
Encoding the latent posterior of Bayesian Neural Networks for uncertainty
quantification

Gianni Franchi
ENSTA Paris

Institut polytechnique de Paris
gianni.franchi@ensta-paris.fr

Andrei Bursuc
valeo.ai

andrei.bursuc@valeo.com

Emanuel Aldea
SATIE, Université Paris-Sud

Université Paris-Saclay
emanuel.aldea@u-psud.fr

Séverine Dubuisson
CNRS, LIS

Aix Marseille University
severine.dubuisson@lis-lab.fr

Isabelle Bloch
LTCI, Télécom Paris

Institut polytechnique de Paris
isabelle.bloch@telecom-paris.fr

Abstract

Bayesian neural networks (BNNs) have been long con-
sidered an ideal, yet unscalable solution for improving the
robustness and the predictive uncertainty of deep neural
networks. While they could capture more accurately the
posterior distribution of the network parameters, most BNN
approaches are either limited to small networks or rely on
constraining assumptions such as parameter independence.
These drawbacks have enabled prominence of simple, but
computationally heavy approaches such as Deep Ensembles,
whose training and testing costs increase linearly with the
number of networks. In this work we aim for efficient deep
BNNs amenable to complex computer vision architectures,
e.g. ResNet50 DeepLabV3+, and tasks, e.g. semantic seg-
mentation, with fewer assumptions on the parameters. We
achieve this by leveraging variational autoencoders (VAEs)
to learn the interaction and the latent distribution of the
parameters at each network layer. Our approach, Latent-
Posterior BNN (LP-BNN), is compatible with the recent
BatchEnsemble method, leading to highly efficient (in terms
of computation and memory during both training and testing)
ensembles. LP-BNNs attain competitive results across mul-
tiple metrics in several challenging benchmarks for image
classification, semantic segmentation and out-of-distribution
detection.

1. Introduction

Most top-performing approaches for predictive uncer-
tainty estimation with Deep Neural Networks (DNNs) [1,
33, 11] are essentially based on ensembles [27] which have
been shown to display many strengths: stability, mode diver-

Fig. 1: In a standard NN each weight has a fixed value. In a
BNN [3] all weights follow Gaussian distributions and are assumed
to be mutually independent: each weight is factorized by a Gaussian
distribution. LP-BNN considers that the weights at every layer fol-
low a multivariate Gaussian distribution, with a latent weight space
composed of independent Gaussian distributions. This enables
computing weight distributions in a lower dimensional space.

sity, etc. [9]. However their notable drawback in terms of
computational cost often make them prohibitive. The study
of DNN uncertainty is particularly challenging also due to
the potentially fuzzy definition of in- and out-of-distribution
samples, or to the difficulty in identifying the type of uncer-
tainty behind wrong predictions. However, in the context
of potential widespread adoption of DNNs for practical ap-
plications, uncertainty estimation is essential for computer
vision tasks, on par with the traditional goal of reaching high
accuracy.

In this work we address uncertainty estimation with
BNNs, which propose an intuitive and elegant formalism
suited for this task. For DNNs, we often assume that the
network weights to be modeled as random variables follow-
ing a Gaussian distribution, and that BNNs seek to estimate
the posterior distribution of the weights. In most BNN vari-
ants however the weights are assumed to be independent of
each other. While this assumption ensures computational
tractability, it can be damaging as a more complex organi-
zation can emerge within network layers, and that higher

4321

level correlations contribute to better performance and gen-
eralization [47, 45, 2]. Yet, even under such settings, BNNs
are often challenging to train at scale [7]. In response, many
approaches [33, 11] have advanced efficient approaches to
estimate the posterior distribution, yet also building on simi-
lar assumptions about the training process and the indepen-
dence of the weights of the DNN. In this work, we propose
to estimate the posterior of a BNN with inter-weight correla-
tions, in a stable and computationally efficient manner. So
far BNNs have failed to reach competitive performance in
popular computer vision benchmarks, often lagging behind
Deep Ensemble [27]. To the best of our knowledge, this is
the first BNN approach that can cope with complex models
and achieve state-of-the-art results for computer vision tasks
without the simplifying weight independence assumption.

In this paper, we advance a different deep BNN model,
named Latent Posterior BNN (LP-BNN), for which the pos-
terior distribution of the weights at every layer is encoded
with a variational autoencoder (VAE) [25] into a latent space
that follows a Gaussian distribution. This makes it possible
to efficiently learn weight correlations via the VAE. Our
training procedure may be viewed as a standard optimiza-
tion problem involving the training of multiple VAEs, as
opposed to specific BNN training strategies requiring indi-
vidual weight samplings whose variance hinders training
stability [7]. While VAEs are typically used to learn distri-
bution in order to generate images, here our aim is to learn
the distribution that generates DNNs to reach to a higher
accuracy. We outline LP-BNN in Figure 1.

2. Background
In this section, we present the chosen formalism for this

work and offer a short background on BNNs.

2.1. Preliminaries

We consider a training dataset D = {(xi, yi)}ni=1 with n
samples and labels, corresponding to two random variables
X ∼ PX and Y ∼ PY . Without loss of generality we
represent xi ∈ Rd as a vector, and yi as a scalar label.
We process the input data xi with a neural network fΘ(·)
with parameters Θ, that outputs a classification or regression
prediction. We view the neural network as a probabilistic
model with fΘ(xi) = P (Y = yi | X = xi,Θ). In the
following, when there are no ambiguities, we discard the
random variable from notations. For classification, P (yi |
xi,Θ) is a categorical distribution over the set of classes
over the domain of Y , typically corresponding to the cross-
entropy loss function, while for regression P (yi | xi,Θ) is
a Gaussian distribution of real values over the domain of
Y when using the squared loss function. For simplicity we
unroll our reasoning for the classification task.

In supervised learning, we leverage gradient descent for
learning Θ that minimizes the cross-entropy loss, which

is equivalent to finding the parameters that maximize the
likelihood estimation (MLE) P (D | Θ) over the training
set ΘMLE = arg maxΘ

∑
(xi,yi)∈D logP (yi | xi,Θ), or

equivalently minimize the following loss function:

LMLE(Θ) = −
∑

(xi,yi)∈D

logP (yi | xi,Θ). (1)

The Bayesian approach enables adding a prior infor-
mation on the parameters Θ, by placing a prior distribu-
tion P(Θ) upon them. This prior represents some ex-
pert knowledge about the dataset and the model. Instead
of maximizing the likelihood, we can now find the max-
imum a posteriori (MAP) weights for P(Θ | D) decom-
posed into P(D | Θ) and P(Θ) to compute ΘMAP =
arg maxΘ

∑
(xi,yi)∈D logP(yi | xi,Θ) + logP(Θ), i.e. to

minimize the following loss function:

LMAP(Θ) = −
∑

(xi,yi)∈D

logP (yi | xi,Θ)− logP (Θ), (2)

inducing a specific distribution over the functions computed
by the network and a regularization of the weights. For a
Gaussian prior, Eq. (2) reads as L2 regularization (weight
decay).

