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Abstract: Ship detection from high-resolution optical satellite images is still an important task that
deserves optimal solutions. This paper introduces a novel high-resolution image network-based
approach based on the preselection of a region of interest (RoI). This pre-selected network first
identifies and extracts a region of interest from input images. In order to efficiently match ship
candidates, the principle of our approach is to distinguish suspected areas from the images based on
hue, saturation, value (HSV) differences between ships and the background. The whole approach is
the basis of an experiment with a large ship dataset, consisting of Google Earth images and HRSC2016
datasets. The experiment shows that the H-YOLO network, which uses the same weight training from
a set of remote sensing images, has a 19.01% higher recognition rate and a 16.19% higher accuracy
than applying the you only look once (YOLO) network alone. After image preprocessing, the value
of the intersection over union (IoU) is also greatly improved.
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1. Introduction

Over the past few years, the object detection domain has rapidly improved, opening many valuable
opportunities to detect ships in maritime environments. Applying remote detection to ships can be of
value for many applications such as harbor surveillance, traffic monitoring, fishery management and
pollution monitoring to mention a few examples. The extent of primary image materials to be detected
ranges from optical remote sensing images [1–6] to synthetic aperture radar (SAR) images [7–14].
In [2], a novel spaceborne optical images (SDSOI) approach is adopted to remove most false alarms.
In addition to eliminating interferences, attention has also been given to multi-target detection [6].
With early low resolution remote sensing images, previous studies considered ships as mostly a
point target and then applied a series of methods such as false alarm rates (CFAR) [15], generalized
likelihood ratio test (GLRT), template matching [16] and other methods [17–20], but overall ships
were mostly approximated. With the recent development of high-resolution remote sensing images,
additional target details and background information are now available. In particular, deep learning
methods [21–31] bring new opportunities for target detection of high-resolution remote sensing images
and are likely to produce much more robust ship target identification.
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Due to variation in size, appearance, and disturbances, unsupervised methods [4,16,20] are severely
limited. Therefore, it is more common to use supervised methods, which can be roughly divided into
one-stage and two-stage algorithms. The YOLO algorithm is a typical one-stage network [21–24] that
is widely used due to its high real-time performance and high accuracy. For two-stage algorithms,
a Faster R-CNN introduced by Ren [25] is a two-stage network and has been since widely applied
in many domains [25–31]. The main drawback of a two-stage algorithm is that it first generates a
series of candidate boxes and secondly applies a convolutional neural network (CNN) to classify
candidate boxes. The R-CNN proposed by Girshick [31] generates about 2k regions of interest (RoI) for
recognition. Due to the massive amount of generated RoIs, computational efficiency is not as good as
standard one-stage networks. The fast R-CNN extended by Girshick [30] uses selective search and
other preprocessing operations to derive a potential bounding box as an input, thereby significantly
reducing the total number of RoIs and greatly increasing computational efficiency. Compared with
the one-stage algorithm, and overall, the two-stage algorithm can provide better accuracy since it
has to compute all the RoIs extracted by the region proposal network. Li et al. [6] introduced a deep
feature-based method to detect ships in very high-resolution optical remote sensing images and to
improve the faster R-CNN thanks to a multi-scale approach. A common issue all the above methods
still need to address appropriately is the extraction and processing of RoIs. In particular, in order
to detect the strip-like rotated assembled object, which is a common issue when processing remote
sensing images, a few related works introduced some novel methods to tackle the target’s recognition
issue [32,33].

Extracting high-quality RoIs can achieve better detection outcomes since this might suppress one
of the main drawbacks of two-stage algorithms, as well as being potentially computationally more
efficient. High-quality RoIs can be extracted using the hue, saturation, value (HSV) color space. As
HSV values of the oceans’ pixels surrounding the ship are similar to each other, they are all within
a specific range and can be then removed as a background. This kind of approach is identical to
saliency-based approaches [4]. Cucchiara [34] introduced a method for detecting shadows, using the
HSV color space to identify and suppress the dynamic objects’ shadows. Skin color segmentation
proposed by Shaik [35] also used the HSV color space. Overall, the above papers used HSV color
spaces to suppress the surrounding background to locate the targets.

