¢u in C (RﬂB;l) for all function ¢ compactly
supported in RT x R™. Then, using the Fatou property (cf. [I], chapter 2) we obtain that
1

1 1 3 3
u® € L‘X’(IB%}’;J) N LI(IB%;’IQ) and u" € L‘X’(]B%;l) NIt (153251), with norms bounded by the right-
hand side of . One can argue similarly for establishing the weak convergence of (v™),en to
some distribution v fulfilling the desired properties of regularity up to time continuity.
Finally, passing to the limit in (T'M) is not an issue, since we have strong convergence
(after localization) in norms with positive indices of regularity.

Last step. Proving that (u,v) € E,. The only property that misses is the time continuity.
It may be obtained by looking at u and v as solutions of transport equations. Indeed, by
construction, we have

O+ v0,u = —0,v and 0w + vO,v + v = —0u.

1
The properties we proved so far for u and v ensure that d,u and J,v belong to L? (IB%Z’;J).
Hence, the standard properties for the transport equation (see e.g. [I, Chap. 3|) give us that
1

(u,v) € C(R"';Bgl).

3
To show that (u,v)" € C(RT; Bg 1), one can mimic the proof for general symmetric hy-
perbolic systems, summing up only on high frequencies, as presented at [1l p.196] for instance.
In the end, we thus have proved that (u,v) is a global solution of (T'M), that verifies the
desired properties of regularity and X,(t) < CX,q for all t € RT.

3.5. Proof of uniqueness. Consider two solutions (u1,v;) and (ug,v2) of (T'M) (not neces-
sarily small) in the space E,, that correspond to the same initial data (ug,vp). The proof of
uniqueness will follow from stability estimates involving suitable norms. The difficulty is that
our functional framework is not the standard one for the low frequency of the solution, so that
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one cannot follow the classical proof for hyperbolic symmetric systems. Here we shall estimate
(u, ) := (ug — uy, vy — v1) in the space

(29) Fy(T) £ {z S C([O,T];Bff) 2t e C([O,T];IB%Q%J)}-

The reason for this choice is the usual loss of one derivative when proving stability estimates for
quasilinear hyperbolic systems (hence the exponent 1/2 for high frequencies). The exponent
for low frequencies looks to be the best one for controlling the nonlinearities. Before starting
the proof, we introduce the notation

O () 2 [|(du, o) ()] 2y + II(M’&)(t)IIg% :

p,1 2,1

Step 1. Proving that (du, ) € F,(T). Remember that dyu; = —0,v; — v;05u; for ¢ = 1,2. By
interpolation in Besov spaces and Holder inequality with respect to the time variable, since
. | |
druf and dyvf are in L°(RT;BY )N LY (RY;BY, ), we get
2_1 1,1 1

(30) Opuy, Opvj € L"(RT; B2, ) with ctita

It is clear that the same property holds for the high frequencies of 0,u; and 0,v;, since they
1 .1 L1
belong to Ll(IB]’;l) NL>(B) ). We also know that v; belongs to L(R*; B} ). Therefore, from
the product laws in Besov spaces that have been recalled in Proposition we gather that
2_1 L2 1
9,v; and v;0,u; are in L"(R™; By, ?). Hence, dyu; is in LT(RJF;IB%Z’;1 %), and thus
1 L2_1
(31) (u; —up) € Clgc(]RJr;IB%}’;’71 ).
Proving the result for v; is almost the same, except that we have to handle the damping term.
To overcome it, we notice that
8t(etvi) = —elv; Opv; — et dyu;.
1
3

2
Arguing as above, we get that d;(elv;) € L (R™; B, ), whence

loc
. 275
ZOC(RJF;B;;J )
From and (32), we conclude that (du, &) € F,(T) for all finite T.

(32) (e'v; —wo) €C

Step 2. Estimates for the low frequencies. The system satisfied by (du, dv) reads:

Ou + Oz = —v Oy u1 — v2 Oy 0u,

at(?l} + v + 8335“ = —0 83;1}1 — V2 6160
Then, we follow the computations leading to Proposition 3.1 with w = 0, looking at —dv dyu; —
vg Oz0u and —& O, v1 — v9 0,0V as source terms, and working at the level of regularity 2/p —1/2
instead of 1/p (since the left-hand side of is linear with constant coefficients, this shift of

regularity does not change the proof). Omitting the time integral in the left-hand side of the
Inequality given by Proposition we find that

(33)

t
16, 8) (B[ 2, < / (160 Buur | 5y + o2 Butull’ 5, + 160 Bavn ]| 5y + 02 Bubo] 5, )
57,2~ Jo BP) BP] 2 BP) 2 BP) 2

p,1 p,1 p,1 p,1 p,1
In order to bound the right-hand side, we may use that Proposition yields
(34) labll 23 Sllall o ol 21
By Bl BT
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as well as the following inequality that is a consequence of in the appendix (take s =
therein):

S
|
D=

(35) Hab\le 3 Slall s 1+1Hb|!

pl le p1

In the end, choosing a = v9 and b = 0, du or J;dv, we get

(36) || (Gu, dv) (¢ )HZ /(H(8 up, Gov1)|l 2y 1ov]]

pl pl

el 5 B”l”(&” )l

1
p
p pl

Step 3. Estimates for the high frequencies. We look at the system satisfied by (du,dv) under
the form:

Opou + v9 0p0u + 00 = —0v 833“17
Oy + v + v9 Op0v + O 0u = —dv O 1.

