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ABSTRACT 

The neurobiology of sex differences during language processing has been widely investigated in the 

past three decades. While substantial sex differences have been reported, empirical findings 

however appear largely equivocal. The present systematic review of the literature and meta-analysis 

aimed to determine the degree of agreement among studies reporting sex differences in cortical 

activity during language processing. Irrespective of the modality and the specificity of the language 

task, sex differences in the BOLD signal or cerebral blood flow was highly inconsistent across fMRI 

and PET studies. On the temporal side, earlier latency of auditory evoked responses for female 

compared to male participants were consistently observed in EEG studies during both listening and 

speaking. Overall, the present review and meta-analysis support the theoretical assumption that 

there are much more similarities than differences between men and women in the human brain 

during language processing. Subtle but consistent temporal differences are however observed in the 

auditory processing of phonetic cues during speech perception and production.  
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1. INTRODUCTION  

In the past three decades, dozens of studies have explored sex differences in the neurobiology of 

language, in terms of both brain structure and functions, in normal and clinical populations, across 

the life span. Sex differences in language processing have been abundantly reported, with the 

ultimate objective to correlate cortical activity differences with, putative, verbal ability differences. 

Yet, the available empirical evidence appears largely equivocal and its functional interpretation 

controversial (for reviews and meta-analyses, see Kansaku and Kitazawa, 2001; Sommer et al., 2004, 

2008; Kaiser et al., 2009; Wallentin, 2009; Fine, 2013; Rippon et al., 2014). 

Probably the most emblematic example, often cited as well-established in scientific textbooks and 

articles, is the long-standing hypothesis that "the male brain may be more symmetrically organized 

than the female brain both for verbal and non-verbal functions" (Harris, 1980). With the advent of 

brain imaging research and following the seminal study by Shaywitz and colleagues (1995), many 

studies investigating sex differences in language processing have claimed to provide evidence for sex 

differences in the functional lateralization of the brain for language. Two meta-analyses however 

provided clear counter-evidence against functional laterality differences by combining and weighting 

effect sizes observed in previous brain imaging studies (Sommer et al., 2004, 2008). The resulting 

mean weighted effect size appeared to be so weak that, according to the authors, "the putative sex 

difference in language lateralization may be absent at the population level, or may be observed only 

with some, as yet not defined, language tasks" (Sommer et al., 2004). In line with this interpretation, 

several reviews and meta-analyses also failed to find sex differences in lateralization in behavioral 

studies using divided visual field paradigms (Boles, 1984; Chiarello et al., 2009) and dichotic listening 

(Hiscock and MacKay, 1985; Sommer et al., 2008; see also Hirnstein et al., 2013). 

Not restricted to language lateralization, a number of paradigmatic, methodological and statistical 

issues, as well as publication and theoretical biases have been identified as critically interfering in the 

evaluation of sex-related differences on brain activity and functioning, likely explaining the lack of 

generalization and replication of many past findings (for reviews, see Kaiser et al., 2009; Fine, 2013; 

Rippon et al., 2014). Among the main issues identified are the limited sample sizes, the task 

heterogeneity, the weak relationship (if any) between the observed cortical activity and behavioral 

performance, and the absence of a direct contrast between men and women when evaluating brain 

activity differences. A publication bias - that is the greater probability of publishing significant 

differences compared to null findings - has also been suggested to favor differences rather than 

similarities when investigating neurobiological differences between men and women (see Kaiser et 

al., 2009). Another important point is the absence of a clear-cut distinction between sex and gender. 

According to gender studies, sex is indeed deeply interwoven with social and cultural constructions 
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of gender through the life span. Since the great majority of neurobiological studies did not take into 

account gender characteristics, such as gender identity, gender role and/or sexual orientation (but 

see Smith et al., 2019), caution must be taken when discussing results in order to avoid "stereotype-

consistent functional interpretations of sex differences in the brain as fixed, implicitly supportive of a 

gender essentialist perspective" (Fine, 2013).  

Apart from the neurobiology of language, substantial sex differences however exist. Large sex 

differences have indeed been reported on motor performance, particularly after puberty and 

depending on muscle mass and bone size (Thomas and French, 1975), and on handedness, with 25% 

higher prevalence of non-right handedness in males skills (albeit with significant differences between 

countries; Sommer et al., 2008). Regarding cognitive abilities, one of the first major reviews on 

behavioral sex differences also argued for clear differences in verbal ability, visual-spatial ability and 

mathematical ability (Maccoby and Jacklin, 1974; see also Gur et al., 2012; Halpern, 2007). Overall, 

much evidence for sex similarities was however observed in this review, as confirmed in a 

subsequent meta-analysis (Hyde and plant, 1995) and reviews of meta-analyses (Hyde, 2005, 2014). 

