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59 samples from Tara Oceans Expedition
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Summary

The biological carbon pump, in which carbon fixgddinotosynthesis is exported to
the deep ocean through sinking, is a major proceBarth’s carbon cycle. The
proportion of primary production that is exportedermed the carbon export
efficiency (CEE). Based on in-lab or regional saateervations, viruses were
previously suggested to affect the CEE (i.e., Visunt” and “shuttle”). In this study,
we tested associations between viral community asitipn and CEE measured at a
global scale. A regression model based on relafadance of viral marker genes
explained 67% of the variation in CEE. Viruses witgh importance in the model
were predicted to infect ecologically important tso3 hese results are consistent with
the view that the viral shunt and shuttle functiaha large scale and further imply
that viruses likely act in this process in a wapeledent on their hosts and ecosystem

dynamics.
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| ntroduction

A major process in the global cycling of carbothis oceanic biological carbon pump
(BCP), an organism-driven process by which atmasplearbon i.e.,, CO,) is
transferred and sequestered to the ocean intertbs@afloor for periods ranging from
centuries to hundreds of millions of years. Betw&B% and 20% of net primary
production (NPP) is exported out of the euphotieezavith 0.3% of fixed carbon
reaching the seafloor annually (Zhang et al., 2088)vever, there is wide variation
in estimates of the proportion of primary productio the surface ocean that is
exported to depth, ranging from 1% in the tropkatific to 35-45% during the North
Atlantic bloom (Buesseler and Boyd, 2009). As m&tl below, many factors affect
the BCP.

Of planktonic organisms living in the upper layéttte ocean, diatoms
(Tréguer et al., 2018) and zooplankton (Turner,5}®thve been identified as
important contributors to the BCP in nutrient-répleceanic regions. In the
oligotrophic ocean, cyanobacteria, collodariansfhe and Moran, 2011), diatoms
(Agusti et al., 2015; Karl et al., 2012; Leblanakt 2018), and other small (pico- to
nano-) plankton (Lomas and Moran, 2011) have begticated in the BCP.
Sediment trap studies suggest that ballasted agig®gf plankton with biogenic
minerals contribute to carbon export to the degp(bersen and Ploug, 2010; Klaas
and Archer, 2002). The BCP comprises three prosesaebon fixation, export, and
remineralization. As these processes are govemedrplex interactions between
numerous members of planktonic communities (Zhara. £2018), the BCP is
expected to involve various organisms, includingses (Zimmerman et al., 2019).

Viruses have been suggested to regulate the eftigief the BCP. Lysis of

host cells by viruses releases cellular materigthénform of dissolved organic matter
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(DOM), which fuels the microbial loop and enhancespiration and secondary
production (Gobler et al., 1997; Weitz et al., 20T5his process, coined “viral shunt
(Wilhelm and Suttle, 1999)”, can reduce the carbgport efficiency (CEE) because
it increases the retention of nutrients and carhdhe euphotic zone and prevents
their transfer to higher trophic levels as welttasir export from the euphotic zone to
the deep sea (Fuhrman, 1999; Weitz et al., 201&)\eder, an alternative process is
also considered, in which viruses contribute tovéical carbon export (Weinbauer,
2004). For instance, a theoretical study proposatithe CEE increases if viral lysis
augments the ratio of exported carbon relativéaéoprimary production-limiting
nutrients (nitrogen and phosphorous) (Suttle, 200aboratory experimental studies
reported that cells infected with viruses form &rparticles (Peduzzi and Weinbauer,
1993; Yamada et al., 2018), can sink faster (Lasgeand Suttle, 2004), and can lead
to preferential grazing by heterotrophic protigsgns and Wilson, 2008) and/or to
higher growth of grazers (Goode et al., 2019). Pnixess termed “viral shuttle
(Sullivan et al., 2017)" is supported by severaldistudies that reported association
of viruses with sinking material. Viruses were absed in sinking material in the
North Atlantic Ocean (Proctor and Fuhrman, 1991) sediment of coastal waters
where algal blooms occur (Lawrence et al., 2002ndiu et al., 2007, 2011). In
addition, vertical transport of bacterial virusetviieen photic and aphotic zones was
observed in the Pacific Ocean (Hurwitz et al., 90drid inTara Oceans virome data
(Brum et al., 2015). A systematic analysis of lasgale omics data from oligotrophic
oceanic regions revealed a positive associationdset the magnitude of carbon flux
and bacterial dsDNA virusesd,, cyanophages), which were previously unrecognized

as possible contributors to the BCP (Guidi etZ016).
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More recently, viral infection of blooms of the gbsynthetic eukaryote
Emiliania huxleyi in the North Atlantic were found to be accomparbgdarticle
aggregation and greater downward vertical fluxarbon, with the highest export
during the early stage of viral infection (Laberét 2018; Sheyn et al., 2018). Given
the significant contributions of eukaryotic planktm ocean biomass and net
production (Hirata et al., 2011; Li, 1995) and thehserved predominance over
prokaryotes in sinking materials of Sargasso Sigatbphic surface waters (Fawcett
et al., 2011; Lomas and Moran, 2011), various @seof eukaryotic viruses may be
responsible for a substantial part of the variatitooarbon export across oceanic
regions.

