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Abstract—The current art of steganography shows that
schemes using a deflection criterion (such as MiPOD) for JPEG
steganography are usually subpar with respect to distortion-
based schemes. We link this lack of performance to a poor
estimation of the variance of the model of the noise on the
cover image. However, this statistically-based method provides
a better assessment of the detectability of hidden data as well
as theoretical guarantees under a given model. In this paper, we
propose a method to obtain better estimates of the variances
of DCT coefficients by taking into account the dependencies
introduced by development pipeline on pixels. A second method,
which is a side-informed extension of Gaussian Embedding in
the JPEG domain using quantization error as side-information,
is also formulated and shown to achieve state-of-the-art per-
formances. Eventually, the trade-off between noise and content
complexity in steganography is thoroughly analyzed through the
lenses of these two new methods using a wide range of numerical
experiments.

I. INTRODUCTION

Imperfect steganography rests on two pillars for its per-
formance: the coding method and the cost function. The
development of the Syndrome-Trellis Coding method [1],
which is able to closely achieve the rate-distortion bound,
led most of recent research efforts into designing better cost
functions. There exists currently two approaches for designing
such functions. The first, and most popular, is a heuristic
approach, named distortion-based steganography. Here a cost
function is heuristically defined to associate a cost to each
pixel/DCT coefficient, the scheme then works by minimizing
the sum of costs under the constraint of embedding a given
payload. The current state-of-the-art in JPEG steganography,
J-UNIWARD is a representative examples of this approach,
as well as its more recent variants using filtering of costs [7].
J-UNIWARD costs are based on directional noise residuals es-
timated with a wavelet filter bank. Such costs are heuristically
linked to local content complexity and the rationale is thus
to assign high costs to smooth areas and low costs to areas
which are “unpredictable” in every directions. Distortion-based
schemes are thus often based on the concept of “content
unpredictability”. The major limitation of this approach is the
absence of guarantees on the security of the steganography as
the distortion function is not formally linked to any statistical
detectability. In addition, the parameters of distortion function
is often tailored to a specific detector and/or a specific dataset;
as a consequence, the results may dramatically change when
changing the dataset or the processing pipeline [2]. The second

approach is the statistically-based one. It is based on minimiz-
ing the power of the most-powerful test under a given model of
distribution for the cover and the stego. The costs associated
to pixels/DCT coefficients are directly linked to how much
the power of the detector would be increased if the pixel/DCT
coefficient was modified. MiPOD [3] successfully used this
approach in the spatial domain by modeling cover noise as
realizations of independent Gaussian random variables and
performing ternary embedding. More recently, the Gaussian
embedding scheme [4] achieved state-of-the-art performance
in the spatial domain using the same model but considering
the stego-signal as an additive Gaussian noise instead. Con-
trary to distortion-based schemes, these algorithms will favor
embedding in the noise of an image instead of the “content
complexity” (though, see Section II.A, of [3] which explicitly
takes the error of content estimation into account without
further analysis on what form this error should take).

Despite such success in the spatial domain, the straight-
forward generalization of MiPOD to the JPEG domain was
initially reported to have subpar security with respect to J-
UNIWARD in [5]1. As such, the only competitive stegano-
graphic alternative which relies on statistically defined costs
in the JPEG domain uses so-called side-information. Side-
information (SI) can refer to any knowledge, unknown to
the steganalyst, on a given cover which can be used by the
steganographer to improve the security of a steganographic
scheme (e.g: another image of the same scene, the RAW
image, knowledge of rounding errors, . . . ). In the case of
JPEG images, SI usually relies on the so-called pre-cover
which consists of the non-rounded DCT coefficients of the
image. The state of the art for distortion-based scheme, SI-
UNIWARD [6], significantly improves the security over J-
UNIWARD by heuristically modulating its costs by |0.5− ei|
(ei = xi − round(xi) ∈ ]−0.5, 0.5] being the rounding
error of the i-th DCT coefficient xi), embedding preferentially
in coefficients which are close to a bin boundary. On the
other hand, model-based SI-MiPOD [5], referred to as MB-
MiPOD in this paper, formally derives a modulation factor
of |0.5− ei|2 by minimizing the KL-divergence between the
cover and the stego image conditioned on the realization of
the pre-cover.

Recently, another trend developed in order to boost the
practical security of embedding schemes, relies on the prin-

1We will, however, report contradicting results to those contained in [5];
the performance of JMiPOD being actually quite competitive, see also [28]
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ciple of adversarial embedding using deep neural nets com-
bined with appropriate retraining. The key idea of adversarial
embedding [29] is (i) to build a classifier representing the
adversary/steganalyst targeting a given steganographic scheme
and payload, (ii) to modify the embedding scheme by tuning
the embeddings costs in order to bypass the classifier. One can
after retrain a new classifier and iterate. An efficient strategy
to iterate [30] is to select the stego images which are the
less detectable using the best trained classifiers. Note that, if
the gain is substantial in term of undetectability after more
than 5 iterations, this class of embedding schemes is heavy
to deploy in practice. Indeed, the steganographer needs, in
order to generate one stego image, first to generate several
stego databases (one per iteration) and then to retrain a deep
convolutional network at each iteration.

In [8], we linked the lack of performance of J-MiPOD
to the fact that the estimation of the variances in the JPEG
domain relied on the incorrect assumption of independence
of the pixels in the spatial domain. Such a method leads
to variances which are almost constant by blocks (up to the
quantization step) in the JPEG domain. Taking into account
the dependencies between pixels during the estimation of
the variances leads to finer estimates. However, this paper
will nuance this observation by showing that the empirical
performance of such statistical based algorithm is also highly
dependent on the presence of image content which is difficult
to estimate. By only relying on the noise component in the
image, such steganographic scheme can become sub-optimal
when compared to distortion-based embedding schemes w.r.t.
to empirical detectors, with limited possibilities for modeling
covers, for a given dataset and steganalysis strategy. To alle-
viate this problem, we propose in this paper a methodology to
add a specific component to the variance estimation which is
only linked to the content of the image. The main contribution
of this work is threefold:

1) We propose a multivariate statistical model that de-
scribes the distribution of DCT coefficients by esti-
mating correlation between neighboring pixels after the
development process. The model is used to provide
better estimates of the noise variances.

2) A side-informed steganographic scheme in the JPEG
domain is also proposed ; minimizing the power of the
most powerful detector in the continuous domain, while
the constraint of embedding a given payload length is
expressed in the quantized domain.

3) Using these two methods, together with numerous dif-
ferent image datasets allows the understanding of the
influence of the various parameters such as the trade-
off between computing distortion based on content
complexity and computing distortion based on noise
variance.

The present paper is organized as follows:

1) The first part deals with the estimation of the covariances
of DCT coefficients and mostly builds upon our previous
work [8]. We propose a slight extension of the model to
handle gamma corrections which is a common operation
in image-processing pipeline which breaks both the

stationarity and linearity assumptions of our model.
2) The second part deals with the side-informed Gaussian

embedding scheme also proposed in our previous work.
Following [3] we cast the problem as minimizing the
power of the optimal detector under a payload con-
straint and we provide an analytic expression of the
asymptotic power of the most powerful (MP) detector.
Furthermore, we study the impact of the knowledge
available to the steganalyst on the performance of the
MP detector. Finally, we highlight the consequences of
the independence assumption of the DCT coefficient on
the performance of the likelihood ratio test as well as
the performance of the empirical detectors.

3) The third part discusses the important choice of hiding
locations for the steganographer, namely the choice of
hiding behind content complexity or hiding behind the
sensor noise. We show that this strategy highly depends
on the training and testing dataset properties. We then
propose a simple methodology to take into account
content complexity independently of the noise in our
proposed embedding method.

4) The fourth and last part presents and comments on the
results of experiments and discuss the robustness of our
method to different processing pipelines, datasets as well
as the impact of noise and content complexity.