Even the observed sex differences in Maccoby and Jacklin's review (1974) were partly nuanced in 

these studies. Based on contemporary data, they reported a moderate sex difference favoring males 

in 3D mental rotation, but no difference on mathematical tests (although with large variability across 

countries in the magnitude and even the direction of sex difference; see Else-Quest et al., 2010), 

small to moderate effect sizes favoring females on verbal tests, notably on verbal fluency and reading 

comprehension, and ambiguous evidence regarding sex differences in social and sexual behaviors, 

critically depending on cultural and educational factors. Regarding brain structural dimorphisms, an 

influential meta-analysis reported that men have larger crania, proportionate to their larger body 

size, and larger absolute grey matter (GM), white matter (WM), cerebrospinal fluid (CSF) and total 

intracranial (TIV) volumes (from +8% to 13%), with larger WM and CSF fractions (i.e., fractional 

cerebral compartment volumes as the ratios of tissue absolute volumes to TIV), while women have 

larger GM fractions (Lemaitre et al., 2005). Recent meta-analysis and large-scale studies also suggest 

regional sex differences in GM volume and tissue density mostly including brain areas that are part of 

the limbic and language systems (Ruigrock et al., 2014), in GM density throughout the brain 

(Gennatas et al., 2017), on gray matter asymmetry in several brain regions (Núñez et al., 2018; but 

see Watkins et al., 2001, and, Sommer et al., 2008, for counter-evidence), some of which are typically 

involved in language production, and on anatomical connectivity obtained with diffusion imaging, 

with greater within-hemispheric connectivity observed in men and greater between-hemispheric 

connectivity in women (Ingalhalikar et al., 2014). Finally, sex differences are also observed in 

developmental language-related disorders such as stuttering and dyslexia, with a higher prevalence 
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for men compared to women, as well as in parkinson's disease, autism and schizophrenia, in which 

speech, language and/or communicative deficits are considered negative symptoms (Wallentin et al., 

2009). 

Previous reviews and meta-analyses on sex-related neurobiological differences in language 

processing primarily focused on language lateralization (Kansaku and Kitazawa, 2001; Sommer et al., 

2004, 2008), on a broad overview of sex differences in language performance and in the underlying 

brain structure and processing (Wallentin, 2009), and/or on crucial criteria and issues from fMRI 

examinations (Kaiser et al., 2009; see also Rippon et al., 2014). Independent of language 

lateralization, the present systematic review of the literature and meta-analysis aims to characterize 

the degree of agreement between previously reported spatial and temporal neurobiological activity 

differences between men and women during language processing. This systematic review will 

determine which modality, task and verbal material were studied using fMRI, PET, EEG and MEG, and 

which of these parameters, if any, led to conclusive findings. The meta-analysis will quantify the 

consistency of previously reported sex differences in brain activity across fMRI and PET studies. 

2. NEUROBIOLOGY OF SEX DIFFERENCES IN LANGUAGE PROCESSING: A SYSTEMATIC REVIEW 

2.1 Search strategy 

A comprehensive electronic literature search was performed using PubMed in December 2018. The 

search identified neurobiological language studies investigating sex differences. The key search terms 

(in the title and/or the abstract) included: (sex difference(s) or gender difference(s)) and (language or 

speech or voice) and (neuroimaging or brain imaging or fMRI or functional MRI or functional 

magnetic resonance imaging or MEG or magnetoencephalography or EEG or ERP or 

electroencephalography). The title and abstract of all articles were screened. The pre-selected 

articles were then assessed thoroughly. Additional references were retrieved from selected articles.  