This is System (LT M) except for the source terms in the right-hand side. Clearly, following
the computations leading to , but using the index 1/2 instead of 3/2 gives

(37) (8, qv) ()" /IIC’) va oo | (8u, v)|"

1 1
2 2
2 2
t
b [ 3 2l Aylonlzs + e A1) + [ (oo oeanlly +laodnl?, )
i>Jo 0 B3, By,
Let p* & 2p/(p — 2). Lemmatells us that, for z = du, dv,
> 23 ||z, Aj)8, 2 I |0z val| 700 ||Z||’.Z% aall % D [
=70 B34 B, 1 Bp*f
+ 110wzl ool 3 0 ZH 1 10z SR
e ]B2 1

p 1 p* 1
Hence, using obvious embedding and the fact that

and [|0;v2]® 1 S o]’

P B
1 Bp*,l

¢ l l L
19220l 3 S =N 2y Tvall s S el

= @\H
ST

p,1 ]Bp,l Bp* 1 1

yields for z = du, dv,

(33) > 28 |lee, 4,002, S (el
7>Jo B

+||U2||;g ) (Il2 ||é,_1 + 2 II" )

1 2,1 p 1 2,1

SRS

The last two terms of may be bounded thanks to Inequality : we get for z = ug, vq,

¢ ¢
(39) 0021y S (01 5y + 1810 ) (1021, + 10521 )
]BQ,l pl 2, pl 21
Plugging and in , and using also the fact that
10502z S floal© s + Hvzllhg
B, B3,

we end up with

+ | (ur, v1,02) "

3
B3,

(40) [CRDIGIAE < [ (o

1
P
Bp,l
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Step 4. Conclusion. Putting and together yields

t
U (t) SC/ (I, v, 02) 0+ (o, 00|y + 1(Dpur, pon) || 2y )& dr.
0 35,1 IB22,1 Bil

Knowing that (u1,v1) and (ug, v2) are in Ey(T) and remembering (30)), we get,

T
/ (1(ur, on, 02)[E 1+ (g, 01, 0275 ) < oo
0 p B2

prl 2,1

Hence, applying Gronwall lemma allows to conclude that &' = 0 on [0,7]. In other words,
(u1,v1) and (ug,v2) coincide on [0,7] x R. Since T is arbitrary, uniqueness is proved. O

4. COMPRESSIBLE EULER SYSTEM WITH DAMPING

As pointed out in the introduction, System (7'M) may be seen as an approximation of

the damped isentropic compressible Euler system with pressure law P(p) = ’)2—2- Here we want
to adapt the method of the previous sections to the true damped compressible Euler system :

Op+ 0:(Vp) =0,
O(pV) + 8x(pV?) + 0:(P(p)) + ApV =0,

supplemented with initial data (po, Vp) that is a perturbation of some constant state (p,0) with
p > 0. The (given) pressure function P is assumed to be smooth and such that :

(E)

(41) Case 2 < p <4: P(p) =ap” for some positive & and = in a neighborhood of p.
Case p =2 :just P'(p) > 0.

Note that, performing a suitable normalization reduces the study to the case p = P'(p) = 1
(hence a = 1/~ in the first case), which will be assumed from now on.

n(p)é/lppls(s)ds

Since our assumptions on the pressure guarantee that p — n(p) is a smooth diffeomorphism
from a neighborhood of 1 to a neighborhood of 0, one can rewrite (E) under the form

on + Voyn + 9,V + G(n)o,V =0,
{@V + VO,V +dmn+ NV =0,

where G(n) is defined by the relatio G(n(p)) = P'(p) — 1.

Theorem 4.1. Under hypothesis , there exist k = k(p) € Z and co = co(p) > 0 such that
for Jx 2 |logo\| + &, if we assume that (ng, Vo) fulfills the same conditions as in Theorem 1.1
then System admits a unique global solution (n,V') verifying the same properties as the
solution therein. Furthermore, Corollary and Theorem hold true (with the same decay
rate).

Consider the new unknown

(42)

Proof. Performing the rescaling reduces the proof to the case A = 1, and we are thus left
with bounding for all ¢ > 0, the functional

D G (0] R (R T
L (By,) L (B3y)

t p,1 t

1
PBy)

l h
il + IV

3 H||V+on| 1 +|V]
LBP] 1B, L}(BE, L

4In what follows, we shall only use that G is a smooth function vanishing at 0.
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in terms of

Xp0 2 1m0, Vo)1 + [l (no, Vo)II" 4
1351 By,
Remember that |[V| 1 and |V +8,n|" 1 are bounded by the first four terms of X,
LBy ,) Li(By,)

(see ().

Low frequencies estimates. We follow the method we used for (T'M), looking at G(n)d,V as a
source term. Owing to Propositions and [A-4] we have

1G(n)2: VI 1 S linll 1 102V 1
B,y B,y

&
T =

1

Therefore, mimicking the proof of Proposition we end up again for all ¢ > 0 with
@) IVl /leﬁ /HV+8W;
P p,1

<c(||<no,vo /||nvan>||.1 i, )
P ]E;’

pl

High frequencies estimates. One has the following proposition:

Proposition 4.1. Let (n, V') be a smooth solution of on the interval [0, T, under assump-
tion . Define p* by the relation 1/p + 1/p* = 1/2. There exists a constant C depending
only on the threshold Jy between the low and high frequencies such that for all t € [0,T1],

I VYOI /an Sl ol /nanavu ) I
B3, B3, B3, B3,

/ <|V|| e 100y + 1@ 2y 0V )
0

p* pl pl B*l

+ [ 10Vl >||h3 + /0 (100, Gy 10V + 10,71y oGOy, )
21 p*,1

pl pl Bp*,l

Proof. We localize System by means of Aj, getting

(44) {&ﬂlj + Sj_lvaxnj + 8xvj + Sj—lG(n)aﬂtvj = le' + R;'I’

OV + 851V, Vj + 0znj + V; = R?
where
R]l = Sj_1Vc‘9xnj - A](Vc?xn), Rll = SJ 1G( )C%VJ - AJ(G(n)axV)
and R} £ S, 1VO,V; — Aj(VO,V).
The only difference with (T'M) is the appearance of Sj_lG(n)ﬁij in the first equation and
of the commutator R;l. To handle the former term, one has to add a suitable weight in the

definition of the functional we used for (T'M): for j > Jy and n = n(Jy) > 0 (to be chosen
small enough), we set

B2 [ @+ (141G, + 1 | Videny
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Differentiating in time this quantity and performing several integration by parts yields:

(45) G4+ [ 0,80V ((0umyP (14 8,16 (0) (0.1
R

— [ 0:81G) 8V @13 = [ (@) 0181160
R R
+2 /(ax(R} + R} 0pnj + (1+ S;-1G(n)) 0 R 9:V;) + n/ (02(R} + R}V + R} 0ynj)-
R R

with 72 £ oyl + (2 =) [ (14 526 @:;P +n [ Vidan,.
R R
To continue, let us assume that
(46) Inllzee + [|[V]|ze <1 on [0,T].