We would like to point out that the present paper is an
extension our prior paper [8], in particular with respect to the
statistical model of the cover and variance estimation method,
Section II. The novelty of the present paper is the following:

• it extends the noise model to take gamma correction
into account, providing a more comprehensive picture of
processing pipeline,

• it analyzes the Gaussian embedding algorithm fully by
deriving the MP detector as well as studying the re-
lationship between the embedding probabilities and the
quantization error,

• it proposes a method to take into account “content com-
plexity” in order to deal with an imperfect Warden,

• it provides a much wider set of numerical results al-
lowing, in particular, to discuss the trade-off between
hiding information behind noise against hiding informa-
tion behind content which is difficult to estimate for the
steganalyst.

Note that for the rest of this paper, we make the unusual
assumption that the steganographer, Alice, has access to the
RAW image and to the processing pipeline from which her
cover was generated. While access to a camera giving access
to RAW files might have been difficult in the past, most cell-
phones today do give such an access, making this assumption
believable even in a realistic setting.

The proposed scheme is also adversarial in the sense that
the embedding is directly designed against an classifier, here
the Likelihood Ratio Test. However contrary to adversarial
embedding methods based on deep neural nets [29] combined
with min max iterations [30], our scheme is only based on
the knowledge of the statistical properties of the develop-
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RAW image
XRAW
k ∼ N (µk,diag (σk))

Estimation of
µk and σk

see [9], [11]

Image processing
pipeline

H

Estimation of H
see Eq.(4) +

correction due to
Gamma Tranform
see Section II-C

Processed image
Xdev
k ∼ N (µ′k,Σk)

Covariance Σk
estimation.

See see Eq.(5).

Model

Estimation

Embedding Stego Image

Construct variance map
using the diagonal of Σk

Fig. 1: Principle of steganography with side information coming from the processing pipeline: the estimation of the covariance
matrix of the sensor-noise in the DCT domain enables to compute reliable variance estimates and to derive meaningful deflection
coefficients, used to derive statistically founded costs for JPEG images.

ment pipeline, which can simply be estimated using only
one (Raw,Cover) pair. Furthermore, it requires neither the
computationally expensive training and retraining operations
of [29], [30] nor the multiple generations of stego databases
needed to update the adversary.

The following notational conventions will be used through-
out the paper. Matrices and vectors will be typeset in boldface.
When indexing, we use k to refer to vector elements, while
i refers to individual scalar elements. Regarding specific
notations, σ2

i and Σk always refer to the cover noise variance
and covariance respectively. On the other hand εi refers to
the stego-signal variance. X and its super-scripted and sub-
scripted variants always refer to a cover element interpreted
as a random variable, whereas Y always refers to a stego
element interpreted as a random variable. Finally zi always
refers to the realization of an image element when it is not
known beforehand if this image element comes from a cover
or stego image.

II. STATISTICAL MODEL OF THE SENSOR NOISE IN THE
JPEG DOMAIN

In this paper we only consider cover images in DCT (before
rounding) and JPEG (after rounding) domains. The methodol-
ogy proposed in the present paper is based on a statistical
model of DCT coefficients corrupted by multivariate and
correlated Gaussian noise in the spatial domain. In addition,
we assume that the image used to hide data was captured
by the steganographer. Alice thus has access to both the raw
image and to the processing pipeline which generates the
cover from the RAW. In this section, we are only interested
in the specification and estimation of the noise model of the
cover image. To facilitate both the specification of the model
as well as its estimation, it is assumed that the processing
pipeline (1) can be approximated by a linear operator on
blocks of pixels/DCT coefficients (linearity assumption), and
(2) is identical over all the blocks of the image (stationary
assumption).

A. Model Definition

Our goal is now to produce a model which allows to take
correlations between DCT coefficients into account in order
to obtain high quality estimates of the variance for each DCT
coefficient.

To do so requires first a model of the processing pipeline. To
develop one 8× 8 block of photo-sites, a processing pipeline
will usually need to interpolate photo-sites inside this block
with photo-sites outside of it. An important example is bilinear
demosaicking which, for a photo-site of given color, uses its
neighbors to produce the interpolated value of a different color
– see Figure 2. This creates correlation between neighboring
photo-sites. Furthermore the DCT transform at the end of the
pipeline will propagate such correlations to the entirety of
direct neighboring blocks. For this reason, our model of the
processing pipeline will need as input blocks of size at least
(8 × M)2 – with M ∈ N – where M2 is the number of
input block necessary for the processing pipeline to be able to
develop one 8×8 block of DCT coefficients. Note that, for the
reasons just invoked, in the case of a linear pipeline comprised
of bilinear demosaicking, RGB to grey conversion and DCT
transform, we would need nine 8 × 8 blocks of photo-sites
to obtain one 8 × 8 block of DCT coefficient (the block of
photo-site itself as well as all its neighboring blocks).

For some pipeline, adding neighboring blocks might not be
sufficient to be able to compute all correlations of interest. For
example, in the case of bilinear demosaicking, we must add a
margin of photo-sites at each border of the “macro-block” of
(8 × 3)2 photo-sites to be able to compute the correct value
of the correlations at the borders of macro-block.

Concluding this discussion, we model the processing
pipeline up to and including the DCT transform (i.e. demo-
saicking, white balancing, denoising, etc. . . ) as a linear oper-
ator represented as a matrix H of dimension 82× (8M +m)2

where m is the size of the margin at each border of the
(8M+m)2 “macro-block”. We next go on to define the model
of the sensor noise.

Following [9], [11], we model photo-site values as indepen-
dent random variables drawn from the following heteroscedas-
tic noise model:

XRAW
i ∼ N

(
µi, σ

2
i

)
; σ2

i = c1µi + c2, (1)

where µi is the value of the i-th photo-site that would have
been observed if it had not been corrupted by acquisition noise.
c1 and c2 are the parameters of the heteroscedastic model
which depend on the sensor and the ISO to capture the image.
For simplicity and clarity, we will model a block of (8M +
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Fig. 2: Dependency structure for a linear pipeline. Due to the
use of bilinear demosaicking, adjacent 8-connected block of
8× 8 photo-sites will be correlated after the operation. To be
able to take into account all correlations in the DCT domain, a
margin of one row/column is necessary at every border of the
blocks to compute the correct value of the correlations of the
neighboring blocks after demosaicking. Notice that the margin
is sufficient because the central block is independent from the
block containing the margin.

m)× (8M +m) photo-sites jointly by:

XRAW
k ∼ N (µk,diag(σk)), (2)

where XRAW
k corresponds to the (8M + m) × (8M + m)

block of photo-sites centered on the k-th 8 × 8 block of the
RAW image. By diag(.) we refer to the diagonal covariance
matrix generated by a vector of variances.

Since the processing pipeline introduces dependencies be-
tween pixels, and since we suppose it to be linear, we can
model 8× 8 blocks of dependent DCT coefficients of the de-
veloped image as multivariate Gaussian random variables [12]:

Xdev
k ∼N (µ′

k,Σk) ; Σk = H (diag(σk)) HT . (3)

It is important to note that no assumption of independence
is made at this point between neighboring 8 × 8 block of
DCT coefficient. However, if one is interested in modeling
inter-block dependencies directly, the model can easily be
generalized by setting the output size of H as (8N)2 with
N2 < M2 being the number of dependent neighboring blocks
to be modeled for each 8× 8 block of DCT coefficient.

