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Abstract. Reynolds stress is a key facet of turbulence self-organization. In the

magnetized plasmas of controlled fusion devices, the zonal flows that are driven

by the averaged Reynolds stress modify the confinement performance. We address

this problem with full-f gyrokinetic simulations of ion temperature gradient driven

turbulence. From the detailed analysis of the 3-dimensional electric potential and

transverse pressure fields, we show that the diamagnetic contribution to the Reynolds

stress – stemming from finite Larmor radius effects – exceeds the electrostatic

contribution by a factor of about two. Besides, both contributions are in phase,

indicating that pressure does not behave as a passive scalar. In addition, the Reynolds

stress induced by the electric drift velocity is found to be mainly governed by the

gradient of the phase of the electric potential modes rather than by their magnitude.

By decoupling Reynolds stress drive and turbulence intensity, this property indicates

a careful analysis of phase dynamics is crucial in the interpretation of experiments and

simulations.

Keywords: turbulence, zonal flows, Reynolds stress, diamagnetic Reynolds stress, full-f

gyrokinetic simulations
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1. Introduction

Since their discovery in numerical simulations as self-organization mediators of

magnetized plasma turbulence [20, 21], and since their identification as key players

in the saturation of ion-scale turbulence in tokamak plasmas [22], the investigation
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of zonal flow generation is a major research effort aiming at its experimental and

theoretical characterization (see the review [9] and references therein). In tokamaks,

they correspond to one of the components of the flux surface averaged electric potential,

hence resulting in a non-vanishing radial electric field profile. They usually appear at

low frequency as compared to the underlying turbulence, in combination with the zero

frequency mean radial electric field – stemming from the radial force balance in the

plasma core [28] – and the high frequency geodesic acoustic modes [36] due to magnetic

compressibility. By tearing apart turbulence eddies, such sheared flows are regulators of

ion-scale turbulence and of the resulting transport [5]. As a matter of fact, the shear of

the radial electric field is suspected to be the main trigger of the transition from low to

high confinement regimes in tokamaks [8, 35], and to play an important role in internal

transport barriers [37, 7].

From the experimental point of view, the precise role of zonal flows in these

bifurcations remains a fruitful and open research area (cf. review [32]), in part due

to their delicate experimental characterization (cf. review [15]). From the theoretical

point of view, a critical question is their driving and damping mechanisms. Regarding

the former, it was early acknowledged that the Reynolds stress is central in this process

[10]. There, cross-correlations of the radial and poloidal components of the electric drift

fluctuations, ũEr and ũEθ, may lead to a net momentum transfer from small to large

scales, so that zonal flows – the predator – effectively feed on the underlying drift wave

turbulence, the prey.

In the perspective of predicting the dynamics and magnitude of the Reynolds

stress, and more generally how zonal flows nonlinearly saturate, two important issues

are addressed in this paper. The first one deals with the weight of the diamagnetic

component. Indeed, it appears that fluctuations of the diamagnetic flow ũ?r can also

couple to ũEθ and drive a net poloidal momentum at large scale [33, 23]. This term is

naturally present in the vorticity equation of fluid codes for plasma turbulence, since

the diamagnetic velocity is one of the fluid drifts. In the gyrokinetic framework, it

actually emerges from finite Larmor radius effects. To our knowledge, it has received

little attention so far. It was reported to be sub-dominant with respect to its electric

and more familiar counterpart shortly after the turbulence overshoot in a gyrokinetic

simulation [13]. In the saturated regime of ion temperature gradient driven turbulence

using the GYSELA code with adiabatic electrons [17], we find that it enhances the

contribution of the electric drift velocity to the Reynolds stress by a factor of about

two. The former characteristics reveals that pressure does not behave as a passive

scalar in this case. The second issue addresses the role of the phase that governs the

tilt of turbulence eddies. The phase – or tilting – instability is long known to be a

possible mechanism to transform convection into sheared flow in ideal fluids [29]. More

recently, the phase curvature was identified as the main component of the Reynolds

force in a linear magnetized plasma device [38]. Here, we examine the possibility of

driving the Reynolds stress solely from such a tilting instability, independently from the

actual behavior of the turbulence intensity. Results from a reduced model of interchange



Impact of phase dynamics and diamagnetic drive on Reynolds stress 3

turbulence are used to identify the mechanisms at play in the gyrokinetic simulation.

In the latter, the Reynolds stress is found to be well correlated with the time dynamics

of the phase – and not with turbulence intensity. Implications regarding the analysis of

experimental data are discussed.

The paper is organized in the following way. Section 2 focuses on the diamagnetic

part of the Reynolds stress, detailing its origin and characteristics in gyrokinetic

simulations. The role of the phase gradient in the build up of the Reynolds stress

is explored in section 3, both with a reduced model for interchange turbulence and in

gyrokinetic simulations. Discussion and conclusion close the paper.

2. Reynolds stress dominated by the diamagnetic contribution

2.1. The two components of the poloidal Reynolds stress

The expression of the poloidal Reynolds stress emerges from the charge conservation

equation, which governs the dynamics of the generalized vorticity. Its complete

derivation and expression in the gyrokinetic framework, including all radial currents

responsible for its time evolution, can be found in [26, 1], and more recently in [2].

In the present work, we only focus on the component governed by the advection by

the E × B drift – then putting all other contributions in the RHS term. Then, the

dimensionless gyrokinetic equation reads as follows

∂tf̄ + {J [φ], f̄} = RHS (1)

with the Poisson brackets defined by‡ {g, f} = 1
r

[∂r(g∂θf)− ∂θ(g∂rf)]. Here, f̄ is the

distribution function of the gyro-centers, φ the electric potential and J [φ] stands for

the gyro-average operator applied to φ (strictly speaking, the gyro-average operator is

〈J [φ]〉v, with 〈X〉v =
∫

d3vX =
∫ +∞
0

2πdµ
∫ +∞
−∞ dv‖X the integral over the velocity

space). For the sake of simplicity, the inhomogeneity of the magnetic field is not

retained in a first stage, so that grad-B effects leading to turbulence equipartition are

not accounted for. B is then simply replaced by B0, which is absorbed in normalizations.