If the “viral shunt” and “shuttle” processes furrtiat a global scale and if
these involve specific eukaryotic viruses, we expecetect a statistical association
between eukaryotic viral community composition &E in a large-scale omics data.
To our knowledge, such an association has never ibgestigated. Although this test
per se does not prove that viruses regulate CEEowsider the association is worth
being tested because such an association is asaegesndition for the global model
of viral shunt and shuttle and, under its abseweeywould have to reconsider the
model. Deep sequencing of planktonic community Dil RNA, as carried out in
Tara Oceans, has enabled the identification of markeeg of major viral groups
infecting eukaryotes (Hingamp et al., 2013; Carcaelenl., 2018; Culley, 2018; Endo
et al., 2020). To examine the association betwé&ahcommunity composition and
CEE, we thus used the comprehensive organismaeatdtam theTara Oceans
expedition (Carradec et al., 2018; Sunagawa €2@15), as well as related
measurements of carbon export estimated from pagdancentrations and size

distributions observenh situ (Guidi et al., 2016).
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In the present study, we identified several hunanedker-gene sequences of
nucleocytoplasmic large DNA viruses (NCLDVS) in aggtnomes of 0.2-43m size
fraction. We also identified RNA and ssDNA virusesnetatranscriptomes of four
eukaryotic size fractions spanning 0.8 to 2,060 The resulting profiles of viral
distributions were compared with an image-basedsoreaof carbon export efficiency
(CEE), which is defined as the ratio of the carbor at depth to the carbon flux at

surface.

Results and Discussion

Detection of diverse eukaryotic virusesin Tara Oceans gene catal ogs

We used profile hidden Markov model-based homokeprches to identify marker-
gene sequences of eukaryotic viruses in two ocena gatalogs. These catalogs were
previously constructed from environmental shotgegquence data of samples
collected during th@ara Oceans expedition. The first catalog, the Oceacrdbial
Reference Gene Catalog (OM-RGC), contains 40 milion-redundant genes
predicted from the assembliesTara Oceans viral and microbial metagenomes
(Sunagawa et al., 2015). We searched this cataldg@LDV DNA polymerase

family B (PolB) genes, as dsDNA viruses may be gmées microbial metagenomes
because large virions (> Qu2n) have been retained on the filter or becausé vira
genomes actively replicating or latent within pickaryotic cells have been captured.
The second gene catalog, the Marine Atlasavh Oceans Unigenes (MATOU),
contains 116 million non-redundant genes derivethfmetatranscriptomes of single-
cell microeukaryotes and small multicellular zompin (Carradec et al., 2018). We

searched this catalog for NCLDV PolB genes, RNAatgnt RNA polymerase
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(RdRP) genes of RNA viruses, and replication-asgediprotein (Rep) genes of
ssDNA viruses, since transcripts of viruses acyivaflecting their hosts, as well as
genomes of RNA viruses, have been captured irctiaog.

We identified 3,874 NCLDV PolB sequences (3,486egtagenomes and 388
in metatranscriptomes), 975 RNA virus RARP sequeraned 299 ssDNA virus Rep
sequences (Table 1). These sequences correspopdragional taxonomic units
(OTUs) at a 95% identity threshold. All except Xthee NCLDV PolBs from
metagenomes were assigned to the famiiesiviridae (n = 2,923),

Phycodnaviridae (n = 348), andridoviridae (n = 198) (Table 1). The larger numbers
of PolB sequences assignedviomiviridae andPhycodnaviridae compared with other
NCLDYV families are consistent with previous obsé¢ivas (Endo et al., 2020;
Hingamp et al., 2013). The divergence between theggonmental sequences and
reference sequences from known viral genomes vesgeagrinMimiviridae than in
Phycodnaviridae (Figure 1A, S1A and S2). Withidimiviridae, 83% of the
sequences were most similar to those from algastimigMimivirus relatives.