B. RAW model Estimation and Covariance Estimation

To be able to estimate the covariances Σk, we need to
estimate the variances associated to each photo-site which are
themselves function of the expected value of each photo-site
µi, see Eq. (1). To that end, we denoise the RAW image using
the method in [13] based on the inverse Anscombe transform
and the BM3D algorithm [14]. The heteroscedastic model
parameters c1 and c2 which characterize the noise variance as
a function of the expectation Eq. (1), are then estimated using
the method detailed in [9], [11]. In practice, the RAW model
only needs to be estimated once for each camera and each
ISO among images in a given dataset. Once the parameters of

the RAW model – c1 and c2 – are estimated, the covariance
matrix of each block Σk is simply given by:

Σk = H (diag(σk)) HT . (4)

since H is considered to be a linear operator.
Depending on the processing pipeline, H can be computed

analytically such as in [15] for bilinear demosaicking. In
our case, we adopt a different approach by approximating
the processing pipeline as a stationary linear operator. This
approximation may be slightly less accurate, however, it comes
with great simplicity and a much broader scope of application
since several processing may be very difficult to model or
even be partially unknown (such as denoising or complex
demosaicking). We propose to estimate H blindly using a
least square estimation between the photo-site blocks and the
developed blocks, that is, solving for H:

Xdev
k = HXRAW

k , (5)

with the least square solution being:

H = Xdev
k

(
XRAW
k

)T (
XRAW
k

(
XRAW
k

)T)−1

. (6)

Even though this method allows the estimation of the full
covariance matrix, the embedding scheme designed in Section
III will only make use of its diagonal. Indeed, the design of
a non-addtive scheme being out of the scope of this paper,
we consider the DCT coefficient to be independent during the
embedding phase. The reader might then rightly ask the point
of going to the trouble of considering the DCT coefficients
to be dependent until the end of the pipeline to then forego
this assumption altogether. The reason is that it allows a far
better estimation of the variance in the JPEG domain than,
say, computing directly the variances in the spatial domain,
effectively considering pixels to be independent and then
propagating those variances in the JPEG domain using the
DCT transform.

To illustrate this point, we show the variance maps estimated
with and without keeping the dependencies between pixels
until the end of the estimation in Figure 3. First, observe
that when using our model (upper and lower right figure),
the variance of the noise is directly related to the amplitude
of the signal – this is a consequence of the heteroscedastic
model underlying our method. On the other hand, when using
a method based on MiPOD’s estimator which is sensitive to
content – see Section IV – the variance is no more dependent
on the amplitude of the signal but to the presence of sharp
transitions and texture. Second, we highlight the importance
of using correlations until the end of the variance estimation.
Indeed, observe that when using our method as described, the
variance decreases as the DCT mode increases hence correctly
taking account the low-pass effect of the JPEG compression
(and here of the bilinear demosaicking). On the other hand,
if we assume pixels to be independent, like in the lower-left
and lower-right figures, we observe that the variance is almost
constant by block of DCT coefficient.
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Fig. 3: Comparison of the different structure of the variance
maps of the DCT coefficients of image 5105 of the BOSS
dataset processed using the linear pipeline (see Table IV) at
QF100 depending on the estimation method used. The variance
map is either estimated using the method outlined in Section II
(upper-right corner) or by assuming pixels to be independent
(lower right and lower left). The lower-left figure is obtained
by using the variance estimator define in Section IV based on
MiPOD’s estimator and propagating the variances in the DCT
domain using Eq (29). The lower-right one is obtained using
our method to estimate variances in the spatial domain but
then foregoing dependencies between pixels by propagating
variances in the DCT domain in the same way as for the
MiPOD-based estimator.

C. Gamma Correction
Along the general image processing pipeline, there is one

step that can hardly be approximated as a stationary linear
operator, namely the gamma correction. Indeed, this compen-
sation for the color response function of monitors is both non-
linear and non stationary. More specifically, gamma correction
is a piecewise-continuous function with one linear part and a
non linear part. Its standard form (as used in rawpy/libraw for
example) is given by

Γ(x) =

{
γ0x, if x < 0.018,

1.099x
1
γ1 − 0.099, if x ≥ 0.018,

(7)

where γ0 and γ1 are specified by the user and x ∈ [0, 1] is the
normalized input pixel value.

Since this operation is usually applied after demosaicking,
on each colour channel separately, the estimated variance must
be corrected at this step of the processing to be able to estimate
correctly the variance further up in the processing pipeline. To
that end, we propose to use the Delta method [16, Theorem
11.2.14] to compute the covariance matrix using a first order
Taylor approximation around the mean:

ΣΓ
k
.
= ∇Γ

(
µRGB
k

)
ΣRGB
k ∇Γ

(
µRGB
k

)T
. (8)

where ∇Γ is the gradient of the gamma correction function,
µRGB
k and ΣRGB

k are respectively the mean value and co-
variance matrix of the k-th block of of pixel before gamma
correction.

Note that through this approximation, we suppose the trans-
form to be linear around the mean ; hence effectively approx-
imating the pixel noise value to follow a normal distribution
even after gamma correction. Also note that this approximation
necessitates that the mean, hence the denoised version of the
demosaicked image before gamma correction, to be computed
by the steganographer. In this paper we used the BM3D
denoising algorithm [10] to denoise the RAW image. Once
the denoised demosaicked image is computed, the covariance
matrix of the blocks of the demosaicked image must be
computed for each color channel before being corrected using
Eq. (8).

III. EMBEDDING

We have described in the previous section how to estimate
the covariance matrix of DCT coefficients. Once this task is
carried out, the main problem for the steganographer remains
to associate to each pixel a relevant probability of embedding
in order to minimize detectability. Such a method has been
proposed in [3]. In the present paper, a different, original
method is used to avoid several difficulties. In particular, the
proposed scheme, which we will call SI-Gaussian for the rest
of this paper, does not rely on the fine quantization assumption;
such an assumption is not relevant for DCT coefficient of
JPEG images. The proposed scheme also takes into account
the side-information from the non-quantized value of DCT
coefficients in a natural way without any ad-hoc modulation
of the costs.

A. Cover and Stego Image Model
While the model presented in Section II would allow to con-

sider the dependencies between DCT coefficients, this would
require the design of a distortion function able to consider
DCT coefficients jointly. However, the design of a non-additive
scheme is out of the scope of this paper and is left out for
future research. We will thus model the pre-cover as a N -
dimensional vector of DCT coefficients X = (x1, x2, . . . , xN )
considered as realization of N independent Gaussian variables:

Xi ∼ N (µi, σi) (9)

The idea is to minimize the impact of the embedding directly
in the continuous domain in order to:

1) Take the side-information into account,
2) Relax the fine quantization limit assumption.

To that end, we add a pre-stego signal to the pre-cover
as a zero-mean Gaussian signal with variance ε2i leading
to a pre-stego content modeled as a N -dimensional vector
Y = (y1, y2, . . . , yN ) which is made of realizations of N
independent Gaussian variables:

Yi ∼ N
(
µi, (σ

s
i )

2
)

; (σsi )
2 = σ2

i + ε2i . (10)

When using the variance estimation method given in Sec-
tion II, one has to pass from the multivariate model to the
independent model given here. Since only the variances σi are
of interest, this is simply done by keeping only the diagonal
of the estimated covariance matrices: the l-th DCT coefficient
contained in the k-th 8×8 block is thus assigned the variance
at the (l, l)-th position of the Σk matrix.
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B. Optimal test

Following MiPOD’s methodology, we design a stegano-
graphic scheme which generates a signal that minimizes
the power of the most powerful (MP) detector. To cast the
steganography problem into the continuous domain, we will
work under the assumption that the Warden knows the stego
signal variance ε = (ε1, ε2, . . . , εN ) as well as the model
parameters µ = (µ1, µ2, . . . , µN ) and σ = (σ1, σ2, . . . , σN )
and analyses the image before rounding z = (z1, z2, . . . , zN ).
The Warden’s goal is to decide between the two hypotheses
∀i ∈ {1, 2, . . . , N}:{

H0 =
{
zi ∼ N

(
µi, σ

2
i

)}
,

H1 =
{
zi ∼ N

(
µi, σ

2
i + ε2i

)}
.