The latter are Larmor radius ρ0 = mpvT0/eB0 for length scales, cyclotron period

ω−1c0 = mp/eB0 for time scale and thermal velocity vT0 = (T0/mp)
1/2 for velocities,

where mp is the proton mass, e is the elementary charge and T0 a reference temperature.

The electric potential is normalized by T0/e. In the long wavelength limit, J can be

approximated by:

J ≈ 1 +
µ

2
∇2
⊥ (2)

where µ is the adiabatic invariant, namely the magnetic moment and ∇2
⊥ = 1

r
∂r(r∂r ) +

1
r2
∂2θ . Let us apply the gyro-average operator J to eq.(1) and integrate over the velocity

space: 〈J [(1)]〉v. At this stage, one can use the quasi-neutrality constraint which can be

‡ Notice that this definition of Poisson brackets uses an opposite sign convention to that often used in

gyrokinetics.
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formulated as follows in the Boussinesq approximation:

n0Ω = 〈J [f̄ ]〉v ≈ 〈f̄〉v +
1

2
∇2
⊥p⊥ (3)

where Ω = φ − 〈φ〉 − ∇2
⊥φ is the potential vorticity, with 〈φ〉 ≈

∫∫
φ dθdϕ/4π2 the

flux surface averaged potential. The first term on the right hand side is the gyro-

center density, and the second one accounts for finite Larmor radius effects in the long

wavelength limit, with p⊥ = 〈µf̄〉v the transverse pressure. One then obtains, up to

higher order terms in (k⊥ρi)
2:

∂tΩ−
{
φ,∇2

⊥φ+
1

2
∇2
⊥p⊥

}
−1

2

{
p⊥,∇2

⊥φ
}
−1

2
∇2
⊥ {p⊥, φ} = 〈J [RHS]〉v(4)

Noticing that ∇2
⊥{φ, p⊥} = {∇2

⊥φ, p⊥} + {φ,∇2
⊥p⊥} + 2{∇⊥,iφ,∇⊥,ip⊥}, with ∇⊥,i the

derivative along the ith Cartesian coordinate in the transverse plane and taking the sum

on doubled indexes, eq.(4) can be recast as follows:

∂tΩ−
{
φ+ p⊥,∇2

⊥φ
}
−{∇⊥,ip⊥,∇⊥,iφ} = 〈J [RHS]〉v (5)

Equivalently, equation (5) also admits a conservative form:

∂tΩ−∇⊥,i {φ+ p⊥,∇⊥,iφ} = 〈J [RHS]〉v (6)

Here, the Poisson bracket corresponds to the flux of vorticity. Further taking the flux

surface average and integrating over the radial direction provides the evolution equation

of the E ×B poloidal flow 〈uEθ〉 = ∂r〈φ〉:
∂〈uEθ〉
∂t

+
1

r2
∂

∂r

[
r2(π + π?)

]
= rhs (7)

where the flux-surface averaged Reynolds stress (hereafter simply called Reynolds stress

in short) and its diamagnetic component are given by:

π = 〈ũEr ũEθ〉 (8)

π? = 〈ũ?r ũEθ〉 (9)

The tilde refers to non axi-symmetric components, while ũEr = −1
r
∂θφ̃ and ũ?r = −1

r
∂θp̃⊥

denote the radial components of the electric and diamagnetic drifts, respectively. As

expected, the flux of vorticity is related to the Reynolds stress, which is a restatement of

Taylor’s theorem [16]. Also, it appears that finite Larmor radius effects, carried by the J

operator, lead to an additional contribution to the Reynolds stress, namely π?, as already

acknowledged in early publications [33, 23]. Appendix A shows the consistency between

this calculation within the gyrokinetic framework and the fluid moment approach in the

adiabatic limit. Especially, the diamagnetic origin of π? is assessed.

Hereafter, π and π? are named Reynolds stress and diamagnetic Reynolds stress,

respectively.
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2.2. Electric and diamagnetic contributions

The structure and dynamics of the total Reynolds stress are explored in a flux-driven

gyrokinetic simulation of the GYSELA code [17]. Ion temperature gradient (ITG) driven

turbulence is modeled with an adiabatic electron response.

The simulation is similar to the one already reported in [11] (it is actually a re-

run so as to get 3-dimensional data which are required in the present analysis). Its

radial domain covers 0 ≤ r/a ≤ 1.3, with a toroidal limiter treated as an immersed

boundary where relaxation towards a low temperature Maxwellian is imposed by means

of an additional Krook operator [6]. In the simulated scrape-off layer r/a ≥ 1, the

electron density relative fluctuation is clamped to the floating potential φ = 3Te/e. The

ρ? = ρi/a parameter is equal to ρ? ≈ 1/151 and ν? ≈ 7.5 10−2 at r/a = 0.5.

We have also performed the same analysis on another well resolved simulation for

which 3-dimensional output data were available. Its radial domain is 0 ≤ r/a ≤ 1, the

distribution function driven towards a Maxwellian at the outer edge, characterized by

e-folding density and temperature profiles which mimic those expected in the scrape-

off layer of tokamak plasmas. Staircases are observed in the fully developed turbulent

regime. In this case ρ? ≈ 1/244 at r/a = 0.5 where the collisionality is ν? ≈ 0.23.

Results regarding the present issue are quite similar.

Figure 1. Time derivative of 〈uEθ〉 (left) and Reynolds force (right) versus normalized

radius and time. The selected time interval is in the well saturated turbulent regime.

