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Casimir effects for scalar fields under electric fields in 1+1 dimensions

We examine Casimir effects of the charged massless scalar field in 1+1 dimensions in the external background potential which includes linear and non-linear electrostatic fields. We calculate the Casimir energy for Dirichlet, Neumann, and mixed boundary conditions in perturbation theory. We find that the electric field strengthens the Casimir energy for the Neumann condition and lowers the energy in other cases.

Introduction

Casimir effect, a justification of the existence of vacuum fluctuations, was proposed by H. B. G. Casimir in 1948 [1] in an attempt to explain the interaction between two polarizable atoms [2]. In the original formulation, Casimir effect is understood as an emerged attraction between two neutral superconducting parallel plates separated by a distance. The attractive force between these plates is derived by differentiating vacuum energy densities between with and without boundary. The effect was confirmed by Lamoreaux's measurements in 1997 [3].

The influence of the external magnetic field on Casimir effect, based on the formulation of Landau quantization, is an attractive subject. In Ref. [4], Casimir energy of the scalar field is calculated as a function of the magnetic field. The fields considered in Ref. [4] includes both bosonic and fermionic degrees of freedom. The results in that study are agreed with those of to Ref. [5] which state that the magnetic field inhibits the Casimir energy for a bosonic field and enhances the energy for a fermionic field [START_REF] Cougo-Pinto | Conf. Proc. C[END_REF].

The studies of the scalar Casimir effect influenced by an external electric field were figured out by J. Ambjorn and S. Wolfram who calculated vacuum polarizations of the charged scalar field by summing over scalar modes [START_REF] Ambjorn | [END_REF]. We also mention the research by E. Elizalde and A. Romeo [8] who computed Casimir energy for both of chargeless and charged scalar field under electric (1) field by numerical estimation based on the zeta function regularization, the Dirichlet boundary condition is applied in the paper. Recently, the relation between dynamic Casimir effect and Schwinger mechanism of a massive charged scalar field under a strong electric field was studied by H. Taya [11] which state that the electric field enhances the dynamical Casimir effect.

The present paper studies Casimir effect of the massless charged scalar field under the electrostatic fields by perturbation theory in 1+1 dimensions. The concrete boundary conditions are assumed to include: Dirichlet, Neumann and mixed (hybrid) boundary conditions. Unlike the study in Ref. [START_REF] Ambjorn | [END_REF] which focuses on the calculation of the vacuum polarization of the scalar field, in our work, we figure out the calculation of Casimir energy and the behavior of perturbative contribution to it. In paper [8], the authors used the zeta function regularization to estimate the Casimir energy for every value of external potential for both close and open boundary. The open boundary in the paper assumed boundary condition is applied at one point and the second one at infinity. In contract to the study in Ref. [8] which numerically estimated the total Casimir energy as a function of external potential for concrete values, in the present paper, we assume that the external field is a perturbation. Hence, we obtain perturbative contributions to Casimir energies. Furthermore, we extend the external potential to the nonlinear form which is conceived from the beta function of massless QED [9].

Our strategy is as follows: section 2 is devoted to the description of solving the Klein-Gordon equation with the external field to get a general solution. Next, the linear electrostatic is assumed as an electrostatic perturbation. By the perturbative method, the Casimir energies are determined by three kinds of boundaries: Dirichlet, Neumann, and mixed respectively. The beta-function form of the electrostatic field is used to calculate Casimir energies in section 3. Section 4 is devoted to the summary and outlook.

Casimir effect of the scalar field under a linear electrostatic potential

Dirichlet boundary condition

For simplicity, let us consider a massless charged scalar field confined in a finite spatial interval 0 ≤ x ≤ L. The field is coupled with an electrostatic field via the following Lagrangian

L = (D µ φ) * (D µ φ) , (1) 
and the corresponding action

S = d 2 x (D µ φ) * (D µ φ) . (2) 
Here, D µ = ∂ µ + iqA µ is a covariant derivative expressed via the timeindependent external field A µ which has the form:

A µ = (A 0 , A 1 ) = ∆φ x L - 1 2 , 0 . (3) 
Notice that in 1 + 1 dimensional system, the coupling constant q has a dimension of mass while the scalar field is of dimensionless quantity.

