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Introduction

Pharmaco-epidemiology (PE) studies the conditions and consequences of health products, i.e. drugs or medical devices usage at the population scale in real situations using methodologies developed in general epidemiology.

Modern PE relies on administrative databases to perform such studies on care trajectories, i.e. on patient-centered sequences of drugs deliveries, medical procedures and hospitalizations. The use of medico-administrative databases (MADB) is useful in PE studies, since data are readily available and cover a large population.

The problem with MADB is the semantic gap between raw data and the epidemiological question. On the one side, epidemiologists are looking for medical events. For instance, they would like to identify patients suffering from venous thromboembolism (VTE). On the other side, raw data are related to reimbursements of medical acts or drug deliveries. There is no exploitable diagnosis available in administrative databases and no clinical results related to medical acts or exams.

The challenge for epidemiologists is to define phenotypes of medical events [START_REF] Hong | Developing a FHIRbased EHR phenotyping framework: A case study for identification of patients with obesity and multiple comorbidities from discharge summaries[END_REF], i.e. a combination of information available in the database that reveals an occurrence of a medical event. For instance, a patient having a lower limbs doppler ultrasonography exam and few days after a delivery of anticoagulant drugs for 3 to 6 or 12 months is probably suffering from VTE. As MADB record medical exam and drugs deliveries, the above description may be used as a proxy of VTE.

The Semantic Web offers a relevant framework for representing complex data patterns and linking them with domain knowledge. Semantic Web data language (e.g. RDF) is suitable to represent structured data of MADB [START_REF] Rivault | queryMed: Semantic web functions for linking phar-macological and medical knowledge to data[END_REF]. Moreover, linking raw data to standard medical taxonomies is interesting to enrich the description of cares with formalized expert knowledge (for instance, ICD-10 1 for diagnosis or ATC 2 for drugs). Once care trajectories have been represented in standard Semantic Web format, SPARQL query engines can be used to enumerate all situations that match a query. A query can be seen as a phenotype. However, if the expressiveness of SPARQL is interesting to specify complex care trajectories as a phenotype, the drawback is their com-putation time. In the following, we assume the reader to be familiar with RDF and SPARQL, but a thorough introduction to semantic web can be found in [START_REF] Hitzler | Foundations of semantic web technologies[END_REF]. The example of VTE illustrates that such query may be a complex arrangement of cares in a patient care trajectory. These arrangement involve temporal relations between events (quantitative delays). Thus, we are interested in specifying complex temporal patterns that may occur in care trajectories. Taking into account numerical filters in metric temporal constraints is not efficient in SPARQL queries, and we can not expect to achieve reasonable computational efficiency on large MADB.

This article addresses the problem of enumerating the occurrences of a complex temporal pattern in a dataset of care trajectories.

We focus on a class of temporal patterns called chronicles and propose a template of SPARQL query that is both expressive and efficient. A chronicle is an expressive temporal pattern. It is defined as a set of events linked with temporal constraints. Despite its lack of taxonomy handling, this temporal model is suitable to represent complex temporal care pathways. One of its interests is its efficiently to be recognized in a sequence of events [START_REF] Dousson | Chronicle recognition improvement using temporal focusing and hierarchization[END_REF].

Our contribution is threefold: (i) we show how chronicles can be encoded as SPARQL queries to enumerate all their occurrences in a sequence of events represented in RDF; (ii) we propose HYCOR, an hybrid method combining the expressiveness of Semantic Web and the efficiency of a pattern occurrence enumeration algorithm; (iii) we evaluate HYCOR on a real case study of enumerating VTE events in the French MADB.

Related Work

In this section, we review some approaches to enumerate occurrences of temporal patterns in sequences of events and their connection to Semantic Web.