Figure 1 portraits the 2-dimensional behavior, in space and time, of the flux sur-

face averaged E × B poloidal flow 〈uEθ〉 and of the total Reynolds stress π + π?. Two

main observations can be made. First, the dynamics essentially features avalanche-like

events which draw an array made of diagonal structures. These avalanches propagate

both inwards and outwards, roughly at the same speed. Second, there appears to be
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some correlation between the two images, attesting the role of the total Reynolds stress

in driving zonal flows. Deriving a vorticity equation which is tractable numerically

is difficult in the gyrokinetic framework (see for instance the expressions proposed in

[26, 1, 2]). We focus on the total Reynolds stress hereafter, bearing in mind its likely

dominant contribution to the generation of dynamical corrugated features of the zonal

radial electric field.

The respective contributions of the electric and diamagnetic flows to the Reynolds

stress π and π? respectively are displayed on Fig.2. Two main observations can be

made. First, π and π? are approximately in phase, minima and maxima occurring

roughly at the same time and radial locations. Secondly, π∗ is about twice the value

of π. This is shown on Fig.3, where each point corresponds to the values of π and π?

at any given radial position 0.3 ≤ r/a ≤ 0.9 (the radial domain excludes the central

region where a non-vanishing heat source is applied and the outer buffer region) and

time 335, 700 ≤ ωct ≤ 387, 900 (which corresponds to 347.88 . t vT i/R0 . 402.02, so

well after the overshoot, into the nonlinear saturation phase). The important conclusion

is that FLR corrections to the Reynolds stress tensor cannot be ignored, and even prove

dominant in magnitude.

At this point, it is worth noticing that this result does neither imply nor mean that

(k⊥ρi)
2 terms are of order unity, which they are actually not as attested by the strong

cut-off of the turbulence spectra above k⊥ρi ∼ 1 (see e.g. [25]). Phase shift plays there

a critical role. Accounting for higher order terms in (k⊥ρi)
2m (m ≥ 2) would involve

cross-correlations between fluctuations of the electric drift velocity and of high order

derivatives of high order fluid moments.

The fact that π? is found larger than π is in marked difference with previous findings.

To our knowledge, the only other observation in a gyrokinetic simulation was done by

Dimits and coworkers [13]. They report a negligible role of the diamagnetic Reynolds

stress in an ITG turbulence simulation for the cyclone base case. Apart from the possible

issue with the definition of π?, there are several differences between this simulation and

the ones reported in our paper which may result in these different findings. First of

all, the one of Dimits is gradient-driven, so that the equilibrium pressure profile is kept

constant over time conversely to our flux-driven simulations. It remains unknown how

this constraint may impact the fluctuation dynamics and magnitude of the transverse

pressure fluctuations and their gradient, which govern the diamagnetic Reynolds stress

π?. Secondly, cyclone base-case gradient-driven simulations are close to the so-called

Dimits upshift [12], i.e. close to the nonlinear threshold for turbulent transport. As

reported e.g. in [27], they tend to be characterized by a secular growth of zonal

flows, rendering early conclusions difficult to interpret. In that respect, and finally,

Dimits’result is obtained in the early phase of the simulation: the time window which

we have considered for the analysis starts at a time t = 33.57 104 ω−1c ≈ 2.103 LT/vT i
roughly equal to twice the final time of the simulation considered by Dimits. In the well

saturated turbulent regime which we consider, Reynolds stress temporal fluctuations are
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much larger than their almost vanishing mean, conversely to what happens just after the

turbulence overshoot in Fig.2(a) of [13]. In this same figure, the final state actually looks

closer to our finding, especially in the sense that both Reynolds stress components tend

to oscillate around a much smaller mean than their standard deviation, and that these

standard deviations seem to reach comparable magnitudes, possibly in phase (although

this latter point is more difficult to claim from the time traces). Incidentally, the analysis

of the second simulation where we have 3-dimensional data from the linear phase reveals

that the diamagnetic Reynolds stress is always twice as large as the Reynolds stress,

even in the early turbulence regime from the overshoot onwards.

2.3. Transverse pressure and potential fluctuations

The approximate proportionality π? ≈ 2π also indicates that the transverse pressure is

not simply advected by the E×B flow. Indeed, assuming ∂tp⊥+uE.∇p⊥ = 0, the linear

analysis would lead to the following relation in the three-dimensional Fourier space:

p̂⊥,mnω = −(ω?p/ω)φ̂mnω, with ω?p = kθ∂r〈p⊥〉 the diamagnetic frequency. Here, m and n

are the poloidal and toroidal wave numbers, kθ = m/r the poloidal wave vector and 〈p⊥〉
the time and flux surface average of p⊥. In this case, π? = −

∑
ω,k krkθ(ω

?
p/ω)|φ̂mnω|2

is expected to be out of phase with respect to π =
∑

ω,k krkθ|φ̂mnω|2. This result could

have important implications when interpreting experimental data (see e.g. [34]).

So as to look for the origin of the close to zero phase shift between π and π?, the

properties of the Fourier components of pressure and electric potential are investigated,

see Fig.4. Only resonant modes are selected, i.e. such that n + m/q(r) ≈ 0, since they

are the main contribution to the Reynolds stress. The top panel shows that the am-

plitudes of the modes peak approximately at the diamagnetic frequency ω?p (dot-dash

black line). The bottom graph is a cut at m = −45. One recovers the ratio of about 2

between |p̂⊥mnω| and |φ̂mnω|. The relationship between p̂⊥mnω and φ̂mnω is investigated

on a systematic basis in Fig.5 which displays all data points of <(p̂⊥mnω) as a function of

−(ω?p/ω)<(φ̂mnω), < denoting the real part. These are 3-dimensional arrays, functions

of ω, m and r. The range of m values has been restricted to −200 ≤ m ≤ 0. The cloud

of points does not exhibit any clear structure. Consequently, there is no particular trend

indicating some form of correlation. If any, the sign between both quantities rather ap-

pears to be negative. In agreement with the result that π and π? are in phase, one can

notice that <(p̂⊥mnω) and <(φ̂mnω) have the same sign at large amplitude. Since the

points are not aligned on the diagonal (black dashed line), this means that the fluctua-

tions of p⊥ are not simply advected by the E×B flow.