The approach developed in this paper introduced an HSV operation module. The proposed
method uses the you only look once (YOLO) algorithm as a core to build a new network, which
combines the advantage of one-stage and two-stage algorithms to achieve the best balance between
accuracy and efficiency. The main principle is to apply the difference of HSV color space among vessels’
remote sensing pictures to extract the RoI and then to send them into the YOLOv3 network. In order
to prevent falling into meaningless calculation, we designed three paths to deal with different cases
when processing the input image. The main contributions of our paper are threefold, which are given
as follows.

1. We introduce a novel vessel remote sensing image classification network, the so-called HSV-YOLO
network, consisting of two essential components: an HSV-operation module and a one-stage
detection module. To the best of our knowledge, it is the first time that the difference of HSV
color space is used as a filter to extract the useful RoIs to reduce detection calculation time.

2. We designed an HSV-module, which consists of four crucial cores: a background removal
operation, a noise removal operation, a box-finding operation, and a noise deletion operation.
After these four steps, one can obtain valuable RoIs instead of noisy RoIs, and this in reasonable
computing time.

3. We designed a pipeline to deal with the outcomes of the HSV-operation module, containing three
common situations when processing the images.
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The rest of the paper is organized as follows. Section 2 describes the component of our proposed
network. The network setup, experimental result, and the analysis of the results are provided in
Section 3. Finally, Section 4 concludes the paper and draws a few perspectives for further work.

2. Material and Method

2.1. HSV-YOLOv3

Object detection algorithms can be divided into one-stage and two-stage algorithms. One-stage
algorithms are computationally more efficient than two-stage algorithms, while two-stage algorithms
can achieve higher accuracy. Two-stage algorithms first get feature maps through a CNN, then send
them into the region proposal network to select appropriate RoIs. The selected RoIs are next resized
into the same output and classified by the one-stage detection module.

Compared with the two-stage target detection algorithms represented by faster RCNNs, one-stage
algorithms directly provide category and location information through the backbone network instead
of using a region proposal network (RPN). Therefore, the speed of recognition is much improved.
Simultaneously, the accuracy can still reach an acceptable rate compared to the two-stage algorithm,
which satisfies high real-time performance on mounted and unmanned devices. Taking you only look
once version 3 (YOLOv3) as an example, it abandons the use of the RPN, extracts features through a
backbone network, and then directly performs regional regression and target classification. In this way,
the total detection time is much more efficient compared to the two-stage network.

Figure 1 shows the whole architecture of the HSV-YOLO model, which includes an HSV operation
module, a YOLO network, and a pipeline. The main role of the HSV operation module is to extract
the regions of interest from the input images. The HSV operation module consists of four steps:
background removal, noise removal, target selection, and noise contrast deletion. The YOLO network
in Figure 1 is a one-stage object detection network that can be used to detect ships from the images
delivered by the pipeline. The red, green, and blue lines in Figure 1 represent the processing paths
of three output experiences, and the case switching algorithm is shown in Algorithm 1. The whole
workflow of the proposed method illustrated in Figure 1 is described as follows. First, the input images
are sent towards the HSV operation module in order to generate the regions of interest and obtain S,
the total number of regions of interest. The workflow then switches towards case 1, which is denoted
by the red line in Figure 1. Secondly, the RoIs generated by the HSV operation module are sent towards
the detection network to obtain the number of unidentified RoIs N. Thirdly, we set the parameter of the
unrecognized rate k and compare the value of N divided by S with k. If N divided by S is larger than
k, the workflow will switch towards case 2. Otherwise, it will switch towards case 3. The respective
detection workflows of case 1, 2, and 3 are further described in Section 2.4.

Algorithm 1 Case Switching Procedure in H-YOLO

Initialize Set total number of identified region of interest S > 0, upper limit T, number of unidentified regions
of interest N, and switching value of k;
Input: Testing Image Itest;
Output: Coordinatei (xi, yi, wi, hi), Labeli;
1: SoR = HSV_Operation(Itest);
2: if SoR > T then
3: Coordinatei, Labeli = Case3(Itest)
4: else
5: if N/S < k then
6: Coordinatei, Labeli = Case1(Itest)
7: else
8: Coordinatei, Labeli = Case2(Itest)
9: end
10: end
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Figure 1. The architecture of the hue, saturation, value (HSV)-based-YOLO-tiny model.