Temporal databases and querying tools (Snodgrass and llsoo Ahn, 1986) address a part of the problem by extending the notion of database to timestamped data. They cover data representation problems but also specific querying language problems. This family encompasses the temporal extension of relational databases (e.g. TSQL) but also Semantic Web approaches which combine query language (SPARQL) extended to temporal data with Allen's relations [START_REF] Wang | Timely YAGO: harvesting, querying, and visualizing temporal knowledge from wikipedia[END_REF]. These approaches defines relative temporal constraints between intervals which are not relevant for the MADB query problems [START_REF] Pacaci | A semantic transformation methodology for the secondary use of observational healthcare data in postmarketing safety studies[END_REF]. [START_REF] Rivault | queryMed: Semantic web functions for linking phar-macological and medical knowledge to data[END_REF] used RDF to represent care trajectories and shown that querying care trajectories can be achieved with the SPARQL query language. Semantic Web is a relevant approach for our problem: it does not explicitly address the problem of timed queries, but it is relevant to deal with data representation and taxonomies querying. RDF also enables ontology management with OWL based on the Description Logic (DL) [START_REF] Baader | The description logic handbook: Theory, implementation and applications[END_REF] allowing ontology-mediated query answering (OMQA) [START_REF] Bienvenu | Ontology-mediated query answering: harnessing knowledge to get more from data[END_REF]. For instance, O'Connor et al. [START_REF] O'connor | Knowledge-data integration for temporal reasoning in a clinical trial system[END_REF] developed a tool based on OWL for research data management with a temporal reasoning in a clinical trial system. This aspect could be added to the presented method. Some approaches proposed to extend RDF/SPARQL with temporal queries in a generic way. For instance, Zhang et al. [START_REF] Zhang | Temporal data representation and querying based on RDF[END_REF] propose SPARQL[t] and EP-SPARQL (Anicic et al., 2011a) which is a SPARQL extension of event processing. Finally, ON-TOP is an ontology-based data access framework that has been extended for temporal data [START_REF] Kalayci | Ontologybased access to temporal data with ontop: A framework proposal[END_REF]. However, these generic tools turn out to lack practical efficiency. This calls for investigating more algorithmic solutions.

Several temporal models have been highlighted in literature, one of the most promising is the Complex Event Processing (CEP) [START_REF] Giatrakos | Complex event recognition in the big data era[END_REF] which aims at processing a stream of event logs with patterns. CEP processes these logs to detect or to locate complex events (or patterns) defined by the user. These models emphasis on the effectiveness of processing and the expressivity of patterns. Some expressive formalisms, e.g. ETALIS [START_REF] Anicic | ETALIS: Rule-based reasoning in event processing[END_REF] or logic-based event recognition [START_REF] Giatrakos | Complex event recognition in the big data era[END_REF] propose very expressive representations of complex events, including reasoning techniques (encompassing ontologies).

While the complex event descriptions of ETALIS are based on Allen's logic, temporal constraint networks [START_REF] Cabalar | Temporal constraint networks in action[END_REF] and Chronicles [START_REF] Dousson | Chronicle recognition improvement using temporal focusing and hierarchization[END_REF] propose complex event descriptions with more permissive temporal constraints. These temporal models are also interesting for their graphical representation, but are restricted to patterns which do not involve taxonomies. It has been mainly used to discover patterns in biomedical data [START_REF] Dauxais | Discriminant chronicles mining[END_REF][START_REF] Sahuguède | An ordered chronicle discovery algorithm[END_REF] or in logs of industrial processes [START_REF] Sellami | Frequent chronicle mining: Application on predictive maintenance[END_REF].

In this work, we adopt a longitudinal view of a MADB. Each patient is represented by a sequence of timestamped cares, so called events. We first introduce the definition of event and taxonomy of event labels. Then, we introduce the notion of temporal sequence of events, or sequence for short.

Formally, an event is a pair (e,t) where e is an event label and t ∈ N is a timestamp (in days). In the following, (E, ≤ E ) denotes the totally ordered set of events. Usually, labels of medical events are related to taxonomies such as ATC 2 for drugs or ICD-10 1 for diseases.

Definition 1 (Event taxonomy). An event taxonomy is an ordered set of equivalence relations

(R i ) i∈[n] ,
where n is the number of levels of the taxonomy, such that: ∀(i, j), i < j, ∀(e, e ) ∈ E, eR j e =⇒ eR i e . (1)

We denote by c j i the i-th equivalent class at level j induced by the taxonomy. By definition, we have that e ∈ E ⇔ ∃!i, c 0 i = e. C denotes the set of all equivalent classes.

An event label e ∈ E is a c ∈ C, denoted e c, iff e is in the equivalent class of c. By extension, c ∈ C is a c ∈ C, denoted c c iff e c ⇒ e c for all e ∈ E. And then (E, ≤ E , ) denotes a set of ordered event labels equipped by a taxonomy relation.