The scalar field can be represented as a form: ψ(x, t) = e -iωt φ(x). Hence, Klein-Gordon equation with the external potential (3), after separating the time variable, is reduced to the following equation for spatial mode φ(x)

∂ 2 x φ(x) + ω -qL∆φ x L - 1 2 2 φ(x) = 0. (4) 
In order to simplify the above equation, it is convenient to introduce the dimensionless parameters: ξ = x L , Ω = ωL , = qL∆φ. The differential equation can be rewritten in its dimensionless form

∂ 2 ξ φ(ξ) + Ω -ξ - 1 2 2 φ(ξ) = 0. (5) 
Solving this equation, one gets a general solution

φ(y) = √ y C 1 J 1/4 y 2 2 + C 2 J -1/4 y 2 2 , (6) 
with a new variable y = Ω -ξ -1 2 and the Bessel function J ν (x) . The coefficients C 1 , C 2 can be determined by boundary conditions.

Imposing the Dirichlet boundary condition at boundaries ξ = {0 ; 1}, one realizes that the energy density of the system will be given by solving the following equation

J 1 4 κ - Ω J -1 4 κ + Ω -J 1 4 κ + Ω J -1 4 κ - Ω = 0 , (7) 
where

κ ± Ω ≡ 1 2 Ω ± 2 2 . ( 8 
)
Assuming the external potential is weak 1, one can apply the asymptotic expansion for a large argument of the Bessel function. Consequently, Eq. ( 7) can be written as follows (after neglecting irrelevant factors and higher corrections)

8Ω 2 + 3 2 -8Ω 4 sin Ω -3Ω 2 cos Ω = 0 . (9) 
It is not difficult to find the solutions of this equation with the form

Ω n = nπ - 3 2 8(nπ) 3 ; n = 1 , 2, • • • . ( 10 
)
In this paper, we would like to solve Klein-Gordon equation by perturbative method. We assume that the external fields as weak potentials 1. Therefore, we can use the perturbative method to solve the differential equation by the following perturbative expansion of the wave function and the energy density up to second-order correction

φ n (ξ) = φ 0) n (ξ) + φ (1) n (ξ) + 2 φ (2) n (ξ) + O 3 , (11) 
Ω n = Ω (0) n + Ω (1) n + 2 Ω (2) n + O 3 . (12) 
Substituting expansions (11) and ( 12) into the differential equation ( 5) and solving this equation up to the second-order correction, one gets the perturbative solution of the Klein-Gordon equation satisfy in Dirichlet boundary condition

φ (0) n (ξ) = √ 2 sin w n ξ , (13a) 
φ (1) n (ξ) = 1 2 √ 2w n (2ξ -1) sin w n ξ + 2 (1 -ξ) w n ξ cos w n ξ , (13b) φ (2) n (ξ) = 1 8 √ 2w 2 n 6ξ(ξ -1) -2ξ 2 w 2 n (ξ -1) 2 + 1 sin w n ξ -2ξw n (ξ -1)(2ξ -1) cos w n ξ , (13c) 
where

w n = nπ , n ∈ 1 , 2 , • • • .
In addition, the components of the energy density in expression ( 12) can be derived as

Ω (0) n = w n , Ω (1) n = 0 , Ω (2) n = - 3 8w 3 n , w n = nπ . ( 14 
)
Let us rewrite the dimensionless results ( 13) and ( 14) into the following dimensionful expressions. First, the scalar field has a form

φ n (x) = φ (0) n (x) + φ (1) n (x) + 2 φ (2) n (x) . ( 15 
)
and the energy density for the Dirichlet boundary condition has a from (10) as

ω n = ω (0) n + 2 ω (2) n , (16) 
by using the transformation from dimensionless parameters to dimensionful one ω n = Ωn L , x = Lξ in Eqs. ( 11) and (12). From now on, we denote ω X n with the subscription n indicates the discrete spectrum and the superscription X is the kind of boundary conditions: Dirichlet, Neumann and mixed boundary conditions, respectively, .