For these three types of ships, the apparent characteristics can also be seen through the edge
detection diagram. For bulk carriers, rectangular boxes can be seen arranged regularly in the middle of
the ship. The size of rectangular boxes in the container ship’s body is different from each other, and the
position regularity is worse than the dry bulk carrier. The sum of rectangular boxes extracted from
the tankers’ remote sensing image is lower than the bulk carrier and container. As mentioned above,
the features make it possible for each neuron to fit each feature better when training the network.
The edge detection diagram based on the difference of each vessel feature is shown in Figure 2.
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Figure 2. Edge detection of different vessels. (a) Input image. (b) Edge detection outputs.

2.2. HSV Processing

There are two common color spaces to describe an object. The first one is the RGB color space,
which is widely used as a standard display system. Despite the convenience for a computer to display
such images, RGB color spaces have a series of drawbacks. The images captured in naturally occurring
conditions or environments are prone to be affected by natural lighting intensity. For instance, it is
hard for an RGB color space to describe continuous colors in this kind of situation. However, the hue,
saturation, value (HSV) color space is more suitable to describe such configurations. HSV provides a
color space based on the color’s intuitive characteristics, also known as the hexcone model, as shown
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in Figure 3. In fact, the HSV color space is often more appropriate to describe the color distribution of
most remote sensing images.
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The vessel’s hue and value channels are quite different from the background value of a remote
sensing picture in the ocean. Figure 4 shows an example of the different HVS channel images of some
ships in the ocean. Figure 4 shows that the targets in the image of the value channel are relatively
notable, while the initial noisy image information in the original image is removed in the hue and
saturation channels.
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2.3. HSV Operation Module

2.3.1. Modeling Approach

According to the real-time requirement of our application scenario, we selected the YOLO
framework to be optimized. The objective is to combine the characteristics of the detection target
with an improved YOLO algorithm to obtain a new H-YOLO algorithm. The HSV operation module
difference extracts the detected pictures from the remote sensing image before being sent to the detection
step. Firstly, the network algorithm suppresses the background area using HSV’s characteristics,
as shown in Figure 5. Secondly, the noise removal module eliminates the interferences and applies
thresholds to enhance the picture’s contrast. At the last step, the frame is recognized to extract the
processing object.
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Using the objects extracted from the last step significantly reduces the input image scale, which
also improves the convolution fitting operation. After the data prediction is obtained, the label is
transmitted back to identify the extraction area.

2.3.2. Adoptive RoI Extraction

The extraction of RoIs based on HSV differences requires a background HSV value in order for
the denoising algorithms to remove the background. To suppress the background, it is necessary to get
the HSV value of the background. As shown in Figure 6, each ship’s background in the remote sensing
image is related to its surrounding sea depth, location, and weather conditions.
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(b) H: 29, S: 61, V: 108, (c) H: 94, S: 149, V: 64, (d) H: 79, S: 84, V: 109, (e) H: 12, S: 43, V: 168, (f) H: 118, S:
121, V: 32.
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As shown in the Figure 6, the average HSV of the background in Figure 6a is H: 101, S: 136, V: 80,
while the average HSV of the background in Figure 6b is H: 79, S: 84, V: 109, respectively. Although
the background is different in each figure, it still can be observed that almost all values of HSV in the
background around the ship are similar. In order to achieve adaptive region of interest (RoI) extraction
based on HSV differences, a certain number of pixels Np are randomly extracted from the identified
image in order to derive the average value of these pixels to estimate background HSV values. Pixels
are captured in the upper and lower adjacent intervals of the value to remove, and this interval contains
the HSV value of the background. The pixel is set to black if the HSV value of the image is in the
interval. Conversely, we set the pixel to white, as shown in the middle column of Figure 7.
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Figure 7 shows the background suppression performance using different backgrounds affected
by the weather conditions and sea depth. It can be observed that different backgrounds have been
removed from the results of background suppression in the middle column of Figure 7. The left
column in Figure 7 is the original picture. One can get the middle column of images after removing the
image backgrounds. It is easier to locate the targets when using the images without backgrounds than
finding the targets in the images that contain a background. When the image contained massive ships,
harbor information, or other inference caused by the wind or waves, it became difficult to withdraw
the image background so the number of possible regions of interest was relatively high. Case 1 and
case 3 described in Section 2.4 were developed for this situation. When the total number of RoIs and
the unrecognition ratio N/S increases, this triggers the process of sending original images into the
detection network.