From the theoretical point of view, several mechanisms can explain the departure

from the passive scalar hypothesis. Within the linear framework and from the fluid

perspective, it was already noticed ([33], eq.(27) that compressibility could break the

simple relationship p̂⊥,mnω = −(ω?p/ω)φ̂mnω. Also, considering the drift-kinetic (i.e.

neglecting finite Larmor radius corrections) linear response, one obtains for the Fourier
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Figure 2. Two dimensional dynamics of π(r, t) (left) and π∗(r, t) (right). The

colorscale is twice for π∗. Bottom: time evolution (left) at two different locations

and radial profiles (right) at initial and final times.

Figure 3. π∗(r, t) as a function of π(r, t). Each point corresponds to a value at a

given time t and location r. The slope of the dashed line is 2.
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modes k, ω (k standing for m,n and kr, the radial wave vector):

p̂⊥k,ω = −
〈
ω? − ωd − k‖v‖
ω − ωd − k‖v‖

µB FM

〉
v

φ̂k,ω (10)

with ωd ≈ k.vd the frequency-operator associated to the vertical drift vd ≈ (mv2‖ +

µB)(b × ∇B)/eB2 and FM the equilibrium Maxwellian distribution function. The

brackets 〈...〉v denote velocity-space integration. It readily appears that transverse

pressure and electric potential deviate from the above-mentioned simple relationship

due to both parallel dynamics k‖v‖ and compressibility ωd. The simulation results

reported here show that the usual assumption that their effect is negligible does not

hold.

Looking for the possible leading terms in the above linear relationship, and/or

whether it remains valid in the turbulent regime is certainly an important issue worth

being addressed in future works.

Figure 4. Top: amplitude (log scale) of φ̂mnω (left) and p̂⊥mnω (right) as a function

of poloidal mode number m and frequency ω at r ≈ 175.7. The toroidal mode number

is such that k‖ ≈ 0, i.e. n ≈ −m/q(r). The dotted-dashed line corresponds to the

local diamagnetic frequency ω?p . Bottom: amplitude of φ̂mnω (blue) and p̂⊥mnω (red)

at m = −45.
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Figure 5. <(Y ) as a function of <(X). Y stands for Y = p̂⊥mnω and X for

X = −(ω?p/ω)φ̂mnω.

3. Reynolds stress: critical role of the phase

3.1. Role of phase and amplitude

More insight can be gained into the structure of the Reynolds stress eqs.(8-9) by looking

at their expression in the Fourier space. The electric potential φ and transverse pressure

p⊥ are decomposed in Fourier modes along the periodic directions, the poloidal θ and

toroidal ζ angles (no Fourier transform in time is performed there):

φ =
∑
m,n

φ̂mnei(mθ+nζ) =
∑
m,n

|φ̂mn|eiϕ
φ
mn ei(mθ+nζ)

p⊥ =
∑
mn

p̂⊥,mnei(mθ+nζ) =
∑
m,n

|p̂⊥,mn|eiϕ
p
mn ei(mθ+nζ)

with ϕφmn(r, t) and ϕpmn(r, t) the phase of the modes. Then π and π? can be recast as

follows:

π = −2

r

∑
n

∑
m>0

m =(φ̂∗mn∂rφ̂mn) = −2

r

∑
n

∑
m>0

m|φ̂mn|2 ∂rϕφmn (11)

and

π? = − 2

r

∑
n

∑
m>0

m =(p̂∗⊥,mn∂rφ̂mn)

= − 2

r

∑
n

∑
m>0

m|φ̂mn||p̂⊥,mn| (12)

×
[
cos ∆ϕmn∂rϕ

φ
mn + sin ∆ϕmn∂r(ln |φ̂mn|)

]
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with ∆ϕmn = ϕφmn − ϕpmn the phase shift between the electric potential and transverse

pressure fluctuations. = denotes the imaginary part, and “g∗” is the complex conjugate

of g. Expression 11 highlights that both phase gradient and mode amplitude are key

to have a non vanishing Reynolds stress π, as already stressed in early works [10].

Conversely, π? can be generated by the gradient of either the phase or the amplitude

depending on the phase shift ∆ϕmn between the two fields, which then governs the

respective weight of each contribution.

3.2. Phase instability in a reduced interchange model

To highlight the role of the phase in the dynamics of the Reynolds stress, we first

consider here the reduced nonlinear model proposed in [4] and recalled in Appendix

B. It derives from the interchange instability, further considering flute modes k‖ = 0

and a single poloidal wave vector denoted ky. It extends the previous 1-dimensional

model that features avalanche-like transport events [30] by keeping track of the phase of

the density (or pressure since temperature is assumed constant) and electric potential

fluctuations. Notice that the model was derived in the limit of cold ions, so that the

diamagnetic Reynolds stress is not accounted for. On the basis of the results discussed

in the previous section, the magnitude of the total Reynolds stress π+π? – and possibly

of the zonal flows – is expected to be enhanced when relaxing this assumption Ti ≈ 0.

For the time being, given the considered limit, the poloidal momentum equation reduces

to ∂tVeq = −∂xπ, with Veq = 〈uEθ〉 the poloidal equilibrium flow and x standing for the

radial coordinate. The Reynolds stress π takes the simple following form:

π = −=(2ky φ
∗
k ∂xφk) (13)

with φk given equation (B.4). As expected from Taylor’s identity, the Reynolds force

is equal to the vorticity flux: ∂xπ = −=(2ky φ
∗
k ∂

2
xφk). An alternative form of π can be

obtained by introducing the magnitude and phase of the Fourier mode of the electric

potential fluctuations: φk(x, t) = |φk(x, t)| exp[iϕφ(x, t)], with ϕφ ∈ R the phase of the

φk field. The Reynolds stress then reads

π = −2ky |φk|2 ∂xϕφ (14)

The time evolution of the complex fluctuating fields nk (or pk since temperature is

assumed constant) and φk ∈ C can be re-expressed in terms of phase and amplitude

dynamics as detailed in Appendix B.2.