Then, since G(0) = 0, we have, using the mean value theorem and the uniform boundedness
of operator S;_1 in all Lebesgue spaces:

155-1G(n) ||z < lInllze < 1,
and thus, if 7 is small enough,
(47) L5 = |(Danj 0V))| 72 and Hj = [(Danj 0aV))|2  for all j > Jo.
Let us also observe that
9;G(n) = G'(n)oyn
=—-G'(n)(VIzn+ (1 + G(n))d,V).
Owing to assumption and to the mean value theorem, we thus get

(48) 10:G(n)[Loe S N02V | oo + [V ]| oo [| 027 | Lo

Proceeding analogously, we obtain

(49) 10:G (1) oo S |02 oo

Hence, from inequality and , we get for some small enough ¢ and large enough C,
d = _—_ . |

(50) £L§ +cL; < C(1(8:V,05n)| L= L5 + 2 ||(R}, R}, R3)||12) £, for all j > Jo.

At this point, taking advantage of Lemma yields
_ t t ot
(51)  Li(h) +e /0 £; < L;(0)+C /0 102V, 0xn)|| o £+ C2 /0 15, B B

Now, multiplying by 2%, using and summing up on j > Jy gives us

t
62 VO + [ 10V Sl ol
B3, 21 IBZ)21

/H 0V, ) ll(m V)" / S 0% (LR B2,
Bia ji>Jo
The terms Rl and R2 may be bounded exactly as in the proof Proposmon E As regards R}l,
Lemma @ gives us

> 22| R} 2 S 102G () o]0 Vllhl oV 111G )l

42k L
]ZJO 21 pl Bp* 1
h ¢ )4
0 VL= Gn)I[}s +[10:V]] e [ 0:GM)I
IB%2,1 pl IIBp*,l

Using completes the proof of the proposition. O
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Global-in-time a priori estimate. We claim that granted with Inequalities and the above
proposition, we have, whenever Condition is satisfied on [0, 77,

(53) Xp(t) S Xpo+ X, (t) forall tel0,7].

Inequality is exactly the same as for (T'M). Hence, the terms in X, (¢) corresponding to
the low frequencies of (n, V) are bounded by X2(t). Note also that [|v| ,. 1 may be bounded
LE(By 1)

p,1

according to ([24), and thus eventually by X2(t).

In order to handle the high frequencies, we shall proceed differently depending on whether
P(p) = p7/~ or P is a general pressure law with P’(1) = 1. In fact, to handle the latter case,
we need to assume that p = 2.

1. Case P(p) = p7/y with v > 0. Then, G(n) = (7 — 1)n and the inequality of Proposition
41l reduces to

(. V(2 /HnVHa<HWM6Hs /uam&w%%mmw@%
2,1

2,1

/Qwuﬂnwnavmlfwwnavmlwwww )

p*,1 Pl pl 1

t
/(wmpuaw IRV ol )

P 1 E 1
Compared to our study of (7'M ), only the last line is new. However, one can use the fact that

HnH L H@ V1, Sinllf 1 HVH 1
/ B B2 L2, ") 2B7,)
11
/ 18V || b |0z n|| 1 S HV|| 143 ||n|| 1 as 1——>—
B, P B 7 Li@E 7)) LE@P) pr TP

The terms on the right may be bounded by X]g (t). Hence we have (53)).

2. Case of a general pressure law with P'(1) = 1. For p = 2, Proposition together with the
S1 . .3 .
embeddings B3 | < Bgo,l < L and B3, < IB%éQ1 give us

I VYOI /an by Sl )1 /nanamwymvm
2 2 2 2

3
1 IB221
t
/qu Vil /me%mmwg+/mmamu v, -
By, By, 0 2,1 Bs1

Since, by Proposition and Cauchy-Schwarz inequality, we have

~

t
10Vl 1 1G]l
0 Bz,l

3
Bz,l

t
10Vl 3 [Inll. s S 10V [In]
0 IB32,1 2

~ .1 .3
B3, Li(B3,)  L{(B3,)

t
TL,Gn 3 1% 1 n .3 Vv .1y
1 GOy WVl Sl IV

one can conclude that is satisfied.
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Uniqueness. As for (T'M), we look at the system satisfied by the difference (dn, V') := (ng —
ni, Vo — V1) between two solutions, namely:

(54) 8755)7, + &EW + V2 8$6n + G(ng)ax(sv = 6zn1 — (G(?’Lg) — G(nl))axvl,
OV + OV + 0pon + Vo 0,0V = —V 0, V1,

and estimate (0n, dV') for all T > 0 in the space Fj,(T) defined in (29). Compared to the proof
of uniqueness for (T'M') we have to handle the two terms containing the function G.

Let us first explain how to estimate the low frequencies. We have to bound the additional
2 1

terms G(n2)0,0V and (G(ng) —G(n1))0, Vi in IB%;IE. Now, according to and (35)), we have
1(G(n2) — G(11))0, V1|| 23 SNGM2) = Glm)ll 1 (10 V1||B§,72>

pl pl p,1
|G (n2)0, 5V|| 2oy Slnall g 140 l10V] 2 g
pl pln]B pl
From the relation
1
(55) Glns) — G(ny) = on / G (n1 + 7o) dr,
0
and Propositions [A.3] and [A74] we find out:
|Gln) = Gl S ol
]Bp,l p,l
Therefore, we eventually have
t
56) 160801 3y < [ (@m0 g4IV, + VeI, @)l )
pl pl pl plmel p,l
t
+ [0Vl g1y + el 30
pl p pl pl

.1
Let us next estimate the high frequencies of (dn, V') in B ;. Applying operator A to , we
get for all 5 > Jp,

Oronj + 020Vj + S5 -1Va 0xbnj + S5 1G(ng) 0,6V
= —Aj (W Ozn1 + (G(n ) G(nl))a Vi) + (5R1 + 5R

0u8Vj + OV + Dy + Sj-1Vo 8,0V = —A;(V 9, 1) + 6R3,

with dR} = Sj_}waxénj — Aj(Vadybn), ORI} £ S5 1G(ng)0,0V; — Aj(G(ng)d,0V) and 6R? £
$5 1 VadudV; — A (VadydV).
Arguing as in the proof of Proposition we consider the functional