2.2. Bayesian Neural Networks

In most neural networks only the ΘMAP weights com-
puted during training are kept for predictions. Conversely,
in BNNs we aim to find the posterior distribution of the pa-
rameters given the training dataset P (Θ | D), not only the
values corresponding to the MAP. Here we can make a pre-
diction y on a new sample x by computing the expectation
of the predictions from an infinite ensemble corresponding
to different configurations of the weights sampled from the
posterior:

P (y | x,D) =

∫
P (y | x,Θ)P (Θ | D)dΘ, (3)

which is also known as Bayes ensemble. The integral in
Eq. (3), which is calculated over the domain of Θ, is in-
tractable, and in practice it is approximated by averaging
predictions from a limited set {Θ1, . . .ΘJ} of J weight con-
figurations sampled from the posterior distribution:

P (y | x,D) ≈ 1

J

J∑
j=1

P (y | x,Θj). (4)

Although BNNs are elegant and easy to formulate, their
inference is non-trivial and has been subject to extensive
research across the years [20, 31, 37]. Early approaches
relied on Markov chain Monte Carlo variants for inference,
while progress in variational inference (VI) [24] has enabled

4322

a recent revival of BNNs [3, 14]. VI turns posterior infer-
ence into an optimization problem. In detail, VI finds the
parameters ν of a distribution Qν(Θ) on the weights that
approximates the true Bayesian posterior distribution of the
weights P (Θ | D) through KL-divergence minimization.
This is equivalent to minimizing the following loss function,
also known as expected lower bound (ELBO) loss [3, 25]:

LBNN(Θ, ν) =−
∑

(xi,yi)∈D

EΘ∼Qν(Θ) log (P (yi | xi,Θ))

+ KL(Qν(Θ)||P (Θ)). (5)

The loss LBNN(Θ, ν) is composed of two terms: the KL term
depends on the weights and the prior P (Θ), while the like-
lihood term is data dependent. This loss strives to simulta-
neously capture faithfully the complexity and diversity of
the information from data D, while preserving the simplicity
of the prior P (Θ). To optimize this loss, Blundell et al. [3]
proposed leveraging the re-parameterization trick [25, 44],
foregoing the expensive MC estimates.

Discussion. BNNs are particularly appealing for uncer-
tainty quantification thanks to the ensemble of predictions
from multiple weight configurations sampled from the poste-
rior distribution. However this brings an increased computa-
tional and memory cost. For instance, the simplest variant of
BNNs with fully factorized Gaussian approximation distri-
butions [3, 14], i.e. each weight consists of a Gaussian mean
and variance, carries a double amount of parameters. In addi-
tion, Dusenberry et al. [7] pointed our that BNNs often under-
fit, and need multiple tunings to stabilize training dynamics
involved by the loss function and the variance from weight
samplings at each forward pass. Due to computational limi-
tations, most BNN approaches assume that parameters are
not correlated. This hinders their effectiveness, as empirical
evidence has shown that encouraging weight collaboration
improves training stability and generalization [43, 45, 47].

In order to calculate a tractable weight correlation aware
posterior distribution, we propose to leverage a VAE to com-
pute compressed latent distributions from which we can
sample new weight configurations. We rely on the recent
BatchEnsemble (BE) method [50] to further improve the
parameter-efficiency of BNNs. We now proceed to describe
BE and then derive our approach.

2.3. BatchEnsemble

Deep Ensembles (DEs) [27] are a popular and pragmatic
alternative to BNNs. While DEs boast outstanding accuracy
and predictive uncertainty, their training and testing cost in-
creases linearly with the number of networks. This drawback
has motivated the emergence of a recent stream of works
proposing efficient ensemble methods [1, 11, 33, 35, 50].
One of the most promising ones is BatchEnsemble [50]

Figure 2: Illustration on how BatchEnsemble generates the ensem-
ble weights for an ensemble of size J = 2.

which mimics in a parameter-efficient manner one of the
main strengths of DE, i.e. diverse predictions [9].

In a nutshell, BE builds up an ensemble from a single
base network (shared among ensemble members) and a set
of layer-wise weight matrices specific to each member. At
each layer, the weight of each ensemble member is generated
from the Hadamard product between a weight shared among
all ensemble members, called “slow weight”, and a Rank-1
matrix that varies among all members, called “fast weight”.
Formally, let Wshare ∈ Rm×p be the slow weights in a
neural network layer with input dimension m and with p
outputs. Each member j from an ensemble of size J owns
a fast weight matrix Wj ∈ Rm×p. Wj is a Rank-1 matrix
computed from a tuple of trainable vectors rj ∈ Rm and
sj ∈ Rp, with Wj = rjs

>
j . BE generates from them a

family of ensemble weights as follows: Wj = Wshare�Wj ,
where � is the Hadamard product. Each Wj member of the
ensemble is essentially a Rank-1 perturbation of the shared
weights Wshare (see Figure 2). The sequence of operations
during the forward pass reads:

h = a
(
(W>share(x� sj))� rj

)
, (6)

where a is an activation function and h the output activations.

The operations in BE can be efficiently vectorized, en-
abling each member to process in parallel the corresponding
subset of samples from the mini-batch. Wshare is trained
in a standard manner over all samples in the mini-batch. A
BE network fΘBE is parameterized by an extended set of
parameters ΘBE =

{
θslow : {Wshare}, θfast : {rj , sj}Jj=1

}
.

With its multiple sub-networks parameterized by a re-
duced set of weights, BE is a practical method that can
potentially improve the scalability of BNNs. We take advan-
tage of the small size of the fast weights to capture efficiently
the interactions between units and to compute a latent distri-
bution of the weights. We detail our approach below.

4323

3. Efficient Bayesian Neural Networks (BNNs)

3.1. Encoding the posterior weight distribution of a
BNN

Most BNN variants assume full independence between
weights both inter- and intra-layer. Modeling precisely
weight correlations in modern high capacity DNNs with
thousands to millions of parameters per layer [16] is how-
ever a daunting endeavor due to computational intractability.
Yet, multiple strategies aiming to boost weight collaboration
in one way or another, e.g. Dropout [47], WeightNorm [45],
Weight Standardization [43], have proven to improve training
speed, stability and generalization. Ignoring weight correla-
tions might partially explain the shortcomings of BNNs in
terms of underfitting [7]. This motivates us to find a scalable
way to compute the posterior distribution of the weights with-
out discarding their correlations and better exploit BNNs.

Li et al. [28] have recently found that the intrinsic di-
mension of DNNs can be in the order of hundreds to a
few thousand. The good performances of BE that build
on weights from a low-rank subspace further confirm this
finding. For efficiency, we leverage the Rank-1 subspace
decomposition in BE and estimate here the distribution of
the weights, leading to a novel form of BNNs. Formally,
instead of computing the posterior distribution P (Θ | D),
we aim now for P (θfast | D).

A first approach would be to compute Rank-1 weight
distributions by using rj and sj as variational layers, place
priors on them and compute their posterior distributions in a
similar manner to [3]. Dusenberry et al. [7] show that these
Rank-1 BNNs stabilize training by reducing the variance
of the sampled weights, due to sampling only from Rank-
1 variational distributions instead of full weight matrices.
However this raises the memory cost significantly as training
is performed simultaneously over all J sub-networks: on
CIFAR-10 for ResNet-50 with J=4 the authors use 8 TPUv2
cores with mini-batches of size 64 per core.

