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Abstract. Estimates of the ocean’s large-scale transport of
anthropogenic CO2 are based on one-time hydrographic sec-
tions, but the temporal variability of this transport has not
been investigated. The aim of this study is to evaluate how
the seasonal and mesoscale variability affect data-based es-
timates of anthropogenic CO2 transport. To diagnose this
variability, we made a global anthropogenic CO2 simulation
using an eddy-permitting version of the coupled ocean sea-
ice model ORCA-LIM. As for heat transport, the season-
ally varying transport of anthropogenic CO2 is largest within
20◦ of the equator and shows secondary maxima in the sub-
tropics. Ekman transport generally drives most of the sea-
sonal variability, but the contribution of the vertical shear be-
comes important near the equator and in the Southern Ocean.
Mesoscale variabilty contributes to the annual-mean trans-
port of both heat and anthropogenic CO2 with strong pole-
ward transport in the Southern Ocean and equatorward trans-
port in the tropics. This “rectified” eddy transport is largely
baroclinic in the tropics and barotropic in the Southern Ocean
due to a larger contribution from standing eddies. Our anal-
ysis revealed that most previous hydrographic estimates of
meridional transport of anthropogenic CO2 are severely bi-
ased because they neglect temporal fluctuations due to non-
Ekman velocity variations. In each of the three major ocean
basins, this bias is largest near the equator and in the high
southern latitudes. In the subtropical North Atlantic, where
most of the hydrographic-based estimates have been focused,
this uncertainty represents up to 20% and 30% of total merid-
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ional transport of heat and CO2. Generally though, outside
the tropics and Southern Ocean, there are only small vari-
ations in meridional transport due to seasonal variations in
tracer fields and time variations in eddy transport. For the
North Atlantic, eddy variability accounts for up to 10% and
15% of the total transport of heat and CO2. This component
is not accounted for in coarse-resolution hydrographic sur-
veys.

1 Introduction

The ocean absorbs and stores large amounts of heat and an-
thropogenic CO2, thus playing a key role in mediating cli-
mate change. Air-sea fluxes of anthropogenic CO2 cannot be
measured directly, but regional variations in these fluxes can
be inferred from interior ocean measurements by estimating
both meridional transport and storage in the ocean (Wallace,
2001). Precise data-based estimates of meridional carbon
transport would be useful to help evaluate simulated anthro-
pogenic CO2 uptake from ocean general circulation mod-
els (GCMs). The data-based approach to assess meridional
transport of heat and freshwater was first used in the North
Atlantic (Wunsch, 1978; Bryden and Hall, 1980; Hall and
Bryden, 1982; Roemmich and Wunsch, 1985). Approaches
used include the direct method (Hall and Bryden, 1982) and
the inversion of hydrographic data (Roemmich and Wun-
sch, 1985; Macdonald and Wunsch, 1996). Similar inversion
methods along with hydrographic measurements of ocean
chemical properties were later used to estimate transport of
carbon (Brewer et al., 1989; Martel and Wunsch, 1993; Hol-
fort et al., 1998; Ganachaud and Wunsch, 2000) and nutrients
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(Rintoul and Wunsch, 1991; Ganachaud and Wunsch, 2002;
Lavin et al., 2003). Because of the potential value of data-
based estimates of transport across trans-oceanic sections for
improving understanding of the global carbon cycle, this ef-
fort became one of the main objectives of the World Ocean
Circulation Experiment (WOCE).

Nevertheless, there are many uncertainties in these ap-
proaches, some of which are related to the temporal vari-
ability in the meridional transport of these properties. So far,
the observations have been made exclusively during summer
months, and only the variability of Ekman transport has been
taken into account when calculating annual-mean transports
(Álvarez et al., 2003). Yet both ocean circulation and tracer
concentration fields vary seasonally in the upper ocean, and
they are also affected by the mesoscale activity. Thus, these
calculations ignore, or average out, a large part of seasonal
variability of velocity and tracer fields that could alter time-
mean transports estimates. For example,Jayne and Marotzke
(2001) found that non-Ekman fluctuations induce an uncer-
tainty in heat transport estimates made from hydrography
which may be as large as 0.2 PW (P=1015) and 0.4 PW in
the midlatitudes of the Atlantic and the Pacific Oceans, re-
spectively. Hall and Bryden(1982) assessed the potential
error introduced by eddy noise on their estimate of the heat
transport at 24◦ N and found that it might be as large as 25%
of the total. Therefore, to provide reliable estimates of an-
thropogenic CO2 uptake from transport estimates, we must
first be able to properly assess temporal variations in trans-
port. Whereas the seasonal- and eddy-driven variations in
heat transport have received much attention (Bryden, 1979;
Bryden and Heath, 1985; Bryden and Brady, 1989; Wilkin
et al., 1995; Lee and Marotzke, 1997, 1998; Stammer, 1998;
Wunsch, 1999; Böning et al., 2001; Jayne and Marotzke,
2001; Volkov et al., 2008), less work has been devoted to
investigate seasonal and mesoscale variability of the merid-
ional transport of anthropogenic CO2. The time dependence
of anthropogenic CO2 transport thus represents a gap in our
understanding of the ocean uptake of CO2.

