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One Versus all for deep Neural Network Incertitude
(OVNNI) quantification

Gianni Franchi Andrei Bursuc Emanuel Aldea Séverine Dubuisson Isabelle Bloch

Abstract—Deep neural networks (DNNs) are powerful learning
models yet their results are not always reliable. This is due to
the fact that modern DNNs are usually uncalibrated and we
cannot characterize their epistemic uncertainty. In this work, we
propose a new technique to quantify the epistemic uncertainty
of data easily. This method consists in mixing the predictions
of an ensemble of DNNs trained to classify One class vs All
the other classes (OVA) with predictions from a standard DNN
trained to perform All vs All (AVA) classification. On the one
hand, the adjustment provided by the AVA DNN to the score
of the base classifiers allows for a more fine-grained inter-class
separation. On the other hand, the two types of classifiers
enforce mutually their detection of out-of-distribution (OOD)
samples, circumventing entirely the requirement of using such
samples during training. Our method achieves state of the art
performance in quantifying OOD data across multiple datasets
and architectures while requiring little hyper-parameter tuning.

Index Terms—Uncertainty estimation, DNN ensembles, one vs
all classification, all vs all classification.

I. INTRODUCTION

Deep neural networks (DNNs) have reached state-of-the-
art performance on machine learning [34], [17], and computer
vision tasks [55], [30]. The significant progress has been leading
to their adoption in a wide range of decision making systems,
including safety critical ones. Yet, one of the main weaknesses
of these techniques appears to be the fact that they tend to be
overconfident [18] in their decisions. This issue is difficult to
tackle, as the high inner complexity of DNNs results in a poor
output explainability.

In order to address this crucial issue, we propose to rely on
a finer quantification of the uncertainty of DNN. In contrast
to most Bayesian DNN techniques [4], [27], [16], [44], [15],
or to frequentist techniques such as Deep Ensembles [32], our
approach relies on One vs All (OVA) training. In the statistical
learning community, ensembles of OVA or One vs One (OVO)
base classifiers for multi-class prediction have been particularly
popular in association with Support Vector Machines (SVM),
due to SVM being essentially a binary classifier, and to the
simplicity of the aggregation rules supported by fundamental
theoretical results [28], [31], [60]. The most popular rule in
case of OVA ensembles, winner-takes-all (WTA), assigns the
testing sample to the class for which the membership score
is the highest. For a binary output, the WTA rule creates in
the input space multiple unclassifiable regions, for which the
class assignment is not unique, and the standard solution is to
rely on continuous membership scores. In contrast to SVM-
based learning, nowadays the OVA approach has been mostly
discarded when training deep classifiers, in favor of All vs All
(AVA) learning.
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Fig. 1: Distribution of classifications scores. Here (a), (b) and
(c) represent the histograms of confidence scores of Resnet50
[19] trained on the CIFAR10 [29] training set and tested on
SVHN [50] and CIFAR10 testing set, using Maximum Class
Probability (MCP) [21], Deep Ensembles [32], and OVNNI,
respectively. We can see that our proposed algorithm OVNNI
outperforms Deep Ensembles (state of the art) and MCP
(baseline) on detecting OOD data, since it brings more OOD
data to a low score.

Usually, the predictive uncertainty of a DNN is categorized
into aleatoric uncertainty and epistemic uncertainty [23]. The
former is related to randomness, typically due to the noise
in the data. The latter concerns finite size training datasets.
The epistemic uncertainty captures the uncertainty in the DNN
parameters and their lack of knowledge on the model that
generated the training data. In this paper, we propose to use
OVA learning in order to improve the quantification of the
epistemic uncertainty of the DNN. The underlying idea of our
approach is that the score of a base classifier should be adjusted
by a factor which approximates its local reliability in the input
space from which the test sample originated. Initially for SVM
learning, the reliability has been linked to the average value of
the local objective function [42], which is approximated using
the closest training samples belonging to the respective class.
In our algorithm, we propose to adjust the OVA scores by the
score provided by an AVA DNN which will play thus the role
of approximating the local class-specific objective function.
This strategy allows for a particularly effective detection of
out-of-distribution (OOD) samples in the testing data, as we
can discriminate between samples belonging to unclassifiable
regions equally close to some classifiable regions, and samples
belonging to unclassifiable regions far from all classifiable
regions.