2.3.3. Reference Correction

The above method can suppress and eliminate the salt and pepper noise points. However, it is
still a tricky problem for the noise removal module to deal with relatively large noise areas like the
noise area caused by the waves sailing boats left behind (as shown in the box (2) in the following
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Figure 8d). In addition, in the case of large winds and waves in the sea area where the hull is located,
the amplitude of HSV fluctuations in the sea area around the hull will be large, thus causing the output
image of noise removal to be unacceptable.
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To solve this issue, additional statistical analysis of residual noise and ship boxes was performed.
Figure 9 is created according to Tables A1 and A2 in Appendix A, and it shows the comparison of the
distribution between noise and ship boxes. The two box characteristics can then be analyzed from the
joint distribution map. It appears that the noise boxes are mainly distributed between 0 and 70 pixels.
The joint distribution map of the noise box is flat at 45◦, thus indicating that the residual noise frame
is more likely to appear in the form of a rectangular frame. However, the dimension of the ships is
mainly distributed above 70 pixels, and the orientation of the targets causes the triangle shape. From
the above analysis, the residual noise boxes’ characteristics are summarized as a square frame with
dimension distributed between 0 and 70 pixels; the characteristics of the ships’ boxes are summarized
as a rectangular frame with dimension distributed above 70 pixels.
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After analyzing the characteristics of residual noise frames, such frames are removed. It can be
observed from Figure 10 that a few noise frames generated by the wind and waves are accurately
removed, leaving only the special boxes of the vessel. For example, the noise frames in Figure 10a,b are
totally removed. The total number of removed noise boxes in these two figures are 1 box and 54 boxes,
respectively. As shown in Figure 10c, 79 noise frames were removed, and only one noise frame is left.
For this kind of noise frame containing objects different from ships, case 1 and case 3 in Section 2.4
were developed to solve this issue.
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2.3.4. Anti-Distortion Operation

Since vessel positions as they appear in the remote sensing images are different from each other,
as shown in Figure 11, this situation will cause the length of the sides selected by the RoI extraction
network based on the difference of HSV to be different from each other. When the vessel’s angle is far
from 45◦, the aspect ratio is far from 1.
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Before sending the selected box into the YOLOv3 network without processing it, it must be
modified to an input image of rectangular size 416 × 416. This operation causes features squeezing
and makes it harder for the network to recognize and classify the features. The orientation of ships
determines the width and height of the region of interest extracted by the HSV operation module.
When the image information in the region of interest is squeezed, the pixel information containing
ships is different from the training data’s pixel information. Thus, the squeezing of the region of
interest surely has an impact on ship detection. Intuitively, this can be explained as shown in Figure 12;
the picture features with an aspect ratio close to 1 are less likely to be squeezed.
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A solution can be obtained from the above analysis: performing an anti-extrusion treatment on
the detection frame before sending it into detection, thereby making the characteristics better retained.
Firstly, get the coordinates of the upper left corner (x, y) and the height and width values (h, w) by the
processes of RoI extraction based on HSV difference.

Then compare the h and w values, and take the larger value as the final side length values. Finally,
the last upper left corner coordinates are calculated according to the following Equation (1).{

a = x + 1
2 (w− s)

b = y + 1
2 (h− s)

(1)

After calculating the coordinates of the upper left corner of the anti-compression frame,
the necessary information of the extracted area, namely (a, b) and the side length s, can be obtained.
The process is shown in Figure 13.
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Figure 13. Anti-distortion. (a) Input image. (b) Original target box. (c) Find center of the original target
box. (d) Obtain the final box using the center of the original target box.