In the Table 1, events are represented by ATC codes. Each ATC code is a class in the ATC taxonomy. For example, the ATC code A01AA01 is a subclass of A (A01AA01 A).

Let us now introduce the formal definition of a temporal sequence of events.

Definition 2 (Sequence). A sequence s is a finite list of events (e 1 ,t 1 ), (e 2 ,t 2 ), • • • , (e n ,t n ) where e i is an event label which is a taxonomy class. Events in a sequence are ordered by their timestamps and then their label

: i ≤ j ⇔ t i < t j ∨(t i = t j ∧e i ≤ E e j ), ∀i, j ∈ {1, . . . , n}.
A dataset of sequences is a finite unordered set of sequences, S = {s 1 , . . . , s m }. Tab. 1 illustrates six sequences where each event is a drug delivery where event labels are issued from the ATC taxonomy.

Chronicle Occurrences Enumeration

In this section, we propose an extended definition of chronicles [START_REF] Dauxais | Discriminant chronicles mining[END_REF] and Le [START_REF] Dousson | Chronicle recognition improvement using temporal focusing and hierarchization[END_REF][START_REF] Sahuguède | An ordered chronicle discovery algorithm[END_REF] with events belonging to taxonomy classes. Then, we define formally a chronicle occurrence in a sequence and the enumeration of all chronicle occurrences in a sequence.

; Dousson A01,1 B01A,2 [ -1 , 3 ] C,3 [ -3 , 5 ] [-2,2] C,4 [1,3]
A chronicle is a set of events and a set of temporal constraints between pairs of events [START_REF] Dousson | Chronicle recognition improvement using temporal focusing and hierarchization[END_REF]. In our applied context, chronicle enables to represent a phenotype. The enumeration of chronicles occurrences aims at localizing where this medical pattern occurs in a patient care trajectory. This paper proposes a chronicle extension where event may have label belonging to the equivalence class of an event label.

Definition 3 (Chronicle). A chronicle C is a pair (E, T ) where • E is an ordered set of events {(c 1 , 1), • • • , (c m , m)}
, where for all i ∈ {1, . . . , m}, c i ∈ E is an event label. i designates the index of the i-th event index.

• T is a set of temporal constraints, i.e. expressions of the form

(c j , j)[t -,t + ](c k , k) such that -(c j , j), (c k , k) ∈ E, -t -,t + ∈ R ∪ {+∞, -∞} and -For all (c j , j), (c k , k) ∈ E, j < k, c j c k =⇒ ∃(c j , j)[t -,t + ](c k , k) ∈ T s.t. [t -,t + ] ⊆ [1, +∞[ (2) 
The chronicle size is m (number of events).

A temporal constraint (c j , j)[t -,t + ](c k , k) enforces an event (c k , k) to occur with a temporal delay in between t -and t + from an occurrence of (c j , j). Note that several events can have the same label. A chronicle event may also have its label belonging to the equivalent class of another event label. In these cases, Eq. 2 enforces event occurrences to be ordered by their index.

The Fig. 1 illustrates graphically the following 4sized chronicle C = (E, T ): id Sequence s 1 (A01AA01, 1), (B01AA01, 3), (A01AB14, 4), (C01AA01, 5), (C02AC01, 6), (D01AA01, 7) s 2 (B01AA01, 2), (D01AA01, 4), (A01AA01, 5), (C01AA01, 7) s 3 (A03AA01, 1), (B01AA01, 4), (C01AA01, 5), (B01AA01, 6), (C01AA01, 8), (D01AA01, 9) s 4 (B01AA01, 4), (A01AB14, 6), (N01AA01, 8), (C01AA01, 9) s 5 (B01AA01, 1), (A01AA01, 3), (C01AA01, 4) s 6 (C01AA01, 4), (B01AA01, 5), (A01AA01, 6), (C01AA01, 7), (D01AA01, 10)

• E = {(A01, 1), (B01A, 2), (C, 3), (C, 4)} • T = {(A01, 1)[-1, 3](B01A, 2) , (A01, 1)[-3, 5](C, 3) , (B01A, 2)[-2, 2](C, 3) , (C, 3)[1, 3](C, 4)}
where event labels belong to the ATC taxonomy. Notice that temporal constraints may have negative values. The temporal constraint (A01, 1)[-3, 5](C, 3) states that an event with label in the equivalence class of A01 must occur from 3 days before occurrence of a C to 5 days after this occurrence. Thus, the chronicle Fig. 1 means: "An event A01 is followed by an event B01A within a delay of [-1, 3] units of time (ut). The later is followed by an event C within a delay of [-2, 2] ut. In addition the delay between this event C and the event labeled A01 must be in [-3, 5] ut. Finally, C event is followed by an another event C within a delay of [1, 3] ut".