Fig. 1 presents the distribution of the scores provided by
the baseline, Deep Ensembles (the current state of the art)
and our method, respectively. The baseline is the single AVA
classifier, for which the class assignment is performed based
on the Maximum Class Probability (MCP). The baseline
is unable to discriminate among in- and out-of-distribution
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samples, illustrated in blue/yellow and orange in the histograms,
respectively. Deep Ensembles lowers the OOD scores, but
the in-distribution membership is still overestimated. Finally,
OVNNI successfully assigns low scores to the OOD samples,
while keeping at the same time the in-distribution scores high.

Our main contributions are the following. We propose an
efficient non-Bayesian technique for uncertainty quantification
in OOD data classification, that reaches state of the art results
on calibration and on OOD data detection on a variety of
datasets, and on all typical metrics. Secondly, we perform an
extensive study in which we compare, for different applications,
with the most significant approaches tackling uncertainty
estimation, including Deep Ensembles. Lastly, our conclusions
are in line with those of other works which defend the interest
of One versus All classifier aggregation [56], and our results
rehabilitate this approach in the novel context of uncertainty
estimation for DNN.

II. RELATED WORK

OOD detection is not a novel problem and has been studied
before the deep learning revival in various branches of machine
learning under slightly different taks: anomaly [40], outlier [7]
or novelty detection [58]. In the last few years, this task has seen
increased attention from different communities and has been
addressed with: predictive uncertainty estimation, ensemble
methods, image reconstruction, etc. In the following we review
briefly some of the methods related to our approach.
Classification with a background class. In multiple computer
vision tasks, e.g., object detection [55], [41], it is common to
use a background class in addition to the known classes to
classify. This leads to a better separation of the classification
space and a more discriminative classifier. While this seems
to be a reasonable and straightforward approach, for OOD
detection, it is likely to suffer from negative dataset bias [59]
and thus not generalize to other background objects not seen
during training. In our approach, we also use a part of the
classes as background when training the individual classifiers,
however the overlap of their decision boundaries coupled
with the AVA model, better distinguishes in- from out-of-
distributions samples.
Anomaly detection by reconstruction. Anomalies can be
detected by training an autoencoder [11], [2] or generative
model [57], [39] on in-distribution data and use the quality
of the reconstruction as a proxy OOD, as the autoencoder is
unlikely to decode accurately patterns not seen during training.
Training such models for accurate and robust reconstruction
requires large amounts of data.
Bayesian approaches. Bayesian Neural Networks (BNN) [49]
are elegant, intuitive and easy to reason models, that can
capture the epistemic uncertainty through the exploitation of
the distributions of their weights. In spite of recent progress
that make them more tractable [4], they are still limited to
small or medium-size networks, while most DNNs usually
enclose millions of parameters. Gal and Ghahramani [16]
aimed for a method to imitate BNNs. To this end they
proposed Monte Carlo Dropout (MC Dropout) to estimate the
posterior predictive network distribution by sampling different