In a canonical quantization perspective, it is possible to introduce the positive-and negative-frequency solutions of Klein-Gordon equation by a complete form:

ψ (+) n (t, x) = C √ 2 e -iωnt φ n (x) , ψ (-) n (t, x) = ψ (+) n (t, x) * . ( 17 
)
To determine the normalization coefficient C, one can use the following normalization conditions

ψ (±) n (t, x), ψ (±) m (t, x) = δ nm , ψ (±) n (t, x), ψ (∓) m (t, x) = 0 , (18) 
where the scalar product is defined by [START_REF] Bordag | Advances in the Casimir effect[END_REF] 

ψ 1 , ψ 2 = i L 0 dx ψ * 1 D t ψ 2 -ψ 2 D t ψ * 1 . (19) 
Inserting the explicit expression (15) into the normalization condition (18) and neglecting higher corrections, one gets the following formula to determine the normalization coefficient

C 2 L 0 dx ω n -qA t φ * n (x)φ m (x) = δ nm . (20) 
The normalization coefficient can be determined by

C = w n - 2 (w 2 n + 18) 16w 3 n -1/2 . ( 21 
)
Where the dimensionless notation w n is defined in Eq. ( 14). We would like to remark that this notation is different from the dimensionful energy density ω n defined in Eq. ( 16).

According to the procedure of canonical quantization, the field operator can be represented by summing the modes as

ψ(x, t) = n a n ψ (+) n (t, x) + a + n ψ (-) n (t, x) . ( 22 
)
The annihilation and creation operators a n , a + n of the field satisfy the following commutation relations

a n , a + n = δ nn , a n , a n = a + n , a + n = 0 . ( 23 
)
The vacuum state of the scalar field in this case is

a n |0 = 0 , (24) 
and the scalar field states can be obtained by applying the creation operators to the vacuum state.

According to Noether theorem, the canonical energy-momentum tensor of the charged scalar field can be determined by the following formula

T µν = D µ ψD ν ψ -g µν L . (25) 
Therefore, Casimir energy can be obtained by integrating over the considered volume of the mean value of the 00-component of the energy-momentum tensor in the vacuum state

E C ≡ L 0 dx 0|T 00 (x)|0 = ∞ n=1 L 0 dx C 2 ω n -qA t 2 φ * n (x)φ n (x) . ( 26 
)
Inserting the solution of Klein-Gordon equation [START_REF] Bordag | Advances in the Casimir effect[END_REF] and the normalization coefficient C in Eq. (21) to formula (26), neglecting higher corrections, one gets

E C = 1 L ∞ n=1 nπ + 3 2 8(nπ) 3 = - π 12L + 3ζ(3) 2 8π 3 L . ( 27 
)
The first term in Eq. ( 27) is the regularized Casimir energy which respect to the nonperturbative case, without external field. It corresponds to the Casimir energy of the scalar field in 1+1 dimensions. The second term is a perturbative contribution under Dirichlet boundary condition.

In conclusion, we have just derived Casimir energy of the scalar field under Dirichlet boundary condition with external potential by the perturbative method in Eq. ( 27). The opposite sign between nonperturbative and perturbative terms reflects the fact that the amplitude of Casimir energy is lowered under electrostatic perturbation. Moreover, the absence of a linear term of in (27) shows that Casimir energy does not depend on the alignment of the external linear electrostatic field.