In the following, we introduce the definition of a chronicle occurrence in a sequence. Then, one can be interested in two different tasks: enumerating all occurrences of a chronicle in a sequence (chronicle enumeration), or deciding whether a chronicle occurs at least once in the sequence (chronicle recognition). In the following, we focus on the chronicle enumeration task. Definition 4 (Chronicle occurrence). Let s = (e 1 ,t 1 ), (e 2 ,t 2 ), . . . , (e n ,t n ) be a sequence of length n and

C = (E = {(c 1 , 1), . . . , (c m , m)}, T ) be a chronicle of size m over a set of labels (E, ≤ E , ). An occurrence of C in s is a subsequence of s of length m, denoted s = (e ε 1 ,t ε 1 ), . . . , (c ε m ,t ε m ) , where (ε i ) i=1..m are indices of an event in s and s.t. 1. e ε i c i 2. t ε j -t ε i ∈ [t -,t + ] whenever (c i , i)[t -,t + ](c j , j) ∈ T . (ε i ) i=1..m
describes s a subsequence of s. The first condition ensures that the i-th event label of s is a subclass of c i . The second condition ensures that temporal constraints are satisfied. Note that Eq. 2 enforces to have a strict order between events c k , c j whenever c k c j . Thus, all ε i , i ∈ [1, n] are distinct. The chronicle of Fig. 1 occurs in sequences s 1 and s 6 of the dataset in Table 1. For instance, {(A01AA01, 1), (B01AA01, 3), (C01AA01, 5), (C02AC01, 6)} is an occurrence of C in s 1 . This occurrence is the subsequence of s 1 with indices 1, 2, 4, 5 . The chronicle does not occur in s 2 neither in s 4 because of unsatisfied temporal constraints. It does not occur in s 5 as there is only one event with a type of class C in the sequence and the chronicle requires two different events. It does not occur in s 3 because there is not an event in the subgroup of A01.

Semantic Web for Chronicle Recognition

Semantic Web is a framework designed to represent, share and manipulate structured data. The keystones of Semantic Web are (i) formal data representations, such as the RDF language, and (ii) query languages, such as SPARQL. Semantic Web is particularly suitable to represent taxonomies.

Semantic Web is suitable to represent sequences with label events belonging to taxonomies and to encode chronicle enumeration with SPARQL. So, we propose to represent sequences in RDF and to encode a chronicle enumeration in SPARQL. We propose two approaches for chronicle enumeration: the first approach fully uses Semantic Web technologies; the second approach is an hybrid tool combining SPARQL query and a dedicated algorithm.

Sequence Representation in RDF

Sequences are represented in a RDF-Graph (Fig. 2). We remind that our concrete objective is to query a dataset of sequences, where each patient care trajectory is represented as a sequence. ?evt4 seq:evtDate ?date4 . ?evt4 pseq:evtlabel ?atc4 . ?atc4 rdfs:subClassOf* atc:C . FILTER ( ?date2 -?date1 >= -1) FILTER ( ?date2 -?date1 <= 3) FILTER ( ?date3 -?date1 >= -3) FILTER ( ?date3 -?date1 <= 5) FILTER ( ?date3 -?date2 >= -2) FILTER ( ?date3 -?date2 <= 2) FILTER ( ?date4 -?date3 >= 1) FILTER ( ?date4 -?date3 <= 3) } In RDF, each event (e j ,t j ) in a sequence s i is encoded by three tuples:

• seq:sequencei seq:hasEvent seq:sequenceievtj denotes existence of an event e j in sequence s i

• seq:sequenceievtj seq:eventLabel atc:lk denotes event e j has the label l k . Note atc referees to the ATC taxonomy 2 where l k is a leaf-class

• seq:sequenceievtj seq:eventDate '1'ˆˆxsd:integer denotes event e j has a date t j equal to 1. Fig. 1 illustrates the representation in RDF by providing the representation of sequence s 5 (see Table 1).