subsets of neurons at each forward pass during test time and
aggregate their predictions. In computer vision, MC Dropout
is the most popular instance of BNNs due to its speed and
simplicity. It has been extended to other tasks, e.g., semantic
segmentation [25], pose estimation [26]. However, the benefits
of Dropout are more limited for convolutional layers, where
specific architectural design choices must be made [25], [48].
Recent OOD benchmarks for semantic segmentation [20], [39]
show that MC Dropout still induces many false positives.
Ensembles. Ensemble methods are prominent techniques for
measuring epistemic uncertainty. They have the potential to
encapsulate a true diversity in the weights of the compos-
ing models, contrarily to the dispersion introduced by MC
Dropout [14], which ultimately focuses on a single mode.
Lakshminarayan et al. [32] propose training an ensemble of
DNNs with different initialization seeds. Vyas et al. [61]
train an ensemble of classifiers in a self-supervised way on
different subsets of the training data, using the left-out data
as OOD. Izmailov et al. [24] collect weight checkpoints from
local minima and average them or fit a distribution over them
and sample networks [44]. Franchi et al. [15] track weights
trajectories across training and compute their distributions,
further used for sampling an ensemble of networks. Our
approach also exploits ensembles, however each network is
specialized on a different classification task. We exploit the
complementarity in this ensemble for better OOD predictions.
OVA/OVO ensembles. These aggregation techniques are
popular for performing multi-label classification based on
an ensemble of binary base classifiers. For OVO, instead
of the baseline max-voting aggregation strategy, pairwise
coupling [63] or ECOC [13] have been widely used, but the
quadratically increasing number of base classifiers may limit
significantly OVO applicability in the case of large sets of labels.
In contrast, OVA fusion uses a linearly increasing number of
base classifiers, and relies in most works on a Winner-Takes-
All class assignment based on the maximum class response. To
the best of our knowledge, these ensembling methods have not
been used for estimating the epistemic uncertainty of DNNs.
One-vs-all formulations have also been studied in a more
recent publication [52] where an ensemble of one-vs-all DNNs
is trained, with a new distance-based loss that can encode the
distance of a point from the training manifold, maximizing
the binary log-likelihood for the positive class and minimizing
it for the negative classes. Despite the interesting results on
image classification tasks, this approach does not seem scalable
for computer vision tasks such as semantic segmentation.
Deep OOD detection. A recent line of approaches addresses
OOD detection through DNNs specific heuristics. Hendrycks
and Gimpel [21] established a standard baseline for OOD
detection relying on the Maximum Class Probability from
softmax. In [12] a confidence branch is attached to a classifica-
tion network, which is trained to predict OOD samples, while
ODIN [38] learns a temperature scaling for softmax values
and adversarial perturbation to better distinguish OOD data.
Lee et al. [37] get a class conditional Gaussian distribution
with respect to features that they tune on a dataset with OOD
data and in-distribution data. Lambert et al. [33] attenuate
uncertainty by training on a large composite dataset leading
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to a more robust DNN. Zendel et al. [64] propose a semantic
segmentation dataset for checking the confidence score of
DNNs. The authors of [3] train a DNN to predict OOD
confidence score. Lee et al. [36] train a GAN along with
the classifier to produce near-distribution examples and enforce
lower classifier confidence on GAN samples. Malinin and
Gales [45] use Dirichlet networks to build a distribution over
the prediction distributions for OOD detection. Most of these
methods rely on a OOD dataset during training and are likely
to specialize on specific anomalies from these data [22]. In
contrast, in our approach we do not require OOD examples
during training, as we leverage the multiple one-versus-all
classifiers.

III. ONE VERSUS ALL FOR DEEP NEURAL NETWORK
INCERTITUDE (OVNNI)

This section focuses first on the necessary details on the
traditional AVA training of a DNN. Then we describe our
approach based on additional OVA training.

A. Notations

• The training/testing sets are denoted respectively by
Dl = (xi, yi)

nl
i=1, Dτ = (xi, yi)

nτ
i=1, where xi and yi

with i ∈ {1...nl} or i ∈ {1...nτ} represent respectively
the observed sample and the corresponding label, with
nl and nτ the size of the training and testing sets. xi
are input vectors and yi ∈ {0, . . . , nlabel} are class labels.
Unless otherwise specified, xi and yi, i ∈ [1, nl], will
refer to training data.

• X is the random variable associated with observed samples
and Y the one associated with classes.

• The DNN is a function f of the observed data xi with
i ∈ [1, nl] or i ∈ [1, nτ ] and vector ω that contains the
trainable weights. We call fω(xi) the output of the DNN
associated with the weights ω on the data xi.

• L(ω, yi) is the loss function used to measure the dis-
similarity between the output fω(xi) of the DNN and
the expected output yi. Different loss functions can be
considered according to the type of task. Here we will
focus on the cross entropy that will be introduced in the
next section.

B. All Versus All training of Deep Neural Networks

For image classification, the goal of a DNN is to map
the input data to a probabilistic prediction that we denote
P (Y = y∗ | X = xi,ω) with y∗ a class label. During training,
an optimization algorithm will improve the weights ω in order
to fit as much as possible the output to the ground truth
vector of class labels. The loss is expected to measure the
similarity between fω(xi) and yi. Classically we use Cross
entropy defined on a batch B of size N ∈ N by:

L(ω(t), B) = − 1

N

N∑
i=1

L(ω(t), yi) (1)

L(ω(t), B) = − 1

N

N∑
i=1

log(P (Y = yi | X = xi,ω)) (2)

The minimization of this loss function is usually based
on gradient methods. Computing the optimal value of each
parameter involves a bin-to-bin measure of similarity, which
may lead to overfitting issues.

A solution might be to use One Versus All training.

C. From One Versus All (OVA) to OVNNI

The current state of the art on uncertainty estimation is
Deep Ensembles [32]. This technique relies on ensembling
multiple DNN models trained in parallel in order to optimize
the same loss. In contrast to random forests [6], or Bagging[5]
the diversity arises from the fact that different embodiments of
the same model will converge towards different local optima
during training. Conversely, in our approach the diversity is
provided by the one-versus-all (OVA) models constructed using
different labelings of the training set.