We argue that a more efficient way of computing the
posterior distribution of the fast weights would be to learn
instead the posterior distribution of the lower dimensional
latent variables of {r, s} ∈ θfast. This can be efficiently done
with a VAE [25] that can find a variational approximation
Qφ(z | r) to the intractable posterior Pψ(z | r). VAEs can
be seen as a generative model that can deal with complicated
dependencies between input dimensions via a probabilistic
encoder that projects the input into a latent space following
a specific prior distribution. For simplicity and clarity, from
here onward we derive our formalism only for r at a single
layer and consider weights s to be deterministic. Here the
input to the VAE are the weights r and we rely on it to learn
the dependencies between weights and encode them into the
latent representation.

In detail, for each layer of the network fΘ(·) we intro-

duce a VAE composed of a one layer encoder genc
φ (·) with

variational parameters φ and a one layer decoder gdec
ψ (·) with

parameters ψ. Let the prior over the latent variables be a
centered isotropic Gaussian Pψ(z) = N (z; 0, I). Like com-
mon practice, we let the variational approximate posterior
Qφ(z | r) be a multivariate Gaussian with diagonal covari-
ance. The encoder takes as input a mini-batch of size J
(the size of the ensemble) composed of all the rj weights
of this layer and outputs as activations (µj ,σ

2
j). We sam-

ple a latent variable zj ∼ N (µj ,σ
2
jI) and feed it to the

decoder, which in turn outputs the reconstructed weights
r̂j = gdec

ψ (zj). In other words, at each forward pass, we sam-
ple new fast weights r̂j from the latent posterior distribution
to be further used for generating the ensemble. The weights
of each member of the ensemble Wj = Wshare � (r̂js

>
j)

are now random variables depending on Wshare, sj and zj .
Note that while in practice we sample J weight configura-
tions, this approach allows us to generate larger ensembles
by sampling multiple times from the same latent distribution.
We illustrate an overview of an LP-BNN layer in Figure 3.

The VAE modules are trained in the standard manner with
the ELBO loss [25] jointly with the rest of the network. The
final loss function is:

LLP-BNN(ΘLP-BNN)=−
∑

(xi,yi)∈D

Ez∼Qφ(z|r) log (P (yi | xi,ΘLP-BNN, z))

+ KL(Qφ(z | r)||Pψ(z)) + ‖r− r̂‖2, (7)

where ΘLP-BNN=
{
θslow, θfast:{rj , sj}Jj=1, θ

variational:{φ, ψ}
}

.
The loss is applied to all J members of the ensemble.

At a first glance, the loss LLP-BNN bears some similarities
with LBNN (Eq. 5). Both losses have a likelihood and KL
term. The likelihood in LBNN, i.e. the cross-entropy loss,
depends on input data xi and on the parameters Θ sampled
from Qν(Θ), while LLP-BNN depends on the latent variables
zj sampled from Qφ(zj | rj) that lead to the fast weights r̂j .
It guides the weights towards useful values for the main task.
The KL term in LBNN enforces the per-weight prior, while
in LLP-BNN it preserves the consistency and simplicity of the
common latent distribution of the weights rj . In addition,
LLP-BNN has an input weight reconstruction loss (last term
in Eq. 7) ensuring that the generated weights r̂j are still
compatible with the rest of parameters of the network and
do not cause high variance and instabilities during training,
as typically occurs in standard BNNs [7].

At test time, we generate the LP-BNN ensemble on the
fly by sampling the weights r̂j from the encodings of rj
to compute Wj . For the final prediction we compute the
empirical mean of the likelihoods of the ensemble:

P (yi|xi) =
1

J

J∑
j=1

P (yi | xi, θslow, sj , r̂j) (8)

4324

Figure 3: Illustration on how LP-BNN generates the ensemble
weights (J = 2) using sampled fast weights r̂1 and r̂2.

3.2. The utility of Rank-1 Priors

One could ask why using the Rank-1 formalism, instead
of simply feeding the weights a layer to the VAE to infer
the latent distribution. Rank-1 prior reduce significantly
the number of weights to train the VAE over, due to the
decomposition of the fast weights into r and s. This further
allows us to consider multiple such weights, J , enabling
faster training of the VAE as its training samples are more
numerous and more diverse.

Next, we establish connections between the cardinality
J of the ensemble and the posterior covariance matrix. Our
prior distribution allows for the introduction of correlations
between weights, which is a desirable property due to its su-
perior expressiveness [7] but which can be otherwise difficult
to approximate. Also, the covariance matrix of our prior is
a Rank-1 matrix. Thanks to the Eckart-Young theorem [48]
(Theorem 5.1), we can quantify the error of approximating
the covariance by a Rank-1 matrix, based on the second up
to the last singular values.

Let us denote by Θ1, . . . ,ΘJ the J weights trained by
our algorithm, Θavg = 1/J

∑J
j=1 Θj and ∆j = Θj −Θavg.

The differences and the sum in the previous equations are
calculated element-wise on all the weights of the DNNs.
Then, for each new data sample x, the prediction of the
DNN fΘavg(·) is equivalent to the average of the DNNs fΘj (·)
applied on x :

1

J

J∑
j=1

fΘj (x) = fΘavg(x) +O
(
‖∆‖2

)
(9)

with ‖∆‖ = maxj ‖∆j‖ where the L2 is computed over all
weights. The proof can be found in Section 3.5 of [23]. It
follows that in fact we do not learn a Rank-1, but an up to
Rank-J covariance matrix, if all the sj rj are independent.
Hence the choice of J acts as an approximation factor of the
covariance matrix. Wen et al. [50] tested different values of
J and found that J = 4 was the best compromise, which we
will also use here.

3.3. Computational complexity

Recent efforts [9, 51] studied the weight modes computed
by Deep Ensembles within BNNs, yet this line of research is
computationally intractable at the scale required for practical
computer vision tasks. Dusenberry et al. [7] propose a more
scalable solution for image classification, which is nonethe-
less prone to high instabilities due to the important number
of parameters and to the fact that rj and sj are the latent
variables of the variational distribution. In comparison, our
approach requires less memory resources since we encode rj
in a lower dimensional space (we found empirically that a la-
tent space of size only 32 provides an appealing compromise
between accuracy and compactness). The only additional
cost in terms of parameters and memory used w.r.t. BE is
related to the compact VAEs associated with each layer.

Besides the lower number of parameters, LP-BNN train-
ing is more stable than for Rank-1 BNN due to the recon-
struction term ‖rj−r̂j‖22 which regularizes theLLP-BNN loss in
Eq. (7) by controlling the variances of the sampled weights.
BNNs usually need a range of heuristics, e.g. clipping, ini-
tialization from truncated Normal, extra weight regulariza-
tion to stabilize training [7]. For LP-BNN training is over-
all straightforward even on complex and deep models, e.g.
DeepLabV3+, thanks to the VAE module that is stable.