/ (02012 + (1 + 851G (n2)) (8V)? +1 / ; Oy
R R

and follow the computations therein, with regularity exponent 1/2 instead of 3/2. We get

(R SION / 1(0ana, 0, V2) = an, ), / S 2% (JaR | -+ R | o+ OR2) 1)
B3, Bs, §>Jo
t
[ o]ty + 10 VA, + (Glna) ~Glnn )0V )
0 22 221 1822,1
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The terms with 5R]1- and 5R]2- may be bounded as in the proof of uniqueness for (7'M ). Regarding
5R’-1, we use Lemma with s = 1/2, and get

> 25 0B} 12 S [10:G ) o< V1"

Jj=Jo

100V 1HG(7”L2)H£1+ |

pl *1

+[102 WI\LwIIG(nz)II"l + 1102 5V||£1_;||(9 G|l

21 pl B

1
2
2

p*l

To continue the proof, we have two distinguish two cases depending on whether P(p) = p7/~
and 2 < p <4, or P is a general pressure law with P'(1) =1, and p = 2. In the first case, we
have G(n) = (v — 1)n, so that G(n2) — G(n1) = (7 — 1)dn. Now, in light of (85), we have

H&%anng; (HM@ 1+H5th )(H@a:VlHé L+ 110: Vth )

2,1 p 1 1 p71 2 1

}\7 m\»-‘

As all the terms with G(n2) in the estimate for R;l are proportional to no, we arrive at

(57) I, V) B)I"

2,1

t
5/ (ll(n1,m2, V1, VR) | +||(n1,n1,V1,V2)||hs + [1(@zna, 02V %_%)H(&”L,W)HFP-
0

1
p
Bpl 21

F
o

In the case p = 2 with P’(1) = 1, then one may proceed essentially as in the proof of Proposition
to bound the terms with G(ng) in the estimate for R 1, and one can use Proposition
combmed with product laws and Relation (| . to eventually arrive at

I(G(n2) = G(n1))8Vall g < llonll, y 1182VA]l,

1 1
B2 B2
2 2 2

1
Consequently, (57) still holds true.

In all cases, putting and together yields
[1(0n, V) [ 5, ¢

<C/ H ”17n27V1,V2)H 1 + H(nlanQ)‘/lv‘/Q)”h3 +H(a nlva ‘/1)“ 2 1)”(5”’ 6‘/)”17177

p1 21

and using Gronwall lemma completes the proof of uniqueness.
Decay estimates. Here, we assume that p = 2 and follow the same approach as for (T'M).

Step 1: estimating the solution in IB%2 . This is only a matter of handling the additional term
G(n)0zv. Applying A to the system satisfied by (n, V) yields

Buny + 0,1, = v, ~ LY + (V. A Joun
Vi + denj + Vy = =V, Vj + [v,4;]8, V.

So, considering G(n)d,V as a source term, we get

125, V) () HL2+/ Villz2 < l[(ng, V3)(0 HL2+/ 102 V|| Loe (I (25, V) | 2

- /0 V. &y10emllz2 + /0 1V 8,10V Iz + | A (Ga:v) | Il

We have

S8V,

IG)0:V lly=or < IG()

1
B2
21
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In order to bound G(n) in IB%2 o0+ one cannot readily use Proposition since —o; may be
negative. However, from Taylor formula, we know that there exists a smooth function H
vanishing at 0 such that
G(n) =G 0)n+ H(n)n
Hence, combining product and composition estimates gives
1G5 S lInllgzo (L +lInll L )

21

In the regime we consider, HnH 3 is small. Hence we conclude that
2 1
t
1 VYO llgy1 < ll(no, Vo)llg, 1 + € Ha VH 1 H(n Vllg; =1

which ensures after using Gronwall lemma and the bound of ”89:V|| in terms of Xs,

Ll(]Bél)
that
Vi€ RY, (0, V)()llgoms < Clro, Vo)l

Step 2: Lyapunov functional. We aim at exhibiting a Lyapunov functional that is equivalent
to [[(n,V)|l.1 .3 . The high frequency part of the solution has already been treated efficiently
B2, NB

21 Bo 1
with £;. To bound the low frequency part, consider the evolution equation for z L2V 4 0,n:

Oz + Vopz+ 2= =02V — 0,V — 0,(G(n)d, V).
Following the computations we did for (T'M) leads to

0l + [ 141y < Il + [ Yy
2 21

+c/ IVl Nellg +c/ .V, 10anl, / 0. (G VI
2 2,1 2

The last term may be bounded. by ||G(n)0y VH 3 Then, using Propositions|A.3|and [A.4] one

21

1
B2
21

ends up with
4 l ¢ )4 !
COMEOT / I=1ty < ol / VI +C [ 10Vl G m 2l
21 21 0 B3, B3,
Next, using the fact that
on + Vogn — 8§$n =—-G(n)0,V — 0z,
we get
l ! 4 1 ! l !
69 In@ILy + [l <lmol?y + [ oy <0 [Cl0vily Il -
83, Jo o B3, 83, Joo B3, Jo o Bi, BE
The high frequency part of the solution may be bounded according to (51]). Hence, setting
L2328(Ajn, Aj2)| e+ > 255 and H 2|V +0, nHe 1 +HV||h +||n||Z +|!th
J<Jo i>Jo B, B3, B3, B3,

and bounding le-, R}l and R? as in the proof of Proposition we discover that if taking Jy

negative enough, then all the linear terms in and may be absorbed by H, so that we
have for some suitably small positive c,

. t . . t
(60) Eoy+e [ A<LO)+C [ oV, geec unu j VI,
0 0 2

1
B2
2
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Above, we used that £ ~ H(n,V)||]FBQ%1 ,2%’1 and that H > ||8xVHB§’1. Now, since furthermore
H > HzHB% and L > HZHIFB% , one may write
21 21
7] 'zg,le”Bg%,l < Hn\\;il + HHHBQ%IHZHBQ%1
Sy Il + (it 2+l el + iy el

SLH+LH+LHA+HL.
Hence, if Z(O) is small enough then, combining with a bootstrap argument yields

t~ ~
£(t)+;/ H < L(0) forall ¢>0.
0

Step 3: Proof of decay estimates. From this point, one can repeat word for word the proof of
decay estimates for the low frequencies of the solutions to (TM).