Neumann boundary condition

In this section, we consider Casimir effect under external field by Neumann boundary condition. In particular, the scalar field satisfies following boundary condition

∂ x φ(x) x=0 = ∂ x φ(x) x=L = 0 . ( 28 
)
Under this boundary condition, general solution ( 6) is written with notation (8)

J 3 4 κ + Ω J -3 4 κ - Ω -J -3 4 κ + Ω J 3 4 κ - Ω = 0 . ( 29 
)
For large arguments of the Bessel function approximation, the above equation is equivalent to

8Ω 2 -5 2 -8Ω 4 sin Ω + 5Ω 2 cos Ω = 0 , (30) 
yields solutions as follows

Ω n = nπ + 5 2 8(nπ) 3 . (31) 
Hence, the energy density of the field can be obtained as the solution of general equation (29) in a small approximation. Next, let us solve Klein-Gordon equation satisfied Neumann boundary condition. Considering the external electrostatic field as a perturbation, we can find the solution of Klein-Gordon equation of the form as in (11) with the following components:

φ (0) n (ξ) = √ 2 cos w n ξ , (32a) 
φ (1) n (ξ) = 1 2 √ 2w 2 n 2 (ξ -1)ξw 2 n -1 sin w n ξ + (2ξ -1)w n cos w n ξ , (32b) 
φ (2) n (ξ) = 1 8 √ 2w 4 n 2(2ξ -1)w n (ξ -1)ξw 2 n -5 sin w n ξ + w 2 n 2(ξ -1)ξ 5-(ξ-1)ξw 2 n +1 -10 cos w n ξ , (32c) 
where w n = nπ. The components of energy density (12) has the same form as in Eq. (31), especially

Ω (0) n = w n , Ω (1) n = 0 , Ω (2) n = 5 8w 3 n , w n = nπ . ( 33 
)
It follows that, by the perturbative method, the energy density of the scalar field, which is satisfied Neumann boundary condition, is re-examined by perturbative form (12) with the components in (33). We apply similar procedures to Dirichlet boundary condition case. First, deforming the classical solution in (32) to a quantum form, then normalizing to normalize by (20) and basing on formula (26), we can find Casimir energy:

E N C = 1 L ∞ n=1 nπ - 5 2 8π 3 n 3 = - π 12L - 5ζ(3) 2 8π 3 L . ( 34 
)
Result ( 34) reflects that the external potential enhances Casimir energy under Neumann boundary condition. Figure 1 shows Casimir energies as functions of the linear electrostatic perturbation for both Dirichlet and Neumann boundary conditions. The right inset illustrates the lowest mode for energy densities ω D 0 , ω N 0 as a function of . When dividing both results ( 27) and (34) by the difference of electrostatic potential between two boundaries ∆φ, we can find the dependence of E C ∆φ and in the left inset.
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Mixed boundary condition

In this section, let us consider another type of boundary condition which is sometimes called by mixed or hybrid boundary condition. This boundary condition consists of Dirichlet boundary condition at x = 0 and Neumann boundary condition at

x = L ψ(t, x) x=0 = ∂ψ(t, x) ∂x x=L = 0 . ( 35 
)
The equation of energy density which satisfied this boundary condition from a general solution (6) as

J 1 4 κ + Ω J 3 4 κ - Ω + J -3 4 κ - Ω J -1 4 κ + Ω = 0 , (36) 
with κ ± Ω is defined in Eq. ( 8). Hence, the simplified form of Eq. ( 36) at large argument approximation of Bessel function is given by

8Ω(Ω 2 -2 ) cos Ω -(4Ω + ) sin Ω = 0 . ( 37 
)
This equation gives a solution which is a discretized form Ω = Ω n , as

Ω n = w n + 2w n + 2 1 8w 3 n - 1 2w 5 n , (38) 
with w n = π n + 1 2 , n = 0 , 1, • • • . Energy density for the mixed boundary condition depends on the direction of the electrostatic field via the linear dependent term in (38). This fact do not appear in the cases of Dirichlet and Neumann boundary condition.