2.4. Switch Network Conditions

The processing pipeline of RoI extraction based on the HSV difference will change when the
following two situations occur:

1. Switching condition 1: Record the total number of RoIs extracted, based on the HSV difference as
S and set an upper limit value as T. When S is more massive than T, it directly jumps out of the
extraction process.

2. Switching condition 2: Record the unknown number of the input image as N. Set a proportional
value as k, and when the N/S ratio exceeds k, the network will be automatically switched to the
yolov-3 network.

{
is_use_yolo = 1 N

S ≤ k
is_use_yolo = 0 N

S > k
(2)

Figure 14 shows the flowchart of the proposed network, that includes cases 1, 2, and 3. The input
images were sent into the HSV operation module to extract the RoIs and obtain the total number
S. If S is larger than the upper limit T, it means that there is massive noise so the inputs are not
suitable to detect all of the RoIs. The original input images will be sent into the detection network as
shown in Figure 14a. However, if S is smaller than the upper limit T, the RoI extracted will be sent
into the detection network in order to obtain the label and N, the total number of unrecognized RoI.
The processing flow will be chosen according to the proportion of N and S. If the N/S ratio is smaller
than k, the label will be attached to the RoI extracted from original images as shown in Figure 14b.
In contrast, if the N/S ratio is larger than k, which means the recognition rate is still not high enough,
the original image will be sent into the detection network, as shown in Figure 14c.
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Figure 14. Flowchart of the proposed network: (a) Case 1: Sum of the RoIs is larger than the upper
limit. (b) Case 2: Sum of the RoIs is smaller than the upper limit, but the recognition rate is disqualified.
(c) Case 3: Sum of the RoIs is more diminutive than the upper limit, and the recognition rate is qualified.
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3. Results and Discussion

3.1. Ablation Experiment

Aiming at the vessel classification, the YOLOv3 algorithm is considered as a core to building a
novel network. The main idea is first to classify the vessels use the YOLO-tiny algorithm, then use
YOLO-tiny as the core of the HSV-based method to detect the ship and analyze the results. The main
principles are as follows:

1. The training and testing sets are collected from Google Earth, with 560 samples containing
categories of tanks, bulk carriers, and containers. Use this small training set to train and test the
YOLO-tiny and HSV-base-YOLO-tiny algorithm.

2. Use a small sample (including 500 training samples) training set to train the network on the
YOLO-tiny framework to get a weight file. YOLOv3-tiny and the improved SV-based-YOLOv3-tiny
use the same weight file for testing.

3. To evaluate our proposed method’s performance on a lightweight data set that only provides
limited samples, we use the HRSC2016 dataset [36]. It is a public high-resolution ship dataset
that covers bounding-box labeling and three-level classes, including ship, ship category, and ship
types. The HRSC2016 dataset contains images from two scenarios including ships on sea and
ships close inshore. The dataset is derived from Google Earth images and associated annotations.
The properties of the HRSC2016 dataset are shown in Table 1.

Table 1. Overview of the HRSC2016 dataset.

Properties Value

Image resolution 0.4 m–2 m
Image size 300 × 300 − 1500 × 900
Total image 1061 (with annotations) 610 (without annotations)

The YOLOv3 of the RoI network based on the HSV difference and the separate YOLOv3 network
use the same trained weights described above, and the remaining variables are precisely the same
except for the RoI extraction network. We use the same picture as the input of the two networks
to get the test results. With respect to a given number Np for the remove background step, values
have been tested from 30 to 120 and finally we set Np = 100, which provided the best performance.
The proportion of pixel captured as ships is higher when Np is smaller than 100, this denoting that the
calculated average value cannot represent the average value of the background. However, when Np
is higher than 100, the results of the background removal are similar. For the parameter in the noise
removal step, we set the value of the Gaussian blur kernel at (9 × 9).