For the high frequencies, starting from , using Lemma and integrating gives

t
VIO S e ool + [ IV
2.1 2.1 2,

n,Vi)|l.s +||V|.. [In].3 )
10 V)llg + 1V ol )

1 1

Compared to , there is one more term. However, as for (T'M), Steps 1 and 2 together
imply that

n, V)(t < (t)7,
[CRSICIREYE

Hence, one may easily conclude that
I VYO S ()2
BQ,I

This completes the proof of the theorem (up to the proof of existence, which is totally analogous
as for (TM)). O

5. A MORE GENERAL 1D MODEL

In this section, we consider a more general class of one dimensional systems, namely

{ 0w + a0pv + V30u + Wtow =0,

(61) v + BOyu + V200 + W20,0 + M + kAvd = 0

whereﬂ K is a real parameter, ¢ > 2, an integer, V! = V1(v) and V2 = V?2(v) are smooth
functions vanishing at 0, W' = W(u,v) and W? = W?(u,v) are smooth functions vanishing
at (0,0), and «, 8, A are strictly positive constants.

Theorem 5.1. Let the data (ug,vg) satisfy the assumptions of Theorem with Jy = |loga\|
and p = 2. Then, System admits a unique global solution (u,v) verifying the same prop-
erties as the solution therein. Furthermore, Corollary[1.1] and Theorem[1.9 hold true.

Remark 5.1. If VY, V2, W' and W? are ‘general’ smooth functions, then it is unlikely that a
LP theory may be worked out. We need a very specific structure of the nonlinear terms in order
that the LP estimates of the low frequencies fit with the L? reqularity of the high frequencies.

Remark 5.2. We do not know how to handle terms like uO,u in any equations of the system
(this is the reason why we assumed that V' and V? only depend on v). In fact, although the
system is locally well-posed if V' and V? also depend on u, the time integrability of u is not
good enough for global estimates.

5In the case g =3 and k > 0, kv? is a classical representation of a drag term.
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Elements of proof. We just explain how to find a Lyapunov function and to control the norm in

IB%;"; of a smooth solution (u,v) of on [0,77, in terms of the data. Proving existence and

uniqueness is essentially the same as for the systems we treated before (uniqueness is easier
somehow since we assumed p = 2). Although the system under consideration is no longer
symmetric if a + W' # B+ V2, it is symmetrizable (see [3, Chap. 10]).

Note that performing a suitable rescaling reduces our problem to the case
(62) a=8=\=1.
Indeed, if we set

(w)(1.2) = (Vai, /Bo) (M, 2?5 r).

then (u,v) satisfies (61) if and only if (@, ) satisfies a similar system with (62)), parameter
KB 2" and slightly modified functions Vi, Va, W7 and Ws (the modification depending only on
a and (). So we will assume in the rest of this section.

A priori estimates. We adapt the method we used for (T'M) in the case p = 2. The terms
V19,4 and W20,v are a slight generalization of v0,u and vd,v and may be treated similarly.
To handle W'0,v and V?20,u, we need to introduce suitable weights in the definition of the
Lyapunov. Finally, v¢ may be seen as a harmless nonlinear source term.

Let us start the computations : we assume that we are given a smooth function (u,v) of
on some time interval [0, 7] such that for some suitably small n > 0,

(63) Sup [(w, o) 3 <,

)

1
B2
2

and, still denoting u; = Aju and v; = Ajv, we set for all j € Z,

L;= (H(uj,v])lle /Rvjamuj+/R(1+v2)(amuj)2+/R(1+W1)(axvj)2>l/2.

We shall use repeatedly that implies that

(64)
Sup max ([[u(t) | oo, [[0(B) ]| Loes [VE@)|zo0, (VO zoe, W) l|zoe, W2 (#)]2) < 1,
€ )

which in particular entails that
(65) L ~ || (uj, vj, Opij, Ovj) || 2-
Now, applying Aj to — 62) yields for all j € Z,
(66) Owuj + (1 +W)6UJ+V8UJ—R1

&ﬂ}j (1 + V2)C{9xu]' + W (%vj + Vj = RJ2 - KAj(’Uq)
with ‘ . ‘ .

R} £ [V' Aj)oyu+ W' AjJov and R £ (V2 Aj]0pu+ W2, Aj]0v.

In order to compute the time derivative of L'?, we need the following obvious identities:

1d 1
51l + e = 5 [ (@200 + @Pow?) + [ (Whujo; + V20,00,

= /R(Rgl'uj + Rivj — s (A;0%)vy),

d
/w8w+wa%mrw@wﬁfy/w@w
dt .

+/ ((T/V2 — V1)6xuj Ozvj + V2(8xuj)2 — Wl(axvj)Q) = / (R?@muj — R}@xvj — K(Ajvq)é?xuj)-
R R
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1d
th/(l + V2)(Opuy)* + /(1 + V) 0y ;0 (V0 ) + / (1 + VH0u;0:((1 + Wh)o,v;)
R R R
R 2 Jr

1
R R R

. 1
+/R(1+W1)(axvj)2 = A(1+W1)axvj(azR§ — kO Aju?) + 2/Ratwl(axvj)2.

