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A binned technique for scalable model-based
clustering on huge datasets

Filippo Antonazzo, Christophe Biernacki & Christine Keribin

Abstract Clustering is impacted by the regular increase of sample sizes which pro-
vides opportunity to reveal information previously out of scope. However, the vol-
ume of data leads to some issues related to the need of many computational re-
sources and also to high energy consumption. Resorting to binned data depending
on an adaptive grid is expected to give proper answer to such green computing issues
while not harming the quality of the related estimation. After a brief review of exist-
ing methods, a first application in the context of univariate model-based clustering
is provided, with a numerical illustration of its advantages. Finally, an initial formal-
ization of the multivariate extension is done, highlighting both issues and possible
strategies.
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1 Scalable clustering for huge datasets

Today, thanks to the technological development of the last decades, it is very easy
to work on huge datasets, which are large collections of data whose volume (both
of observations and attributes) is still growing. But, despite the enormous statistical
information conveyed, any statistical analysis, such as clustering, conducted with
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classical methods is difficult because it request too time, too memory and too en-
ergy. This is also in contrast with the current eco-friendly policies of many national
governments and industries which are searching for methods able to do good sta-
tistical analysis without employing complex and wasteful technologies. We want to
satisfy this need, proposing a method capable to analyse big data employing limited
computational resources, like those of a standard laptop.

For the same reasons, scalable clustering algorithms for huge datasets flourished
in literature during the last two decades. Some algorithms employ data-reduction
techniques, like random subsampling [7] or data-compression through the use of
sufficient statistics [10]. Other authors transform the space of analysis [8] or exam-
ine dense data units built imposing a grid on the original data [1]. It is also possible
to reduce the number of operations, adopting particular data structure, such as tree
[10] or graph [7], or imposing some criteria [1] to prune irrelevant clusters that, thus,
exit from the computational process. In addition, the problem of dimensionality is
usually tackled down by performing clustering in subspaces of lower dimension [2].

Each of these methods does not assume a statistical model behind the generation
process of data. This one is on the contrary a distinct approach of what is known
as model-based clustering [6], that enables a theoretically well-posed framework
where formal criteria to assess the quality of the clustering are available. It is in
this context that we will propose our novel method based on binned data, which,
assuming observations with values belonging to a real space X , correspond to a
reduced dataset only containing the counts of observations in given regions of X .
In practice they usually appear as soon as it is impossible to collect data with infinite
precision, but we will use binned data with a different point of view. The key idea
we defend is to group original data in order to obtain artificially binned ones and
reduce the dimensionality of the problem working with them. The starting points
for the use of binned data in model-based clustering are [5] and [3].

2 Binned model-based clustering approach: univariate case

Considering first the univariate case (where X = R) is necessary to introduce the
notation and highlight how much promising is our method. Then we will discuss a
possible extension to the multivariate context.

Let x = (x1, . . . ,xn), with xi ∈ R, a raw sample of n observations arises from a
univariate K-Gaussian mixture of density

f (x;θ) = ∑
K
k=1 πkφ(x; µk,σ

2
k ) πk > 0, ∑

K
k=1 πk = 1, (1)

in which µk denotes the mean of the k-th component, σ2
k is its variance and θ is the

vector that contains all the parameters, thus θ = (π1, . . . ,πK ,µ1, . . . ,µK ,σ
2
1 , . . . ,σ

2
K).

The key-idea is to build a grid G made of R << n points (a1, . . . ,aR) that divides
the real space R into R+ 1 intervals [a j−1,a j[, j = 1, . . . ,R, setting a0 = −∞ and
aR+1 = ∞. In this way, binned data are stored in a vector y = (y1, . . . ,yR+1), where
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Fig. 1 Logarithm of
Kullback-Leibler divergence
from the true parameters for
different values of R and m in
function of the required com-
puter memory (logarithmic
scale).
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each component is defined as

y j = #{xi : a j ≤ xi < a j+1}. (2)

As R << n, working with binned data instead of raw ones reduces the dimen-
sionality of the problem and also proposes interesting theoretical questions. In
fact, the binned statistical model is a multinomial one M(n, p(θ)) with p(θ) =
(p1(θ), . . . , pR(θ)), where pl(θ) =

∫ al
al−1

f (x;θ)dx. It could be proved that this
model remains identifiable under certain conditions on G.

Finally, here is a numerical example to motivate our proposed “binned” method,
which was compared to the subsampling strategy (depending on the subsample per-
centage m) on a simulation sample of n = 106 raw data i.i.d. arises from a univariate
Gaussian mixture with three components. Binned data are created through a grid
with a tuning parameter R corresponding to the number of its points. An EM algo-
rithm [4] was performed respectively with different values of R and m (thus different
candidate subsample and binned datasets). In Figure 1 it is possible to note that the
loss of information (measured by the Kullback-Leibler divergence) induced by bin-
ning is much lower than that obtained with subsampling, even negligible if we use a
grid moderately dense. This is in addition accompanied by an evident gain in terms
of computer memory. Such promising results could be also obtained (but not dis-
played here) concerning gain in terms of algorithm running time or model selection
behaviour.

3 Multivariate extension: issues and strategies

Once analyzed the univariate case, extending the method to a d-variate situation is
straightforward. Given a sample x = (x1, . . . ,xn), xi ∈ Rd , we can define a multi-
variate grid G building it as a cartesian product between d one-dimensional grid. It
means that G = G1× . . .×Gd , where each grid G j has R j points (a j1, . . . ,a jR j). As-
suming that R j = R, for j = 1, . . . ,d, we can define a (R+1)d-dimensional binned
vector y = (y1, . . . ,y(R+1)d ), where, for k = 1, . . . ,(R+1)d :
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yk = #{xi : 1+ z1
i + z2

i (R+1)+ z3
i (R+1)2 . . .+ zd

i (R+1)d−1 = k},
with z j

i = l if a jl ≤ xi < a j(l+1), l = 0, . . . ,R, ∀ j = 1, . . . ,d,

where a j0 =−∞ and a j(R+1) = ∞ for each j = 1, . . . ,d.
Despite the relatively simple formalization, using such a grid is not feasible. In

fact, the following issues arise:

• It is impossible to obtain a manageable amount of binned data because the num-
ber of non-empty bins increases exponentially increasing the number of vari-
ables.

• The EM algorithm used employs several multidimensional numerical integra-
tions. Thus, our algorithm would become too complex in terms of time.

In order to provide a solution to these issues, we developed some strategies:

1. Reducing the multidimensional problem to multiple one-dimensional ones, per-
forming our univariate method on each dimension and combining the results.

2. Using simpler algorithms approximating EM, which avoid multidimensional in-
tegrations substituting them by combinations of one-dimensional ones.

3. Group or remove variables.
4. Imposing sparse grids (composed by two or three bins) on those variables that

have low statistical information.
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