The OVA strategy is conceptually simple, since at its core
it involves training a binary classification DNN. One classifier
is trained for each class, and prediction is then performed by
running the obtained binary classifiers on the testing sample and
choosing the prediction with the highest confidence score. Yet,
the multiple classifiers involved will learn multiple probabilistic
predictions, denoted by P (Yj = 1 | X = xi,ω

j) with Yj a
binary random variable for each class j. We add a super script
on ωj , to inform that 1) weights are different from the ones
trained to perform the AVA classification that we denote ω,
and 2) they are also different from the weights of other classes
different of j.

By training one class versus all the other classes, the DNN
learns in some sense the out of distribution classes, however
with the significant advantage of not relying on explicitly
provided OOD data, in contrast to other strategies [53], [46].
In addition to the OVA base classifiers, we also perform an
All versus all training that we aggregate with the probabilities
of the OVA models in the following way as shown in Figure
2.

Let us denote by Y the discrete random variable, that is
taking its value in the list of all classes, and let us denote by
Yj a binary random variable that takes values 0 or 1, with
Yj = 1 meaning that the data belongs to class j. Hence the
OVA DNN of the class j provides P (Yj = 1 | X = xi,ω

j),
while the AVA DNN provides P (Y = j | X = xi,ω) for all
j in [1, nlabel]. We consider that the final confidence score for a
data xi to belong to class j is:

pj(xi) = P (Yj = 1 | X = xi,ω
j)× P (Y = j | X = xi,ω) (3)

This score is high if AVA and OVA are confident and low in
the other case, multiplying OVA and AVA scores also helps
to increase the accuracy since AVA has lower accuracy than
OVA.

D. Uncertainty with OVNNI

We consider that a measure of confidence must satisfy the
following properties: (1) be bounded, (2) exhibit low values
for OOD data, (3) have a confidence value that aligned to the
accuracy of the algorithm, (4) get more confident if additional
training samples are provided. The first point assures that we
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Fig. 2: From AVA and OVA to OVNNI process in the case we deal
with a database composed of just three classes.

know what is the maximum and minimum of confidence. The
second point is to ensure to detect OOD data, which is crucial
since it provides information on the reliability of the DNN
on one data. The third point is linked to the calibration [18],
which is crucial to rely on the model predictions. The last
point concerns the fact that we want to reduce the uncertainty
when increasing the dataset.

We use as a measure of confidence for OVNNI the probability
max

j∈[1,nlabel]
{pj(xi)}. This measure is bounded by 0 and 1. In the

experimental section, we show that it has a state of the art
calibration and OOD results.

E. Visualizing OVA and AVA embedding

In this subsection, we perform two experiments to determine
the behavior of the representations learned by the DNN with
the different techniques. For both experiments we train a
simple DNN composed of 3 hidden layers followed by a batch
normalization on MNIST dataset [35].

In the first experiment, we have considered as training data
only the images with the digits ’0’,’1’ and ’2’ images (the 3
first classes). Then we perform inference on the official test set
composed of images with these classes and the OOD images
which are composed of other classes. We represent in Figure
3 the softmax of a classical AVA training, a deep ensemble
training and the OVNNI training. One can see that in contrast
to other techniques, OVNNI results do not necessarily belong
to the 2-dimensional simplex. In addition, OVNNI brings the
OOD data far away from the simplex vertices which highlights
its potential to detect OOD data.

In the second experiment, we performed a classical AVA
training, and we also performed the OVA training. Hence for
the OVA training, we have 10 DNNs (since the dataset has 10
classes which are the 10 digits).The OOD class is composed
of images of the NotMNIST dataset [1]. Hence, we apply the
DNNs on this test dataset and on the AVA case, we collect
for each data the feature space of the DNN just before the
classification of each data. In the OVA case, we collect the
same feature space but for the DNN of the predicted class. We
reduce the dimension of each of these feature spaces using
T-SNE [43] and Principal Component Analysis (PCA) [62]
and we plot the results in Figure 4. We can see that in the
AVA case the OOD data are in the center of Figure 4 mixed

with the other classes and in the OVA case they are closer to
the border whatever the dimensionality reduction algorithm we
use. This is crucial because it shows that OVA learns a more
interesting descriptor than OVA.
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Fig. 3: Results on MNIST - 3 classes experiments. We represent
in these figures the softmax prediction outputs obtained by the
baselines (a) MCP, (b) Deep Ensemble, and (c) by OVNNI,
respectively.