3.4. Discussion on uncertainty with LP-BNN

The predictive uncertainty of a DNN stems from two
main types of uncertainty [21]: aleatoric uncertainty and
epistemic uncertainty. The former is related to randomness,
typically due to the noise in the data. The latter concerns
finite size training datasets. The epistemic uncertainty cap-
tures the uncertainty in the DNN parameters and their lack
of knowledge on the model that generated the training data.

In BNN approaches, through likelihood marginalization
over weights, the prediction is computed by integrating the
outputs from different DNNs weighted by the posterior distri-
bution (Eq. 3) allowing to conveniently capture both types of
uncertainties [34]. The quality of the uncertainty estimates
depends on the diversity of predictions and views provided
by the BNN. DE [27] achieve excellent diversity [9] by mim-
icking BNN ensembles through training of multiple individ-
ual models. Recently, Wilson et al. [51] propose to combine
DE and BNN towards improving diversity further. However,
as DE are already computationally demanding, we argue that
BE is a more pragmatic choice for increasing the diversity
of our BNN , leading to better uncertainty quantification.

Figure 5 shows comparative results on diversity provided
by different DNNs. We train LP-BNN, BE and DE with
WideResnet-28-10 [55] on CIFAR-10 [26]. We evaluate
them on the test sets of CIFAR-10, CIFAR10-C [18] and
SVHN [39]. The SVHN images (representing digits) are
different from the training data, i.e. predominant epistemic
uncertainty, while CIFAR10-C data are different from the

4325

training images due to noise corruption, i.e. more aleatoric
uncertainty. The first row of Figure 5 shows the test images.
The next three rows synthesize diversity results obtained
with LP-BNN, BE and DE respectively. For all methods we
set the number of models to J = 4. The expected behavior is
that different DNNs would not predict the same class on the
OOD images, reducing the confidence score of the DNN. We
can see that the diversity of BE is inferior for CIFAR10-C
and SVHN, leading to poor results in Table 2.

4. Related work

Bayesian methods and deep learning. Bayesian ap-
proaches have an important place in the machine learning
community. MacKay [30, 32] was among the first to estab-
lish links between the two domains, then Neal [38] showed
that considering a neural network composed of one layer
with an infinite number of neurons was equivalent to a Gaus-
sian process regression. In this light, the use of some fun-
damental regularization techniques such as weight decay
comes down as considering a Bayesian prior on the data.

Bayesian Neural Networks. Modern BNNs are different
from previous Bayesian approaches. Most of the contem-
porary approaches [3, 7, 13, 29, 46, 53] consider that the
weights of the DNNs follow a specific distribution. Given a
prior over the weights, their goal is to estimate the posterior
distribution. Gaussian priors [3] were traditionally consid-
ered due to the link to weight decay. In [36, 46], studies
over various prior distributions were performed. In [7] were
used. More advanced prior distributions were proposed in
[13, 29, 53]. In [13] the prior distribution is a horseshoe prior
[4] which promotes sparsity. Here we propose a Rank-1 prior
over the latent space leading to non-independent weights.

Ensemble Approaches. Lakshminarayanan et al. [27]
proposed an effective non-Bayesian approach consisting in
training an ensemble of DNNs leading to top uncertainty
quantification performance. However, DE scale linearly
in both training and testing with the size of the ensemble.
SWAG [33] and TRADI [11] are methods to track the pos-
terior distribution of the DNN in a more efficient manner ,
and then at test time to ensemble the prediction from various
sample DNNs. OVNNI [10] and OVADM [40] ensemble
the results of multiple One vs. All trainings, leading to high
performance to detect anomalies. Franchi et al. [11] and
Mehrtash et al. [35] construct an ensemble from random
perturbations of the weights of a trained network. Our prior
distribution over the weights of the DNN is a multivariate
normal distribution, in contrast to previous works that con-
sider independent Gaussian distributions.

5. Experiments and results

5.1. Implementation details

We evaluate the performance of LP-BNN in assessing the
uncertainty of its predictions. For our benchmark, we evalu-
ated LP-BNNon different scenarios against several related
baselines with different advantages in terms of performance,
training or runtime: BE, DE, Maximum Class Probability
(MCP), MC Dropout [12], TRADI [11].

First, we evaluate the predictive performance in terms of
accuracy for image classification and mIoU [8] for semantic
segmentation respectively. Secondly, we evaluate the quality
of the confidence scores provided by the DNNs by means
of Expected Calibration Error (ECE) [15]. For ECE we use
M -bin histograms of confidence scores and accuracy, and
compute the average of M bin-to-bin differences between
the two histograms. Similarly to [15] we set M = 15. To
evaluate the DNNs on corrupted images and dataset shift, we
first train the DNNs on CIFAR-10 [26] or CIFAR-100 [26]
and then test on the corrupted versions of these datasets [18].
The corruptions include different types of noise, blurring,
and some other transformations that alter the quality of the
images. For this scenario, similarly to [49], we use as evalu-
ation measures the Corrupted Accuracy (cA) and Corrupted
Expected Calibration Error (cE), that offer a better under-
standing of the behavior of our DNN when facing aleatoric
uncertainty.

In order to evaluate the epistemic uncertainty, we propose
to assess the OOD detection performance. This scenario
typically consists in training a DNN over a dataset following
a given distribution, and testing it on data coming from
this distribution and data from another distribution. We
would quantify the confidence of the DNN predictions in
this setting by using theirs prediction scores, i.e. output
softmax values. We use the same indicators of the accuracy
of detecting OOD data as in [19]: AUC, AUPR, and the
FPR-95%-TPR. These metrics measure whether the DNN
model lacks knowledge regarding some specific data and
how reliable are its predictions.

5.2. Image classification with CIFAR-10/100 [26]

Protocol. Here we train on CIFAR-10 [26] composed of
10 classes. For CIFAR-10 we consider as OOD the SVHN
dataset [39]. Since SVHN is a color image dataset of digits,
it guarantees that the OOD data comes from a distribution
different from those of CIFAR-10. We use WideResNet-
28-10 [55] for all methods, a popular architecture for this
dataset and evaluate on CIFAR-10-C [18]. For CIFAR-
100 [26] we use again WideResNet-28-10 [55] and test on
the test set of CIFAR-100 and of CIFAR-100-C [18]. Note
that for all DNNs, even for DE, results are averaged over
3 random seeds, for statistical relevance.We use cutout [6]
as data augmentation, as commonly used for these datasets.

4326

CIFAR-10 CIFAR-100
Method Acc ↑ AUC ↑ AUPR ↑ FPR-95-TPR ↓ ECE ↓ cA ↑ cE ↓ Acc ↑ ECE ↓ cA ↑ cE ↓
MCP + cutout 96.33 0.9600 0.9767 0.115 0.0207 32.98 0.6167 80.19 0.1228 19.33 0.7844

MC dropout 95.95 0.9126 0.9511 0.282 0.0172 32.32 0.6673 75.40 0.0694 19.33 0.5830

MC dropout +cutout 96.50 0.9273 0.9603 0.242 0.0117 32.35 0.6403 77.92 0.0572 27.66 0.5909

Deep Ensembles + cutout 96.74 0.9803 0.9896 0.071 0.0093 68.75 0.1414 82.29 0.0524 47.35 0.1981

BatchEnsembles + cutout 96.48 0.9540 0.9731 0.132 0.0167 71.67 0.1928 81.27 0.0912 47.44 0.2909

LP-BNN (ours) + cutout 95.02 0.9691 0.9836 0.103 0.0094 69.51 0.1197 76.85 0.0677 47.80 0.2324

Table 1: Comparative results for classification tasks on CIFAR-10 and CIFAR-100. The results are averaged over three seeds.