The fundamental observation that justifies our using those very weights in the definition of £;
is that the third integrals in the last two relations compensate. Consequently, denoting

1 1 1
R R

and using the fact that

we arrive at

/V2vj6xuj = —/ VZUj8$’l)j—/Uj’l)ja$V2,
R R R
1d

1@ 2 2 _ 1/ N2 2 24 11 /
1 1
3 / (V! = W) 00015 0oy — V(00 + W (D)) + 5 / (Oeu 2 (V' 0,V — (14 V)9,V
R R

UjvjaxVQ + /R(‘/V2 — Wl)u]ﬁzvj

4y (@ W2 wt = e WHow?) + 5 [ (@0 + (a0 00")
R R
1 1
+/ (uj — 53361)]-)3} +/(vj - 5amuj)Rj?. +/((1 + V) 0puj0: R} + (1 + WH)9pv;0. R5)
R R R

1 . .
—/i/ <(1)j + ialej)Aj’Uq + (1 + Wl)axAj’Uqax’Uj> .
R
Since
V2= —(V3' (1 +VHopu+ W20 + v + rkv?),
remembering , we have
10:V2 (| oo S 10zull oo + 1[(u, 0) | oo [|0n0]| oo + [[0]| oo
and, similarly,
10WH [ S N|0sullpoe + [|1050]| e + [[0]] o<

Observe also that

||6xvi”Loo < ||0zv]|Le  and HaxWiHLoo S (Opty Opv)|| e for @ =1,2,
whence, in particular

/R wj0;05V < |19l sl 210 -

Therefore,

1d
5%@ + 15 S 1w 0)]] oo 10205 p2ll (g, Batty, O2v5) | 2 + [|v]] oo 10215117 2
Ozl oo || (v5, Oxig, Ozv)||7 2 + 100 oo || (15, v5, Oxuiz, Oxv;)[|7 2
+[[(Rf, Bl 22l (ug, v, i, av) | 12 + 1102 R}, 0o RE) || p2]l (O, Opv;) || 12

HI (v, Bzl 218507 2 + 10012 10250 2.
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Then, remembering and using lemma we discover that for all j € Z and t € [0, 7],
t
(67) £;(t) + emin(l, 221)/ L, < £,(0)
0
t
+ C/O (1020l oo L + 105t oe [[0jl| 22 + | (v, Baw)l| Lo |10zl 22 + || (w, v, Ope) || v (|00 £2)

t t
b [ I 0800+ C [ IR R0, B 0.
0 0
To bound the commutator terms, let us use that yields

) for all j € Z.

_1
IR} l2 S 5275 (10l 1

2,1 By

+ |0 W 1 (vl
RPN

1

Clearly, since v is small in BJ,, V1 =V(v) and V1(0) = 0, Proposition |A.4| entails that
1

(63) 01,5 S 13kl

21

3
2,1
In order to bound the term with W1, we use the fact that there exist two smooth functions
G = G(u,v) and H = H(u,v) vanishing at (0,0) and such that
W' = 8,W(0,0)0,u + 0, W (0,0)0,v + G(u, v)8yu + H(u, v) 0.
1

Consequently, using the stability of the space B3, by product and results in [26, Section 5.5]
for bounding G(u,v) and H(u,v), we get

S @au, dv)l g (14 ([, 0),

).

69 o, Wt
! Py,
So finally, remembering (63)), we have
_J
(70) IR 122 < 272 (lull .y 10z0ll 3 + [loll 3 11(eu, 8503 )-
B34 B3, Bs, Bs,

Bounding R? works exactly the same. Next, in light of , we have

_1
”a:r:RJl'HLQ S ¢2 2(H8$V1H, [0zull .1 + HaleH% Haﬂ)”% ),
B5, B By B3,

1 1
2 2
2, 2,1

and a similar inequality for (%R?. Hence repeating the above arguments for bounding 9,V1,

0, V2, 0, W' and 9,W?2, we end up with
i _I
(71) 102 R[22 < 272 ||5:chBQ%1H(f9:cua Oav) .

1, ©1=1,2.
B3,

.1
Now, reverting to @, using the embedding 18322’1 — L and that

(72) Hj =~ ||(vj, Ouj, Opv;) | L2

we get, denoting
i
L2) 2z,
JEL
two positive constants ¢ and C' such that

. t t
(73) ﬁ(t)+czmin(1,22ﬂ)2%/o ngc(0)+c/0 ol £
: ,

1.
2
2,1

t t t
€ [ Mol 0sully +C [0l +C [t a0
0 B3, B3 0 1532?71 0 B
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As for (T'M), we need better properties of integrability for v in order to close the above estimate.
The situation is a bit more complex since the second line above was not present. Nevertheless,

it is still possible to exhibit a control of z £ v + d,u in L'(Ry; 1532%’1) (which, as we saw in
yields a bound for v in L? (RJF;BQ%I)). Indeed, we have

(74) Oz 4 2+ V302 = (VI = W?)0pv — V20,u — 92,0 — 0,V Opu — 8, (W'O,v) — ko
which, as in the proof of leads to

t t t
4 4 l y4
ﬂw%+/Hﬂ%fﬂm%%+AHﬁw%%+C/H&W%;W%;
21 2,1 2,1 2.1

t
/Wwvvamvl /wam
22 0 1322,1

Using product and composition estimates and remembering (6 , we get

/|| —WHow + V20u + 0,V dyul

1
B2
2

IV = w?), vl Sl o)l g 11001y
21 21 By,
HV23xUH.% S vl 10ull g
By, 21 Bm
10V Dl 3 S 1|8s vll 3 19ull g -
¢ ’ IB322,1 21 IB322,1

Since only low frequencies are involved, we have

10:(W'a )[4y S W'aol
B 1322,1 2,1

S o)l g 1100l 4
. ~ Y B2 T ]B22’1

N

Hence, using also , we get

t
<%>H4M«;+/meésumn; /u ol
B34 B3, By, 22
+c/uamluuvzau o /Hﬂ sl /er
2 2 1 2 1

In order to close the estimates for the solution, it suffices to add up . ) to 6~ with su1tably
small €. More precisely, setting

LAL+e|z |yf and H2c¢) min(l 221250 + |2
21 ]EZ

)

1
B2
21

we get for all ¢ € [0,T7] if € has been chosen small enough,

(76) () + / H < 20 +c/ I9woll 3 2+ 0012y + ol 100l )
2 ]B2,1 ]B2

1 1

¢
e [,
0 ¢ IB322,1
Let us emphasize that

L = ||(u,v, du, 0p0)]|.