(a) MCP PCA (b) OVNNI PCA (c) MCP t-SNE (d) OVNNI t-SNE

Fig. 4: Results of the MNIST / NotMNIST experiment. We
represent the projection on a 2D space of the feature space
of the baseline MCP in figures (a) and (c), and of OVNNI
in figures(b) and (d). We use PCA [62] and t-SNE [43] as
dimensionality reduction algorithm.

IV. EXPERIMENTS

We continue by illustrating the performance of OVNNI
for detecting OOD data by conducting five experiments. In
the rest of this section we will describe the experimental
protocol, followed by the five experiments. We implemented all
approaches ourselves and used for all the same learning hyper-
parameters per dataset, without particular tuning. Moreover,
the number of ensembles is the same for all the techniques,
and corresponds to the number of classes.

A. Experimental protocol

The detection of OOD data can be done either by techniques
that measure the uncertainty, or by techniques that detect
OOD data. We first have compared our OVNNI to three other
uncertainty estimation techniques: MC Dropout [16], Deep
Ensembles [32], and TRADI [15]. The major interest of
these techniques comes from the fact that, since they estimate
uncertainty, they also estimate the epistemic uncertainty and
therefore the OOD data. We also have compared our approach
to two other techniques: ODIN [38] and ConfidNET [10] and
serve as references in unsupervised techniques for detecting
OOD data. As a baseline algorithm, we use the maximum
class probability (MCP) with AVA trained DNN. We denote
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Dataset OOD technique Accuracy/mIoU AUC AUPR AUPR ECE Real ECE
Error Success

MNIST/Not MNIST
3 hidden layers

Baseline (MCP) 98.8 92.7 96.1 81.4 0.305
MCP + One class SVM 98.8 97.4 98.4 95.9 0.072
MC Dropout 98.2 88.1 89.8 81.7 0.494
Deep Ensemble 98.9 97.7 98.4 95.8 0.462
TRADI 98.6 97.1 98.4 94.6 0.407
ODIN 98.8 94.2 96.8 85.6 0.500
ConfidNET 98.2 97.4 98.8 94.1 0.461
Ensemble OVA (ours) 97.2 99.0 99.5 97.3 0.179
OVNNI (ours) 98.8 99.1 99.6 97.9 0.066

CIFAR10
ResNet50

Baseline (MCP) 93.1 83.9 92.9 67.5 0.606 0.0278
MCP +One class SVM 93.1 79.7 90.9 63.5 0.203 0.5881
MC Dropout 93.1 83.9 92.9 67.5 0.606 0.0278
Deep Ensemble 95.0 95.8 97.7 92.1 0.422 0.0124
ODIN 93.1 83.9 93.3 67.2 0.606 0.0483
ConfidNET 93.1 85.1 94.6 61.2 0.706 0.0529
Ensemble OVA (ours) 89.3 91.8 95.8 87.1 0.468 0.0803
OVNNI (ours) 93.3 94.3 97.3 91.1 0.187 0.0185

Camvid
ENET

Baseline (MCP) 85.8/52.9 79.7 52.1 92.6 0.146
MC Dropout 80.3/48.6 80.2 56.1 89.3 0.168
Deep Ensemble 88.0/58.2 83.2 54.3 94.0 0.112
TRADI 83.4/51.4 83.2 55.9 93.8 0.110
ConfidNET 83.4/52.8 81.3 58.3 92.6 0.121
Ensemble OVA (ours) 87.9/52.8 91.7 69.6 98.4 0.060
OVNNI (ours) 93.1/66.1 94.0 75.7 99.0 0.025

StreetHazards
PSPNet (ResNet50)

Baseline (MCP) 90.0/54.6 91.6 50.8 98.9 0.055
MC Dropout 88.0/47.9 88.8 51.8 97.8 0.092
Deep Ensemble 90.2/55.0 92.2 52.0 99.0 0.051
TRADI 90.2 /54.6 92.1 51.4 99.1 0.049
ConfidNET 90.0/54.6 88.9 37.0 97.9 0.10
Ensemble OVA (ours) 89.7/54.0 92.4 52.3 99.1 0.048
OVNNI (ours) 90.0/54.6 93.0 53.4 99.2 0.048

BDD Anomaly
PSPNet (ResNet50)