Among the sequences classifiedPimycodnaviridae, 93% were most similar to those
in Prasinovirus, whereas 6% were closestYdlowstone lake phycodnavirus, which

Is closely related t€rasinovirus. Prasinoviruses are possibly over-representelein t
metagenomes because the 0.2 fmBsize fraction selects their picoeukaryotic hosts.
RdRP sequences were assigned mostly to the Brdamavirales (n = 325),

followed by the familiedartitiviridae (n = 131),Narnaviridae (n = 95),

Tombusviridae (n = 45), andVirgaviridae (n = 33) (Table 1), with most sequences
being distant (30% to 40% amino acid identity) frosference viruses (Figures 1B,
S1B and S3). These results are consistent withqursstudies on the diversity of

marine RNA viruses, in which RNA virus sequenceseseund to correspond to
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diverse positive-polarity sSRNA and dsRNA virusegahtly related to well-
characterized viruses (Culley, 201Bjcornavirales may be over-represented in the
metatranscriptomes because of the polyadenylatesl $&lection. The majorityn(=
201) of Rep sequences were annotatedieviridae, known to infect animals,
which is consistent with a previous report (Wanglet2018). Only eight were
annotated as plant ssDNA viruses (familNasiovoridae andGemniviridae) (Table 1).
Most of these environmental sequences are distafb (o 50% amino acid identity)
from reference sequences (Figures 1C, S1C andA8ditional 388 NCLDV PolBs
were detected in the metranscriptomes. The ave@gaopolitanism (number of
samples where an OTU was observed by at leastaaas) for PolBs in
metagenomes was 23 samples against 2.9 for metinste-derived PolB
sequences, 5.5 for Reps, and 5.8 for RARPs. Whitleiatranscriptomes, the average
gene-length normalized read counts for PolBs wespeactively ten and three times
lower than those of RARPs and Reps. Therefore,Sfotih metatranscriptomes were

not further used in our study.

Composition of eukaryotic viruses can explain the variation of carbon

export efficiency

Among the PolB, RdRP, and Rep sequences identifite Tara Oceans gene
catalogs, 38%, 18%, and 11% (total = 1,523 seqe@nespectively, were present in
at least five samples and had matching carbon erpesisurement data (Table 1). We
used the relative abundance (defined as the centegyeatio transformed gene-length
normalized read count) profiles of these 1,523 miagene sequences at 59 sampling
sites in the photic zone of 3&ra Oceans stations (Figure 2) to test for association
between their composition and a measure of carkpareefficiency (CEE, see

Transparent Methods, Figure S5). A partial leastises (PLS) regression model
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explained 67% (coefficient of determinatiBh= 67%) of the variation in CEE with a
Pearson correlation coefficient of 0.84 betweereoled and predicted values. This
correlation was confirmed to be statistically sfg@int by permutation tesP(< 1 x
10% (Figure 3A).

We also tested for their association with estimatesarbon export flux at 150
meters (Chsog) and NPP. PLS regressions explained 54% and 64%eofariation in
CE;s0 and NPP with Pearson correlation coefficients ketwobserved and predicted
values of 0.74 (permutation teBt< 1x 10 and 0.80 (permutation te§t,< 1 x
10%), respectively (Figure S6). In these three PLSagsjon models, 83, 86, and 97
viruses were considered to be key predictoes {/ariable Importance in the
Projection [VIP] score > 2) of CEE, G&, and NPP, respectively. PLS models for
NPP and Ckoshared a larger number of predictors (52 viruses)pared to thBLS
models for NPP and CEE (seven viruses) (two priago#-test,P = 4.14x 109,
Consistent with this observation, ¢Ewas correlated with NPP (Pearsons 0.77;
parametric tes® < 1x 10*?). This result implies that the magnitude of exporthe
analyzed samples was partly constrained by prirpasgtuctivity. However, CEE was
not correlated with NPR € 0.16; parametric ted®, = 0.2) or Chkso (r = 0.002;
parametric tes® = 0.99). Thus, as expected, primary productiviggwot a major
driver for the efficiency of carbon export.

To assess the sensitivity of the model to the @¢efmof carbon export
efficiency, we employed an alternative measureaob@n export efficiency that
considers euphotic zone depthd] see Transparent Methods)odwas correlated

with CEE ¢ = 0.66; parametric ted®, < 1x 10°) and PLS regression explained 44%

of the variation in Too (permutation tes® < 1 x 10™%) (Figure S7). Of 72 predictors

10
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of the PLS model for 1bg, 30 were shared with that for CEE. This result destrates
the robustness of the PLS model to definitionsambon export efficiency.

The 83 viruses (5% of the viruses included in malgsis) that were
associated with CEE with a VIP score > 2 are caredl to be important predictors of
CEE in the PLS regression (Figure 3B, Supplemddash 1), and these viruses are
hereafter referred to as VIPs (Viruses ImportarthePrediction). Fifty-eight VIPs
had positive regression coefficient, and 25 hadheg regression coefficient in the
prediction (Figure 3B). Most of the positively aseted VIPs showed high relative
abundance in the Mediterranean Sea and in then@c@an where CEE tends to be
high compared with other oceanic regions (Figurédong them, 15 (red labels in
Figure 4) also had high relative abundance in sagnfpbm other oceanic regions,
showing that these viruses are associated with &EEglobal scale. In contrast,
negatively associated VIPs tend to have highetivelabundance in the Atlantic
Ocean and the Southern Pacific Ocean where CEkimparatively lower. In the
following sections, we investigate potential hadtshe VIPs in order to interpret the
statistical association between viral community position and CEE in the light of

previous observations in the literature.