0 1 2 3 4
skew intensity

0.05

0.10

0.15

0.20

0.25

0.30

EC
E Method

BatchEnsemble
LP-BNN
Deep Ensembles

Figure 4: Study of the evolution of the ECE of LP-BNN, Deep En-
sembles and BatchEnsemble on CIFAR-10-C with different levels
of corruption.

Please find in the supplementary the hyperparameters for
this experiment.

Discussion. We illustrate results for this experiments in
Table 2. We notice that DE with cutout outperforms others
on most of the metrics except ECE, cA, and cE on CIFAR-
10, and cA on CIFAR-100, where LP-BNN achieves state of
the art results. This means that LP-BNN is competitive for
aleatoric uncertainty estimation. In fact, ECE is calculated
on the test set of CIFAR-10 and CIFAR-100, so it mostly
measures the reliability of the confidence score in the training
distribution. cA and cE are evaluated on corrupted versions
of CIFAR-10 and CIFAR-100, which amounts to quantifying
the aleatoric uncertainty. We can see that for this kind of
uncertainty, LP-BNN achieves state of the art performance.
On the other hand, for epistemic uncertainty, we can see that
DE always attain best results. Yet, LP-BNN, in most cases,
performs close to DE. Computation wise, DE takes 52 hours
to train on CIFAR-10, while our solution needs 2 times less,
26 hours and 30 minutes. Overall, our LP-BNN is more
computationally efficient while providing better results for
the aleatoric uncertainty. As a comparison, it takes 26 hours
for BE to be train on CIFAR-10, sensibly less than LP-BNN.
In Figure 4 and Table 3 we observe that our method exhibits
the best global ECE on CIFAR-10-C, as well as the best ECE
for the stronger corruptions.

5.3. Semantic segmentation

We evaluate next semantic segmentation, a task of interest
for autonomous driving, for which high capacity DNNs are
used for processing high resolution images with complex
urban scenery.
StreetHazards [17]. StreetHazards is a large-scale dataset
that consists of different sets of synthetic images of street
scenes. More precisely, this dataset is composed of 5125 im-
ages for training and 1500 test images. The training dataset
contains pixel-wise annotations for 13 classes. The test
dataset comprises 13 training classes and 250 OOD classes,
unseen during in the training set, making it possible to test
robustness of the algorithm when facing a diversity of possi-
ble scenarios. For this experiment, we used DeepLabv3+ [5]
with a ResNet-50 encoder [16]. Following the implementa-
tion in [17], most papers use PSPNet [56] that aggregates
predictions over multiple scales, an ensembling that can
obfuscate in the evaluation the uncertainty contribution of
a method. This can partially explain the excellent perfor-
mance of MCP on the original settings [17]. We propose
using DeepLabv3+ instead as it enables a clearer evaluation
of the predictive uncertainty. We propose two DeepLabv3+
variants as follows. DeepLabv3+ is composed of an en-
coder network and decoder network; in the first version,
we change the decoder by replacing all the convolutions
with our new version of LP-BNN convolutions and leave the
encoder unchanged. In the second variant we use weight
standardization [42] on the convolutional layers of the de-
coder, replacing batch normalization [22] in the decoder
with group normalization [52]. We denote the first version
LP-BNN and the second one LP-BNN + GN.
BDD-Anomaly [17]. BDD-Anomaly is a subset of the
BDD100K dataset [54], composed of 6688 street scenes
for training and 361 for the test set. The training set con-
tains pixel-level annotations for 17 classes, and the test
dataset is composed of the 17 training classes and 2 OOD
classes: motor-cycle and train. For this experiment, we use
DeepLabv3+[5] with the experimental protocol from [17].
As previously we use ResNet50 encoder [16]. For this ex-
periment, we use the LP-BNN and LP-BNN + GN variants.
Discussion. We emphasize that the semantic segmentation is
more challenging than the CIFAR classification since images