2.2 Selection criteria 

Only English publications from peer-reviewed journals were selected. We first identified 59 studies 

(40 fMRI, 15 EEG, 3 PET and one MEG studies) that met the following criteria: (i) sex-related 

neurobiological differences were assessed using either fMRI, PET, MEG or EEG (ii) in healthy female 

and male participants (iii) during a language task (see Appendix).  
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Type First Author Year Mod Task(s) Stimuli P° n 

f/m 

Mean 

age 

Results  

female compared to male participants 

fMRI Chen 2007 PP reading artificial words L 11/13 22mr ns 
fMRI Harrington* 2008 PP listening sentences A 18/19 36 ns 
fMRI Ahrens  2014 PP listening vocal sounds, syllables, A 149/123 24 ns 

     words, sentences      
EEG Swink* 2012 PP listening vowel A 15/15 24 earlier N1, earlier P2 
EEG van den Brink 2012 PP listening sentences A 18/18 22 higher N400 
EEG Schirmer 2007 PP listening - mmn paradigm syllables A 20/20 20 earlier and higher MMN, higher P300 
EEG Ikezawa 2008 PP listening - dichotic mmn paradigm syllables A 21/23 28 higher MMN 
EEG Daltrozzo 2007 PP listening - semantic priming paradigm words/sentences A 10/10 42 earlier N400 (word priming), lower LPC (priming) 
fMRI Junger 2013 AP gender judgment words A 19/20 33 ↘ right SFG, left medial orbitofrontal cortex/MTG/AG 
fMRI Smith 2019 AP gender judgment words A 20/17 31 ↘ right RO/STG/MTG/MFG, left SFG, cuneus/precuneus 
fMRI Clements 2006 AP rhyme judgment non-words T 15/15 27mr ns 
fMRI Rossel 2002 AP lexical judgment words/non-words T 6/6 32 ↘ left OG/ITG, right primary visual cortex  
    divided visual field paradigm     ↗ right DLPFC/IFG/MTG 
fMRI Frost 1999 AP semantic judgment words A 50/50 24 ns 
fMRI Kana 2012 AP sentence comprehension sentences T 19/17 21 ↗ right PrCG/superior occipital lobe, left MFG/SFG, precuneus 
EEG Hill 2006 AP lexical judgment words/non-words T 15/16 24 higher P100 and N170 
EEG Skrandies 1999 AP anagram judgment words T 10/10 24 higher GFP (70-1200ms) 
fMRI Ruytjtens 2006 CP lipreading numbers F 9/10 21 ↗ left MTG/AG/SPL/IPL, right AG/IFG/middle OG 
fMRI Sveljo 2010 CP counting numbers A 6/6 35 ↘ right PFC, SMA  
fMRI Garn 2009 CP picture naming words P 13/13 27 ↘ right STG/MTG, left MTG - ↗ left MTG/FG, CG 
fMRI Gizewski 2006 CP verb generation words T 14/12 55 ↘ left MTG/PrCG - ↗left IPL 
fMRI Gauthier 2009 CP word generation words T 22/22 20 ↘ left ITG/cerebellum/CG, right SFG/DLPFC, CG 
fMRI Allendorfer* 2012 CP verb generation words A 20/20 40 ↘ PrCG/PoCG/paracentral lobule 
fMRI Harrington* 2008 CP verb generation, semantic judgment words/sentences A/T 18/19 36 ↘ left MTG/IFG (only semantic judgment) 
    sentence comprehension       
fMRI Kaiser 2007 CP free narration sentences P 22/22 28mr ↘ right IFG - ↗left IFG 
fMRI Ihnen* 2009 OP aloud reading words/non-words T 10/10 25 ↘ left MTG/posterior insula, right STG/posterior insula 
         ↗ left OG/PoCG, right OG/MTG, CG 
PET Grabowski 2003 OP picture naming words P 31/31 33 ↘ left ITG/frontal pole, right frontal pole - ↗ right IFG/PrCG 
fMRI Ihnen* 2009 OP verb, opposite and rhyme generation word A/T 13/13 25 ↘ left STG/IFG/PrCG/PoCG, right STG/MTG/PrCG/PoCG/insula  
         /MFG/claustrum/parahippocampla gyrus, CG 
fMRI Allendorfer * 2012 OP verb generation, noun repetition words A 20/20 40 ↘ right STG/insula/putamen, left STG/IPL, precuneus (nr>vg) 
         ↘ left IPL/SPL, precuneus (vg>nr) 
PET Jaeger 1998 OP past tense generation words T 8/9 26 ↗ occipital gyri, cerebellum 
EEG Swink* 2012 OP pitch-shift feedback paradigm vowel T 15/15 24 earlier N1, earlier P2 
EEG Scheerer 2013 OP pitch-shift feedback paradigm vowel T 10/10 23 earlier P1, higher and earlier N1, earlier P2 
EEG Li 2018 OP pitch-shift feedback paradigm vowel T 24 22 earlier and lower N1, lower P2 