Viruses correlated with CEE infect ecologically important hosts

Most of the VIPs (77 of 83) belong Mimiviridae (n = 34 with 25 positive
VIPs and nine negative VIP$hycodnaviridae (n = 24 with 18 positive VIPs and six
negative VIPs), and ssRNA viruses of the oféieprnavirales (n = 19 with 13
positive VIPs and six negative VIPs) (Figure 3BblEaS1). All the phycodnavirus
VIPs were most closely related to prasinovirusésctmg Mamiellales, with amino
acid sequence percent identities to reference segqaganging between 35% and

95%. The six remaining VIPs were two NCLDVs of tamily Iridoviridae

11



241  negatively associated with CEE, three RNA viruse® GSRNA viruses of the family
242  Hepeviridae negatively associated with CEE and one dsRNA \afube family

243  Partitiviridae positively associated with CEE), and one ssDNAwiof the family

244  Circoviridae positively associated with CEE. A proportionallyder number of

245 PolBs were included in the model than RARP anddgepences depending on their
246  representations in the input data. Therefore,ahgel number of NCLDV VIPs

247  obtained does not necessarily mean that this gnbupuses is more important than
248  others regarding their association with CEE.

249 Host information may help understand the relatignbletween these VIPs
250 and CEE. We performed genomic context analysi®@B VIPs and phylogeny-

251  guided network-based host prediction for PolB ad&R to infer putative virus—host
252 relationships (see Transparent Methods).

253 Taxonomic analysis of genes predicted in 10 met@agenassembled genomes
254 (MAGSs) from the eukaryotic size fractions and 6B@®e fragments (contigs)

255 assembled from the prokaryotic size fraction emegdiIP PolBs further confirmed
256  their identity asMimiviridae or Phycodnaviridae (Figure S8). The size of MAGs

257 ranged between 30 kbp and 440 kbp with an averbgg®kbp (Table S2). The

258 presence of genes with high sequence similaribegliular genes in a viral genome
259 is suggestive of a virus—host relationship (Mowieal., 2009; Yoshikawa et al., 2019).
260 Two closely relatedMimiviridae VIPs, PolB 000079111 (positively associated with
261 CEE) and PolB 000079078 (negatively associated @GE), were phylogenetically
262 close to the pelagophyte virdsireococcus anophagefferens virus (AaV). One MAG
263 (268 kbp in size) corresponding to PolB 00007911idoded seven genes showing
264  high similarities to genes from Pelagophyceae,arather MAG (382 kbp in size),

265 corresponding to PolB 000079078, encoded five gsimear to genes from

12
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Pelagophyceae. All but one of these 12 genes we@ded on a genome fragment
containing genes annotated as viral, including RN&LDV core genes (Supplemental
Data 2), excluding the possibility of contaminatiarthese MAGs. Two closely
relatedPhycodnaviridae VIPs, PolB 001064263 and 010288541, were positivel
associated with CEE. Both of these PolBs correspo@dMAG (134 kbp in size)
encoding one gene likely derived from MamiellalBse genomic fragment harboring
this cellular gene was found to encode 10 genestated as viral (Supplemental
Data 2).

We conducted a phylogeny-guided, network-basedgresliction analysis for
Mimiviridae, Phycodnaviridae, andPicornavirales (Figures S9 and S10). Only a
subset of the VIPs was included in this analystabse we kept the mastliable
sequences (n=44) to obtain a well-resolved treeltgy. Within thePrasinovirus
clade, which contained thirteen VIPs (nine posiane four negative), seven different
eukaryotic orders were detected as predicted hospg for 10 nodes in the tree.
Mamiellales the only known host group of prasinoviruses, wasaed at eight
nodes (five of them had no parent-to-child reladldps), whereas the other six
eukaryotic orders were found at only one nodeWaorin the case of Eutreptiales)
(Figure S9). The order Mamiellales includes threeega Kicromonas, Ostreococcus,
andBathycoccus), which are bacterial-sized green microalgae commaoastal and
oceanic environments and are considered to beeintilai actors in oceanic systems
(Monier et al., 2016). Various prasinoviruses (feen with available genome
sequences) have been isolated from the three genera

Within the familyMimiviridae, which contains fifteen VIPs (10 positive and
five negative), twelve different orders were préglicas putative host groups (Figure