SPARQL for chronicle occurrences enumeration

This section presents the chronicle recognition task with SPARQL. SPARQL queries RDF sequences where all sequences are in the same RDF named Graph.

Figure 3 gives the SPARQL query for the chronicle in Fig. 1. The query has three types of variables:

• ?sequence denotes an identifier of a sequence • ?evtj corresponds the j-th element of the chronicle set.

• ?datej is the date of the j-th element of an occurrence (t ε j with notation of Definition 4).

The taxonomy of event labels are handled by rdfs:subClassOf* pattern operator. This operator is equivalent to the operator defined in Def. 1. Temporal constraints are expressed in FILTER clauses. For instance, the temporal constraint (C, 3)[1, 3](C, 4) is translated in a couple of constraints between ?date4 and ?date3.

SPARQL is expressive enough for enumerating chronicle occurrences. However the enumeration of chronicle occurrences is a very computational task. A SPARQL query can not compete with dedicated enumeration algorithms as its solver strategy is not optimised for this task (see experiments in Sect. 6). Therefore, we propose an hybrid approach to benefit from the best of both fields: efficiency of dedicated approaches and expressiveness of Semantic Web.

HYCOR for chronicle recognition

HYCOR (Hybrid-Chronicle Occurrences Recognition) combines SPARQL and a specific algorithm to enumerate efficiently occurrences of a chronicle. Fig. 5 illustrates the HYCOR process.

First (left box of Fig. 5), a SPARQL query yields flattened sequences . A flattened sequence contains only the sequence events that belong to the equivalent class of at least one event label of E, i.e. the chronicle events (see Def. 3). Such a query for chronicle of Fig. 1 Input: 

C = (E = {(c 1 , 1), . . . , (c m , m)}, T ), s = (e 1 ,
π ← {[t,t], [-∞, ∞], . . . , [-∞, ∞]}; // propagate chronicle constraints 5 foreach (c 1 , 1)[t -,t + ](c p , p) ∈ T do 6 π p = [max(t 1 ,t + t -), min(t + t + ,t n )];
7 occs ← occs∪ RECENUMERATE(π,1,C ,s); 8 return occs occur in s. These intervals are called admissible positions. The algorithm goes through the set of events (e i ,t i ) ∈ s and propagates the temporal constraints of the chronicle to narrow position intervals until intervals are only single position. Thus admissible position designates a subsequence of s, i.e., an occurrence of the chronicle. Algorithm 1 makes recursive calls to Algorithm 2. The later assumes that the k -1 first events have been located in s. This means that the k first intervals of the admissible intervals π are singleton intervals. The recursive call looks for event c k in the admissible positions of s for k-th event (lines 5-6). If found, it is a candidate for further refinements and temporal constraints of the chronicle are propagated. The constraint (c k , k)[t -,t + ](c p , p) is a constraint from (c k , k) event to the event c p at position p. It is used to possibly narrow the admissible positions of event p (line 11). In case the new positions are inconsistent (line 12) then this candidate occurrence can not satisfy the temporal constraints and Algorithm 2: RECENUMERATE(π, k, C , s).

Input: π: admissible positions, k: recursion level,

C = (E = {(c 1 , 1), . . . , (c m , m)}, T )), s = (e 1 ,t 1 ) . . . (e n ,t n ) Output: occs: a set of occurrences of C in s 1 occs ← / 0 // Set of occurrences 2 if k = m + 1 then
// An occurrence has been found is discarded (satis f iable is set to f alse). If all constraints are satisfied, the recursive call attempts to refine further these positions (line 16). Note that only forward constraints are propagated. Indeed, backward constraints (i.e. constraint to event at position lower than k in the set) have already been taken into account in parent calls.

3 occ ← {(e k i ,t k i ) ∈ s | c i = e k i , π i = t k i , i = 1.
Let us illustrate the algorithm on a simple example.

Let

s = (B, 2) (C, 3) (A, 5) (B, 6) (C, 7) (C, 9) (C, 10) and C = ({(A, 1), (B, 2), (C, 3)}, {(A, 1)[-2, 2](B, 2), (A, 1)[-3, 5](C, 3), (B, 2)[-1, 3](C, 3)}).