(11)

Set the pdf of the noise distribution under H0, pσi (x) and
qσi,εi (x) under H1 as

pσi (x) =
1√

2πσ2
i

exp

(
− (x− µi)2

2σ2
i

)
(12)

qσi,εi (x) =
1√

2π(σ2
i + ε2i )

exp

(
− (x− µi)2

2(σ2
i + ε2i )

)
. (13)

We can then use the Neyman-Pearson criterion of optimal-
ity. In this case the Warden constructs a test δ : R →
{H0,H1} which maximizes the power of the test PD ,
P (δ (x) = H1|H1) under a given false-alarm probability
PFA , P (δ (x) = H1|H0).

Under these assumptions, the problem of the Warden (11) is
reduced to a choice between two simple hypotheses for which
the Neyman-Pearson Lemma states that the most-powerful
test is the likelihood ratio test (LRT), defined, in our case
as follows:

Λi(z, σi, εi) = ln

(
pσi (z)

qσi,εi (z)

)
, (14)

Λ(z, σ, ε) =

N∑
i=0

Λi(zi, σi, εi)
H0

≶
H1

τ, (15)

since we assume independence between DCT coefficients.
We show in the Appendix that the asymptotic power of the

LRT as the number of DCT coefficient N →∞ is given by :

PD = P (δ (x) = H1|H1) (16)

= Q

(
Q−1 (PFA)

√
VarH0

[Λ] + EH0
[Λ]−EH1

[Λ]√
VarH1

[Λ]

)
,

(17)

= Q

Q
−1 (PFA)

√∑N
i=1

ε4i
2(ε2i+σ2

i )
2 +

∑N
i=1

ε4i
2σ4
i+2σ2

i ε
2
i√∑N

i=1
ε4i

2σ4
i

 ,

(18)

where Q(·) is the tail distribution function of the standard
normal distribution, with each of the moments derived in
the Appendix. Under the assumption that the power of the

stego signal is negligible compared to the sensor noise, that is
σ2
i >> ε2i , we obtain the much more mangeable expression:

PD
.
= Q

Q−1 (PFA) +

√√√√ N∑
i=1

ε4i
2σ4

i

 . (19)

C. Embedding by Minimizing the Power of the MP Detector

From Eq. (41) in the Appendix, one can note that the
power of the MP detector is specified by two quantities:
EH0

[Λ]−EH1
[Λ]√

VarH1
[Λ]

and VarH0
[Λ]

VarH1
[Λ] . The first quantifies the contri-

bution of the shift between the two Gaussian while the second
quantifies the contribution due to the spread of the Gaussian.

To simplify the optimization problem, it is usual to neglect
the second quantity and consider the variances of the LR equal
under both hypothesis (see the Appendix in [3] and Section 2
in [4]). Under this approximation, which essentially consists
in assuming that the stego-signal has a negligible power when
compared to the natural image noise, we have σ2

i >> ε2i and
get:

EH0
[Λ]−EH1

[Λ]√
VarH1 [Λ]

=

∑N
i=1

ε4i
2σ4
i+2σ2

i ε
2
i√∑N

i=1
ε4i

2σ4
i

,

.
=

√√√√ N∑
i=1

ε4i
2σ4

i

.

(20)

Interestingly, the term % ,
√∑N

i=1
ε4i

2σ4
i

entirely character-
izes the power of the most-powerful test. This factor is thus
the deflection coefficient for detectability of the best Warden
one can face.

One can also note that, under the present method, the
deflection only depends indirectly on the payload since we
add a stego-signal whose variance should ensure that the
embedding payload can be reached. This is highlighted in the
following optimization problem the steganographer seeks to
solve: 

min
εi

%2 =

N∑
i=1

ε4i
2σ4

i

,

M =

n∑
i=0

∑
k∈Z

βki log
(
βki
)
,

(21)

with

βki = Φ

(
k − ri + 0.5

εi

)
−Φ

(
k − ri − 0.5

εi

)
, (22)

being the probability of modifying the i-th coefficient by +k,
Φ(·) being the cumulative distribution function of the standard
normal distribution, and ri = xi−[xi] being the rounding error
of i-th DCT coefficient. In practice, the alphabet size of the
embedding scheme must be finite, k is thus constrained to a
finite range and the βki renormalized accordingly.

To compute the βki , we follow the same strategy as in [4].
Using the differential entropy of the Gaussian distribution and



7

the method of Lagrange multipliers, we can express the εi as
a function of λ:

L =

N∑
i=1

ε4i
2σ4

i

+ λ

(
M∗ − 1

2

N∑
i=0

log
(
2πeε2i

))
. (23)

Solving:
∂L
∂εi

= 0 ⇐⇒ 2ε3i
σ4
i

+
λ

εi
= 0, (24)

we obtain:

ε2i =

√
λ

2
σ2
i . (25)

Finally, we obtain the solution for λ:

λ = exp

(
2M∗

N
− 4

N

N∑
i=0

log (σi)− 2 log(2πe) + log(2)

)
.

(26)
Note that we use a proxy parameter M∗ which is the entropy
in the continuous domain. The goal is to find the entropy
in the continuous domain which leads to the desired entropy
in the discrete domain. Hence, the problem reduces to finding

M∗ such that M =

n∑
i=0

∑
k∈Z

βki log
(
βki
)

(note that M is a

function of M∗). This problem can be solved through a binary
search over M∗.

Looking at the system in Eq. (21), one should observe that
the rounding error is not directly taken into account in the
quantity to minimize; it is only taken indirectly into account
in the constraint as values closer to the bin boundary will
contribute more to the total entropy.
To understand how the trade-off between the side information
and the variance emerges from the optimization, we plot
in Figure 4 the embedding probabilities βi as a function
of both the rounding error ri and the variance σ2

i , this is
obtained for a 256 × 256 image with variances taking value
in {0.1, 10} with an embedding with payload M = 0.25
bpp. We compare the embedding probabilities obtained with
our method denoted “SI-Gaussian”, with those obtained with
a side informed version of MiPOD where MiPOD’s costs
are modulated with the so called “Minimum Perturbation”
heuristic – see [18] – which is currently the heuristic giving
the best security performance when using side-information.

Be it for SI-Gaussian or SI-MiPOD, the probability of
embedding in a coefficient increases w.r.t both ri and σ2

i .
However, one can observe that our method is more sensitive to
both these 2 parameters than SI-MiPOD. Indeed, coefficients
with low variances will only be used when they are almost at
the bin boundary while coefficients with higher variances will
always be used more often when compared to SI-MiPOD. This
behavior emerges from the optimization system as follows:
since the objective function is expressed in the continuous
domain, the variance of the stego-signal εi grows linearly
with the variance of the coefficient σi (Eq. (25)). As such
the only effect of the constraint is to increase or decrease
λ until the constraint is met. For reasonable payloads, this
translates to having very low stego-signal variances for the

Fig. 4: βi as a function of the rounding error ri and of the
variance σ2

i on an 256 × 256 image with variances taking
value in {0.1, 10} with an embedding with payload M = 0.25
bpp. The red dots correspond to embedding probabilities
obtained with SI-Gaussian while the red dots correspond to
those obtained using SI-MiPOD with cost modulated using
the Minimum Perturbation heuristic.

lowest coefficient variances and, correspondingly, high stego-
signal variance for coefficients with the highest variance. As
a consequence, coefficients with low variances only cross the
bin boundary if they are already on the boundary while those
with high variances cross the boundary even at value closer
to the center.

D. Influence of the Warden Knowledge

In this section we study the influence of the Warden knowl-
edge about the cover on the performance of the LRT. This
study allows validating our choice of minimizing the power
of the MP detector directly in the continuous domain. We also
provide an interpretation of the success of side-information in
terms of impossibility of estimating the selection-channel.

The core design of the Gaussian embedding method pro-
posed in Section III-C, Eq. (21), essentially assumes that the
steganalyst is able to access both the unquantized version of
the image and a perfect estimate of the variances of the DCT
coefficients σ2

i and the variance of the stego-signal ε2i . This
means that we also implicitly assume that the Warden does
not have access to the original rounding errors as this would
render the detection easier since the embedding probabilities
directly depend on them.