Here, our objective is to investigate the seasonal and eddy
variability of the ocean’s meridional transport of anthro-
pogenic CO2. We used an eddy-permitting GCM to study the
effects of both the seasonal cycle and mesoscale variability
of transport. For comparison, we also examine the merid-
ional transport of heat. We devote a particular attention to
the contribution of mesoscale eddy variability to the merid-
ional transport of heat and CO2, as this is neither resolved
in time nor in space in most synoptic hydrographic surveys.
Finally, we assess to what extent such variability could alter
one-time hydrographic estimates of meridional transport of
CO2 and heat. In order to gain insight into the mechanisms
driving the transport variability, we follow the lead ofLee
and Marotzke(1998) andJayne and Marotzke(2001), who
decomposed the ocean circulation into different dynamical
components.

2 Methods

2.1 Strategy

We made global simulations of anthropogenic CO2 using an
eddy-permitting version of the ORCA-LIM global ice-ocean
model with 1

2
◦cosϕ×

1
2
◦ grid (ORCA05, whereϕ is latitude)

and 46 vertical levels. The average horizontal grid size is
34 km. This is actually an intermediate-resolution model that
features substantial mesoscale eddy activity particularly in
the Southern Ocean and near the western boundary currents,
even though its eddy kinetic energy is, on average, about
one fourth of that from TOPEX/Poseidon altimetry obser-
vations (Lachkar et al., 2007). It is implicitly assumed that
the overall qualitative picture would remain similar in future
higher resolution simulations, while the quantitative details
presented here may change. However, this needs to be con-
firmed through a series of future finer GCM runs. The main
goal of using an eddy-permitting model is to provide a char-
acterization of patterns of the simulated mesoscale variability
in the meridional transport of anthropogenic CO2.

Following conventional practice, we computed eddy fluxes
from covarying fluctuations in velocity and tracer fields, rely-
ing on 5-day average model output. Model results were com-
pared to GLODAP data-based estimates of anthropogenic
CO2 (Key et al., 2004). In addition, comparing our simu-
lated heat transport variability with previous observational
and model-based estimates helped us to further validate our
model results. We also made anthropogenic CO2 simulations
with the same model, but at coarse-resolution (2◦cosϕ×2◦)
as typically done in the current generation of climate and
carbon models. The comparison between these eddying and
non-eddying simulations helped isolate the transport directly
associated with resolved mesoscale eddies.

2.2 Model details

Our dynamic simulations were made with the ORCA-LIM
global ice-ocean model, whose ocean component, the OPA
model (Oćean PAralĺelisé, version 9) is coupled to the
dynamic-thermodynamic Louvain-la-Neuve sea-ice model
(LIM) ( Fichefet and Maqueda, 1997). A full description of
OPA is provided inMadec and Imbard(1996) and Madec
et al. (1998). The model has 46 vertical levels with a verti-
cal grid resolution varying from 6 m at the surface to 250 m
at the bottom. Vertical mixing coefficients are computed
from a second-order closure scheme based on a prognostic
equation for turbulent kinetic energy (TKE) (Gaspar et al.,
1990; Blanke and Delecluse, 1993). Lateral tracer mixing
occurs along isopycnal surfaces (Cox, 1987). Further de-
tails of the model physics are given inLachkar et al.(2007).
The bathymetry is calculated using the 2′ bathymetry file
ETOPO2 from NGDC (National Geophysical Data Center)
(Smith and Sandwell, 1997; Jakobsson et al., 2000), except
for the zone south of 72◦ S where it was computed from the
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BEDMAP data (Lythe and Vaughan, 2001). Initial condi-
tions for the temperature and salinity fields were taken from
Levitus et al.(1998) for the low and middle latitudes and
from the PHC2.1 climatology (Steele et al., 2001) for high
latitudes. The model was started from rest, then spun up
for 8 years with a climatological seasonal forcing with daily
frequency as computed from the 1992–2000 NCEP/NCAR
10-m wind stress and 2-m air temperature data (Kalnay
et al., 1996). Additionally, we used monthly climatologies
of precipitation (Xie and Arkin, 1996), relative humidity
(Trenberth et al., 1989), and total cloud cover (Berliand and
Strokina, 1980). Surface heat fluxes and freshwater flux for
ocean and sea-ice were calculated using the empirical bulk
parameterisations proposed byGoose(1997), which yield
more realistic results than does traditional restoring of sea-
surface temperature and salinity (Large et al., 1997; Gent
et al., 1998).

To reduce computational costs, we used the offline model
to simulate anthropogenic CO2. The offline model is a tracer-
transport version of OPA (OPA Tracer 8.5) that was driven by
5-day fields of advection and vertical turbulent diffusion that
were computed previously by the dynamic (online) version
of the model. Furthermore, we used a perturbation approach
to model anthropogenic CO2 in order to further reduce the
exhorbitant computational time and memory that would oth-
erwise be needed to make long global carbon simulations
at eddy-permitting resolution to near-steady state conditions.
Typically, such simulations would need to be integrated for
several thousand years. This perturbation approach was in-
troduced bySiegenthaler and Joos(1992) and first used in a
3-D model bySarmiento et al.(1992). It assumes that the
natural ocean carbon cycle is not affected directly by the an-
thropogenic perturbation, which means we can treat anthro-
pogenic CO2 as a passive transient tracer. For further details
about these anthropogenic CO2 simulations, including their
boundary conditions, seeLachkar et al.(2007).