S9). Collodaria was detected at 15 nodes (twoahthad no parent-to-child

13
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relationships), and Prymnesiales at six nodesdtbféhem had no parent-to-child
relationships), whereas all other orders were pitessiea maximum of one node each
with no parent-to-child relationships. The nodesatred for Prymnesiales and
Collodaria fell within a monophyletic clade (markiegla red arrow in Figure S9)
containing four reference haptophyte viruses imfgcPrymnesiales and two
reference haptophyte viruses infecting Phaeocyst@lgerefore, the environmental
PolB sequences in thMimiviridae clade (including five positive VIPs and one
negative VIP) are predicted to infect Prymnesialeselated haptophytes. The
detection of Collodaria may be the result of indir@ssociations that reflect a
symbiotic relationship with Prymnesiales, as sogantharians, evolutionarily related
to the Collodaria, are known to host Prymnesigtexies (Mars Brisbin et al., 2018).
Known species of Prymnesiales and Phaeocystalesdrganic scales, except one
Prymnesiales specidd;ymnesium neolepis, which bears siliceous scales (Yoshida et
al., 2006). Previous studies revealed the existehdeserse and abundant
noncalcifying picohaptophytes in open oceans (Egtdd., 2018; Liu et al., 2009).
Clear host prediction was not made for the othee Klimiviridae VIPs shown in the
phylogenetic tree. Three VIPs (two positive and negative) in the tree were
relatives of AaV. One negatively associated VIP waslative ofCafeteria
roenbergensis virus infecting a heterotrophic protist. The five remagMimiviridae
VIPs are very distant from any knowfimiviridae.

SixteenPicornavirales VIPs (eleven positive and five negative) were udeld
in the phylogeny-guided, network-based host preshcinalysis (Figure S10). Nine
(seven positive and two negative) were groupedimwithcistroviridae (known to
infect insects) and may therefore infect marinarapiods such as copepods, the most

ubiquitous and abundant mesozooplankton groupdviegan carbon export (Turner,
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316  2015). Three othd?Picornavirales VIPs were placed within a clade containing known
317  bacillarnaviruses. Two of them (35179764 and 3304%4vere positively associated
318  with CEE and had diatoms of the order Chaetocerstas$ a predicted host group. The
319  third one (107558617) was negatively associated @EE and distant from other

320 bacillarnaviruses, and had no host prediction. @t have been globally observed in
321 the deep sea (Agusti et al., 2015; Leblanc eR8l8) and identified as important

322 contributors of the biological carbon pump (Trégeteal., 2018). One positively

323 associated VIP (32150309) was in a clade contaisungntiochytrium single-

324  stranded RNA virus (AsRNAV), infecting a marine fungoid protist thcatgo be an

325 important decomposer (Takao et al., 2005). ThethasePicornavirales VIPs

326 (59731273, 49554577, and 36496887) had no predmistdand were too distant

327  from knownPicornaviralesto speculate about their putative host group.

328 OutsidePicornavirales, three RNA virus VIPs (twélepeviridae, negatively

329 associated, and omRartitiviridae, positively associated) were identified, for whiah
330 reliable host inferences were made by sequencdasityni Known Hepeviridae infect
331 metazoans, and knovRartitiviridae infect fungi and plants. The twédepeviridae-

332 like viruses were most closely related to viruskestified in the transcriptomes of

333  mollusks (amino acid identities of 48% for 42335221 43% for 77677770) (Shi et
334 al., 2016). ThePartitiviridae-like VIP (35713768) was most closely related to a

335 fungal virus,Penicillium stoloniferumvirus S (49% amino acid identity)

336 One ssDNA virus VIP (38177659) was positively assed with CEE. It was
337 annotated as @ircoviridae, although it groups with other environmental sewas as
338 an outgroup of knowgircoviridae. This VIP was connected with copepod, mollusk,
339 and Collodaria OTUs in the co-occurrence networtknauenrichment of predicted

340 host groups was detected for its cladecoviridae-like viruses are known to infect
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copepods (Dunlap et al., 2013) and have been mpttassociate with mollusks
(Dayaram et al., 2015), but none have been repéotedollodaria.

Overall, we could infer hosts for 37 VIPs (Tablearl S3). Most of the
predicted hosts are known to be ecologically imgoaras primary producers
(Mamiellales, Prymnesiales, Pelagophyceae, andrd&tor grazers (copepods). Of
these, diatoms and copepods are well known as tantazontributors to the BCP but
others {.e., Mamiellales, Prymnesiales, Pelagophyceae) havbeen recognized as
major contributors to the BCP. Our analysis als@aded that positive and negative

VIPs are not separated in either the viral or pbstogenies.

Viruses positively correlated with CEE tend to interact with silicified

or ganisms

The phylogeny-guided, network-based host predidcioalysis correctly predicted
known virus—host relationships (for viruses infegtMamiellales, Prymnesiales, and
Chaetocerotales) using our large dataset, des@teeported limitations of these co-
occurrence network-based approaches (Coenen artd,\2@18). This result
prompted us to further exploit the species co-aerae networks (Table S4) to
investigate functional differences between the eyt organisms predicted to
interact with positive VIPs, negative VIPs, anduges less important for prediction of
CEE (VIP score < 2) (non-VIPs). For this purpose,used literature-based
functional trait annotations associated with eukticymeta-barcodes (see Transparent
Methods). Positive VIPs had a greater proportionasfnections with silicified
eukaryotes@ = 0.001), but not with chloroplast-bearing eukaegaQ = 0.16) nor
calcifying eukaryotes@ = 1), compared to non-VIPs (Table 3). No functional
differences were observed between negative VIPsianeVIPs viruses (Table S5) or

positive VIPs (Table S6).
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Multifarious ways vir uses affect the fate of carbon