Here, we compare two simulations which only differ by the magnitude S0 of the

source term. The values of the various parameters of eqs.(B.6) have been chosen

close to the ones used in [4]: Nx = 256, Lx = 1, ∆t = 2.10−3, ky = 2π, g = 1 and

D0 = D1 = ν0 = ν1 = 6.5 10−2. The source term has a Gaussian shape:

S = S0 exp

{
−(x− 0.1)2

0.01

}
(15)
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with S0 ∈ {20, 30}. The boundary conditions are Dirichlet at x = {0, L} for all fields,

except for neq at x = 0 where we use Neumann: ∂xneq(x = 0, t) = 0.

The time dynamics between the two cases S0 = 20 and S0 = 30 is different, as

evidenced on fig. 6. For the small source magnitude, fluctuations first grow exponentially

in time during the linear phase, and then saturate at a steady-state value. The system

reaches a low confinement regime with large amplitude fluctuations and no equilibrium

flow. Conversely, for S0 = 30, the system bifurcates towards an improved confinement

regime at t ≈ 75. It appears that this transition is due to the generation of an equilibrium

flow Veq.

Most interestingly, it turns out that the build up of Veq results from an instability

of the gradient of the phase of the electric potential ∂xϕφ. Indeed, as shown on fig. 7,

the phase gradient starts growing exponentially in time when the magnitude of the

fluctuations reaches the first saturated regime. Actually, this governs the exponential

growth of the Reynolds stress π up to a second saturation regime, at lower amplitude

|φk|. Conversely, ∂xϕφ does not develop any instability and remains vanishing for

S0 = 20, resulting in a vanishing Reynolds stress .
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Figure 6. Time evolution of the total number of particles (also proportional to the

internal energy since temperature is assumed constant) at 2 different values of the

source magnitude.

Finding the expression of the growth rate of the phase instability is however not

obvious. The expression of the time dynamics of the phase gradient ∂xϕφ is cumbersome,

involving the equilibrium flow Veq and the cross-phase between the various fluctuating

fields. Yet, one can gain some insight about the physics at work by first noticing that the

gradient of the vorticity phase ∂xϕw evolves according to ky∂xVeq among other terms,

eq.(B.18): ∂t(∂xϕw) = −ky∂xVeq + . . .. This relation is reminiscent of the main expected

effect of the velocity shear on turbulence eddies, namely to increase their radial wave

vector kx: dkx/dt = −ky ∂xVeq, with kx ≈ ∂xϕφ [9]. During the exponential growth, it
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Figure 7. Time evolution of the Reynolds stress π (black), of the gradient of the

phase |∂xϕφ| (red) and of the fluctuation magnitude |φk| at 2 different values of the

source magnitude.

appears that all phase gradients exhibit the same growth rate, so that one can also infer

∂t(∂xϕφ) = −ky∂xVeq + . . .. Then, accounting for the momentum balance equation with

the Reynolds stress given eq.(14) leads to:

∂2t (∂xϕφ) ≈ −2k2y∂
2
x(|φk|2) ∂xϕφ (16)

Dirichlet boundary conditions impose |φk|2 to be concave on average. Actually, with

the chosen parameters, |φk| is broad scale and exhibits a single arch of sinusoid, so

that ∂2x(|φk|2) is negative everywhere. The positive expression −2k2y∂
2
x(|φk|2) then

provides a possible explanation for the observed growth rate, which would scale like

γ ≈
√

2|ky| [∂2x(|φk|2)]1/2 ∼
√

2 |kykx φk|. In this framework, the phase instability results

from the self-reinforced shearing of turbulent eddies (∂t(∂xϕφ) term) by the Reynolds

stress. In the course of the above derivation of the growth rate, we have assumed

that the curvature of the Reynolds stress is the dominant term, i.e. ∂2x(|φk|2∂xϕφ) ≈
∂2x(|φk|2) ∂xϕφ. Although the detailed analysis of the simulation results reveals that this

approximation is marginally valid, it turns out that ∂2x(|φk|2∂xϕφ) and ∂2x(|φk|2) ∂xϕφ
exhibit a similar shape, hence providing confidence in the qualitative expression of γ.
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This instability is also known as the tilting instability which transforms convection

into sheared flow in 2-dimensional ideal fluids [29]. It is responsible for the generation

of zonal flows by large amplitude drift (or Rossby) waves governed by the Charney-

Hasegawa-Mima equation. In this case, it was shown to exist above a finite amplitude

threshold of the electric potential [19]. Consistently, the different dynamical regimes

characterizing the 1D model are in agreement with the existence of a threshold, the

instability only developing above a critical magnitude S0,crit of the driving source term

S0, in between 20 < S0,crit < 30 (cf. fig.7). More recently, the possible role of the tilting

instability in the bifurcation towards H-mode in tokamak plasmas has been addressed

[14].

In the next section, the evidence of such a phase instability is reported in the

saturated regime of flux-driven ITG turbulence.