3 Results

3.1 Comparison with GLODAP

Figure 1 shows global and basin zonal integrals of simu-
lated anthropogenic CO2 inventories compared to those for
the GLODAP data-based estimates. The simulated anthro-
pogenic CO2 inventories generally match the data-based es-
timates, altough there are excesses in the tropical and sub-
tropical Pacific Ocean and deficiencies at high latitudes.
The high-latitude deficiencies are linked to the weak simu-
lated penetration of anthropogenic CO2 in the upper ocean
(see Supplementary Fig. 1http://www.biogeosciences.net/6/
2509/2009/bg-6-2509-2009-supplement.pdf). This artefact
results from a known deficiency of the ORCA model that
stems partly from the model’s overly weak vertical mixing in
this region due to a shallow mixed layer associated with the

formulation of the model’s TKE parameterization (Lachkar
et al., 2007).

Despite adequate data-model agreement, potential system-
atic errors in the GLODAP data-based estimates for anthro-
pogenic DIC (Matsumoto and Gruber, 2005; Waugh et al.,
2006; Álvarez et al., 2009; Vázquez-Rodrı́guez et al., 2009)
compromise our ability to use that tracer by itself as a ref-
erence to validate models (Orr et al., 2001). Anthropogenic
DIC is clearly not of the same value as CFC-11, which is
measured directly. Previously though, we have evaluated
the same model with CFC-11 inLachkar et al.(2007) and
Lachkar et al.(2009).

3.2 Seasonal variability of meridional transports of
CO2 and heat

3.2.1 Meridional overturning

The meridional transport of a tracer depends both on
its spatial distribution in the ocean and on the overturn-
ing circulation. One metric of the annual cycle of the
overturning stream function is simply the difference be-
tween mean conditions in July and January (Fig.2). Un-
like the time-mean overturning circulation (see Supple-
mentary Fig. 2http://www.biogeosciences.net/6/2509/2009/
bg-6-2509-2009-supplement.pdf), the seasonally varying
component is symmetric about the equator and largely depth
independent, with the return flow for the surface currents
showing no deep reversals. These differences between the
time-mean and seasonal overturning circulations are consis-
tent with previous studies (Bryan, 1982; England et al., 1994;
Böning and Herrmann, 1994; Wacongne and Pacanowski,
1996; Garternicht and Schott, 1997; Lee and Marotzke, 1998;
Jayne and Marotzke, 2001). The amplitude of the annual cy-
cle of the overturning circulation in the equatorial region is
about 75 Sverdrups (1 Sv=106 m3 s−1) for the World Ocean,
with 15 Sv from the Atlantic Ocean and 60 Sv from the Indo-
Pacific Ocean. While the fluctuations in the zonal wind
stress drive a corresponding change in the northward Ek-
man mass transport, there is a rapid adjustment to these wind
stress anomalies owing to geostrophy and gravity waves that
balance the changes in Ekman transport (Willebrand et al.,
1980; Jayne and Marotzke, 2001). Thus, there is no net mass
transport across a zonal section. Nevertheless, when inte-
grated vertically, there is a net meridional transport for an-
thropogenic CO2 and heat because anthropogenic CO2 con-
centrations and temperatures are much higher in the Ekman
layer than in the compensating deep return flow.

3.2.2 Meridional transports of heat and anthropogenic
CO2

Figures 3 and 4 show the meridional transport in terms
of its annual-mean and annual cycle for heat and anthro-
pogenic CO2, respectively. Although transported by the
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Fig. 1. Zonally global and basin-integrated inventories of anthropogenic CO2 per degree of latitude, from data-based estimate (black dashes,
GLODAP) and as simulated by the eddy-permitting model (blue) at end of year 1994.

same circulation, the two tracers have different annual-
mean transports owing to their contrasting vertical and
meridional distributions in the upper ocean (see Supple-
mentary Fig. 3http://www.biogeosciences.net/6/2509/2009/
bg-6-2509-2009-supplement.pdf). Annual-mean heat trans-
port is asymmetric about the equator with maximum north-
ward transport of 1.5 PW at 15◦ N versus maximum south-
ward transport of about 1 PW at 10◦ S. Conversely, annual-
mean meridional transport of anthropogenic CO2 in 1994 is
northward everywhere with two maxima of 0.3 Pg C yr−1

and 0.2 Pg C yr−1 at 45◦ S and 15◦ N, respectively.

Seasonal variability of meridional transport is much
more similar for the two tracers because both are driven
by seasonal circulation differences that are largely depth-
indepedant, symmetric about the equator, and dominated by
the tropical dynamics. For example, both tracers exhibit their
largest seasonal variability within 20◦ of the equator, and
both have similar patterns across the equator. Within 20◦

of the equator, the annual cycle of transport (July minus Jan-
uary) is negative, and its magnitude is maximum around 10◦

in each hemisphere. The annual cycle for the global heat
transport has a peak-to-peak amplitude that varies between 6
and 8 PW near the equator and ranges from 1.5 to 2 PW in
the subtropics.