Table 1. Neurobiological studies selected in the systematic review on sex differences in language processing (*study including two distinct tasks; Mod: modality, PP: passive perception, AP: 

active perception, CP: covert production, OP: overt production, L: logograph, A: auditory, T: text, F: face, P°: stimulus presentation, mr: mean range; SFG: superior frontal gyrus, MTG: middle 
temporal gyrus, AG: angular gyrus, RO: rolandic operculum, STG: superior temporal gyrus, OG: occipital gyrus, ITG: inferotemporal gyrus, DLPFC: dorsolateral prefrontal cortex, PrCG: precentral 
gyrus, PoCG: postcentral gyrus, IFG: inferior frontal gyrus, SMA: supplementary motor area, FG: fusiform gyrus, IPL: inferior parietal lobule, SPL: superior parietal lobule, CG: cingulate gyrus). 
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Several qualitative historical observations can be made (see Figure 1) based on the 59 studies that 

were identified (including non-elderly healthy adults but also newborns, infants, children and/or 

teenagers, and elderly; see below. First, the number of neurobiological studies per year investigating 

sex differences in language processing increased from the seminal study by Shaywitz et al. in 1995 to 

2006, and then decreased until today (with a peak in 2012). The mean impact factor per year of the 

scientific journals (based on the current impact factor of the journals) where these studies were 

published shows a decrease from 1995 to 2006, and then reaches a plateau. Finally, the percentage 

of studies that directly contrasted men and women when evaluating brain activity differences 

increased until 2009, to finally represent the majority of the studies. Altogether, these observations 

appear to reflect the rising interest that was triggered by early reports of sex differences in language 

processing, with high impact publications. Then came the first critical reviews and discussions of 

important methodological issues in the mid-2000s, which were followed by careful examination of 

sex differences since then (i.e. directly contrasting female vs. male). 

 

 

Figure 1. (A) number of neurobiological 

studies (fMRI, PET, MEG, EEG) per year 

investigating sex differences in healthy 

participants, (B) mean impact factor per year 

of the scientific journals in which these studies 

were published, and (C) percentage per year 

of studies that directly contrasted men and 

women when evaluating brain activity 

differences. Polynomial tendency curve of the 

3rd order are indicated. 

 

 

 

In the present study, we focus on right-handed non-elderly healthy adults. Studies involving 

newborns aged 1-5 days (Cheng et al., 2012), infants aged 3-6 months (Pivik et al., 2011), children 

and/or teenagers aged 5-18 years (Gaillard et al., 2003; Plante et al., 2006; Szaflarski et al., 2006; 

Burman et al., 2008; Spironelli et al., 2010; Scheerer et al., 2013; Yu et al., 2014; Sugiura et al., 2018), 

elderly aged 60-73 years (Li et al., 2018) or left-handed adults (Pujol et al., 1999; Szaflarski et al., 
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2002) were thus removed from the review. When a study included one group of right-handed non-

elderly adults (Pujol et al., 1999; Gaillard et al., 2003; Szaflarski et al., 2006; Scheerer et al., 2013; Li 

et al., 2018), the study was kept. When participants’ handedness was not indicated (given the 

preponderance of right-handers in the world's population; Ahrens et al., 2014; Schirmer et al., 2007; 

Smith et al., 2019), or when the study involved very few left-handed participants (two of thirty-nine 

participants; Junger et al., 2013), the study was also included in the review.  

For the 51 remaining studies, a final criterion was the use of direct contrast between men and 

women when assessing brain activity differences (i.e. not assessing sex differences in men and 

women separately). With these criteria, 28 studies (17 fMRI, 9 EEG and 2 PET studies) were identified 

(see Table 1; note that four studies included two distinct tasks; Harrington et al., 2008; Ihnen et al., 

2009; Swink and Stuart, 2012; Allendorfer et al., 2012).  

2.3 Data extraction  

For each selected study, the observed differences in cortical activity between men and women, the 

sample size and mean age of female and male participants were extracted. In order to examine the 

degree of agreement across the selected studies, they were classified according to (i) the imaging 

technique (fMRI, PET, EEG, MEG) (ii) the modality of the task (passive perception, active perception 

with manual responses, covert production, overt production), (iii) the language task (listening, 

reading, counting, picture naming, gender judgment, rhyme judgment, anagram judgment, lexical 

judgment, semantic judgment, sentence comprehension, free narration, word generation, verb 

generation, past-tense generation), (iv) the verbal material (vocal sounds, vowels, syllables, 

words/pseudowords, sentences or stories), and (iv) the modality of presentation (sound, text, 

logogram, picture, face). 