Our analysis revealed that eukaryotic virus contposiwas able to predict CEE in
the global sunlit ocean and 83 out of the 1,52@sas had a high importance in the
predictive model. This association is not a prbat the viruses are the cause of the
variation of CEE. Viruses, especially those shanaient/persistent infections (Goic
and Saleh, 2012), may be found to be associatéd@&E if their host affects CEE
regardless of viral infection. Organisms that prefigally grow in marine snow
(Bochdansky et al., 2017) may also bring associathletween viruses infecting those
organisms and CEE. Alternatively, the observed@atons between VIPs and CEE
may reflect a more direct causal relationship, Whie attempt to explore in light of
the large body of literature on the mechanisms biclvviruses impact the fate of
carbon in the oceans.

Among the 83 VIPs, 58 were positively associatetth WEE. Such a positive
association is expected from the “viral shuttle”dal) which states that viral activity
could facilitate carbon export to the deep ocearnffan, 1999; Sullivan et al., 2017,
Weinbauer, 2004) because a virus may induce senretisticky material that
contributes to cell/particle aggregation, suchrasgparent exopolymeric particles
(TEP) (Nissimov et al., 2018). We found that CEE ,(CEjeed CEsurfacg increased
with the change of particles size from surfacedepdp= 0.42,P = 8x 10°°) (Figure
S11). This positive correlation may reflect an alted level of aggregation in places
where CEE is high, although it could be also duenéopresence of large organisms at
depth.

Greater aggregate sinking along with higher padieucarbon fluxes was
observed in North Atlantic blooms Bmiliania huxleyi that were infected early by

the virus EhV, compared with late-infected blooraher et al., 2018). In the same
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bloom, viral infection stage was found to proceetthwater column depth (Sheyn et
al., 2018). No EhV-like PolB sequences were detect@ur dataset, which was
probably due to sampled areas and seasons.

Laboratory experiments suggest that viruses clasddyed to positive VIPs,
such as prasinoviruses, have infectious propehetsmay drive carbon export.
Cultures ofMicromonas pusilla infected with prasinoviruses showed increased TEP
production compared with non-infected cultures (h@ng et al., 2013). The hosts of
prasinoviruses (Mamiellales) have been proposeodmndtribute to carbon export in the
western subtropical North Pacific (Shiozaki et 2019). Some prasinoviruses encode
glycosyltransferases (GTs) of the GT2 family. Thpression of GT2 family
members during infection possibly leads to the potidn of a dense fibrous
hyaluronan network and may trigger the aggregatidmost cells (Van Etten et al.,
2017) with an increase in the cell wall C:N raiide detected one GT2 in a MAG of
two Phycodnaviridae-like positive VIPs (000200745 and 002503270) presl to
infect Mamiellales, one in a MAG correspondinghe putative pelagophyte positive
VIP 000079111 related to AaV and six in two MAGwée each) corresponding to
two Mimiviridae-like positive VIPs (000328966 and 00117566%)aeocystis
globosa virus (PgV), closely related to the positive VIP PolB)OQ2507 (Figure S9),
has been linked with increased TEP production gugemate formation during the
termination of @&haeocystis bloom (Brussaard et al., 2007). Two closely relate
bacillarnavirus VIPs were positively associatedw@tEE and predicted to infect
Chaetocerale®\ previous study revealed an increase in abundaheeuses
infecting diatoms o€haetoceros in both the water columns and the sediments during
the bloom of their hosts in a coastal area (Toneaal., 2011), suggesting sinking of

cells caused by viruses. Furthermore, the didbhaetocer os tenuissimus infected
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with a DNA virus (CtenDNAV type II) has been shotanproduce higher levels of
large-sized particles (50 to 4p@) compared with non-infected cultures (Tomaru et
al., 2011; Yamada et al., 2018).

The other 25 VIPs were negatively associated wil CThis association is
compatible with the “viral shunt,” which increagbe amount of DOC (Wilhelm and
Suttle, 1999) and reduces the transfer of carbdmgioer trophic levels and to the
deep ocean (Fuhrman, 1999; Weitz et al., 2015)esed DOC has been observed in
culture of Mamiellales lysed by prasinoviruses (bomg et al., 2013). A field study
reported that PgV, to which the negative VIP PolB@64135 is closely related
(Figure S9), can be responsible for up to 35% bflgss per day during bloom of its
host (Baudoux et al., 2006), which is likely accamied by consequent DOC release.
Similarly, the decline of a bloom of the pelagoétireococcus anophagefferens
has been associated with active infection by Aaviafhich one negative VIP is
closely related) (Moniruzzaman et al., 2017). Am&¥A viruses, eight were
negative VIPs (siPicornavirales and twoHepeviridae). The higher representation of
Picornaviralesin the virioplankton (Culley, 2018) than withinlise(lUrayama et al.,
2018) suggests that they are predominantly lytihpagh no information exists
regarding the effect d®?icornavirales on DOC release.