The structure for the annual cycle of heat in our simu-
lation is remarkably similar to that obtained byJayne and
Marotzke(2001) using a1

4
◦

eddy-permitting model, although
the peak-to-peak amplitude found in their model is 25%
smaller, ranging between 4.5 and 6 PW in the equatorial re-
gion and between 1 and 1.5 PW in the subtropics. Such
differences may arise in part because our model is forced
with wind stress and temperature from NCEP climatology,
whereasJayne and Marotzke(2001) used the ECMWF re-
analyses. Our simulated annual cycle for heat in the equato-
rial region also agrees well with the estimate ofCarissimo
et al. (1985), who used satellite-derived net radiation bal-
ances and atmospheric transports and found that seasonal
amplitude of heat transport was between 7 and 8 PW. Rela-
tive to heat transport, the annual cycle of anthropogenic CO2
transport has a similar structure with an amplitude varying
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between 1.2 Pg C yr−1 and 1.5 Pg C yr−1 in the equatorial
region and between 0.3 Pg C yr−1 and 0.4 Pg C yr−1 at sub-
tropical latitudes.

Unlike for the annual-mean transport, the Atlantic basin
contributes the least to the seasonally varying transport with
a peak-to-peak amplitude at 8◦ N that is less than 2 PW
for heat and less than 0.3 Pg C yr−1 for anthropogenic CO2.
This weak transport results from the relatively weak seasonal
overturning circulation in this basin relative to the Indo-
Pacific Ocean (Fig.2). For a better mechanistic understand-
ing of the processes driving the annual cycle of meridional
transport, we decomposed the meridional velocity into vari-
ous dynamical components.

3.2.3 Mechanisms: dynamical decomposition

Following Lee and Marotzke(1998), the meridional veloc-
ity component was broken down into three separate compo-
nents:

v(x,y,z) =

[
ve(x,y,z)− 1

h

∫ 0
−h

ve(x,y,z)dz
]

+
1
h

∫ 0
−h

v(x,y,z)dz+vbaroc(x,y,z)
(1)

whereh is ocean depth. The first component on the right
hande side of Eq. (1) is the Ekman flow minus its barotropic
compensation. The Ekman component of velocity,ve, is
taken to be the shear velocity in the upper 100 m of ocean
referenced to velocity at 100 m (the tenth level in our model).
Most of the Ekman transport takes place in the uppermost
30 m (top three levels in the model). The second component
is the contribution of the non-Ekman meridional velocity as-
sociated with the external mode (or barotropic gyre circula-
tion) flowing over varying topography. The third component,
vbaroc, is the baroclinic velocity which is generally associated
with thermal wind shear balanced by zonal density gradi-
ents along with smaller contributions from the ageostrophic
processes. We refer to these three terms as the Ekman,
barotropic, and baroclinic components.

We evaluated how each of these three components con-
tributes to the annual cycle of meridional transport of heat
and anthropogenic CO2 (Fig. 5). The seasonally varying Ek-
man transport is symmetric across the equator because both
the Coriolis parameter and the zonal wind seasonal cycle are
antisymmetric about the equator. The maximum Ekman vari-
ability occurs at 7◦ S and 5◦ N where the seasonal variations
in zonal wind are the largest. The Ekman transport is the
dominant mechanism driving seasonal variability in the trop-
ics. Very near the equator, there is an increase in the baro-
clinic southward transport, which compensates a sharp re-
duction in Ekman transport. However, this dynamic decom-
position is meaningless very near the equator where the Ek-
man transport becomes ill-defined as the Coriolis parameter
approaches zero. The increase in the baroclinic transport at
the equator expresses the existence of a seasonally varying
flow across the equator driven by the water pressure gradi-
ent (Schopf, 1980; Philander and Delecluse, 1983; Jayne and
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Fig. 2. Simulated seasonal July minus January overturning for
the global ocean (top), the Atlantic Ocean (middle), and the Indo-
Pacific Ocean (bottom). Negative values (dotted lines) indicate
counterclockwise overturning.

Marotzke, 2001). In the southern extratropics, the baroclinic
transport contributes substantially to the seasonal variabil-
ity. Finally, throughout the ocean there is little contribution
to the seasonal variability of meridional transport from the
barotropic gyre circulation. The dominance of the Ekman
transport component explains why the annual cycle of merid-
ional transport is similar for both tracers.

Having studied the seasonally varying transport of heat
and anthropogenic CO2, we now turn our attention to the
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2514 Z. Lachkar et al.: Temporal variability of oceanic transport of anthropogenic CO2

M
e

ri
d

io
n

a
l 
T

ra
n

s
p

o
rt

 o
f 

H
e

a
t 

(P
w

)
M

e
ri

d
io

n
a

l 
T

ra
n

s
p

o
rt

 o
f 

H
e

a
t 

(P
w

)
Jul
Jan
A. Mean

Global Atlantic

IndianPacific

LatitudeLatitude

LatitudeLatitude

Fig. 3. Global- and basin-integrated meridional transport of heat for January (solid blue), July (dashed blue), and the annual-mean (solid
black).

contribution of the mesoscale variability to the time-mean
transport of both tracers.

3.3 Eddy transport of CO2 and heat

3.3.1 Characteristics of eddy transport

Here we explore the characteristics of the eddy transport of
CO2 and heat in an eddy-permitting GCM. We examine the
spatial distributions of the eddy transport, and investigate its
physical nature for both tracers. The eddy transport for a
tracer results from the covariance of fluctuations in its con-
centration and fluctuations in advective velocities, both rel-
ative to their time means. This so-called “rectified” eddy
transport (hereafter referred to as eddy transport) contributes
to the annual-mean transport and is generally associated with
mesoscale activity (Thompson, 1993; Jayne and Marotzke,
2002); however, it may also result from other high-frequency
variability processes such as tropical instability waves (Qiao
and Weisberg, 1998).