Baseline (MCP) 89.9/52.8 81.4 62.5 91.5 0.159
MC Dropout 88.7/49.5 76.0 55.7 88.2 0.181
Deep Ensemble 91.0/57.6 85.5 67.3 93.9 0.170
TRADI 89.9/52.1 81.9 63.2 91.8 0.157
ConfidNET 89.9/52.8 78.3 56.4 91.2 0.232
Ensemble OVA (ours) 89.9/52.8 91.2 86.2 95.7 0.072
OVNNI (ours) 90.7/55.4 91.9 86.6 95.9 0.081

TABLE I: Comparative results obtained on the Calibration task.

this approach as MCP. As an additional baseline we consider
one-class Support Vector Machine[47], [51], a classic method
for outlier detection. We train it on AVA logits.

Note that we have not compared our OVNNI to techniques
trained to learn OOD such as [53], [46], since in these case the
OOD data are in the training set, making this technique able
to detect just with trained OOD data. To balance OVA training
which typically has more samples available for the ”All” class,
we use weighted cross-entropy to train for each class, with
weights for a given class based on 1 − τclass, where τclass
is the proportion of data samples of this class in the training
set. In addition, for a fair comparison in all experiments we
use the same number of models for ensemble and Bayesian
methods. We conducted several experiments in two target
applications: image classification (2 experiments) and semantic
pixel segmentation (3 experiments). We considered 7 metrics,
in addition to accuracy. Details and results are given below.

Metrics. The metric should focus on several points. The first
one is the error/success on predicting if the DNN model has
some knowledge about specific data. This involves detecting
if the data is OOD or not. For that, we use three solutions
proposed in [21]. We first only used the confidence score of

the OOD data and on the in distribution test data. Based on
these confidence scores, and as in [21], [20], we evaluated the
AUC, AUPR and the FPR-95%-TPR, that are indicators of the
accuracy of detecting OOD data

However, these measures give no information about the
number of good predictions (that should be high) and of bad
predictions (that should be low).

This information is crucial since, although it is important
to have a low score with the OOD data, the DNN should also
reach a high confidence score for well-classified data, and low
confidence scores elsewhere. In case the DNN does not reach
this point then it might be unusable.

For that, the authors in [10] propose to use metrics similar
to the one used by Hendrycks et al. [21] but rather than
classifying into classes “OOD” or “In distribution”, they
classify as “correctly classified” or “not correctly classified”
(this latter class contains both bad predictions and predictions
on OOD data, see [10] for more details).

We also used the Expected Calibration Error (ECE) [18],
which uses the M -bin histograms of confidence scores and
accuracy. The ECE performs a bin-to-bin difference between the
two histograms, than an average over the M bins. Similarly to
[18] we set M = 15. This metric, by measuring the difference



6

Dataset OOD technique AUC AUPR FPR-95%-TPR

MNIST/Not MNIST
3 hidden layers

Baseline (MCP) 94.0 96.0 24.6
MCP + One class SVM 96.9 98.0 12.5
MC Dropout 91.8 94.9 35.6
Deep Ensemble 97.2 98.0 9.2
TRADI 96.7 97.6 11.0
ODIN 94.9 96.7 17.5
ConfidNET 97.9 99.0 12.7
Ensemble OVA (ours) 98.9 99.4 5.9
OVNNI (ours) 99.3 99.6 3.5

CIFAR10
ResNet50

Baseline (MCP) 80.4 89.7 61.5
MCP + One class SVM 78.8 89.6 61.5
MC Dropout 80.4 89.7 62.6
Deep Ensemble 93.0 96.2 19.3
ODIN 80.3 89.9 61.3
ConfidNET 84.8 94.0 68.3
Ensemble OVA (ours) 88.5 93.0 30.9
OVNNI (ours) 92.2 95.8 23.3

Camvid
ENET

Baseline (MCP) 75.4 10.0 65.1
MC Dropout 75.4 10.7 63.2
Deep Ensemble 79.7 13.0 55.3
TRADI 79.3 12.8 57.7
ConfidNET 81.9 13.8 55.8
Ensemble OVA (ours) 97.1 71.1 13.5
OVNNI (ours) 96.1 61.2 16.5

StreetHazards
PSPNet (ResNet50)

Baseline (MCP) 88.7 6.9 26.9
MC Dropout 69.9 6.0 32.0
Deep Ensemble 90.0 7.2 25.4
TRADI 89.2 7.2 25.3
ConfidNET 83.6 2.3 26.2
Ensemble OVA (ours) 91.6 12.7 21.9
OVNNI (ours) 91.2 12.6 22.2