With small values of , the perturbative method gives the solution of Klein-Gordon equation, which has the same form as (11) and (12). First, the wave function (11) has the following components

φ (0) n = √ 2 sin w n ξ , (39a) 
φ (1) n (ξ) = 1 2 √ 2w 3 n (2ξ-1)w 2 n -1 sin w n ξ+2ξw n 1-(ξ-1)w 2 n cos w n ξ , (39b) φ (2) n (ξ) = 2ξ 2ξ 2 +ξ-3 + 1 w 4 n -2(ξ-1) 2 ξ 2 w 6 n -2(ξ(ξ+3)+1)w 2 n +5 sin w n ξ 8 √ 2w 6 n - ξ (ξ-1)(2ξ-1)w 4 n -(3ξ+2)w 2 n + 5 cos w n ξ 4 √ 2w 5 n . ( 39c 
)
Recall that in mixed boundary condition, we used the notation

w n = π n + 1 2 , n = 0 , 1 , 2, • • • .
The energy density in Eq. ( 12) yields:

Ω (0) n = w n , Ω (1) n = 1 2w 2 n , Ω (2) n = 1 8w 3 n - 1 2w 5 n . ( 40 
)
Repeated procedure with the previous cases, we obtain Casimir energy as

E C = 1 L n w n - w 2 n -4 2 8w 5 n = ∞ n=0 w n L + 2 L ∞ n=0 1 w 5 n - 1 8w 3 n ≡ E 0 + E . ( 41 
)
Here, we have just split Casimir energy into two part: non-perturbative energy E 0

E 0 = ∞ n=0 π L n + 1 2 , ( 42 
)
and perturbative term

E E = 2 L ∞ n=0 1 w 5 n - 1 8w 3 n = - 7ζ(3) 8π 3 - 18ζ(5) π 5 2 L . ( 43 
)
The perturbative term is convergent. However, the non-perturbative term E 0 , is divergent, therefore, one should regularize it. Thank to the modification of the Abel-Plana formula [17] ∞ n=0

F n + 1 2 - ∞ 0 F (t)dt = -i ∞ 0 dt e 2πt + 1 F (it) -F (-it) ,( 44 
)
we can take the sum over half-integer numbers for E 0 to get

E 0 = LΛ 2 UV 2π + π 24L . ( 45 
)
The divergent term in (45) has the same as those in Dirichlet or Neumann boundary conditions. Therefore, it is equal to the contribution of the free space, without boundary. Casimir energy of the scalar field under the mixed boundary condition is positive. It is obvious that the respective Casimir force is the repulsive [12] 

E 0 = π 24L . ( 46 
)
In short, Casimir energy for the scalar field under the mixed boundary condition has the form

E M C = π 24L - 7ζ(3) 8π 3 - 18ζ(5) π 5 2 L . ( 47 
)
Figure 2 illustrates Casimir energy in (47) as a function in . The inset describes the lowest level of the energy density in (38). The fact that although the energy density in (38) depends on the direction of the external field via the sign of , however, the total Casimir energy in (47) does not. 

Casimir effect of a scalar field under a nonlinear potential

In the previous section, we have studied Casimir effect under a linear perturbation electric field. In this section, we consider that the system resides in a thermodynamic equilibrium with the effective local chemical potential µ(x) = φ(x) [9].