In recent decades, there has been considerable debate
about the the transport of heat by mesoscale eddies. In con-
trast, the eddy transport of the transient tracers, e.g., an-
thropogenic CO2, has not been evaluated. Eddies affect not
only the time-varying component of meridional transport but
also the time-mean. To place the eddy transport of anthro-
pogenic CO2 in context, we first evaluate our simulated eddy
heat transport in terms of previous observational and eddy-
permitting model estimates.

We computed the time-mean, depth-integrated, meridional
eddy heat transportHe from the model output using the iden-
tity:

He(x,y) =

∫ 0

−h

ρcp

[
vθ −vθ

]
dz (2)

whereρ is the in-situ density,cp is the heat capacity of sea-
water, θ is the potential temperature,v is the meridional
velocity, andh is the ocean depth. The overbar represents
the annual-mean. Zonally integrated, meridional eddy trans-
port of heat computed from Eq. (2) is shown in Fig.6a.
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There is large poleward eddy heat transport in the South-
ern Ocean and between the tropics. Maxima in meridional
transports are associated with the North Equatorial Counter
Current in the Pacific Ocean and the Antarctic Circumpo-
lar Current (ACC) in the Southen Ocean. Our results for
eddy heat transport are remarkably similar to those byJayne
and Marotzke(2002), who used a1

4
◦

eddy-permitting GCM.
Our model simulates 0.2 PW of southward eddy transport
between 60◦ S and 40◦ S, which is similar to data-based es-
timates of 0.45±0.3 PW byde Szoeke and Levine(1981)
and 0.3 PW byStammer(1998). Our estimate is also con-
sistent with the work ofMarshall et al.(1993) who pre-
dicted 0.25 PW of eddy heat transport from an analytical
model of the zonally averaged ACC, but it is larger than the
0.14 PW of eddy heat transport across the ACC as simu-
lated in Fine Resolution Antarctic Model (FRAM) (Thomp-
son, 1993). Conversely, our estimate is lower than the ob-
served time-mean eddy transport obtained by bothBryden
(1979) at Drake Passage (0.5 PW) and byMacdonald and
Wunsch(1996) at 30◦ S (0.9±0.3 PW). Between 40◦ S and
45◦ S, our estimate of 0.2 PW is lower than the 0.6 PW esti-

mate byJayne and Marotzke(2002), even though the general
structure is similar elsewhere. Near the equator, our simu-
lated eddy heat transport agrees well both in structure and
magnitude with the estimates of 0.85 PW for the southward
transport at 5◦ N and 0.4 PW for the northward transport at
5◦ S byJayne and Marotzke(2002). Furthermore, this large
convergent eddy heat transport at the equator is also con-
sistent with observations (Bryden and Brady, 1989) as well
as previous modelling work byPhilander and Pacanowski
(1986). Farther from the equator there is a second impor-
tant peak in eddy heat transport in the Indian Ocean between
10◦ S and 15◦ S. There is also a northward eddy transport
maximum of about 0.1 PW in the North Atlantic (45◦ N),
related to the Gulf Stream mesoscale variability in agree-
ment withJayne and Marotzke(2002). In the North Pacific,
there is a northward eddy heat transport of about 0.05 PW in
the latitudinal band 30◦–40◦ N associated with the Kuroshio
Current. This is slightly lower than the recent observation-
based estimate ofQiu and Chen(2004) who found about
0.1 PW eddy poleward transport in the Pacific basin at these
latitudes. In summary, our model exhibits similar overall
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structure of annual-mean, meridional eddy heat transport as
found in previous observational and modelling studies; how-
ever, it probably underestimates the magnitude of transport,
particularly at mid southern and northern latitudes, because
its eddy-permitting horizontal grid only resolves part of the
eddy spectrum.

As for heat transport, we also computed the depth-
integrated, annual-mean, eddy transport of anthropogenic
CO2, Te using a similar equation:

Te(x,y) =

∫ 0

−h

[vc−v c]dz (3)

wherec is the concentration of anthropogenic CO2, v is the
meridional velocity, andh is the depth of the ocean.

Figure 6b shows global and basin zonal integrals of the
eddy transport of anthropogenic CO2. The overall structure
of the eddy transport of anthropogenic CO2 resembles that
for heat (Fig.6a). Discrepancies exist, however, including
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Fig. 6. Zonally integrated meridional eddy transport of heat (top)
and anthropogenic CO2 (bottom) over the global ocean (black) and
in the Atlantic (blue), Pacific (red) and Indian (green) basins.

the larger peak of northward transport for anthropogenic CO2
in the Indian basin between 10◦ S and 15◦ S, which is com-
parable to the maximum in global northward transport at the
equator. Also, there is a relatively larger maximum of south-
ward eddy transport of anthropogenic CO2 at 15◦ N in the
North Pacific. In the southern mid latitudes, southward eddy
transport of CO2 is relatively larger than for heat between
60◦ S and 50◦ S, reaching 0.05 Pg C yr−1 which represents
up to 20% of the total annual-mean transport of CO2 at these
latitudes. In contrast, eddies associated with the Gulf Stream
and the Kuroshio Current contribute very little to the merid-
ional transport of CO2 .