4327

0 1 2 3 4 5 6 7 8 9
classes

0.0

0.2

0.4

0.6

0.8

1.0

pr
ob

ab
ilit

ie
s

0 1 2 3 4 5 6 7 8 9
classes

0.0

0.2

0.4

0.6

0.8

1.0

pr
ob

ab
ilit

ie
s

0 1 2 3 4 5 6 7 8 9
classes

0.0

0.2

0.4

0.6

0.8

1.0

pr
ob

ab
ilit

ie
s

0 1 2 3 4 5 6 7 8 9
classes

0.0

0.2

0.4

0.6

0.8

pr
ob

ab
ilit

ie
s

0 1 2 3 4 5 6 7 8 9
classes

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

pr
ob

ab
ilit

ie
s

0 1 2 3 4 5 6 7 8 9
classes

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

pr
ob

ab
ilit

ie
s

0 1 2 3 4 5 6 7 8 9
classes

0.0

0.2

0.4

0.6

0.8

pr
ob

ab
ilit

ie
s

0 1 2 3 4 5 6 7 8 9
classes

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

pr
ob

ab
ilit

ie
s

0 1 2 3 4 5 6 7 8 9
classes

0.0

0.1

0.2

0.3

0.4

0.5

0.6

pr
ob

ab
ilit

ie
s

0 1 2 3 4 5 6 7 8 9
classes

0.0

0.2

0.4

0.6

0.8

1.0

pr
ob

ab
ilit

ie
s

0 1 2 3 4 5 6 7 8 9
classes

0.0

0.2

0.4

0.6

0.8

1.0

pr
ob

ab
ilit

ie
s

0 1 2 3 4 5 6 7 8 9
classes

0.0

0.2

0.4

0.6

0.8

1.0

pr
ob

ab
ilit

ie
s

0 1 2 3 4 5 6 7 8 9
classes

0.0

0.2

0.4

0.6

0.8

1.0

pr
ob

ab
ilit

ie
s

0 1 2 3 4 5 6 7 8 9
classes

0.0

0.2

0.4

0.6

0.8

pr
ob

ab
ilit

ie
s

0 1 2 3 4 5 6 7 8 9
classes

0.0

0.2

0.4

0.6

0.8

1.0

pr
ob

ab
ilit

ie
s

0 1 2 3 4 5 6 7 8 9
classes

0.0

0.2

0.4

0.6

0.8

pr
ob

ab
ilit

ie
s

0 1 2 3 4 5 6 7 8 9
classes

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

pr
ob

ab
ilit

ie
s

0 1 2 3 4 5 6 7 8 9
classes

0.0

0.2

0.4

0.6

0.8

pr
ob

ab
ilit

ie
s

0 1 2 3 4 5 6 7 8 9
classes

0.0

0.2

0.4

0.6

0.8

1.0

pr
ob

ab
ilit

ie
s

0 1 2 3 4 5 6 7 8 9
classes

0.0

0.2

0.4

0.6

0.8

1.0

pr
ob

ab
ilit

ie
s

0 1 2 3 4 5 6 7 8 9
classes

0.0

0.2

0.4

0.6

0.8

1.0

pr
ob

ab
ilit

ie
s

0 1 2 3 4 5 6 7 8 9
classes

0.0

0.2

0.4

0.6

0.8

1.0

pr
ob

ab
ilit

ie
s

0 1 2 3 4 5 6 7 8 9
classes

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

pr
ob

ab
ilit

ie
s

0 1 2 3 4 5 6 7 8 9
classes

0.0

0.2

0.4

0.6

0.8

1.0

pr
ob

ab
ilit

ie
s

0 1 2 3 4 5 6 7 8 9
classes

0.0

0.2

0.4

0.6

0.8

1.0

pr
ob

ab
ilit

ie
s

0 1 2 3 4 5 6 7 8 9
classes

0.0

0.2

0.4

0.6

0.8

1.0

pr
ob

ab
ilit

ie
s

0 1 2 3 4 5 6 7 8 9
classes

0.0

0.2

0.4

0.6

0.8

1.0

pr
ob

ab
ilit

ie
s

Figure 5: Illustration of the diversity provided by the different ensembles. The first row contains in order three images from the test set of
CIFAR-10, of CIFAR-10-C and of SVHN. The next three rows represent the corresponding outputs of the different sub models for the three
ensambling algorithms being considered: LP-BNN, BatchEnsemble and Deep Ensembles.

Dataset OOD method mIoU ↑ AUC ↑ AUPR ↑ FPR-95-TPR ↓ ECE ↓

StreetHazards
DeepLabv3+

ResNet50

Baseline (MCP) 53.90 0.8660 0.0691 0.3574 0.0652
TRADI 52.46 0.8739 0.0693 0.3826 0.0633
Deep Ensembles 55.59 0.8794 0.0832 0.3029 0.0533
BatchEnsemble 56.16 0.8817 0.0759 0.3285 0.0609
LP-BNN (ours) 54.50 0.8833 0.0718 0.3261 0.0520
LP-BNN + GN (ours) 56.12 0.8908 0.0742 0.2999 0.0593

BDD-Anomaly
DeepLabv3+

ResNet50

Baseline (MCP) 47.63 0.8515 0.0450 0.2878 0.1768
TRADI 44.26 0.8480 0.0454 0.3687 0.1661
Deep Ensembles 51.07 0.8480 0.0524 0.2855 0.1419
BatchEnsemble 48.09 0.8427 0.0449 0.3017 0.1690
LP-BNN (ours) 49.01 0.8532 0.0452 0.2947 0.1716
LP-BNN + GN (ours) 47.15 0.8553 0.0577 0.2866 0.1623

Table 2: Comparative results obtained on the OOD task for semantic segmentation. The results are averaged over three seeds.

Figure 6: Visual assessment on two images of BDD-Anomaly in which a motorcycle (OOD class) is present. For each image: on the first
row - input image and confidence maps for MCP, BE and LP-BNN (ours); on the second row - GT segmentation and segmentation maps for
MCP, BE and LP-BNN (ours). LP-BNN is less confident on the OOD objects.

are bigger, the content is more complex.The larger input size
constrains to the use of a smaller batches. This is crucial
since the fast weights of the ensemble layers are trained just
on one batch slice. In this experiment, we could use batches
of size 4 and train the fast weights on slices of size 1. Yet,
despite these computational difficulties, with our technique,
we achieved state-of-the-art results for most metrics. We
can see in Table 2 that our strategies achieve state-of-the-art
performance in detecting OOD data and are well calibrated.
We can also see in Figure 6, where the OOD class is the
motorcycle, that our DNN is less confident in this class.
Hence LP-BNN allows us to have a more reliable DNN
which is essential for real-world applications.

6. Conclusion
We propose a new BNN framework able to quantify un-

certainty in the context of deep learning. Owing to each
layer of the network being tied to and regularized by a VAE,
LP-BNNs are stable, efficient, and therefore easy to train
compared to existing BNN models. The extensive empirical
comparisons on multiple tasks show that LP-BNNs reach
state-of-the-art levels with substantially lower computational
cost. We hope that our work will open new research paths
on effective training of BNNs. In the future we intend to
explore new strategies for plugging more sophisticated VAEs
in our models along with more in-depth theoretical studies.

4328

References
[1] Arsenii Ashukha, Alexander Lyzhov, Dmitry Molchanov, and

Dmitry Vetrov. Pitfalls of in-domain uncertainty estimation
and ensembling in deep learning. In International Conference
on Learning Representations, 2020. 4321, 4323

[2] Yoshua Bengio, Ian Goodfellow, and Aaron Courville. Deep
learning, volume 1. MIT press Massachusetts, USA:, 2017.
4322

[3] Charles Blundell, Julien Cornebise, Koray Kavukcuoglu, and
Daan Wierstra. Weight uncertainty in neural networks. In
International Conference on International Conference on Ma-
chine Learning, page 1613–1622, 2015. 4321, 4323, 4324,
4326, 2

[4] Carlos M Carvalho, Nicholas G Polson, and James G Scott.
Handling sparsity via the horseshoe. In Artificial Intelligence
and Statistics, pages 73–80, 2009. 4326

[5] Liang-Chieh Chen, Yukun Zhu, George Papandreou, Florian
Schroff, and Hartwig Adam. Encoder-decoder with atrous
separable convolution for semantic image segmentation. In
Proceedings of the European conference on computer vision
(ECCV), pages 801–818, 2018. 4327

[6] Terrance DeVries and Graham W Taylor. Improved regular-
ization of convolutional neural networks with cutout. arXiv
preprint arXiv:1708.04552, 2017. 4326

[7] Michael W. Dusenberry, Ghassen Jerfel, Yeming Wen,
Yian Ma, Jasper Snoek, Katherine Heller, Balaji Lakshmi-
narayanan, and Dustin Tran. Efficient and scalable bayesian
neural nets with rank-1 factors. In International Conference
on Machine Learning (ICML), 2020. 4322, 4323, 4324, 4325,
4326

[8] Mark Everingham, SM Ali Eslami, Luc Van Gool, Christo-
pher KI Williams, John Winn, and Andrew Zisserman. The
pascal visual object classes challenge: A retrospective. In-
ternational journal of computer vision, 111(1):98–136, 2015.
4326

[9] Stanislav Fort, Huiyi Hu, and Balaji Lakshminarayanan. Deep
ensembles: A loss landscape perspective. arXiv preprint
arXiv:1912.02757, 2019. 4321, 4323, 4325

[10] Gianni Franchi, Andrei Bursuc, Emanuel Aldea, Severine
Dubuisson, and Isabelle Bloch. One versus all for deep neural
network incertitude (ovnni) quantification. arXiv preprint
arXiv:2006.00954, 2020. 4326

[11] Gianni Franchi, Andrei Bursuc, Emanuel Aldea, Séverine
Dubuisson, and Isabelle Bloch. Tradi: Tracking deep neural
network weight distributions. In Proceedings of the European
conference on computer vision (ECCV), 2020. 4321, 4322,
4323, 4326