3
By,

and H ~ lull® 5 + s + v+ u||€ + ol
By, IB32,1 2 1 By,
Hence in particular, we have ||0, UH 1 < H and, as explained in the previous section (just

21

replace n by u and V by v),
(77) 1ol 3 l9wull,

21

SL

1
B2
2
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Furthermore,
0.0y < (10wl )2 + (0wl
IB52,1 2,1 21
S Nl Nl 5 +(HUHh )? S LH.
B? 2
2,1 2,1 2,1
Finally, Lemma and together ensure that
1.y < vl
IB22,1 BQ%,I
S ol 73! IIle.l + 10zl
Eél( bt 10l )
s Y 2||v\| 3 0]
21 221
SLTYH
and L
1007y S N0e0lly 0l S LA
IB322,1 IB322,1 1322’1

Consequently, Inequality reduces to

1 t - t . -
+2/ %§£(0)+0/(£+£q—1)7{.
0 0

Now, applying a bootstrap argument, one may conclude that there exists a small constant 7
such that if £(0) <7, then

(78) vt € [0,7), /7—[<

This gives the desired control on the norm of the solution and, in addition, that Lisa Lyapunov
functional.

Decay estimates. Granted with a Lyapunov functional that has the same properties as in the
previous sections, in order to get the whole family of decay estimates, it suffices to establish a
uniform in time bound in B, 7! for the solution. The starting point is that, for all j € Z,

atu]' + 8xvj + Vlaxuj = [Vl, A]]aw — Aj(Wlax’U),
Ovj + Opuj +vj = —Aj(WQ&EU) — Aj(Vzawu) — HAj’Uq.
Applying an energy method, using Lemma and Inequality eventually delivers:
t
100l < w0l +C 10V 100l

2 1
¢
+/0 (HWlamUHE;‘;l + \|W23xv||]32—g + |‘V25xu||]32—g§ + /‘f”vqn]ggg)‘
Using for ¢ = 1,2, the decomposition
W(u,v) = (0,W(0,0) + G*(u,v))u + (0,W(0,0) + H'(u,v))v

where G* and H' are smooth functions vanishing at (0,0), we get thanks to results in [26]

Section 5.5| and Proposition

IIW’a Vg er S M1Cw v)lg; o 1920,

”B B3
2

Proposition [A-3] also implies that

2
1l < HvQHBmHvllq
21
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In order to estimate the term with v?, we use that v = z — 9,u and get the decomposition:
v? = ol +vb) + 2 (v° — dput) + (Dpub)?.

By Proposition and interpolation, we thus have

" Hv+v€||E o+ (Ilvgllﬁ—m + (192 uﬂllﬁ—m)llz

1
L
ollgzor + 10,0 o 21

3
BQ,l

¢
I

4
HUQHB—Ul ~ ||U 3 B% + Hazu H?%(%_gl)
2, 2,1 2,1

< Iloll”

¢ ¢
3 el eyl

1 By,

Hence we have

2
1ol =2 S ol Ml (e, )HBmH
2,1

Finally, using the decomposition
1
V2(v)8$u = VQ(U)&Cuh + V2(z)8zu£ — (/ VQ(Z — T(?ggu)) (&Cuﬁazue + &Cue@wuh),
0

we get by similar computations that

V20, ullgyer S 11w, v)llg o H.

I

Therefore, in the end, we get

1C, ) ()l < (0, v0)llg o +C/ H+ [[oll7,*) I (u, g5

]BQI

which, combined with (78) and Gronwall lemma implies that

sup ||(u,v —o1 S ||[(ug, v -
te[w]ll( YOl 71 S M1(u0, v0)lg; -

At this stage, completing the proof of decay estimates is left to the reader. O

APPENDIX A.

Here we gather a few technical results that have been used repeatedly in the paper. The
first one is a rather standard lemma pertaining to some differential inequality.

Lemma A.1. Let p > 1 and X : [0,T] — RT be a continuous function such that X? is differ-
entiable almost everywhere. We assume that there exists a constant B > 0 and a measurable
function A : [0, T] — RT such that

1d
~ X7+ BXY < AXP™Y g on [0,T).

pdt
¢ ¢
t)+B/ X§X0+/ A.
0 0

Then, for allt € [0,T], we have
Proof. The case p = 1 being obvious, assume that 1 < p < oo. Then, we set X, = (X? +€p)1/p
for € > 0, and observe that

1d
7$Xp + BXP < AXP™!' + Be? ae. on [0,7).

Dividing both sides by the positive function X? _1, we get

d e \P!
—X BX. < A+ Be| —
g TS AT E<X€> ’

whence, as ¢/ X < 1,

d
X+ BX. < A+ Be.
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Then, integrating in time and taking the limit as € tends to 0 yields the desired inequality.
The following result from [I0] has been used in the proof of Proposition

Proposition A.1. If Supp(Ff) C {€ € RY: RiA < |€] < Ra\} for some 0 < Ry < Ry then,
there exists ¢ = ¢(d, Ry, R2) > 0 such that for all p € [2,00], we have

2 (P—1 _ 20 p1p—2 _ _ -2
o (U8) [ <= [ vseiarz == [ gagse

The proof of the following inequality may be found in e.g. [I, Chap. 2|.

Lemma A.2. Let 1 < p,q,r < oo be such that % + % = % Let a be a function with gradient in
LP and b, a function in L1. There exists a constant C' such that

H[Aj,a]bHLr < €279 |Vall o bl for all j € Z.

The following estimates are proved in [I, Chap. 2| and [12], respectively.

Proposition A.2. Assume that d =1 and that 1 < p < co. The following inequalities hold:

(1 1) 1
° IfsE}—mm(;,;),;—l—l}, then

(79) 275 || [w, Aj]9,v

| <Ce o]
Lpr B

L lollg, | with Y =1
p,1 JEZ
(1 1) 1
o Ifse [—mm(;,17> ,54-1[, then
(80) sup 27°[[w, Aj]8zv e < Cllovwl 1 o]l -
JEZ B, poo

e Ifse }—1 —min(%, 1), 1], then we have

(81) |

0u(fw, o), < Cez7 |0sul ) Iollgy, with Y e;=1.
1

1
P
P, JEZ

The following product laws in Besov spaces have been used several times.