3.3.2 Dynamics of the eddy transport

Our computation of the rectified eddy transport includes not
only variability due to the mesoscale activity but also vari-
ability associated with other features such as propagation of
large-scale waves and Ekman layer fluctuations.Thomp-
son(1993) simulated the meridional heat transport across the
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ACC using the FRAM model, showing that mesoscale activ-
ity largely dominates the large-scale contribution to the rec-
tified eddy transport. Here, to discriminate between these
processes and to evaluate the contribution of the resolved
mesoscale eddies to the rectified eddy transport, we com-
pared our eddy-permitting simulations to analagous simu-
lations made with a coarse-resolution version of the same
model (Fig.7). In the coarse-resolution model, annual-mean
eddy transport of both heat and anthropogenic CO2 is negli-
gible at mid and high latitudes, particularly in the Southern
Hemisphere. Thus most of the eddy transport in these re-
gions results from the mesoscale eddy activity, which can
only be resolved with the fine-grid model. In contrast near
the equator, there is non-negligible, annual-mean eddy trans-
port of heat and anthropogenic CO2 in the coarse-resolution
version, although that is substantially smaller than in the
eddy-permitting model. Thus in the equatorial region, other
processes (e.g., tropical waves and Ekman layer variability)
also may contribute to the so-called eddy transport.
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For an improved understanding of the nature of the merid-
ional eddy transports of heat and anthropogenic CO2, we sep-
arated out their dynamical components given in Eq. (1). Fig-
ure8 shows the contributions of these different components
to the total eddy transport. The small tropical eddy transport
of heat (0.2 PW) and anthropogenic CO2 (0.035 Pg Ca−1) at
5◦ N that is associated with the Ekman component is due to
covarying fluctuations of Ekman velocity and tracer fields.
In the extratropics, the Ekman contribution to the eddy trans-
port of heat and anthropogenic CO2, is close to zero. For both
heat and anthropogenic CO2, the baroclinic component dom-
inates eveywhere except between 40◦ S and 60◦ S where the
barotropic component outweighs the baroclinic contribution.
The importance of barotropic eddies at these latitudes illus-
trates the fundamental role of the bottom topography and the
meandering of the ACC in driving southward eddy transport
of heat and tracers. These results contrast with those ofJayne
and Marotzke(2001) who found that the baroclinic contri-
bution dominates the barotropic component even at south-
ern mid latitudes. One possible cause for this discrepancy
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may be that the horizontal resolution of our model is not as
fine as theirs (0.5◦ vs. 0.25◦), which could limit development
of baroclinic eddies. On the other hand, our finding cor-
roborates results fromCessi and Fantini(2004) who found
that the eddy fluxes of heat across zonal periodic current are
mainly due to the barotropic component of the eddies. Our
finding is also consistent with recent results fromIshida et al.
(2007) who found that the eddy transport, while largely dom-
inated by transient baroclinic eddies in the tropical oceans,
is mostly due to barotropic standing eddies in the Southern
Ocean.

Results from our analysis indicate that there is a strong
temporal variability in transport and that eddies contribute
substantially to the time-mean transport. Thus one may ques-
tion whether a synoptic one-time survey of the ocean is rep-
resentative of the time-mean circulation. In the next sec-
tion, we investigate the extent to which carbon transport es-
timates from a hydrographic survey may misrepresent true
mean transport due to uncertainties associated with temporal
variability and coarse-sampling, where eddy effects are not
resolved.

4 Discussion

Most measurements that are used for hydrography-based
computations of time-mean transport are taken from synop-
tic surveys, often sampled during summer months. Thus they
ignore the impact of the temporal variability on transport. If
temporal variability of heat and anthropogenic CO2 trans-
ports were large, then estimates from synoptic surveys would
be heavily biased. To help quantify this potential bias, we de-
composed fluctuations of meridional transport,T ′(t), of each
of the tracers into the three familiar components:

T ′(t) = v′(t) ·c + v ·c′(t) +

[
v′(t) ·c′(t)− v′c′

]
(4)

wherev is the meridional velocity andc is the tracer concen-
tration (for heatc is actuallyρcpθ ). The overbar represents
the annual mean of the quantity and the prime represents the
temporal deviation from that mean.T ′(t) is the deviation
of the instantenous transport measured from hydrographic
surveys from its annual mean value. The first term on the
right-hand side of Eq. (4) is the transport fluctuation due to
the variations in velocity acting on the time-averaged tracer
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field. The second term represents how the time-mean veloc-
ity field advects variations in the tracer field. The third term
represents fluctuations of the eddy transport about its (recti-
fied) annual mean.

The first component may introduce a bias in one-time hy-
drographic estimates of the annual-mean transport if the vari-
ability in the circulation is not taken into account. In gen-
eral though, the variability associated with the Ekman trans-
port is considered in these studies (Álvarez et al., 2003).
Thus, we investigated if fluctuations in non-Ekman trans-
port (barotropic and baroclinic components), which are ne-
glected in such calculations, could substantially alter syn-
optic survey estimates of time-mean tracer transport. For
this analysis, we begin by computing the root-mean-square
(RMS) of the transport variability that is associated with the
non-Ekman part of the first term on the right-hand side of
Eq. (4). Figures9 and10 show biases associated with this
term for transport estimates of heat and anthropogenic CO2,
respectively. In the southern mid latitudes, there is a rela-
tively large variability associated with this term, with a max-
imum of 0.5 PW for heat transport and about 0.15 Pg C yr−1