[12] Yarin Gal and Zoubin Ghahramani. Dropout as a bayesian
approximation: Representing model uncertainty in deep learn-
ing. In international conference on machine learning, pages
1050–1059, 2016. 4326

[13] Soumya Ghosh, Jiayu Yao, and Finale Doshi-Velez. Struc-
tured variational learning of bayesian neural networks with
horseshoe priors. In International Conference on Machine
Learning, pages 1744–1753, 2018. 4326

[14] Alex Graves. Practical variational inference for neural net-
works. In Advances in neural information processing systems,
pages 2348–2356, 2011. 4323

[15] Chuan Guo, Geoff Pleiss, Yu Sun, and Kilian Q Weinberger.
On calibration of modern neural networks. In Proceedings
of the 34th International Conference on Machine Learning-
Volume 70, pages 1321–1330. JMLR. org, 2017. 4326

[16] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.
Deep residual learning for image recognition. In Proceed-
ings of the IEEE conference on computer vision and pattern
recognition, pages 770–778, 2016. 4324, 4327

[17] Dan Hendrycks, Steven Basart, Mantas Mazeika, Moham-
madreza Mostajabi, Jacob Steinhardt, and Dawn Song.
A benchmark for anomaly segmentation. arXiv preprint
arXiv:1911.11132, 2019. 4327, 1

[18] Dan Hendrycks and Thomas Dietterich. Benchmarking neural
network robustness to common corruptions and perturbations.
In International Conference on Learning Representations,
2018. 4325, 4326

[19] Dan Hendrycks and Kevin Gimpel. A baseline for detect-
ing misclassified and out-of-distribution examples in neural
networks. In 5th International Conference on Learning Rep-
resentations, ICLR 2017, Toulon, France, April 24-26, 2017,
2017. 4326

[20] Geoffrey E Hinton and Drew Van Camp. Keeping the neural
networks simple by minimizing the description length of the
weights. In Proceedings of the sixth annual conference on
Computational learning theory, pages 5–13, 1993. 4322

[21] Stephen C Hora. Aleatory and epistemic uncertainty in prob-
ability elicitation with an example from hazardous waste
management. Reliability Engineering & System Safety, 54(2-
3):217–223, 1996. 4325

[22] Sergey Ioffe and Christian Szegedy. Batch normalization:
Accelerating deep network training by reducing internal co-
variate shift. arXiv preprint arXiv:1502.03167, 2015. 4327

[23] Pavel Izmailov, Dmitrii Podoprikhin, Timur Garipov, Dmitry
Vetrov, and Andrew Gordon Wilson. Averaging weights
leads to wider optima and better generalization. In 34th
Conference on Uncertainty in Artificial Intelligence 2018,
UAI 2018, pages 876–885, 2018. 4325

[24] Michael I Jordan, Zoubin Ghahramani, Tommi S Jaakkola,
and Lawrence K Saul. An introduction to variational meth-
ods for graphical models. Machine learning, 37(2):183–233,
1999. 4322

[25] Diederik P. Kingma and Max Welling. Auto-encoding varia-
tional bayes. In 2nd International Conference on Learning
Representations, ICLR 2014, Banff, AB, Canada, April 14-16,
2014, Conference Track Proceedings, 2014. 4322, 4323, 4324

[26] Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple
layers of features from tiny images. Technical report, Citeseer,
2009. 4325, 4326, 1

[27] Balaji Lakshminarayanan, Alexander Pritzel, and Charles
Blundell. Simple and scalable predictive uncertainty estima-
tion using deep ensembles. In Advances in Neural Information
Processing Systems, pages 6402–6413, 2017. 4321, 4322,
4323, 4325, 4326

[28] Chunyuan Li, Heerad Farkhoor, Rosanne Liu, and Jason
Yosinski. Measuring the intrinsic dimension of objective

4329

landscapes. In International Conference on Learning Repre-
sentations, 2018. 4324

[29] Christos Louizos, Xiahan Shi, Klamer Schutte, and Max
Welling. The functional neural process. In Advances in
Neural Information Processing Systems, pages 8746–8757,
2019. 4326

[30] David JC MacKay. Bayesian methods for adaptive models.
PhD thesis, California Institute of Technology, 1992. 4326

[31] David JC MacKay. A practical bayesian framework for back-
propagation networks. Neural computation, 4(3):448–472,
1992. 4322

[32] David JC MacKay. Probable networks and plausible predic-
tions—a review of practical bayesian methods for supervised
neural networks. Network: computation in neural systems,
6(3):469–505, 1995. 4326

[33] Wesley J Maddox, Pavel Izmailov, Timur Garipov, Dmitry P
Vetrov, and Andrew Gordon Wilson. A simple baseline for
bayesian uncertainty in deep learning. In Advances in Neural
Information Processing Systems, volume 32, pages 13153–
13164, 2019. 4321, 4322, 4323, 4326

[34] Andrey Malinin and Mark Gales. Predictive uncertainty esti-
mation via prior networks. In Advances in Neural Information
Processing Systems, pages 7047–7058, 2018. 4325

[35] Alireza Mehrtash, Purang Abolmaesumi, Polina Golland,
Tina Kapur, Demian Wassermann, and William Wells. Pep:
Parameter ensembling by perturbation. Advances in Neural
Information Processing Systems, 33, 2020. 4323, 4326

[36] Eric Thomas Nalisnick. On priors for bayesian neural net-
works. PhD thesis, UC Irvine, 2018. 4326

[37] Radford M Neal. Bayesian learning for neural networks. PhD
thesis, University of Toronto, 1995. 4322

[38] Radford M Neal. Bayesian learning for neural networks,
volume 118. Springer Science & Business Media, 2012. 4326

[39] Yuval Netzer, Tao Wang, Adam Coates, Alessandro Bissacco,
Bo Wu, and Andrew Y Ng. Reading digits in natural images
with unsupervised feature learning. 2011. 4325, 4326

[40] Shreyas Padhy, Zachary Nado, Jie Ren, Jeremiah Liu,
Jasper Snoek, and Balaji Lakshminarayanan. Revisiting
one-vs-all classifiers for predictive uncertainty and out-of-
distribution detection in neural networks. arXiv preprint
arXiv:2007.05134, 2020. 4326

[41] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer,
James Bradbury, Gregory Chanan, Trevor Killeen, Zeming
Lin, Natalia Gimelshein, Luca Antiga, Alban Desmaison,
Andreas Kopf, Edward Yang, Zachary DeVito, Martin Rai-
son, Alykhan Tejani, Sasank Chilamkurthy, Benoit Steiner,
Lu Fang, Junjie Bai, and Soumith Chintala. Pytorch: An
imperative style, high-performance deep learning library. In
Advances in Neural Information Processing Systems 32, pages
8024–8035, 2019. 1

[42] Siyuan Qiao, Huiyu Wang, Chenxi Liu, Wei Shen, and Alan
Yuille. Rethinking normalization and elimination singularity
in neural networks. arXiv preprint arXiv:1911.09738, 2019.
4327

[43] Siyuan Qiao, Huiyu Wang, Chenxi Liu, Wei Shen, and
Alan Yuille. Weight standardization. arXiv preprint
arXiv:1903.10520, 2019. 4323, 4324