Following a similar presentation as in [3, Sec.III.A], we
distinguish three possible kinds of Warden2:

1) An Omniscient Warden who knows the covariance
matrix of DCT coefficients as well as the unquantized
version of the sample and the variances of the stego-
signal. As opposed to the embedding model used by
the steganographer which for simplicity neglects the
correlation between DCT coefficients, see Section II, the
omniscient Warden has the advantage of knowing those

2Note that contrary to [3], we assume that all three Warden know the
payload size.
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correlations and can leverage this knowledge during the
detection. To facilitate the computation of the LRT, this
Warden considers only intra-block dependencies.

2) A Knowledgeable Warden who has access to the
unquantized version of the sample, the variances of the
DCT coefficient and the variances of the stego signal.

3) An Ignorant Warden who has only access to the
quantized version of the sample along with the variances
of the DCT coefficient. The ignorant Warden has thus no
information on the stego-signal and thus can only esti-
mate the selection channel through variances of the DCT
coefficient since she does not know the rounding errors.
In this situation, we will suppose that the Warden uses
MiPOD’s model to estimate the embedding probabilities
βi from the variances – see [3, Section 2].

We summarize the information to which each Warden has
access to as well as the test they each perform in Table I. The
LRT of the knowledgeable and ignorant Warden is computed
empirically for each image using:

Λ(z) =

N∑
i=1

ln

(
pH1

(zi)

pH0
(zi)

)
(27)

where zi is the i-th- DCT coefficient while pH0
and pH1

are
the pdf of the distribution under each hypotheses as given in
Table II. For the omniscient Warden, the formula is identical
except we use blocks of of DCT coefficients:

Λ(z) =

Nblock∑
k=1

ln

(
pH1

(zk)

pH0(zk)

)
(28)

Note that we suppose that every Warden has access to the
nuisance parameter µi.

To test the performance of each Warden, we took one
RAW image from E1Base (IMG 3699.cr2) and simulated
10 000 noisified versions of this RAW image by adding
an heteroscedastic noise to each photo site with c1 = 1.3
and c2 = −7500. The images were then demosaicked using
the bilinear demosaicking algorithm, converted to greyscale,
cropped to 256×256 at an offset of 2048 in each direction and
finally compressed to JPEG with quality factor 100. Images
were embedded with the method described in Section III-C
at 0.15bpp. The LRT was then computed on each image
for each different Warden. We also compared the LRT to
three empirical detectors using either DCTR [19], GFR [26]
or CCJRM [25] feature sets, coupled with the Linear Low
Complexity Classifier (LCLC) [20] Figure 5 shows the result.
SRNet [27] was also tested but its ROC curve was indis-
tinguishable from the Omnisicent Warden at the payload of
interest. The fact that SRNet is able to match the Omniscient
Warden hints that it is somehow able take correlations of
the DCT coefficients into account. This observation should
be taken with caution since all images in the dataset have
been generated from the same images. The estimation of a
covariance matrix by the steganalyst is far less amenable on
a more realistic dataset, where every image might have a
different processing pipeline and acquisition parameters.

As expected, Figure 5, clearly shows that the knowledgeable
Warden (orange full line) performs better than the ignorant

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

Omniscient warden

Knowledgeable warden

Ignorant warden

GFR + Linear classifier

DCTR + Linear classifier

ccJRM + Linear classifier

Fig. 5: ROC curves of the LRT for the different types of War-
den/models compared with the empirical detector using DCTR
and LCLC on 10000 noisified version of the RAW image
IMG 3699.cr2 from E1Base. The resulting noise is correlated
due to the processing pipeline. Images are compressed with
JPEG at QF100 embedded with Σ-SI-Gaussian at 0.15bpp.

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

Knowledgeable warden

Ignorant warden

GFR + Linear classifier

DCTR + Linear classifier

ccJRM + Linear classifier

Fig. 6: ROC curves of the LRT for the different types of
Warden/models compared with the empirical detector using
DCTR and LCLC on 10000 noisified version of the JPEG
from IMG 3699.cr2 from E1Base. The resulting noise is
independent. Images are compressed with JPEG at QF100
embedded with Σ-SI-Gaussian at 0.15bpp.

Warden (green full line) due to a better access to the selection
channel. Interestingly, the ROC curves show that our scheme
has no security if the covariances are available to the stegan-
alyst, showing that correlations between DCT coefficients are
important; taking such correlations into account could actually
greatly improve the security of a steganographic scheme.

As for empirical detectors DCTR and cc-JRM perform
worse than the ignorant Warden by 3% and 11% in terms of
PE respectively. On the other hand, surprisingly, GFR beats
both the knowledgeable and ignorant LRT by 5% and 7%
respectively. This shows that GFR is the only state-of-the-
art rich model able to leverage dependencies between DCT
coefficients to improve detection. The case of cc-JRM is
interesting because even though it is built using co-occurrences
of histograms, hence explicitly trying to take dependencies of
DCT coefficients into account, it is still far worse than DCTR.
Furthermore, GFR is built similarly to DCTR with first order
statistics; this would tend to show that the choice of filter
bank plays a more important role than the statistics themselves
when trying to take correlations between DCT coefficients into
account.

To validate our hypothesis that the observed gain in detec-
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TABLE I: Summary of the information accessible to each Warden

Access to \Warden Omniscient Knowledgeable Ignorant

Unquantized samples zi Yes Yes No – quantized only
Noise covariances Σk Yes No – variances σ2

i only No – variances σ2
i only

Stego variances ε2i Yes Yes No

TABLE II: Description of the model used by each warden

Models \Warden Omniscient Knowledgeable Ignorant

H0 zk ∼ N (µk,Σk) zi ∼ N
(
µi, σ

2
i

)
[zi] ∼ N

(
µi, σ

2
i

)
H1 zk ∼ N (µk,Σk + diag(εk)) zi ∼ N

(
µi, σ

2
i + ε2i

) [zi] ∼ (1− 2βi)N
(
µi, σ

2
i

)
+ βiN

(
µi + 1, σ2

i

)
+ βiN

(
µi − 1, σ2

i

)

tion of GFR compared to DCTR is indeed due to the fact that
GFR is able to take correlations between DCT coefficients into
account, we repeated this experiment using independent noise.
To do so, we first denoised the RAW image IMG 3699.cr2
using BM3D, developed it using the same processing pipeline
as previously and added independent Gaussian noise to each
DCT coefficient with variances estimated on the noisy devel-
oped IMG 3699.cr2 image using the method in Section II.
The rest of the experiment was performed identically as the
previous one. Results are presented in Figure 6.

These results validate our hypothesis as, this time, the
three empirical detectors are in fact quite close in terms
of performance (with cc-JRM lagging somewhat behind).
Furthermore, all three of them are worse than both the ignorant
and knowledgeable Warden 3. We can conclude that since GFR
is unable to use the correlations, its performance can’t improve
with respect to the other detectors and hence that the difference
w.r.t. DCTR mostly lies in this information captured by the
Gabor filters but not by the DCT modes.

IV. TRADE-OFF BETWEEN NOISE AND CONTENT
COMPLEXITY IN STEGANOGRAPHY

Under the model presented in the previous section, only two
parameters are of interest to the steganographer : the mean
vector and covariance matrix of each individual block of DCT
coefficients as they fully specify the model. However, since
the steganalyst has only access to the stego image in the JPEG
domain, her estimation of the model will necessarily be worse
than the estimation of the steganographer.

This fact means that the steganographer can improve the
security of his stego scheme by taking into account the esti-
mation error of the model by the steganalyst. This observation
was actually one of the cornerstone of MiPOD for which
the authors showed that MiPOD’s security could actually be
improved by using subpar variance estimators.