Proposition A.3. Let (s,p,r) €]0,00[x[1,00]?. Then, B;T N L™ is an algebra and we have

(52) lablls, < C(lall~ bl + llals, bl):
If, furthermore, —min(d/p,d/p’) < s < d/p, then the following inequality holds:
(53) sy, < Cllal g g,
We have, if —min(d/p,d/p') < s <d/p—+1,
¢ < o
(54 bl 5 lal g 1l

In the case d =1 and 2 < p < 4, we have

(85) labll .y < (lall® s, + llall”y Yol 2y + N8l )-
B2, ( B, BQ{I)( B7, Bgl)

Proof. The first two inequalities are direct consequences of the results stated in [1, Chap. 2].
To prove the third one, we need the following so-called Bony decomposition for the product of
two tempered distributions @ and b (whenever it is defined):

ab=T,b+ Téa with T,b 2 Z Sj,la Ajb and Tb'a £ Z Sj+2b Aja.
JEZ JEZ
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Now, using Bernstein inequality and the results of continuity for 7" and T” stated in [I, Chap.
2|, we may write:

¢
ITobl, | S ITabll s S Nollzoe bl
and, provided, s — 1 < d/p and s > —min(d/p,d/p’),

I Tyalls; , S llall_gou bl

p,1
This gives .

For proving , we combine Bony’s decomposition and decomposition of a and b in low
and high frequencies, writing
ab = TIb" + TIb" + Tyea® + Tya" + Tya.

All the terms in the right-hand side, except for the last one, may be bounded by means of
the standard results of continuity for operators T and 7" (see again [I, Chap. 2|). Setting

p*=2p/(p —2), we get:

Y4 13 /
1T50°)] RS S lall s l10°l aen S llall 1 (1Bl FYeL
2 Bp,l Bp*g ]Bzml p 1
IITéthIB% S HaHLoollbll'?% :
2,1 2,1
/ V4 1
| Tyea HB% 1% - lla”ll 3
2,1 pl
Tya" < ||b a” .
ITia"l % Il ol g

Finally, since a‘ = SJOJ,_]_CL and b = (Id — SJO+1)b we see that
TthL = SJOb AJO+1(ZZ.

Consequently,

L 14 h h
ITpnatlly < 1A 10| oo 1S 508" 1 22 S lallz< o1,
21

}\"wb—‘

Adding up this latter inequality to the previous ones gives

h h
labll, 5 < llall o[BIl |

¢ ¢
+ 0% e lla”ll 5

1 pl

l
+lall 2. lbll. 1+1+HbHLwHa

.%
B
2 pl pl

1 1
j 2
,1 2 IB;2

1
Then using Bernstein inequality, 2/p — 1/2 < 1/p and the embeddings B3, < L and

1

IB%p > < LP" completes the proof of . O

The following result for composition in Besov spaces may be found in [1J.
Proposition A.4. Let f be a function in C*°(R) such that f(0) = 0. Let (s1,s2) €]0,00[* and
(p1,p2,71,72) € [1,00]*. We assume that s1 < % or that s1 = pil and r; =1.

Then, for every real-valued function u in IBE " IB;; ry VL, the function f ou belongs

to IB%;} N IBS;; r VL™, and we have in particular
Ifoullsy < C (7 Nullp) gy, for ke {12,
The following result is the key to Theorem [I.1] in the general case.

Lemma A.3. Assume that d=1. Let p € [2,4] and s € [1/2,3/2[. Define p* £ 2p/(p — 2).
For all j € 7, denote R; 2 Sj_1w 9,42 — Aj(w dy2).
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There exists a constant C' depending only on the threshold number Jy between low and
high frequencies and on s, such that

j h l
Y (@R ) < C(HaﬂcwHLoo 1922llg1 + 19221l 3o llwll 12

i>Jo Pt B
1002 s [lwllle +11022]|5, 1 1 |8l )
B2 B34 ]B;_I?_ﬁ BT
3 p,

In the case s = 3/2, we have

3 h 14
> (25 IRl ) < C (100w e ezl +10e2ll o el

i>Jo Pl B 1

h ¢ ¢
11022l oo lwll g + 1022 11 [|Opw]| .,;*)
B B P P

3
2,1 p,1 B«

Proof. From Bony decomposition recalled above, we deduce that
Rj = *A](Tézzw) - Z [Aj, sz_lw](?xAj/z — Z (Sj/_lw - ijlw) Ajijaxz
7/ —j1<4 l7'—jl<1
_ pl 2 3
=R; +R; +Rj.
To estimate le-, we decompose w into low and high frequencies, getting
T, .w = T, w' + Tj,w".
Because 1/p + 1/p* = 1/2, the classical results of continuity for paraproduct and remainder

operators (see e.g. [I, Chap. 2|) ensure that

12 l
1T, -w ”Bél SN0zl g-allwill s

p,1 Bp*,l
and we have

h h . h
T 0y, S 1952l g "]l 3 i£0<s5<3/2 and |50

00,00

< ||0,2 wh .
§1 si © 1022 L= || HBQ%,I

Observing that Téz Zwé contains only low frequencies so that its norm in Eil is controlled by
1

its norm in E§,1 if s > 1/2, we deduce that
86 3 (2 IR ;) < (10221
jeZ p,1

) 3 (2R3l < (1021

|

g .
f1/2<s<3/2,
w’ Bzg,l)l /2<s /

)
By,

Next, taking advantage of Lemma we see that if 7/ > Jp and [j — j'| < 4, then we have

Blj—pi* + Haxz”ﬂi;i
p*,1

w|

U HawZHLOO Hwh’
B, P
J€E p*,1

2%\1[Ay, Sy1w]@e 2| 2 < (1081wl Lo 27 V0, A 2] 2
while, if j' < Jo, j > Jo and |j — j'| < 4,
. . . . s . gre 11 .
25([A;, Sy _qw]dpAjiz]| 2 S 277 |00Sy _ywl| e 277270 |0, A 2| 1o

Therefore,

®8) 3 (ZUIRe) < (10wl e 1902l + 1020,y g 100l )

3>Jo Pl B
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Finally, for all j > Jy and |j' — j| < 1, we have
29°)|(Sy 1w — Sjaw)AjAj D,z 12 < 2 Ajrywl| e 2707V 0, A Az 1o
< C||Aj10pwl| o 277V 0,42 2.

Hence

(89) > (27 1R3,2) < Clloswlol10:2 .

Jj=Jo

Putting , , and together completes the proof. O
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