2.4 Results 

The resulting 28 studies (i.e., those that directly contrasted non-elderly healthy men and women), 

included a median number of 31 female and male participants (range: 12-272; SD: ±45) with a 

median age group of 26 years (range: 20-55; SD: ±8). They mostly used fMRI (n=17) but also EEG 

(n=9) and PET (n=2). The modality of the tasks was similar across studies with eight tasks involving 

passive listening/reading, eight involving active listening, eight involving covert production and eight 

involving overt production (note that four studies included two distinct tasks; Harrington et al., 2008; 

Ihnen et al., 2009; Swink and Stuart, 2012; Allendorfer et al., 2012). Apart from passive listening, the 

selected studies involved a variety of language tasks (counting, picture naming, gender judgment, 

rhyme judgment, anagram judgment, lexical judgment, semantic judgment, sentence 

comprehension, free narration, word generation, verb generation, past-tense generation), with the 

word/verb generation task one of the most studied (n=6). The verbal material consisted of vocal 
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sounds, vowels, syllables, words/pseudowords, sentences and/or stories, with words the most 

represented in these studies (n=19). Finally, the presentation of the verbal material included visual 

logographs (n=1), faces (n=1), pictures (n=3) but mostly sounds (n=15) and/or texts (n=14). 

Regarding fMRI/PET studies, seventeen studies reported significant BOLD or cerebral blood flow 

differences between men and women. No sex differences were observed during passive listening or 

reading in all three selected studies. For active perception, covert production and overt production, 

however, the results are less clear. For active perception, two studies did not find any differences 

between female and male participants, two reported higher BOLD activity for female compared to 

male participants, while three reported lower BOLD activity. Moreover, the reported brain areas are 

inconsistent across studies. Even with similar gender judgment tasks used in two studies, no 

agreement can be observed on brain areas showing sex-related BOLD activity difference. Similar 

mixed results are found for covert and overt production. For overt production, one study reported 

higher BOLD activity for female compared to male participants, four reported lower BOLD activity, 

and three reported both lower and higher activity in distinct brain areas. Here again, the reported 

brain areas were not consistent and no agreement was observed despite similar verb/word 

generation tasks used in four studies. For overt production, one study reported higher BOLD activity 

for female compared to male participants, four reported lower BOLD activity, and one reported both 

lower and higher activity in distinct brain areas. The reported brain areas were not consistent and no 

agreement was observed despite similar verb/word generation tasks used in two studies.  

Regarding EEG studies, all studies did find sex-related differences in auditory evoked potentials (AEP). 

For passive perception, three of five studies reported earlier latency of auditory evoked responses for 

female compared to male participants in the first four hundred milliseconds from the onset of the 

acoustic stimulus (N1, P2, MMN, P400). One study did not find any sex differences on MMN latency 

and one did not reported latency. A higher amplitude of AEP (MMN, P300, N400) was reported in 

three of five studies. Higher amplitude of AEP for female compared to male participants were also 

found in the two studies involving active perception (no latency differences between the sexes were 

computed). Similarly, earlier latency of P1/N1/P2 AEP for female participants were found in all three 

studies involving overt production with pitch-shifted feedback. Regarding amplitude, one study 

reported a higher N1 amplitude for female compared to male participants, the other two did not find 

any amplitude differences. 

In sum, apart from fMRI studies involving passive perception that all reported null findings, the 

observed sex differences in the BOLD signal or cerebral blood flow from fMRI and PET studies are 

inconclusive, irrespective of the modality and task. By contrast, EEG studies consistently reported 
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earlier latency of AEP for female compared to male participants in the first four hundred 

milliseconds.  