BDD Anomaly
PSPNet (ResNet50)

Baseline (MCP) 86.0 5.4 27.7
MC Dropout 85.2 5.0 29.3
Deep Ensemble 87.0 6.0 25.0
TRADI 86.1 5.6 26.9
ConfidNET 85.4 5.1 29.1
Ensemble OVA (ours) 87.0 4.9 29.0
OVNNI (ours) 87.2 6.7 25.0

TABLE II: Comparative results obtained on the OOD task.

between the expected accuracy and confidence, is an indicator
of the quality of the confidence, and should be close to 0.
OOD classification with MNIST [35]. Concerning the
classification, we used in a first experiment MNIST [35] which
is a dataset composed of digit images as training dataset and
NotMnist [1] which contains letter images as OOD dataset.
We first trained a classifier to learn to recognize the images of
digits then tested it on the test set of MNIST and NotMnist
hoping that the classifier would distinguish digits form letters.
The DNN used for this experiment is fully connected and
composed of 3 layers as in [32], [15]. Results are shown in
Tables I and II (MNIST rows).

OOD classification with CIFAR10 [29]. W also trained a
network on CIFAR10 composed of classes airplanes, cars,
birds, cats, deer, dogs, frogs, horses, ships and trucks. We have
considered as OOD SVHN dataset [50]. Many papers [44]
train on CIFAR10 and test on the test set of CIFAR10 with
noise or on STL-10 [9]. It turns out that the first test aims
more at measuring random uncertainty and the second one the

capability to adapt to the domain. We rather have preferred
to consider as an OOD dataset SVHN which is a color image
dataset of digits, that guarantees that the OOD data really
comes from a distribution different from that of CIFAR10. The
DNN we used on this experiment is Resnet50 [19], which has
the advantage of being popular in the community. Results are
shown in Tables I and II (CIFAR10 rows).
OOD Segmentation with Camvid [8]. We used Camvid, a
dataset conventionally used in works dealing with segmentation
or uncertainty theory and deep learning [25], [10], [15]. This is
dataset is an “easy” dataset but allows you to quickly validate
results. To test the ability of OVNNI to detect OOD pixels,
we trained on all Camvid classes except 3 classes (pedestrian,
bicycle, and car), that we deleted, by marking the corresponding
pixels as unlabeled. These three classes correspond to OOD
classes. Thus this experimental protocol proposed by [15]
makes it possible to validate that the trained DNN will detect
the pixels on which it has not been trained as OOD. The DNN
for this experiment is Enet [54]. Results are shown in Tables I
and II (Camvid rows).
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Fig. 5: (a) and (c) Accuracy vs confidence plot on the CIFAR10
\SVHN and BDD Anomaly experiments, respectively. (b)
calibrationn plot on the CIFAR10 \SVHN.

OOD Segmentation with StreetHazards [20]. StreetHazards
is a large-scale dataset that contains different sets of synthetic
images of street scenes. More precisely, this dataset is composed
of 5125 images for training and 1500 test images. The training
dataset contains 13 classes and the test dataset is composed
of the 13 training classes and 250 OOD classes, making it
possible to test the robustness of the algorithms with all possible
scenarios. For this experiment we used PSPnet [65] with the
experimental protocol in [20]. The architecture used for the
PSPnet is ResNet50. Results are shown in Tables I and II
(StreetHazards rows).
OOD Segmentation with BDD Anomaly [20]. BDD
Anomaly dataset is a subset of BDD dataset, composed of
6688 street scenes for the training set and 361 for the testing
set. The training set contains 17 classes, and the test dataset is
composed of the 17 training classes and 2 OOD classes. For this
experiment we used PSPnet [65] with the experimental protocol
in [20]]. The architecture used for the PSPnet is ResNet50.
Results are shown in Tables I and II (BDD Anomaly rows).

B. Discussions

On MNIST we can see in Tables I and II that OVNNI has
competitive results for detecting OOD data; more specifically,
its calibration score (ECE) is the best. With respect to the
metrics proposed by Hendryck et al., OVNNI is the most
effective in detecting OOD images, improving the best AUC
by 1.4% the best AUPR by 0.6% and the best FP of 63.2%.
Concerning the metrics proposed by Corbière et al., OVNNI
improves the AUC by 1.41%, the AUPR Error by 0.80% the
AUPR success by 2.14% and the ECE by 70.6%.