3.3. The phase gradient and Reynolds stress growth in gyrokinetic simulations

So as to identify the respective role of phase gradient and mode amplitude in the time

dynamics of the Reynolds stress π, equation (11) is recast as follows:

π(r, t) = I(r, t) ϕ′(r, t) ∆(r, t) (17)

with I(r, t) =
∑
n

∑
m>0

2m

r
|φ̂mn|2

ϕ′(r, t) = −
∑
n

∑
m>0

Wmn ∂rϕ
φ
mn (18)

Here, I captures the turbulence intensity. Wmn(r) = 〈|πmn|〉t/〈π〉t – with πmn defined by

the implicit expression π(r, t) =
∑

n

∑
m>0 πmn(r, t) – is the normalized time-averaged

radial profile of the (m,n) spectrum of the Reynolds stress π. This weight aims at

discarding contributions ∂rϕ
φ
mn to the phase gradient ϕ′(r, t) of (m,n) modes that are

far from the resonance condition k‖ = 0, i.e. n+m/q ≈ 0. The weight Wmn(r) at r ≈ 180

is displayed on Fig.8. The width of Wmn partly accounts for the fact that GYSELA uses

the geometrical angle θ as poloidal coordinate, so that the resonant condition slightly

departs from n + m/q = 0. Finally, ∆(r, t) accounts for the mismatch between π and

the product Iϕ′. Note that |∆| can be larger than unity due to the use of the weight

function in the definition of ϕ′.

The question is whether π is primarily governed by turbulence intensity I or by

the phase gradient ϕ′. To this end, we perform the cross-correlation in time between

the Reynolds stress π and ϕ′ on the one hand, and π and I on the other hand. Both

are plotted at each radial location in Fig.9. They are computed during the same time

window of saturated turbulence reported in the previous section 2. It appears that ϕ′

exhibits a large correlation with π, up to 0.77 at vanishing time lag. Conversely, at

most of the radial positions, the cross-correlation between π and I remains small or

even negative§. An example of the time dynamics of these three – rescaled – quantities

§ Noticeably, it appears that the cross-correlation π-I is large when that of π-ϕ′ is lost, e.g. at

0.3 < r/a < 0.35.
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Figure 8. Weight function Wmn – in logarithmic scale – computed at r ≈ 180, as a

function of the toroidal n (x-axis) and poloidal m (y-axis) wave numbers.

is plotted on Fig.10, at r ≈ 180 (r/a ≈ 0.72). We get the confirmation that both

the increase and decay of π are well correlated with those of the phase gradient ϕ′.

Even sometimes, e.g. at t ∼ 35 104 and t ∼ 36.7 104, π is growing while the amplitude

contribution is decreasing. In this case, π is only driven by the growth of the phase

gradient.

The critical role of the gradient of the phase in the triggering of finite poloidal

flow has already been acknowledged in the literature [18]. There, from a heuristic

model, the authors emphasize that a finite phase curvature alone – i.e. even if

turbulence is homogeneous (which translated into ∂r|φ̂mn|2 = 0 in our notations) – can

generate a finite Reynolds force. Such an effect has been later reported in experimental

measurements in a linear plasma device [38]. The properties of the Reynolds stress in the

gyrokinetic simulations which we report here extend these predictions and observations

in the temporal space, in the sense that the time evolution of π can be entirely governed

by that of ϕ′, even if the turbulence intensity I remains constant in time.

This result has important implications regarding experimental measurements.

Indeed, one of its consequences is that the time dynamics of the Reynolds stress cannot

be inferred from that of the amplitude of density – or electric potential – fluctuations

only. Indeed, our analysis has shown that π and I are weakly correlated in general,

and can event exhibit anti-correlation. In particular, even though the magnitude of

the electric potential fluctuations would be roughly constant, this would not necessarily

imply that the magnitude of the Reynolds stress – hence possibly of the zonal flows

– remains constant either. Conversely, both can actually exhibit opposite trends, as

observed sometimes in figure 10. Our results provide the first evidence from gyrokinetic

simulations that the time variation of the Reynolds stress is mainly governed by the
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phase gradient dynamics, rather than by the magnitude of turbulent fluctuations.

Figure 9. Top panel: cross-correlation in time, at each radial position, between δπ

with δϕ′ (left) and δI (right), with δX = X − 〈X〉t. Lower panel: same data at

r/a ≈ 0.72.

Figure 10. Time evolution of π̃ (red), ϕ̃′ (green) and Ĩ (blue), with X̃ = 1 −
X/maxt(X) the fluctuation relative to the maximum at r/a ≈ 0.72.
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4. Discussion and conclusion

The poloidal Reynolds stress is the centerpiece of zonal flow generation. Given the

key role of the latter in the regulation of ion-scale turbulence in tokamak plasmas,

understanding its structure and dynamics appears essential at least for two reasons. On

the one hand, this opens the door to upgraded nonlinear reduced transport models and

experimental analyses. On the other hand, this may help tokamak plasma operation

by possibly offering the controlled access to improved confinement regimes. In this

framework, two main results have been reported in this paper, on the basis of the analysis

of 3-dimensional fluctuation data in gyrokinetic simulations of saturated ITG turbulence

(with adiabatic electrons) with the GYSELA code. First, the diamagnetic component of

the Reynolds stress is found to be in phase with the one governed by the electric drift, and

to be roughly twice as large. This means that the transverse pressure cannot be viewed

as a passive scalar in this regime, and that the two components have to be computed to

properly quantify the source magnitude of zonal flows. Second, while the Reynolds stress

can be roughly split in the product of turbulence intensity times a phase term, it appears

that the latter largely dominates its dynamics. Indeed, the phase gradient is strongly

cross-correlated with the Reynolds stress, while such a feature is less pronounced with

the turbulence intensity. The mechanism is reminiscent of the tilting instability, which is

highlighted in a reduced model for interchange turbulence. By decoupling the temporal

dynamics of the turbulence intensity from that of the Reynolds stress, this property has

profound implications on the interpretation of turbulence experimental measurements.

From the simulation side, the pending questions are twofold. First, what is the

role of the diamagnetic Reynolds stress and the phase instability in triggering transport

barriers, either a single strong barrier as the H-mode or multiple and comparatively

weak as with staircases? Second, how do these features evolve in the presence of kinetic

electrons, and for trapped electron mode (TEM) turbulence?

From the experimental point of view, assessing the impact (i) of the phase dynamics

and (ii) of the diamagnetic drive on the total Reynolds stress is likely more challenging.