Processing of event A

• generates a single tuple of admissible positions π

= ([5, 5], [-∞, ∞], [-∞, ∞]) • constraints propagation: -(A, 1)[-2, 2](B, 2): π = ([5, 5], [3, 7], [-∞, ∞]) -(A, 1)[-3, 5](C, 3): π = ([5, 5], [3, 7], [2, 10]) 2. Processing of event B • narrows positions with occurrences: (B, 2) is invalid (2 / ∈ [3, 7]
), but (B, 6) satisfies the admissible positions [3, 7] so the admissible positions can be updated 

(π = ([5, 5], [6, 6], [2, 10])) • constraints propagation: -(B, 2)[-1, 3](C, 3): π = ([5, 5], [6, 6], [2, 10] ∩ [5, 9]) = ([5, 5], [6, 6], [5, 9 

Experiments

In this section, we compare execution times of SPARQL and HYCOR on synthetic datasets. All experiments have been executed with a TDB-graph format for RDF and Jena-Fuseki as SPARQL engine. The HYCOR algorithm is implemented in Python. The computer has 16Go RAM and an SSD.

Synthetic datasets generation and plan of experiments

Several synthetic datasets have been generated. Each dataset contains a set of sequences where event labels are randomly chosen at the lowest level of ATC taxonomy. The ATC taxonomy contains 1 900 classes.

In addition, occurrences of ten 15-sized chronicles 3 are embedded in the dataset. For each chronicle, a constraint is generated for each pair of events without inconsistency between the temporal constraints.

3 A n-sized-chronicle denotes a chronicle of size n.

The synthetic dataset generation process ensures that each chronicle occurs in about 20% of the sequences. Chronicles contain event labels from several levels of ATC following this probability: 1 15 level 1 (ex: N), 2 15 level 2 (ex: N02), 3 15 level 3 (ex: N02B), 3 15 level 4 (ex: N02BE), 6 15 level 5 (ex: N02BE01). We introduce the notation D ns,ne to denote a synthetic dataset with ns sequences and ne care events per sequence (all sequences have the same number of events). For the following experiments, 25 synthetic datasets have been generated where ns ∈ {1 000, 5 000, 10 000, 15 000, 20 000} and ne ∈ {100, 200, 300, 400, 500}. Each dataset is encoded in RDF. The ATC taxonomy is attached to the dataset.

Experiments and Results

The following experiments evaluate the impact of two main parameters on execution times of SPARQL and HYCOR: the size of the dataset (number of sequences and number of events per sequence) and the chronicle size.

Fig. 6 compares the execution times of SPARQL and HYCOR with respect to the length of the sequences. It shows that HYCOR is at least one order of magnitude more efficient than pure SPARQL. 6 shows that SPARQL does not scale up for datasets containing more than 50 000 sequences. The HYCOR SPARQL query language does not have the same limitation. Indeed, the pure SPARQL query uses filters to deal with temporal constraints on each admissible event while SPARQL HYCOR query only uses values to find admissible event. So, the use of filters on a large scale of admissible events seems to be inefficient in SPARQL for this kind of use.

We also evaluate the part of HYCOR execution times spent by the SPARQL mapping and the chronicle enumeration algorithm. On average, the SPARQL query execution represents 85% ± 3.47 of the total execution time.

Experiments now focus on the HYCOR evaluation. Fig. 7 illustrates the impact of the number of events per sequence on the execution times. We observe that time increases linearly with the number of events and with the number of sequences. Outliers and variance of the computing time can be explained by the variability of the number of events occurrences in the sequence that influence the time execution of the Algorithm 2. The more an event occurs in a sequence, the more candidate occurrences, therefore the longer the time spent in the algorithm. Nonetheless, we can notice in the hardest condition: D 20 000,500 , enumeration of a chronicle with 15 events takes in average less than a minute. Fig. 8 presents execution time of HYCOR wrt chronicle size. HYCOR is run on a unique dataset (ns = 10 000 and ne = 100) and seven sets of 10 chronicles with sizes 2 to 14. We observe execution time linearly increases with the chronicle size.

HYCOR outperforms pure-SPARQL for the chronicle enumeration task. Its execution time increases with the chronicle sizes and the dataset size, but it still offers impressive results for large datasets.