for anthropogenic CO2, which is 50% of the total transport
at these latitudes. Near the equator, variability associated
with the non-Ekman transport is generally the largest and
it is even larger than the annual-mean transport in each of
the three basins, ranging from 1.5 PW to 2.5 PW for heat
and from 0.2 Pg C yr−1 to 0.45 Pg C yr−1 for anthropogenic
CO2. In the extratropical Atlantic, transport variability as-
sociated with this term is smaller. For heat transport, it
ranges from 0.05 PW in the northern subtropics to 0.12 PW
in South Atlantic at 25◦ S. For anthropogenic CO2, this bias
varies between 0.02 Pg C yr−1 in the northern subtropics and
0.03 Pg C yr−1 at 25◦S. In the South Atlantic, this uncertainty
can be as large as 35% of the total heat transport and 20% of
total tranport of anthropogenic CO2. In the North Atlantic,
it represents up to 20% and 30% of total heat and anthro-
pogenic CO2 transports, respectively.

In the Pacific basin, variability associated with the non-
Ekman transport is generally larger than in the Atlantic
Ocean. Maximum variability in the North Pacific is at
35◦ N where heat transport variabilty is 0.23 PW (65% of
the annual-mean value) and anthropogenic CO2 variability
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Table 1. Biases in synoptic survey estimates of meridional heat transport (PW) associated with its temporal variability. The data shown are
the root-mean-square variability of the three components in Eq. (4) for different locations. Maximum associated uncertainties (ratio of bias
to annual-mean transport) are in brackets. Data in the 4th row corresponds to the eddy variability bias estimated using a coarse resolution
sampling of 136 km.

S. Ocean (60◦ S–40◦ S) S. Subtropics (35◦ S–25◦ S) N. Subtropics (25◦ N–35◦ N)

World Ocean Atlantic Indian Pacific Atlantic Pacific

Non-Ekman 0.05–0.5 (>100%) 0.1–0.12 (35%) 0.12–0.2 (20%) 0.15–0.25 (85%) 0.05–0.1 (20%) 0.1–0.23 (65%)
Tracer seasonality 0.1–0.25 (>100%) <0.02 (5%) <0.05 (8%) <0.12 (30%) 0.02–0.05 (8%) 0.04–0.1 (40%)
Eddy (High Res.) <0.1 (>100%) <0.02 (5%) <0.02 (2%) <0.02 (10%) <0.01 (3%) 0.02 (10%)
Eddy (Low Res.) 0.1–0.45 (>100%) <0.03 (5%) 0.02–0.06 (8%) 0.03–0.08 (40%) 0.02–0.1 (10%) 0.03–0.11 (35%)

Table 2. Biases in synoptic survey estimates of meridional anthropogenic CO2 transport (in Pg C yr−1) associated with its temporal variabil-
ity (same as in Table1).

S. Ocean (60◦ S–40◦ S) S. Subtropics (35◦ S–25◦ S) N. Subtropics (25◦ N–35◦ N)

World Ocean Atlantic Indian Pacific Atlantic Pacific

Non-Ekman 0.02–0.15 (50%) 0.02–0.03 (20%) 0.03–0.05 (30%) 0.03–0.06 (40%) 0.01–0.02 (30%) 0.02–0.05 (>100%)
Tracer seasonality 0.01–0.06 (40%) <0.01 (2%) <0.01 (5%) <0.01 (4%) < 0.01 (10%) 0.01–0.02 (>100%)
Eddy (High Res.) 0.01–0.03 (20%) <0.01 (2%) <0.01 (4%) <0.01 (2%) <0.01 (5%) <0.01 (>100%)
Eddy (Low Res.) 0.02–0.1 (70%) <0.01 (2%) <0.015 (10%) <0.01 (5%) <0.015 (15%) <0.02 (>100%)

reaches 0.048 Pg C yr−1, well above the annual mean trans-
port that is close to zero. In the South Pacific, at 35◦ S,
the bias reaches 0.24 PW for heat transport (70% of the an-
nual mean-transport) and 0.055 Pg Cyr−1 for anthropogenic
CO2 (35% of the total transport). This variability is also im-
portant in the Indian Ocean, in particular due to intensive
monsoon activity between 15◦ S and 30◦ S, where it varies
between 0.13 and 0.28 PW for heat transport (12% to 20%
of the annual mean-transport) and between 0.03 Pg C yr−1

and 0.05 Pg C yr−1 for anthropogenic CO2 (up to 30% of the
annual mean-transport). More details about uncertainties in
hydrography-based transport estimates related to non-Ekman
fluctuations are available in Tables1 and2.

The second term in Eq. (4), due to the seasonal variabil-
ity of the tracer concentrations, also contributes to temporal
variability and is not accounted for in the hydrographic sur-
vey estimates. Associated biases for heat and anthropogenic
CO2 are shown in Figs.9 and10, respectively. The variabil-
ity associated with this term is generally smaller than with
the first component. Yet, in the Southern Ocean, this bias
is large, reaching up to 40% of anthropogenic CO2 transport
and even locally exceeding corresponding total meridional
transport of heat. In the subtropics of all three basins, the bias
is typically less than 0.12 PW for heat transport and below
0.02 Pg C yr−1 for anthropogenic CO2. At 25◦ N in the North
Atlantic, the bias is less than 0.05 PW for heat transport and
around 0.004 Pg C yr−1 for anthropogenic CO2, which rep-
resents about 5% of their respective annual-mean transports.
In the North Pacific at 32◦ N, this uncertainty is as large
as 0.1 PW for heat (40% of the annual-mean transport) and

0.02 Pg C yr−1 for anthropogenic CO2 (100% of the annual-
mean transport). More details on uncertainties in the hydro-
graphic transport estimates due to this second term, seasonal
tracer variability, are provided in Table1 for heat and Table2
for anthropogenic CO2.