In the previous section, we only tried to be optimal against
the MP detector which might thus be sub-optimal when facing
a practical detector. We shall see in Section V that building
the MP detector considering only the photonic noise, and not
taking into account image content, can decrease the practical

3Note that the omniscient and knowledgeable Wardens are identical for the
case of independent noise.

security of the proposed embedding method. More specifically,
using only the photonic noise is sub-optimal compared to
the UNIWARD family which was specifically designed to
embed in image locations where the estimation of the model
parameters is difficult for the steganalyst.

We hypothesize that this loss of performance is due to
the fact that, under generally adopted steganalysis settings,
the learned classifier has difficulties to estimate the cover
component. Whenever a large dataset of images like BossBase
is used for training a classifier, the classifier can only rely on
so called “inter-dependencies” between images to reduce the
impact of imprecise content estimation for images which share
a common source and common content. It is thus expected that
a given dataset will favor different trade-offs between hiding
information into the noise or into the content depending on
the inter and intra-dependencies it contains.

In this section we consequently propose a simple method-
ology to take the content of the image into account.

A. Variance of the Estimation Error Related to the Content

We propose to estimate the variance that would be estimated
on the image if no noise is present. Following what is proposed
in [3, Section IIA] we model the variance of a DCT coefficient
simply as the sum of the noise variance σ2

i as described in
section II and the variance due to the modeling error ξ2

i . This
normality of the estimation is here assumed for computational
tractability and ease of mathematical statement.

To estimate ξ2
i , we work in the spatial model before the

DCT transform and perform the following operations:
1) Estimate the pixel noise variances in the spatial domain

using the method in Section II.
2) Denoise the image using the wavelet denoising al-

gorithm4 outlined in [21] using the estimated noise
variances.

3) Apply MiPOD’s variance estimation method on the
denoised image, that is a Wiener filter with a window
width of 2 followed by fitting of a parametric model
with two-dimensional trigonometric polynomials.

4We also experimented using BM3D for the denoising but the wavelet
denoising algorithm consistently led to better security performances while
also embedding faster by several orders of magnitude.
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4) Compute the corresponding variance in the DCT domain
using Eq. (29):

(ξ
(a,b)
k,l )2 =

7∑
i,j=0

(fk,li,j )2 · (ξ(a,b)
i,j )2/q2

l,k, (29)

with fk,li,j = 1
4wkwl cos πk(2i+1)

16 cos πl(2j+1)
16 , w0 = 1√

2
and

wk = 1 for k > 0.
Once the variance due to content is estimated, we finally

sum the two variances for each DCT coefficient, σ2
i corre-

sponding to the noise component and ξ2
i corresponding to the

modeling error – that is the content complexity – component.
The embedding using this variance map is then performed as
usual. This way of computing the variances can be seen as a
trade-off between hiding information both behind the photonic
noise and behind the content complexity. Hiding only behind
noise postulates a detector which can estimate the content of
the image – the mean value of the DCT coefficient – perfectly.
However, the current art in steganalysis is still sensitive to
content complexity. As such, a practical scheme should take
this fact into account to be able to face heuristic embedding
schemes which primarily rely on this imperfection of empirical
detectors.

V. RESULTS

In this section, we present the results of the different
approaches presented in the previous sections. Two effects will
be highlighted in this section :

1) The impact of estimating the variance either using (4)
(i.e. relying only on the processing pipeline and the
photonic noise) or (29) (i.e. also taking into account the
image content).

2) The fact that the nature of the dataset will favor different
strategies in terms of distribution of the payload in
the noise of the DCT coefficient versus in the noise
associated to the content.

To do so we used several different datasets with different
properties.

a) E1Base: 200 RAW images taken with a E1 Camera
at ISO100,

b) CanonBase: 119 RAW images taken with a Canon
EOS500D at ISO1600 From ALASKA dataset [22]

c) BOSS dataset without M9 camera: 7642 RAW im-
ages taken with 6 different cameras from BOSS dataset [23]
excluding the M9 camera whose distribution of the photonic
noise is peculiar (see [24], Fig. 2).

The processing pipeline for each dataset are presented in
Table IV. We mainly focus on a purely linear pipeline as well
as on a pipeline which closely mimics the classical Bossbase
pipeline. The focus on the linear pipeline allows us to study our
method’s performance when the adopted variance estimation
model is correct. More precisely, it is one of the few cases
in which the processing pipeline can be modeled as a linear
transformation which is the core assumption in our model the
covariance of DCT coefficients.

On the other hand, the focus on the BOSS pipeline gives
a better idea of performances under the standard laboratory

settings. In addition, because the linear assumption is certainly
the most restrictive, it is important to assess the robustness of
our model with respect to the non-linearity of a pipeline

To understand the following experiments, it is important
to distinguish between the variance estimation methods and
the embedding strategy. To that end, we provide Table III as
a summary of our nomenclature for the different embedding
schemes used in this paper.

The parameters of the photonic noise c1 and c2 were
estimated as described in Section II-B. The H matrix is
estimated once for each camera and each processing pipeline
using a simple least square regression. To that end, we use a
synthetic constant RAW image to which sensor noise is added.
This image is then processed using the relevant processing
pipeline for each datasets. The RAW and developed images are
then reshaped as arrays of 10×10 and 8×8 blocks respectively.
We eventually compute H using Eq. (5). This implies that the
covariance matrix of each block was estimated without using
neighboring blocks. Even though the estimation for one block
should theoretically be carried out with all its neighboring
blocks as discussed in Section II, extensive experiments with
the E1Base showed no observable gain in security when using
those neighboring blocks for the estimation.

Finally, we used the noisy value of the photo-site as an
estimate of its mean value for the computation of the variance
map instead of denoising the RAW image first. While we also
conducted the following experiments using BM3D to denoise
the RAW images, the difference in the resulting variance map
was always negligible with respect to the one obtained with no
denoising and as a consequence no significant security gains
were observed.

Due to high number of experiments, the steganalysis was al-
most always performed using DCTR and the Low-Complexity
Linear Classifier [20]. We also performed steganalysis for
most experiments with the current state-of-the-art deep neural
network EfficientNet-b3 [33] as it was recently shown to
reach state-of-the-art performances in the ALASKA2 [32]
competition. The stem stride of Efficient-net was set to 1 and
training was performed with curriculum beginning from the
highest payload used for each dataset with a learning rate of
0.005, divided by 2 on loss plateau. All the relevant code –
embedding and variance estimation – will be made available
online upon acceptance of the paper.

TABLE III: Nomenclature of the embedding schemes

Prefix Meaning

Σ- Uses the noise variance map estimated using the method described in Section II.
c- Uses the content variance map estimated using the method described in Section IV.

Σ-c- Uses the sum of the noise and content variance maps.
SI- Uses the rounding errors as side-information.

Suffix Meaning

Gaussian Minimizes the power of the MP detector in the continuous domain as described in Section III.
Discrete Minimizes the power of the MP detector in the quantized domain as described in [3].

UNIWARD Distortion based schemes as described in [6].
JMiPOD Uses the variance estimator and the embedding strategy described in [3] and compute the variances in the

DCT domain using Eq (29) (see [5]).

A. Performance of the Proposed Method over Different
Datasets

In this subsection we study the performance of our method
on the three aforementioned datasets with different processing
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Fig. 7: PE as a function of payload in bits per coefficients (bpc) for different demosaicking algorithm with the E1Base
pipelines. All images are JPEG at QF100. Upper images are steganalyzed with DCTR while lower images were steganalyzed
with Efficient-b3.