7 Use case on the SNDS to find patients with thromboembolism

Our use case proposes to find patients diagnosed with venous thromboembolism (VTE) in the SNDS. The SNDS is the french national health insurance database, which covers most of the french population (above 65 million inhabitants). The advantage of this database is to gather information about most the reimbursed medical events, from drug deliveries to nurse home cares, specialist consultations, etc. The range of medical events that are recorded in the database makes it suitable to conduct a wide variety of health studies [START_REF] Tuppin | Value of a national administrative database to guide public decisions: From the système national d'information interrégimes de l'assurance maladie (sniiram) to the système national des données de santé (snds) in france[END_REF]. However, SNDS has been designed for administrative purposes (care reimbursements) and does not contain detailed medical information such as medical reports, laboratory results or diagnosis. This use case uses a geographical-based SNDS subset (the north western French Brittany population) which contains 377 359 individuals. For the use case application, rdf:type have been added in the RDF event triples to speed up access to event labels. We used five different types: DrugDeliveries (e.g., drug deliveries from pharmacy), Cares (e.g., nurse assistance, domestic assistance), Medical acts (e.g., radiology, surgery), Biologies (e.g., blood withdrawal), Hospitalisations.

VTE is identified by epidemiologists in SNDS when a patient matches the following description:

In clinical practice facing a suspicion of VTE physicians first prescribe anticoagulant and then confirm or not the diagnosis through specific medical acts: e.g. Doppler ultrasonography or CT scan. Patients with suspected PE are often hospitalized whereas patients with suspected DVT are managed on an ambulatory basis. If the suspicion is confirmed, anticoagulant deliveries continues for 3 to 12 months (once per month) or sometimes longer duration. Hence, the diagnosis (through medical act) is preceded or followed by anticoagulant initiation within a time window of at most 0 to 7 days, keeping in mind that PE suspicion leads to hospitalisation during which medical acts to confirm the diagnosis are performed and then anticoagulant delivery is observed only after the patient comes back home. Fig. 9 illustrates two chronicles defining the phenotype of "patients with VTE". Each chronicle specifies temporal constraints (within 7 days and one anticoagulant delivery per month) but also takes into account some details on the anti-coagulant class and on the medical acts on ambulatory or in hospital. Anticoagulant are identified with the ATC code B01. We also added to the knowledge base a class named ccam:thrombose which is defined as an union of 36 different codes of medical acts issued of the CCAM taxonomy 4 . Furthermore, some VTE are identified in hospital through ICD-10 codes 1 , they are gathered in a class called cim:diagthrombose.

For this experiment, we load RDF graphs, we query them with both chronicles, one by one, and evaluate computing time. Note that we do not have the ground truth. Thus, we are not interested in the accuracy of the chronicles to identify true VTE. In this experiments, we compare the computational efficiency to enumerate the same set of VTE occurrences.

The first result is that the corresponding pure-SPARQL query does not finish the enumeration within a day of computation. This is due to the scale up limitation shown in Sect. 5.2. HYCOR finds 2 686 patients having VTE in 105.06s. The first chronicle finds 2 568 patients in 56.21s (of which 52.86s in algorithm execution), the second chronicle finds 118 patients in 48.85s (of which 48.46s in algorithm execution). Use case time execution is even faster than expected by experiments on synthetic data. The real patient sequences length is about 100 events in average. So if we refer to Fig. 6, on the right, the expected execution time is about 11min41s. We explain this difference by the lower size of the chronicles in our use case query.

4 CCAM : common classification of medical acts used by the french social security

Conclusion

In this article, we extended the model of chronicle with taxonomies to enumerate complex temporal patterns in sequences. This problem is motivated by the need for phenotyping patients in medicoadministrative databases. We proposed HYCOR, an hybrid approach that combines the expressiveness of SPARQL and the efficiency of a dedicated algorithm. The results show that HYCOR is one order of magnitude faster than pure SPARQL queries on both synthetic and real dataset. As a perspective, chronicles should be extended with negation to denote the absence of event. Furthermore, it could be interesting to compare the efficiency of different SPARQL engines. 
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 1 Figure 1: Chronicle example with 4 events (vertices) and 4 temporal constraints (edges with temporal intervals). Vertex labels give the event label (ATC codes).