3.2. Data Analysis

Through experiments, under the condition of small samples, the missed detection rate of YOLOv3
is 35.54%, the missed detection rate of HSV-YOLOv3 is 16.53%, and the missed detection rate of the
improved method drops by 19.01%. In comparison, the accuracy rate of YOLOv3 is 70.25%, and the
accuracy rate of HSV-YOLOv3 is 86.44%, an increase of 16.19%. Figures 15 and 16 show an evaluation
of our method as compared to YOLO, using similar weights on tiny objects, multiple objects, and large
objects. The left column is the ground truth, the middle column is the test result of the original YOLO
network, and the last column is the test result of H-YOLO. The proposed method solves the problem of
not identifying a ship and not being able to obtain its location.
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Figure 16. Unresolved large object recognition.

The network is split according to the RoI network extraction steps and based on HSV difference.
The network’s step can be divided into background removal based on the HSV difference, noise
removal, target frame selection, and the deletion step. For the background removal step based on
the HSV difference, it can be seen from Figure 17 that the 400 pieces of test data are all under 0.01s;
the time required for the selection step of the target frame is similar to that of the background removal
step, which is also under 0.01s. The average time of both of them fluctuates up and down 0.003 s;
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the longest step of the average time is the noise removal step and the median value is around 0.023.
The determinant of its duration is the upper limit value T in switching condition 1. The larger the
value of T, the longer the period needed.Remote Sens. 2020, 12, x FOR PEER REVIEW 15 of 19 
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Test and record all the pictures in the training sample set to obtain the box diagram shown in
Figure 18. It can be seen from the figure that the time required for each step is statistically compared
with the time required for the YOLOv3 structure to identify a picture, which is approximately 20% of
the time required for YOLOv3.
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Figure 18. The RoI extraction steps based on the HSV difference are compared with the YOLOv3
framework recognition time.

4. Conclusions

The research presented in this paper shows that a region of interest extraction and preprocessing
based on the HSV difference can improve the ship detection accuracy in a relatively short computation
time. From the experimental data, it can be observed that this method achieved a good recognition



Remote Sens. 2020, 12, 4192 16 of 18

rate and received a better performance compared with its core algorithm. This method is particularly
suitable for all detections which have simple background or a continuous color space in a local
area. The HSV difference operation is computationally efficient and is a high precision method when
pre-extracting a target. The experiments also show that the proposed method can generate high-quality
RoIs by sacrificing little computing time. The proposed method also contains the pipeline to deal with
noise information and prevent the method from falling into meaningless calculations. This mechanism
ensures the efficiency of the proposed method. The method of image processing in the HSV operation
module also affects the processing time, and we will compare different processing methods in our future
work. The YOLOv3 algorithm used in the network can be deployed as other one-stage algorithms
such as SSD, so performance comparison with different framework algorithms will be also be done in
further work.
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Appendix A

We further show the part statistics of residual noise boxes and ship boxes, as shown in in Tables A1
and A2. The joint distribution in Figure 9 is created according to the data in these two tables.

Table A1. Part statistics of height and width of residual value noise box.

Width Height Width Height Width Height

8 14 5 7 1 3
16 12 86 35 10 10
57 35 19 12 5 3
4 3 26 31 1 1
7 6 69 76 14 15

41 33 6 3 5 1
18 18 21 19 5 7
23 10 30 31 2 5
7 7 39 24 13 4

32 30 9 5 18 39
71 34 37 24 11 12
22 13 19 20 6 3
18 18 16 48 71 36
29 20 25 43 23 19
5 5 3 4 1 5

126 94 1 2 2 3
19 20 5 2 9 21
33 21 4 6 7 8
15 18 8 33 . . . . . .

Table A2. Part statistics of height and width of the ship box.

Width Height Width Height Width Height

218 138 240 314 120 159
208 177 223 164 226 168
87 160 215 167 222 162

119 88 210 152 202 145
172 105 151 190 126 110
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Table A2. Cont.

Width Height Width Height Width Height

259 121 130 201 257 90
264 100 236 103 117 81
114 90 119 98 115 91
132 137 121 241 130 101
175 126 108 130 153 236
308 206 110 275 292 172
207 94 175 174 150 207
154 326 251 126 263 121
250 111 114 209 121 255
145 133 179 109 84 128
211 178 150 251 184 154
110 206 308 236 153 130
175 101 130 241 . . . . . .
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