It is likely that the “viral shunt” and “shuttle’irmultaneously affect and
modulate CEE in the global ocean (Zimmerman eRall9). The relative importance
of these two phenomena must fluctuate consideddgending on the host traits,
viral effects on metabolism, stages of infectiamj @anvironmental conditions.
Reflecting this complexity, viruses of a same lgyeup could be found to be either
positively or negatively associated with CEE. Werfd that even two very closely

relatedMimiviridae viruses (PolBs 000079111 and 000079078 sharing 94%
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nucleotide identity over their full gene lengthsyshlikely infecting pelagophyte
algae were positively and negatively associated GEE.

Five percent of the tested viruses were assocwithdCEE in our study.
Similarly, four and two percent of bacterial vipuspulations were found to be
associated with the magnitude of carbon exportd(ztial., 2016) and CEE (Figure
S12), respectively. These results suggest thasesraffecting CEE are rather
uncommon. It is plausible that such viruses aff&€E by infecting organisms that are
functionally important (abundant or keystone spgcias we observed in host
prediction. The vast majority (95%) of non-VIPs nmat have a significant impact on
CEE, because they do not strongly impact the hgstilation, for instance, by stably
coexisting with their hosts. It is worth noting tlexperimental studies have reported
cultures of algae with viruses that reach a stablexistence state after a few

generations (Yau et al., 2020).

Conclusions

Eukaryotic virus community composition was abl@tedict CEE at 59 sampling
sites in the photic zone of the world ocean. Ttasisical association was detected
based on a large omics dataset collected throughewceans and processed with
standardized protocols. The predictability of CBEvlval composition is consistent
with the hypothesis that “viral shunt” and “shuttége functioning at a global scale.
Among 83 viruses with a high importance in the pregah of CEE, 58 viruses were
positively and 25 negatively correlated with carlesiport efficiency. Most of these
viruses belong t@rasinovirus, Mimiviridae, andPicornavirales and are either new to
science or with no known roles in carbon exporicefhcy. Thirty-six of these “select”
viruses were predicted to infect ecologically intpat hosts such as green algae of

the order Mamiellales, haptophytes, diatoms, ap@pods. Positively associated
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viruses had more predicted interactions with $ikdi eukaryotes than non-associated
viruses did. Overall, these results imply thateffect of viruses on the “shunt” and

“shuttle” processes could be dependent on viralshasd ecosystem dynamics.

Limitations of the study

The observed statistical associations between einapositions and examined
parametersife., CEE, CE and NPP) do not convey the informatiopuélthe direction
of their potential causality relationships, andytheuld even result from indirect
relationships as discussed above. Certain groupsusfes detected in samples may
be over- or under-represented because of the taiHmitations in size fractionation,

DNA/RNA extraction and sequencing.
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Our custom R script used to test for associatidwéen viruses and environmental
variables (CEE, Cko, NPP and Ty() is available along with input data at the
GenomeNet FTP:
ftp://ftp.genome.jp/pub/db/community/tara/Cpump/Blepentary _material/PLSreg/.
The Taxon Interaction Mapper (TIM) tool developedthis study and used for virus

host prediction is available at https://github.cBarhainBlancMathieu/TIM.
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712 Figurelegends

713 Figurel. Viruses of eukaryotic plankton identified in Tara Oceans samplesare
714 distantly related to characterized viruses. Unrooted maximum likelihood

715 phylogenetic trees containing environmental (blaok] reference (red) viral

716 sequences for NCLDV DNA polymerase family B (A), RNirus RNA-dependent
717  RNA polymerase (B), and ssDNA virus replicationeasated protein (C). See also
718  Figures S1-S4

719

720  Figure 2. Carbon export efficiency and relative marker-gene occurrence of

721  eukaryotic plankton viruses along the sampling route. (A) Carbon export

722  efficiency (CEE) estimated at 3@ra Oceansstations where surface and DCM layers
723  were sampled for prokaryote-enriched metagenomeggakaryotic

724  metatranscriptomes. See also Figures S5 and S1C) (Belative marker-gene

725  occurrence of major groups of viruses of eukaryplamkton for NCLDVSs in

726  metagenomes (B) and for RNA and ssDNA viruses itatrenscriptomes (C) at 59
727  sampling sites.