Figure 3 :

 3 Figure 3: Example of a SPARQL query for chronicle enumeration
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 45 Figure 4: Illustration of SPARQL query to map sequences on the set of events of chronicle in Fig. 1.Second (right box of Fig.5), HYCOR applies Algorithm 1 to enumerate chronicle occurrences in the flattened sequences.The algorithm's principle is to refine progressively intervals in which a chronicle event (c i , i) ∈ E may

]) 3 .

 3 Processing of event C • narrows intervals with occurrences: (C, 3) and (C, 10) are invalid, but (C, 7) and (C, 9) are valid, then the both subsequences where the chronicle occurs are obtained by updating the admissible positions (([5, 5], [6, 6], [7, 7]) and ([5, 5], [6, 6], [9, 9])).
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 67 Figure 6: Execution times (in seconds) of SPARQL and HYCOR wrt sequences length on 10 000 sequences (on the left) and wrt number of sequences (with length 100).
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 8 Figure 8: Execution time (in seconds) wrt chronicle size (ns = 10 000 and ne = 100)
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 9 Figure 9: Chronicles for representing VTE phenotype.

Table 1 :

 1 Example of a dataset of six sequences (longitudinal view on six patients). Each sequence is made of drug deliveries events (couples of label and timestamp). Labels are ATC codes, i.e. the code of a delivered drug in the ATC toxonomy.

seq:seq5 seq:hasEvent seq:seq5evt0 . seq:seq5evt0 seq:evtLabel atc:B01AA01

  

; seq:evtDate '1'ˆˆxsd:integer . seq:

seq5 seq:hasEvent seq:seq5evt1 . seq:seq5evt1 seq:evtLabel atc:A01AA01 ;

  Figure 2: Example of sequence representation in RDF graph (see sequence s 5 in Table1).

	seq:evtDate '3'ˆˆxsd:integer .
	seq:seq5 seq:hasEvent seq:seq5evt2 .
	seq:seq5evt2 seq:evtLabel atc:C01AA01 ;
	seq:evtDate '4'ˆˆxsd:integer .
	SELECT DISTINCT * WHERE{
	?sequence patdb:hasEvent ?evt1 .
	?evt1 seq:evtDate ?date1 .
	?evt1 seq:evtlabel ?atc1 .
	?atc1 rdfs:subClassOf* atc:A01 .
	?sequence patdb:hasEvent ?evt2 .
	?evt2 seq:evtDate ?date2 .
	?evt2 seq:evtlabel ?atc2 .
	?atc2 rdfs:subClassOf* atc:B01A .
	?sequence patdb:hasEvent ?evt3 .
	?evt3 seq:evtDate ?date3 .
	?evt3 seq:evtlabel ?atc3 .
	?atc3 rdfs:subClassOf* atc:C .
	?sequence patdb:hasEvent ?evt4 .

  is on 4:

	SELECT DISTINCT ?seq ?date ?label where{
	values ?label { atc:A01 atc:B01A atc:C }
	GRAPH patdb:onto { ?l rdfs:subClassOf* ?label }.
	GRAPH ?seq{
	?event patdb:drugDelivered ?l.

?event patdb:deliveryDate ?date.}}

  t 1 ) . . . (e n ,t n ) Output: occs: a set of occurrences of C in s

	1 occs ← / 0 // Set of occurrences
	2 foreach (e,t) ∈ s do
	3	if e = c 1 then
		// create a set of admissible
		positions π of size m
	4	

  .m};

	4	return {occ}
	5 foreach (e,t) ∈ s s.t. t ∈ π k do
	6	if e = c k then
		// create a copy of
		admissible positions π
	7	π ← π;
	8	πk ← [t,t];
		// propagate chronicle
		constraints
	14	break;
	15	if satis f iable then
		// Recursive call
	16	occs ← occs∪
		RECENUMERATE( π, k + 1, C , s);
	17 return occs

9

satis f iable ← true;

10 foreach (c k , k)[t -,t + ](c, p) ∈ T do 11 πp ← [max( πp ,t + t -),

min( π+ p ,t + t + )]; 12 if πp > π+ p then 13 satis f iable ← f alse;

ICD-10: International Classification of Diseases, 10th Revision. http://bioportal.bioontology.org/ontologies/ ICD10

ATC: Anatomical Therapeutic Chemical. https:// bioportal.bioontology.org/ontologies/ATC