The third term in Eq. (4) concerns the variability of the
eddy transport about the time-mean. Generally, biases as-
sociated with this term are very small except near the equa-
tor (10◦ S–10◦ N) and in the Southern Ocean (Figs.9 and
10). In the Pacific Ocean at 5◦ N, this variability reaches
0.25 PW for heat transport and 0.046 Pg C yr−1 for anthro-
pogenic CO2 transport. In the Southern Ocean, this eddy
bias reaches 0.1 PW for heat transport and 0.03 Pg C yr−1 for
anthropogenic CO2 transport, respectively. In the subtrop-
ics in all three basins, the variability associated with this
term is quite small, i.e., 0.01–0.02 PW for heat transport
and less than 0.01 Pg C yr−1 for anthropogenic CO2 trans-
port. Therefore, the eddy variabilty appears to play a neg-
ligible role in the time dependence of the meridional tracer
transport at these latitudes. Yet, this term is well known to
strongly depend on the spatial resolution of sampling. There-
fore, it might introduce a larger bias in the transport estimates
if the sampling is done with an insufficient resolution. To
test this hypothesis, we estimated this term using a 4 times
coarser sampling, meaning an average resolution of 136 km
instead of the original eddy-permitting model resolution of
34 km. We found that the eddy temporal variabilty estimated
with this coarser 136-km resolution is generally 2 to 3 times
larger. In the North Atlantic, the eddy bias can represent up
to 10% of the total transport of heat and up to 15% of the total

Biogeosciences, 6, 2509–2523, 2009 www.biogeosciences.net/6/2509/2009/



Z. Lachkar et al.: Temporal variability of oceanic transport of anthropogenic CO2 2521

transport of anthropogenic CO2. Thus proper sampling res-
olution is crucial for providing accurate hydrography-based
transport estimates. The actual eddy bias may be much larger
given that estimates here rely on a eddy permitting model
that by definition does not resolve the full spectrum of even
mesoscale eddies. Findings from this analysis are summa-
rized in Tables1 and 2.

5 Summary and Conclusions

We found that the seasonal cycle of the meridional transport
of anthropogenic CO2 is similar to that for heat, with both
having the largest amplitude confined to the tropics. Near
the equator, the peak-to-peak amplitude of total annual cycle
of meridional transport reaches between 6 and 8 PW for heat
and between 1.2 and 1.5 Pg C yr−1 for anthropogenic CO2.
In the subtropics, this seasonal variability ranges from 1.5 to
2 PW for heat and between 0.4 Pg C yr−1 and 0.5 Pg C yr−1

for anthropogenic CO2. This variability is dominated by the
Ekman transport except near the equator and at southern mid-
latitudes, where the contribution from the baroclinic compo-
nent (due to vertical shear) also becomes important.

We also investigated the contribution of the mesoscale
variability to the mean transport. Eddy rectification con-
tributes to the meridional transport via large poleward trans-
port of heat and anthropogenic CO2 associated with the ACC
as well as substantial convergent transport about the equa-
tor, particularly in the Pacific Ocean and in the Indian Ocean
around 15◦ S. The comparison of our eddy-permitting sim-
ulations to additional runs performed at coarser resolution
shows that most of the rectified eddy transport at mid and
high latitudes results from mesoscale eddy activity, whereas
near the equator, other processes that are insensitive to hori-
zontal model resolution (e.g., variability in Ekman transport)
also play some role.

Finally, we quantified the extent to which neglecting tem-
poral variability could alter hydrography-based estimates of
time-mean transports of heat and anthropogenic CO2. For
both tracers, the largest bias introduced by such variabil-
ity was found to be associated with the neglect of the non-
Ekman variability in those calculations. Near the equator,
this bias is even larger than the annual-mean transport. In the
subtropical North Atlantic, where most of the hydrographic
surveys were conducted, the bias from neglecting the non-
Ekman transport of heat and anthropogenic CO2 can reach up
to 20% and 30% of the respective annual-mean transports. In
the subtropical South Atlantic seasonal variability represents
up to 35% of the annual-mean transport of heat and 20% of
the annual-mean transport of anthropogenic CO2. The other
two additional sources of bias in synoptic survey estimates,
due to seasonality of the tracer field and the eddy variability,
are in general much smaller. Yet, for hydrographic surveys
whose sampling resolution does not resolve the eddy field,
the bias due to eddy variability becomes susbtantially larger
and can represent in the North Atlantic up to 10% and 15% of

total transports of heat and anthropogenic CO2 in the North
Atlantic.

We have demonstrated that for reliable hydrography-based
transport estimates of anthropogenic CO2 and heat, methods
must properly account for non-Ekman seasonal variability.
They also need to account for eddy variability which cannot
be captured without fine-scale surveys. Errors due to tempo-
ral variabilty appear to be generally small in the Atlantic and
the Indian subtropics, but in some of the most energetic re-
gions, such as near the equator and at southern mid-latitudes,
the bias can be much larger. These biases further call into
question the approach of using hydrography-based transport
estimates of anthropogenic CO2 to deduce regional air-sea
CO2 fluxes.
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