728

729  Figure 3. Relative abundance of eukaryotic plankton viruses associated with

730  carbon export efficiency in the global ocean. (A) Bivariate plot between predicted
731  and observed values in a leave-one-out cross-vaideest for carbon export

732 efficiency. The PLS regression model was constcuageng occurrence profiles of
733 1,523 marker-gene sequences (1,309 PolBs, 180 RaiftP34 Reps) derived from
734  environmental samples, Pearson correlation coefficief, the coefficient of

735 determination between measured response valugsreditted response valuég,

736  which was calculated as 1 — SSE/SST (sum of squlaieeso error and total)
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737 measures how successful the fit is in explainimguériance of the response values.
738  The significance of the association was assessed agpermutation teshE 10,000)
739  (grey histogram in (A)). The red diagonal line sisaWwe theoretical curve for perfect
740  prediction. (B) Pearson correlation coefficienttdmen CEE and occurrence profiles
741 of 83 viruses that have VIP scores > 2 (VIPs) i first two components in the
742  PLS regression model using all samples. PLS compsrieand 2 explained 83% and
743  11% of the variance of CEE, respectively. FiftykeiyIPs had positive regression
744  coefficients in the model (shown with circles), &%lhad negative regression

745  coefficients (shown with triangles). See also Fegu$6, S7 and S12, Table S1, and
746  Supplemental Data 1.

747

748  Figure4. Biogeography of viruses associated with carbon export efficiency. The

749  upper panel shows carbon export efficiency (CEEEF£JCEsurfacd for 59 sampling
750 sites. The bottom panel is a map reflecting redatibundances, expressed as centered
751  log-ratio transformed, gene-length normalized reauhts of viruses positively and
752  negatively associated with CEE that have VIP scer2gVIPs). MS, Mediterranean
753  Sea; 10, Indian Ocean; SAO, South Atlantic Oced)SSouth Pacific Ocean; NPO,
754  North Pacific Ocean; NAO, North Atlantic Ocean. Tdwtom horizontal axis is

755 labeled withTara Oceans station numbers, sampling depth (SRF, yrifacM, deep
756  chlorophyll maximum), and abbreviations of biogeqgric provinces. Viruses

757 labeled in red correspond to positive VIPs thatiterore represented in more than
758  one biogeographic province.

759
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Tables

Table 1. Taxonomic breakdown of viral marker genes.

Viruses Identified Used in PLS
regression®

Mimiviridae 2,923 1,148
g Phycodnaviridae 348 99
5 Iridoviridae 198 59
S Other NCLDVs" 17 3
Total 3,486 1,309
Picornavirales (SsSRNA+) 325 80
@ Partitiviridae (dsRNA) 131 22
@ Narnaviridae (SSRNA+) 95 6
S Other families 289 53
<ZE Unclassified 78 9
X RNA viruses 57 10
Total 975 180
@ Circoviridae 201 22
@ Geminiviridae 4 0
S Nanoviridae 4 0
<ZE Unclassified 39 2
% ssDNA viruses 51 10
2 Total 299 34
All 4,760 1,523

®The marker genes had to occurred in at least five samples and harbor a Spearman correlation

coefficient > |0.2| with carbon export efficiency.
®There was no unclassified NCLDV.
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Table 2. Host predictions per viral and host group for viruses associated with

carbon export efficiency. See also Figures S8-S10, Tables S2 and S3, and

Supplemental Data 2.

Virus-host relationship Positive VIPs®  Negative VIPs? Total
NCLDV-Mamiellales 10 4 15
NCLDV-Prymnesiales 1 6
NCLDV-Pelagophyceae 1 3
NCLDV-No prediction 26 11 36
RNA virus-Copepoda 7 2 9
RNA virus-Chaetocerotales 2 0 2
RNA virus-Labyrinthulomycetes 1 0 1
RNA virus-No prediction 4 6 10
ssDNA virus-Copepoda 1 0 1

Total 58 25 83

VIPs refers to viruses having VIP scores > 2. Positive and negative VIPs had positive and negative
regression coefficients in the PLS model, respectively.
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Table 3. Functional differences between eukaryotes found to be best

connected to positively associated and not associated with carbon export
efficiency. See also Tables S4-S6.

Positive VIPs® (n = a . _ P-value
. 50) Non-VIPs® (n = 983) (Fisher's | Adjusted
Functional
trait exact P- value
Presence Absence Presence Absence | test,two | (BH) (Q)
sided)
Chloroplast 20 30 276 690 0.109 0.164
Silicification 11 39 60 920 0.000 0.001
Calcification 1 49 30 950 1.000 1.000

4VIPs refers to viruses having VIP scores > 2. Positive VIPs had positive regression coefficients in the

PLS model.
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Supplemental Data titles

Supplemental Data 1. VIP scores and regression coefficientsin the PLS model of
CEE for NCLDV polB, RNA virus RdRP and ssDNA virusRep along with their

taxonomic assignment, Related to Figure 3.

Supplemental Data 2. Genomic context-based host prediction, Related to Table 2.
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Highlights

Eukaryotic virus community composition is shown to predict carbon export efficiency

Tens of viruses are highly important in the prediction of the efficiency

These viruses are inferred to infect ecologically important hosts