The former (i) should be accessible via Langmuir probe array measurements at the edge

of tokamak plasmas or in other laboratory devices. The latter (ii) is more delicate owing

to the necessity of measuring both electric potential and pressure fluctuations at the

same location. Its importance might be indirectly inferred from the possible imbalance

between the divergence of the Reynolds stress 〈ũEr ũEθ〉 and the time derivative of the

zonal flows 〈uEθ〉 – although other contributions are also expected. Also, regimes with

lower magnitude pressure fluctuations are expected to have a lower Reynolds stress drive,

hence reduced zonal flow activity. As a final remark, one can notice that retrieving

these characteristics in the hot core of tokamak plasmas – hence in the parameter

regime where they have been reported in this paper – may likely reveal inaccessible with

current diagnostics. Indirect signatures may then be looked for for their validation. In

that respect, if the Reynolds stress components are found in numerical simulations to

exhibit distinct features in ITG and TEM dominated turbulence, such changes could
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be detectable experimentally. In any case, our results add to the growing evidence that

zonal flow generation is possible even at fixed turbulence intensity.
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Appendix A. π? from the fluid moment perspective

The aim of this appendix is to make explicit the link between π? derived within

the gyrokinetic framework (eq.(9)) and the fluid moment approach. Especially, the

diamagnetic origin of π? is assessed.

In the adiabatic limit where the magnetic field evolves slowly as compared to

the cyclotron period and on large scales as compared to the cyclotron radius, the

transverse projection of the momentum balance equation stemming from the fluid

moment approach can be treated order by order in the small expansion parameter

ε ∼ ω/ωci ∼ ρi/R� 1, with ω and ωci the characteristic frequency of the problem and

the ion cyclotron frequency, and ρi and R the thermal ion Larmor radius and major

radius.

At leading order O(ε), the two drift velocities are the electric drift uE and the

diamagnetic drift u∗i :

u
(1)
⊥ = uE + u∗i =

B×∇φ

B2
+

B×∇p⊥
enB2

(A.1)
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Here, small correction terms proportional to the pressure anisotropy (p‖−p⊥) have been

neglected in the expression of the diamagnetic drift. This simplification is even more

valid in the present derivation since these terms originate from the inhomogeneity of

the magnetic field, which is neglected here. At next order O(ε2), the polarization drift

emerges. Accounting for the gyroviscous cancellation [24], it takes the following form:

u
(2)
⊥ = upol ≈ −

mi

eB2
[∂t + (uE + u∗i ).∇]∇⊥φ (A.2)

Due to the mass scaling, the electron polarization drift can be safely ignored. Now,

consider the charge conservation equation ∇.j = 0. When neglecting the inhomogeneity

of the magnetic field as we did in section 2, the divergence of the diamagnetic current

vanishes. Therefore, the divergence of transverse currents reduces to ∇.jpol, leading to

(still using the Boussinesq approximation):

∇.jpol ≈ −
nmi

B2
(∂t + uE.∇)∇2

⊥φ−
mi

eB3
∇.

[(
B×∇p⊥

B
.∇
)
∇⊥φ

]
≈ − nmi

B2

(
∂t∇2

⊥φ+
1

B
{φ,∇2

⊥φ}
)

− mi

eB3

(
{∇⊥,ip⊥,∇⊥,iφ}+ {p⊥,∇2

⊥φ}
)

(A.3)

Up to normalization factors, the divergence of the polarization current eq.(A.3) turns

out to be equivalent to the left hand side of eq.(5) within the same approximation of

constant magnetic field. Therefore, it readily appears that the pressure terms in the

general expression of Reynolds tensor, namely π?, originate from the ion diamagnetic

drift which appears in the expression of the polarization drift, eq.(A.2). Notice that the

charge dependence of the diamagnetic drift – leading to opposite signs for electron and

ions – can be safely ignored here since the polarization drift of ions only is worth being

considered.

Last, it should not be a surprise that finite Larmor radius effects within the

gyrokinetic framework be related to contributions of the diamagnetic velocity. Indeed,

this fluid drift itself actually results from such finite Larmor radius effects, namely the

finite excursion of particle trajectories in the transverse plane due to the cyclotron

motion.

Appendix B. Reduced interchange model

Appendix B.1. Derivation of the model

We start from the following minimal system for electrostatic interchange turbulence,

reduced to 2-dimensions by considering flute modes k‖ = 0. It involves density n

and electric potential φ, coupled together via the continuity and charge conservation

equations:

∂tn+ [φ, n] = Sn + ∇⊥.(D∇⊥n) (B.1)

∂tw + [φ,w] + g ∂y log n = ∇⊥.(ν∇⊥w) (B.2)

w = ∇2
⊥φ (B.3)
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Distances are normalized to the ion thermal Larmor radius ρc = (miT )1/2/eB ((x, y)→
(x, y)/ρc), and time to the ion cyclotron frequency ωc = eB/mi (t → ωct), with e the

elementary charge, T and B being the constant electron temperature (cold ions are

considered) and magnetic field. Finally, g ∼ ρc/R accounts for the average curvature of

the magnetic field lines [31]. Each field is split in equilibrium and fluctuating parts. A

single poloidal (y direction) mode k is then retained for the fluctuating fields:

n(x, y, t) = neq(x, t) + nk(x, t) eiky + n∗k(x, t) e−iky

φ(x, y, t) = φeq(x, t) + φk(x, t) eiky + φ∗k(x, t) e−iky (B.4)

w(x, y, t) = weq(x, t) + wk(x, t) eiky + w∗k(x, t) e−iky

Equilibrium (y-averaged) quantities neq, φeq and weq are real (∈ R), while nk, φk and

wk are complex fields (∈ C). This approach is in marked contrast with the derivation

of reference [30], where the phase shift between density and potential fluctuations was

assumed to be clamped to π/2, hence maximizing turbulent transport. Introducing the

equilibrium velocity:

Veq = ∂xφeq (B.5)

one finally obtains the following 4-field system of equations:

∂tneq = 2k ∂x [=(nkφ
∗
k)] + ∂x(D0∂xneq) + S

∂tVeq = 2k ∂x [=(φ∗k ∂xφk)] + ∂x(ν0∂xVeq)

∂tnk = ik (φk ∂xneq − Veq nk)−D1k
2nk + ∂x(D1∂xnk) (B.6)

∂twk = ik

(
φk ∂

2
xVeq − Veq wk − g

nk
neq

)
− ν1k2wk + ∂x(ν1∂xwk)

wk =
(
∂2x − k2

)
φk

The turbulent particle flux and the Reynolds stress then read:

Γ = − 2k =(nkφ
∗
k) (B.7)

π = − 2k =(φ∗k ∂xφk) (B.8)

Alternative forms of the Reynolds force may reveal more appropriate for numerical

schemes: ∂xπ = −2k =(φ∗kwk) = −2k =(φ∗k ∂
2
xφk).

The system B.6 was initially derived in [4]. Notice that the system proposed in

[3] differs from this one by neglecting the radial curvature of the potential with respect

to its poloidal one, i.e. assumes |k2φk| � |∂2xφk|. In this case, vorticity and potential

are in phase. Actually, this latter system reveals numerically unstable, leading to the

transient excitation of fluctuations at spatial scales down to the grid size.

Appendix B.2. Amplitude and phase equations

An alternative form of the previous system can be derived by introducing the magnitude

and phase of the retained Fourier component k of the fluctuations.

f̂(x, t) = Af (x, t) eiϕf (x,t)
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with Af ≡ |f̂ | ≥ 0 and ϕf ∈ R. One further introduces the following phase shifts (for

any f, g ∈ n, φ, w):

∆ϕfg ≡ ϕf − ϕg (B.9)

System (B.6) can then be recast in terms of amplitudes and phases. The equations for

the mean quantities read:

∂tneq = 2k ∂x (AnAφ sin ∆ϕnφ) + ∂x(D0 ∂xneq) + Sn (B.10)

∂tVeq = 2k ∂x
(
A2
φ ∂xϕφ

)
+ ∂x(ν0 ∂xVeq)− µ (Veq − V0) (B.11)

Notice that the nonlinear particle flux and the Reynolds stress take the following simple

forms:

Γ = − 2k AnAφ sin ∆ϕnφ (B.12)

π = − 2k A2
φ ∂xϕφ (B.13)

The time evolution of the fluctuations is given by:

∂tAn = kAφ ∂xneq sin ∆ϕnφ − (D1k
2 + αnA

2
n)An

+ ∂x(D1∂xAn)−D1An(∂xϕn)2 (B.14)

∂tAw = kAφ∂
2
xVeq sin ∆ϕwφ + gk

An
neq

sin ∆ϕnw − (ν1k
2 + αwA

2
w)Aw

+ ∂x(ν1∂xAw)− ν1Aw(∂xϕw)2 (B.15)

with the following relationship between Aw and Aφ:

Aw =
{
∂2xAφ −

[
k2 + (∂xϕφ)2

]
Aφ
}

[cos ∆ϕwφ + tan ∆ϕwφ] (B.16)

The phases are governed by the following equations:

∂tϕn = k
Aφ
An

∂xneq cos ∆ϕnφ − kVeq

+ ∂x(D1∂xϕn) + 2D1∂x(lnAn)∂xϕn (B.17)

∂tϕw = k
Aφ
Aw

∂2xVeq cos ∆ϕwφ − gk
An

neqAw
cos ∆ϕnw − kVeq

+ ∂x(ν1∂xϕw) + 2ν1∂x(lnAw)∂xϕw (B.18)

with

tan ∆ϕwφ =
2∂xAφ∂xϕφ + Aφ∂

2
xϕφ

∂2xAφ − [k2 + (∂xϕφ)2]Aφ
(B.19)
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Garbet and Ph. Ghendrih and Ö. Gürcan and P. Hennequin and R. Sabot. Turbulence spectra

and transport barriers in gyrokinetic simulations. Theory of Fusion Plasmas, AIP Conference

Proceedings, 1069:325, 2008.

[26] F.I. Parra and P.J. Catto. Vorticity and intrinsic ambipolarity in turbulent tokamaks. Plasma

Phys. Control. Fusion, 51:095008, 2009.

[27] A.G. Peeters, F. Rath, R. Buchholz, Y. Camenen, J. Candy, F.J. Casson, S.R. Grosshauser, W.A.

Hornsby, D. Strintzi, and A. Weikl. Gradient-driven flux-tube simulations of ion temperature

gradient turbulence close to the non-linear threshold. Phys. Plasmas, 23:082517, 2016.

[28] P.W. Terry. Suppression of turbulence and transport by sheared flow. Reviews of Modern Physics,

72:1, 2000.

[29] M.N. Rosenbluth and V.D. Shapiro. Analytical model of the “tilting” instability. Phys. Plasmas,

1:222, 1994.

[30] Y. Sarazin, X. Garbet, Ph. Ghendrih, and S. Benkadda. Transport due to front propagation in

tokamaks. Phys. Plasmas, 7:1085, 2000.

[31] Y. Sarazin and Ph. Ghendrih. Intermittent particle transport in two-dimensional edge turbulence.

Phys. Plasmas, 5:4214, 1998.

[32] L. Schmitz. The role of turbulenceflow interactions in L- to H-mode transition dynamics: recent

progress. Nucl. Fusion, 57:025003, 2017.

[33] A.I. Smolyakov, P.H. Diamond, and M.V. Medvedev. Role of ion diamagnetic effects in the

generation of large scale flows in toroidal ion temperature gradient mode turbulence. Phys.

Plasmas, 7:3987, 2000.
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