On CIFAR10, although Deep Ensembles achieve good results
on all the measurements as well except on the ECE, note that
OVNNI is better calibrated. This can also be seen in the
histogram in Figure 5. The difference between OVNNI and
Deep Ensembles is low and the crucial requirement of DNN is
to have a good calibration. Hence, having a good calibration is
more important than having a good AUC or AUPR. Also, we
have represented the accuracy vs confidence curves in Figure
4. These curves are defined in [32] and are constructed by
evaluating the accuracy of all data where the DNN has reached
confidence thresholds. These curves show the performance
of the OVNNI confidence index over CIFAR10. Finally, we
have illustrated the OVNNI calibration on CIFAR10 in the
calibration curve in Figure 4. The calibration plot is defined

on [18] and is constructed by taking bins of data based on
their confidence score. Then on each bin, we evaluate the
accuracy, as it should ideally be comparable to the confidence
score. These curves show once again the good performance of
OVNNI in terms of calibration.

On Camvid we note that OVNNI improves the results of the
state of the art by up to 77% with regard to the metrics proposed
by Corbière et al. [10], and by up to 77% for calibration as
well. Concerning the metrics proposed by Hendryck et al.,
OVNNI improves the measurements by a maximum of 22%.

On StreetHazards we show in Table II that OVNNI has better
results than the state of the art by improving the best results by
up to 42.8%. In Table I OVNNI improves the result by a least
2.6% and improves state-of-the-art ECE by 2%. These results
show the interest of using OVNNI for semantic segmentation.

Finally, on BDD Anomaly OVNNI improves the calibration
by at least 48% which is highly relevant, given the importance
of this metric. Furthermore concerning the other metrics,
OVNNI improves the results by at least 22%. Furthermore, in
Figure 5 we have illustrated the confidence accuracy curve of
several algorithms. These curves underline again that OVNNI
reaches the best performance in terms of calibration.

Overall, these results show that OVNNI improves the
calibration of networks by rendering the confidence in their
results more in line with their expected results. Making DNN
models more reliable is crucial, especially in areas where the
model should not be overconfident. In [18] the authors show
that good accuracy of DNNs comes with a price, namely their
reliability. In this work, we propose a solution that increases
accuracy in most cases, while at the same time improving the
calibration and the OOD detection performance. The conceptual
simplicity of this solution is a significant asset for its adoption,
and the results also convey the message that ’one vs all training’
can still have an interest for a finer understanding of epistemic
uncertainty in DNNs.

Ensemble of OVAs and OVNNI act like Deep Ensembles, i.e.
discovering and exploring multiple modes [14]. Just like Deep
Ensembles, they benefit from the multiple modes provided
by each model leading to better calibrated predictions [14].
However, Deep Ensembles can still become overconfident
as they follow modern training heuristics [17]. In OVNNI,
weighting OVAs with AVA softmax leads to generally less
confident predictions and improves calibration (plots in Fig. 5
confirm this quantitatively). This effect is similar to temperature
scaling for calibration [17]. However, we do not need an
additional validation set to tune this factor. OVA acts as a
single class classifier for OOD detection and also learns to
perform classification.

V. CONCLUSIONS

In this work, we presented an approach based on One versus
all training and mixed with a modern approach based on deep
learning. We show that the combination of these approaches
reaches states of the art performance on all segmentation
experiments. Regarding classification tasks, OVNNI exhibits
the best calibration performance. Concurrent approaches suffer
from a lack of performance in calibration in most datasets,
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Fig. 6: Results of OVNNI on BDD Anomaly. The first column is the input image, the second is the ground truth, the third is
prediction and the fifth is the confidence score of OVNNI. For comparison, we add the MCP confidence score in the fourth
column. We can see that OVNNI has a low score on the motorcycle on the three first rows and on the train on the last row
which correspond to the OOD classes.

Fig. 7: Results of OVNNI on StreetHazards. The first column is the input image, the second is the ground truth, the third is
prediction and the last is the confidence score of OVNNI. For comparison, we add the MCP confidence score in the fourth
column. We can see that OVNNI has a low score on the chair, the seat, the rocket and the spider which correspond to the
OOD classes.

hence the scores that they provide are overconfident, potentially
leading to dangerous scenarios in critical applications. In
addition to the reported performance, our approach needs little
hyperparameter tuning and is easy to implement.

Future work involves first extending this strategy to new
tasks such as medical image analysis. One could also use this
framework for active learning since active learning algorithms
require techniques that can detect OOD data.
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