TABLE IV: Names and operations of the processing pipelines used in the experiments. Gamma correction is never performed
except when explicitly stated. The operations are performed in the order they are presented in the table

Pipeline name Demosaicking White Balance RGB to grey Downsampling method QF

E1Base pipelines Bilinear, VNG or DCB No Yes Crop, 256× 256 100
CanonBase pipeline Bilinear No Yes Resize from 512× 512 to 256× 256, Bilinear kernel 100
CanonBaseQF pipelines Bilinear No Yes Crop, 256× 256 100,95
Linear Pipeline Bilinear No Yes Edge crop, 256× 256 100
BOSS Pipeline PPG Yes, Camera Yes Resize from 768× 768 (Edge crop) to 256× 256, Lanczos kernel, 100
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Fig. 8: PE as a function of payload in bpc for downscaled
images on CanonBase with the CanonBase pipelines. All
images are JPEG at QF100.

pipelines. E1Base and CanonBase were developed using the
E1Base pipelines and CanonBase(QF) pipelines respectively 5

to produce datasets of 5000 images. The BOSS dataset was
similarly developed but each image was cropped once in order
to maximize content. To do so, we used the edge detector
described in [9] and chose the crop containing the maximum
number of pixels considered as part of an edge.

Results are presented in Figure 7-9 for E1Base and Canon-
Base and in Figure 10 for BossBase. Note that VNG and PPG
break the stationary assumption since the interpolation of each
pixel depends on the value of their gradient with respect to
the neighboring photo-sites.

From these results, one can clearly see the impact of the
dataset on the performance of our algorithm. Indeed, using

5The processing pipelines use the rawpy and Pillow libraries

our methodology to estimate the variance on E1Base and
CanonBase invariably leads to a clear gain of performance
by several percents in terms of PE independently of the
processing pipeline. In particular, even in setting with low
overall noise, such as when the image is down-sampled or
quantized with quantization step >> 1, our method still clearly
outperforms the UNIWARD family.

However the situation is reversed on the BOSS dataset when
using DCTR where Σ-SI Gaussian outperforms SI-UNIWARD
only when the BOSS pipeline is used. Interestingly in this case,
even for a dataset where all the assumptions of our method
are met - in the case of the linear and stationary processing
pipeline - the UNIWARD family significantly outperforms Σ-
MiPOD and Σ-SI Gaussian. Most interestingly, this situation
does not transfer when using EfficientNet. Indeed, in this case,
our methods never perform worse than the UNIWARD family
and even outperforms it significantly when the knowledge of
the rounding errors is used.

In the following, we propose to link this effect to the
fact that datasets constructed from BossBase contains more
content that is difficult to estimate. As such, hiding only in the
noise can be a sub-optimal strategy when facing an empirical
detector. This rationale is justified by the fact that E1Base
and CanonBase are both made from several crops of the same
image, leading to several images with few or smooth content.
On the other hand, the BOSS datasets are constructed from
only one crop per image, crops which specifically maximize
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Fig. 9: PE as a function of payload in bpc for different JPEG quality factors (QF) with CanonBaseQF pipelines. Upper images
are steganalyzed with DCTR while lower images were steganalyzed with Efficient-b3.
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Fig. 10: PE as a function of payload in bpc for images on Bossbase with two different processing pipeline. The first being the
linear processing pipeline, the second being the BOSS pipeline. All images are JPEG at QF100. Steganalysis was performed
using DCTR and the LCLC on the upper figures while it was performed with EfficientNet-b3 on the lower ones.

the “difficult” content of the image.

B. Impact of Considering Image Content

In this subsection, we study the effectiveness of different
methods in order to take image content into account to improve
steganographic security. We thus study the applicability of the
methodology presented in Section IV to improve our proposed
schemes in these situations. We apply this methodology on the
BOSS dataset developed with the linear and BOSS pipelines.
Results are presented in Figure 11 and 12.

From these figures, we see that using both the noise and
“content” variance always leads to the best results. There is
one exception on the BOSS dataset developed with the BOSS
pipeline where Σ-c-SI-Gaussian performs the worst (see Fig.

12, right). This can be explained by the fact that both Σ-
SI-Gaussian and c-SI-Gaussian both perform better than SI-
UNIWARD on this dataset; using the sum of their variance
might thus lead to a variance that is so large it becomes
insecure.

It is interesting to note that all the studied methods which
are based on using the variance due to the content are all more
or less on par in terms of PE . In particular, it is extremely in-
teresting to note that JMiPOD and SI-Gaussian with JMiPOD
variance are both highly competitive on these datasets, even
beating SI-UNIWARD in the case of the BOSS pipeline. Since
the variance estimation of J-MiPOD is extremely crude for
the reasons exposed in the introduction, it confirms that the
gains in performance observed is not due to a better model
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Fig. 11: PE as a function of payload in bpc for images on
Bossbase with the linear processing pipeline comparing the
performance of the steganography depending on the variance
map used. All images are JPEG at QF100.
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Fig. 12: PE as a function of payload in bpc for images on
Bossbase with the BOSS pipeline comparing the performance
of the steganography depending on the variance map used. All
images are JPEG at QF100.

but to the fact that these schemes capitalize on the difficulty
of the steganalyst to estimate some part of the content. This
phenomenon was already mentioned in [3].

C. Effect of Source and Content Diversity

In this subsection we investigate the impact of content
diversity in a dataset on the performance of steganography.
In particular, we highlight the fact that the performance of
the UNIWARD family is mostly due to the failure of the
steganalyst to estimate the model parameters for each image.

To do so, we produce a dataset where this estimation
is almost assured to be perfect. Using the observation in
Section IV that empirical detectors can capitalize on the inter-
dependencies between images of the dataset to reduce the
impact of bad content estimation, we took one RAW image
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Fig. 13: PE as a function of the payload in bpc on 5000
noisified images from one BossBase image with the linear
processing pipeline. All images are JPEG at QF100.

from BossBase and simulated 5000 noisified version of this
RAW image by adding a simple heteroscedastic noise to the
photo site with c1 = 1 and c2 = 0. These images were then
developed using the linear processing pipeline and cropping
to 512 × 512 the area given by the edge crop strategy on
the “noiseless” image. In this situation, the diversity of the
content and of the source is reduced to its minimum since
only the photonic noise values differ between images and not
the content. We compare the performance of J-UNIWARD, SI-
UNIWARD, Σ−Discrete and Σ-SI-Gaussian on this dataset in
Figure 13. These results show a clear under-performance of
the UNIWARD family with respect to Σ schemes, similar to
what is observed on the E1Base and CanonBase giving credit
to the aforementioned hypothesis.

D. Validation of the Variance Estimation Method

In this subsection we study the effectiveness of the vari-
ance estimation method described in Section II in improving
steganographic security.

Because of the independence assumption, one might wonder
if there is a real gain in security by keeping the dependencies
between pixels and DCT coefficients up to JPEG compression
for the variance estimation. We here repeat the experiment
in Section V-A on E1Base with a purely linear process-
ing pipeline and the pipeline using the DCB demosaicking
algorithm. However, we now compare the performance of
Σ−Discrete to the performance of Discrete which used a
variance map estimated differently. Instead of keeping the
full covariance matrix up until the end in the estimation
process, as explained in Section II, we drop all covariances
after the RGB to grey conversion, keeping only a diagonal
covariance. The variances are then computed in the DCT
domain using Eq. (29). This amounts to assuming pixels are
independent after the RGB to grey conversion. Results are
presented in Figure 14. We also validate our approach for
taking into account gamma correction on E1Base with the
linear processing pipeline with gamma correction activated
with rawpy default parameters (2.222, 4.5) in Figure 15.

In Figure 14 we clearly observe that dropping the depen-
dencies in the spatial domain during the variance estimation
process leads to extremely poor security performance. Indeed,
keeping the dependencies until the end of the process leads to
a gain of 15% on average in terms of PE . This clearly outlines
the importance of taking into account the dependencies created
by the processing pipeline as well as validate our estimation
method.
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the variance estimation method when independence is assumed
in the spatial domain or in the DCT domain. All images are
JPEG at QF100.
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Fig. 15: PE as a function of payload in bits per coefficients
(bpc) on E1Base processed with E1Base pipeline with bilinear
demosaicking and gamma correction. All images are JPEG at
QF100.