Our configuration is assumed to be the semimetal in the form of a slab of a finite length L in the x direction (0 ≤ x ≤ L). The electrostatic potential ∆φ ≡ φ(L) -φ(0) is applied to the opposite boundaries x = 0, L of the slab. For the sake of simplification in the later calculation, we set φ(L) = ∆φ , φ(0) = 0. With this assumption, the external field has a form:

A 0 = ∆φ h(ν) B x L ; 1-ν, 1-ν -B 1 2 ; 1-ν, 1-ν . ( 48 
)
Where ∆φ is the electrostatic potential, which is also a perturbation, and

B(z; a, b) = z 0 t a-1 dt (1 -t) b-1 (49) 
is the Euler incomplete beta function,

h(ν) = Γ(2 -2ν) Γ 2 (1 -ν) ≡ 1 B(1 -ν, 1 -ν) (50) 
is the normalization coefficient expressed via the gamma function Γ(x) and the beta function B(a, b) ≡ B(1; a, b). The interested field is considered inside the region 0 ≤ x ≤ L, therefore, the electrostatic potential in (48) can be approximated with

A 0 (ξ) = ∆φ 2 2ν ξ -1 2 B(1 -ν, 1 -ν) + 2 2ν+2 ν ξ -1 2 3 3B(1 -ν, 1 -ν) + O ξ - 1 2 5 ≡ ∆φ k (ξ, ν) + ∆φ O ξ - 1 2 5 , (51) 
where

k (ξ, ν) ≡ 2 2ν ξ -1 2 B(1 -ν, 1 -ν) + 2 2ν+2 ν ξ -1 2 3 3B(1 -ν, 1 -ν) . (52) 
Klein-Gordon equation under external potential (51) can be represented by a dimensionless form

∂ 2 ξ φ (ξ) + Ω -k (ξ, ν) 2 φ (ξ) = 0 . ( 53 
)
With an assumption that the electrostatic potential is a perturbation, we have ∆φ 1, therefore, 1. We can solve this equation by perturbative expansion (11) and its energy density (12). Next, after putting our solution into quantum representation, we can normalize the field by condition (20) to find the coefficient C. Finally, we can obtain Casimir energy from Eq. (26).

In the remainder of this section, we provide energy densities and Casimir energies for three kinds of boundary conditions as follows.

• Dirichlet boundary condition

The solution of Klein-Gordon equation (53) satisfied Dirichlet boundary condition gives the energy density

ω D n = w n L + 2 L f D n (ν) , (54) 
with

f D n (ν) ≡ 20(23ν+30)νw 2 n -2940ν 2 -((17ν+70)ν+45) w 4 n 15B 2 (1-ν, 1-ν)2 3-4ν w 7 n , (55) 
and w n = nπ , n = 1 , 2 , • • • . Casimir energy of the scalar field can be represented by

E D C ( , ν) = - π 12L + 2 L g D (ν) , (56) 
with

g D (ν) ≡ 3ζ(3) 2 4ν 8π 3 B 2 (1 -ν, 1 -ν) + ν π 4 (17ν+70)ζ(3)-20π 2 (23ν+30)ζ(5)+2940νζ(7) 30π 8 Γ 2 (1-ν)Γ -2 3 2 -ν . (57) 
The result in expression (56) reflects that Casimir energy for the scalar field under perturbation theory will be weakened when imposing Dirichlet boundary condition. As ν → 0, we get the result for the linear potential case (27).

• Neumann boundary condition

Resembling with the Dirichlet case, the result for Neumann boundary can be brief summarized as follows. The energy density is

ω N n = w n L + 2 L f N n (ν) , (58) 
with

f N n (ν) ≡ 3060ν 2 +(ν(23ν+90)+75)w 4 n -180ν(3ν+4)w 2 n 30πw 7 n Γ 2 (1-ν)Γ -2 3 2 -ν , (59) 
and, w n = nπ. Furthermore, Casimir energy of the field in this case can be summarized as

E N C ( , ν) = - π 12L - 2 L g N (ν) , (60) 
with q∆φ in unit of . As ν → 1, the perturbative contribution vanishes, the system becomes the normal Casimir effect.

g N (ν) ≡ (23ν 2 +90ν + 75)π 4 ζ(3)-180π 2 (3ν 2 +4ν)ζ(5)+3060ν 2 ζ(7) 30π 8 Γ 2 (1-ν)Γ -2 3 2 -ν . (61 