[44] Danilo Jimenez Rezende, Shakir Mohamed, and Daan Wier-
stra. Stochastic backpropagation and approximate inference
in deep generative models. In Proceedings of the 31st Inter-
national Conference on International Conference on Machine
Learning-Volume 32, pages II–1278, 2014. 4323

[45] Tim Salimans and Durk P Kingma. Weight normalization: A
simple reparameterization to accelerate training of deep neu-
ral networks. In Advances in Neural Information Processing
Systems, pages 901–909, 2016. 4322, 4323, 4324

[46] Daniele Silvestro and Tobias Andermann. Prior choice affects
ability of bayesian neural networks to identify unknowns.
arXiv preprint arXiv:2005.04987, 2020. 4326

[47] Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya
Sutskever, and Ruslan Salakhutdinov. Dropout: A simple
way to prevent neural networks from overfitting. J. Mach.
Learn. Res., 15(1):1929–1958, January 2014. 4322, 4323,
4324

[48] Jianzhong Wang. Geometric structure of high-dimensional
data and dimensionality reduction. Springer, 2012. 4325

[49] Yeming Wen, Ghassen Jerfel, Rafael Muller, Michael W
Dusenberry, Jasper Snoek, Balaji Lakshminarayanan, and
Dustin Tran. Improving calibration of batchensemble with
data augmentation. In ICML 2020 workshop on Uncertainty
Robustness in Deep Learning, 2020. 4326

[50] Yeming Wen, Dustin Tran, and Jimmy Ba. Batchensemble:
an alternative approach to efficient ensemble and lifelong
learning. In International Conference on Learning Represen-
tations, 2020. 4323, 4325

[51] Andrew Gordon Wilson and Pavel Izmailov. Bayesian deep
learning and a probabilistic perspective of generalization. In
Advances in Neural Information Processing Systems, 2020.
4325

[52] Yuxin Wu and Kaiming He. Group normalization. In Proceed-
ings of the European conference on computer vision (ECCV),
pages 3–19, 2018. 4327

[53] Wanqian Yang, Lars Lorch, Moritz A Graule, Srivatsan Srini-
vasan, Anirudh Suresh, Jiayu Yao, Melanie F Pradier, and
Finale Doshi-Velez. Output-constrained bayesian neural net-
works. In 2019 ICML Workshop on Uncertainty and Robust-
ness in Deep Learning (UDL), 2019. 4326

[54] Fisher Yu, Haofeng Chen, Xin Wang, Wenqi Xian, Yingying
Chen, Fangchen Liu, Vashisht Madhavan, and Trevor Darrell.
Bdd100k: A diverse driving dataset for heterogeneous multi-
task learning. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pages 2636–2645,
2020. 4327

[55] Sergey Zagoruyko and Nikos Komodakis. Wide residual
networks. In Proceedings of the British Machine Vision Con-
ference (BMVC), pages 87.1–87.12, September 2016. 4325,
4326

[56] Hengshuang Zhao, Jianping Shi, Xiaojuan Qi, Xiaogang
Wang, and Jiaya Jia. Pyramid scene parsing network. In
Proceedings of the IEEE conference on computer vision and
pattern recognition, pages 2881–2890, 2017. 4327

4330

Encoding the latent posterior of Bayesian Neural Networks for uncertainty quantification
(Supplementary material)

Hyper-parameter StreetHazards BDD-Anomaly

Ensemble size J 4 4

learning rate 0.1 0.1

batch size 4 4

number of train epochs 25 25

weight decay for θslow weights 0.0001 0.0001

weight decay for θfast weights 0.0 0.0

cutout True True

SyncEnsemble BN False False

Group Normalisation True True

Size of the latent space z 32 32

Table 1: Values of the hyper-parameters used in the semantic
segmentation experiments (§5.3).

7. Implementation details
For our implementation, we use PyTorch [41] and will

release the code after the review in order to facilitate repro-
ducibility and further progress. In the following we share
the hyper-parameters for our experiments on image classifi-
cation and semantic segmentation.

7.1. Semantic segmentation experiments

In Table 1, we summarize the hyper-parameters used

in the StreetHazards [17] and BDD-Anomaly [17] experi-
ments.

7.2. Image classification experiments

In Table 2, we summarize the hyper-parameters used in
the CIFAR-10 [26] and CIFAR-100 [26] experiments.

8. Notations
In Table 3, we summarize the main notations used in the

paper. Table 3 should facilitate the understanding of §2 (the
preliminaries) and of §3 (the presentation of our approach).

Hyper-parameter CIFAR-10 CIFAR-100

Ensemble size J 4 4

initial learning rate 0.1 0.1

batch size 128 128

lr decay ratio 0.1 0.1

lr decay epochs [80, 160, 200] [80, 160, 200]

number of train epochs 250 250

weight decay for θslow weights 0.0001 0.0001

weight decay for θfast weights 0.0 0.0

cutout True True

SyncEnsemble BN False False

Size of the latent space z 32 32

Table 2: Values of the hyper-parameters used in the classification
experiments (§5.2).

1

Notations Meaning

D = {(xi, yi)}ni=1 the set of n data samples and the corresponding labels

Θ the set of weights of a DNN

P (Θ) the prior distribution over the weights of a DNN

Qν(Θ) the variational prior distribution over the weights of a DNN used in standard BNNs [3]

ν the parameters of the variational prior distribution over the weights of a DNN used in standard BNNs [3]

P (yi | xi,Θ) the likelihood that DNN outputs yi following a prediction over input image xi

J the number of ensembling DNNs

θslow = {Wshare} the shared “slow” weights of the network

θfast = {Wj}Jj=1 = {(rj , sj)}Jj=1 the set of individual “fast” weights of BatchEnsemble for ensembling of J networks

θfast = {(r̂j , sj)}Jj=1 the set of fast weights of LP-BNN for ensembling of J networks.
r̂j are sampled from the latent weight space of weights rj .

θvariational = {(φj ,ψj)}Jj=1 the parameters of the VAE for computing the low dimensional latent distribution of rj

genc
φ (·) the encoder of the VAE applied on r

gdec
ψ (·) the decoder of the VAE for reconstructing r̂ from latent code of r

Qφ(z | r) the variational distribution over the weights r to approximate the intractable posterior Pψ(z | r)

(µj ,σj) = genc
φ (rj) encoder output that parameterize a multivariate Gaussian with diagonal covariance

zj ∼ Qφ(z | r) = N (z;µj ,σ
2
jI) sampling a latent code z from the latent distribution

Pψ(zj) = N (z; 0, I) with j ∈ [1, J] the prior distribution on zj

r̂j = gdec
ψ (zj) the reconstruction of rj from its latent distribution , i.e. the variational fast weights

Wj = Wshare � (rjs
>
j) the weight of a BatchEnsemble network j computed from slow and fast weights

where � is the Hadamard product and (rjs
>
j) the inner product between these two vectors.

Wj = Wshare � (r̂js
>
j) the weight of LP-BNN network network j computed from slow and variational fast weights

Table 3: Summary of the main notations of the paper.

2