VI. DISCUSSION AND ANALYSIS

A. Dataset difficulty

In the preceding section, we conjectured that the loss of
performance observed with our method between E1Base and
BOSSBase was due to the fact that the variance due to error
in the content estimation dominated the variance due to the
sensor noise. Our method only takes sensor noise into account
in its model, contrary to the UNIWARD family which was
specifically designed to embed in location where content is
difficult to estimate.

To motivate this conjecture we propose to use the variance
due to the modeling error as described in Section IV. As was
observed in Figure 3, this variance is a good indicator of
content as it increases in textured areas and at sharp transitions.
We then compute the average variance for each image of each
dataset developed with the Linear pipeline as it is the pipeline
where our embedding scheme under-performs when using rich
models. We finally plot the histograms of average variance in
Figure 16.

As can be observed from these histograms, the average
“content” variance for E1Base is close to zero. The situation
is quite different for BOSSBase, where the “content” variance
has a far greater range up to 0.5.

B. Impact of the quantization on the noise covariance

Most experiments in this paper were done using relatively
high quality factors. In general, the steganographer should
avoid cover with low quality factors as stronger quantization
leads to lower variance of the DCT coefficient and conse-
quently, mutatis mutandi, lower security [31].

Fig. 16: Histogram of the average variance due to error in
modeling content – aka “content” variance – per image for
BOSSBase and E1Base.

Fig. 17: Examples of images taken from the E1Base dataset
processed with the linear pipeline.

However, in our case, the reason not to use low QF is
directly linked to the variance estimation method we outlined
in Section II. Indeed, not only does quantization lower the
variances of DCT coefficient but also their covariances. To
illustrate this phenomenon, we give in Figure 19 a series of a
covariance matrix of the same image block as the quality factor
decreases. Note that these covariances are obtained before the
rounding of DCT coefficients. One can observe that most of of
the covariances become negligible as soon as quantization with
QF95 is performed. Furthermore, even though the structure of
the covariance matrices does not change much for even lower
QFs, the variances and covariances tend to zero quickly as the
QF decreases.

If we also take into account the rounding of the DCT
coefficient, the impact on the structure is even more dramatic
as most of higher modes will actually have a variance far
smaller than the quantization step for lower quality factors.
Note however that is effect is highly dependent on the power
of the sensor noise.

VII. CONCLUSION

In this paper, we propose a new method to estimate covari-
ances and variances in the JPEG domain using the knowledge
of the processing pipeline and a multivariate Gaussian model
of the DCT coefficients noise. By leveraging dependencies
between pixels and DCT coefficients, we are able to get precise

Fig. 18: Examples of images taken from the BOSSBase dataset
processed with the linear pipeline.
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Fig. 19: Covariance matrix of a block of DCT coefficient of
image 1200 in BOSSBase with the linear pipeline for different
quality factors. On the left are covariances matrices obtained
before rounding and on the right after rounding.

estimates of the variances in the DCT domain. The method
is also shown to be robust to pipelines diverging from its
linearity and stationary assumptions. We also propose a novel,
side informed, model-based scheme in the JPEG domain based
on minimizing the power of the most powerful detector in the
continuous domain while setting the message size constraint
in the discrete domain. An exact, analytical, expression of
the power of the MP detector is also derived. Finally, since
the proposed model only deals with the DCT coefficients
noise, a strategy is presented in order to take into account
content complexity through an estimation of the variance of
the estimation error of the content. Evidently, this scheme,
which is based on a likelihood ratio test, does not bring the
same security level as other adversarial schemes based on
deep neural nets because of the model mismatch between the
LRT and the true generative process of the image. However,
it does not require computationally expensive tasks such as
the generation of multiple datasets of stego contents nor the
training of deep neural networks.

These three contributions lead also to several insights.
Firstly, the trade-off between noise and content-complexity in
steganography is highlighted, and this steganographic scheme
greatly outperforms the state-of-the-art for settings where
noise predominates over content. Secondly, to maintain the
performance of the scheme for datasets with complex contents
w.r.t distortion based schemes, we show the importance to
estimate the noise related to the content estimation error.

A last conclusion is related to the importance of dependen-
cies for steganalysis since an important gap in performance
is highlighted between detectors taking into account the full
covariance of DCT blocks and detectors not considering
correlations between pixels.

Future works will thus include the extension of our scheme
to non-additive schemes able to use the full covariance matrix.
On a more practical matter, we will study the feasibility of
estimating the covariance matrix without the knowledge of
the RAW image.
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APPENDIX
ASYMPTOTIC PERFORMANCE OF THE LRT

In this section we derive the exact asymptotic performance
of test proposed in Section III-B. Let :

pσi (x) =
1√

2πσ2
i

exp

(
−x2

2σ2
i

)
, (30)

qσi,εi (x) =
1√

2π(σ2
i + ε2i )

exp

(
−x2

2(σ2
i + ε2i )

)
, (31)

Λi(z, σi, εi) = ln

(
pσi (z)

qσi,εi (z)

)
, (32)

Λ(z, σ, ε) =

N∑
i=0

Λi(zi, σi, εi), (33)

We compute the first two moments of the LRT under each
hypothesis. We begin by linking the expectation to the KL-
divergence between two Gaussian :

EH0 [Λi] =

∫ ∞
−∞

ln

(
qσi,εi (z)

pσi (z)

)
pσi (z) dz

= −DKL (p||q)

= ln

(√
σ2
i + ε2i
σi

)
+

σ2
i

2 (σ2
i + ε2i )

− 0.5.

(34)

Using the same argument for the expectation under H1 we
obtain:

EH1 [Λi] = DKL (qσi,εi ||pσi) (35)

The variances can also be computed analytically by identi-
fying the moments of the Gaussian in the integral:

V arH0 [Λi] =

∫ ∞
−∞

ln2

(
qσi,εi (z)

pσi (z)

)
pσi (z) dz

−D2
KL (pσi ||qσi,εi) .

(36)

Let:

c1 = ln2

(
σi
σsi

)
, c2 = 2 ln

(
σsi
σi

)
(σsi )

2 − σ2
i

2(σsi )
2σ2
i

,

c3 =

(
(σsi )

2 − σ2
i

2(σsi )
2σ2
i

)2

,

with (σsi )
2 = σ2

i + ε2i .
We can rewrite the variance as:

V arH0
[Λi] =

∫ ∞
−∞

(
c3z

4 + c2z
2 + c1

)
pσi (z) dz

−D2
KL (pσi ||qσi,εi) .

(37)

Finally, recognizing the second and fourth moment of the
Gaussian distribution, we obtain:

V arH0
[Λi] = 3c3σ

4
i + c2σ

2
i + c1 −D2

KL (pσi ||qσi,εi) , (38)

and similarly under H1.
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With some routine calculations, the second moments of the
LRT can be simplified as:V arH0

[Λi] =
ε4i

2(ε2i+σ2
i )

2

V arH1 [Λi] =
ε4i

2σ4
i

(39)

Finally, using the independence of DCT coefficients, the
full moments are obtained as the sum of the individual
moments:

E [Λ] V ar [Λ]

H0 −
∑N
i=1DKL (pσi ||qσi,εi )

∑N
i=1

ε4i
2(ε2i+σ

2
i )2

H1
∑N
i=1DKL (qσi,εi ||pσi )

∑N
i=1

ε4i
2σ4
i

As the number of DCT coefficient N → ∞, Linderberg’s
central limit theorem implies that:

Λ(x,σ, ε) 

{
N (EH0

[Λ],VarH0
[Λ]) , under H0

N (EH1 [Λ],VarH1 [Λ]) , under H1

(40)

where  denotes convergence in distribution. From the
limiting distribution of the LR, the asymptotic power of the
LRT is thus given by:

PD = P (δ (x) = H1|H1) (41)

= Q

(
Q−1 (PFA)

√
VarH0 [Λ] + EH0 [Λ]−EH1 [Λ]√

VarH1 [Λ]

)
,

(42)

where Q is the tail distribution function of the standard normal
distribution.
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