• Mixed boundary condition

Energy density for the mixed boundary condition, in this case, has a form

ω M n = w n L + L f M 1,n (ν) + 2 L f M 2,n (ν) , (62) 
with

f M 1,n (ν) ≡ 2 2ν-1 (ν + 1)w 2 n -2ν w 4 n B(1 -ν, 1 -ν) , (63a) 
f M 2,n (ν) ≡ (ν(3ν+10)+15)w 6 n -20(ν(5ν+9)+3)w 4 n +60ν(7ν+6)w 2 n -480ν 2 30πw 9 n Γ 2 (1-ν) Γ -2 3 2 -ν , (63b) and w n = π n + 1 2 , n = 0 , 1 , • • • . Hence, Casimir energy yields E M C = π 24L + 2 L g M (ν) , (64) 
with

g M (ν) = Γ 2 3 2 -ν 620(ν(5ν + 9) + 3)ζ(5) -7π 2 (ν(3ν + 10) + 15)ζ(3) 30π 6 Γ 2 (1-ν) - Γ 2 3 2 -ν 2ν 127π 2 (7ν + 6)ζ(7) -4088νζ(9) Γ 2 (1 -ν) π 10 . ( 65 
)
Behavior of Casimir energy to external potential under the mixed boundary condition is showed in Figure 4. The large graph provides two interesting properties. First, similar to the linear case in the previous section, Casimir energy is enhanced by perturbative potential for the mixed boundary condition. Second, when we increase ν, the amplitude of the Casimir energy reduces which is showed in inset. 

Conclusion

We have examined Casimir effects of the charged scalar (bosonic) field influenced by external electric fields by using perturbation theory. The external fields implemented in this paper include linear electrostatic field and nonlinear (beta-form) field and are proposed as the perturbative contributions. There are three kinds of boundary conditions applied in this work: Dirichlet, Neumann and mixed boundary conditions.

As a result, under perturbations, beyond recovering the normal Casimir energies, the perturbative energy contributions are obtained and the amplitude of Casimir energy strongly depends on the type of boundary conditions. In particular, the external field lowers Casimir energy under Dirichlet and mixed boundary condition, on the other hand, strengthens under Neumann boundary one. The dependence on "conformal screening exponent" ν, to Casimir energies is described in this study which can be stated that the contribution of ν tends to reduce the module of Casimir energies by the perturbation framework. The parameter ν in this case is taken a small variable.

Another point should be mentioned in this study is that the formula to determine Casimir energy is different from the normal summation by modes E C = n ω n , for the presence of external potential, Casimir energy is obtained by Expression (26).

It would be interesting to extend this study into higher dimension cases to understand the behavior of Casimir energy with perturbative contributions. Furthermore, one can apply to the electrostatic field into fermionic fields.
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 1 Fig. 1. Casimir energies of the scalar field as a function of external potential in (27) and (34). The right inset demonstrates for the lowest energy densities and the left one illustrate the quantity of ratio between Casimir energy per variation of electrostatic field E C ∆φ as a function of .
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 2 Fig. 2. Casimir energy for scalar field with electrostatic perturbation by mixed boundary condition from the result (47) while the inserted plot shows the lowest energy density of the system in (38).
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 3 Fig. 3. Casimir energy of the scalar field under Dirichlet and Neumann boundary conditions under beta-form potential for concrete values of ν = {0.1 ; 0.2}. For the limit ν = 0 one gets the results in section 2. The inserted graph shows the quantity E X C ∆φ varies as ν with X is the abbreviation for Dirichlet and Neumann, respectively, X = {D; N }.
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 4 Fig. 4. Casimir energy for the scalar field satisfied mixed boundary condition is exhibited for concrete values of ν. The inserted graph is the representation of function E Cq∆φ with a variable ν in unit of .
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