3. NEUROBIOLOGY OF SEX DIFFERENCES IN LANGUAGE PROCESSING: A META-ANALYSIS 

To further assess whether the brain regions showing sex differences in BOLD or cerebral blood flow 

during language processing were (un)consistent across the fMRI and PET studies, an activation 

likelihood estimation (ALE) analysis was conducted. To this aim, whenever reported, coordinates of 

activation peaks showing either higher or lower BOLD activity or cerebral blood flow for female 

compared to male participants (i.e., female > male and male > female contrasts) were extracted from 

the selected studies (see Figure 2). Of the 19 selected fMRI/PET studies (including 22 tasks; see Table 

1), 5 studies did not find significant sex differences, 9 reported higher BOLD activity or cerebral blood 

flow for female compared to male participants in specific brain regions (but two did not report 

activation peak coordinates; Gizewski et al., 2006; Kana et al., 2012), and 14 reported lower BOLD 

activity or cerebral blood flow for female compared to male participants in specific brain regions (but 

three did not reported activation peak coordinates; Gizewski et al., 2006; Harrington and Farias, 

2008; Sveljo et al., 2010). Two distinct ALE analyses were conducted based on the female > male (7 

studies, 52 foci, 1 study involved an active perception task, 3 involved a covert production task and 3 

involved an overt production task) and male > female contrasts (11 studies, 53 foci, 3 studies 

involved an active perception task, 4 involved a covert production task and 4 involved an overt 

production task).  

 

Figure 2. Surface rendering of the maximum activation peaks reported in the literature and used in 

the ALE meta-analysis. Red: reported activation peaks showing higher BOLD activity for female 

compared to male participants (7 studies, 52 foci). Blue: reported activation peaks showing lower 

BOLD activity for female compared to male participants (11 studies, 53 foci). 

3.1 Method 
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The ALE meta-analyses were conducted using the GingerAle software (version 2.3.6; Eickhoff et al., 

2009, 2012; Turkeltaub et al., 2012). Coordinates of interest were selected by hand and then 

processed by GingerAle. Throughout the meta-analysis, coordinates are reported in Talairach space. 

When coordinates had been reported in MNI in reviewed articles, they were converted in Talairach 

space by using icbm2tal coordinate-based tool transformation developed by Lancaster et al. (2007) 

included in GingerAle. For the computation of single maps, significant clusters were identified at a 

Family-Wise Error (FWE) corrected p-value threshold of .05 with a minimum volume of 120 mm3 

(Hétu et al., 2013) and a p-value permutation of 1000 (in order to differentiate true convergence of 

foci from random clustering, see Eickhoff et al., 2009, 2012). When no results emerged, a less 

conservative False Discovery Rate (FDR) correction method was used with a p-value threshold of .05 

a minimum volume of 120 mm3.  

3.2 Results  

No significant spatial coherence of the activation peaks reported in the selected studies was 

observed in the two ALE analyses based on the female > male and male > female contrasts. 

4. DISCUSSION 

Overall, the present review and meta-analysis support the theoretical assumption that there are 

much more neurobiological similarities than differences between men and women during language 

processing. Regarding fMRI and PET studies, the reported sex differences in the BOLD signal or 

cerebral blood flow was highly inconsistent across modality and task. This lack of coherence was 

confirmed by ALE meta-analyses that failed to demonstrate any significant spatial coherence of the 

activation peaks reported in the selected studies. Similarly, no coherent sex differences were 

observed in the amplitude of auditory evoked responses in EEG studies. The disparate findings 

observed in the present review appear in line with previous reviews and meta-analyses that provided 

no evidence of sex-related differences in language proficiency and lateralization, nor in underlying 

brain structures and functions (Kansaku and Kitazawa, 2001; Sommer et al., 2004, 2008; Kaiser et al., 

2009; Wallentin, 2009). As previously mentioned, methodological and statistical issues (including the 

limited sample size of some studies, the task and stimulus heterogeneity across studies) might partly 

explain the observed mixed findings. It is however to note that although a number of studies 

involved a limited sample size, overall the selected studies included a rather consequent median 

number of 31 female and male participants. Further, no agreement was observed even with similar 

gender judgment or verb/word generation tasks used in some studies. Importantly, it is also argued 

that, contrary to the consistent categorization of an individual as female or male through genetic, 

gonadal and genital phenotype, sex differences in behavioral, social and neurobiological domains do 
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not appear consistent (Joel, 2012). Also challenging the assumption of distinctive female vs. male 

brain circuitry, Rippon et al. (2014) proposed four principles - overlap, mosaicism, contingency and 

entanglement - in sex/gender research that might indirectly explain the absence of reliable sex-

related differences in the selected studies. The authors indeed argued that any individual has a 

mosaic of feminine and masculine characteristics, with their distribution largely overlapping at the 

group level. Moreover, any observed sex-related difference is thought to be contingent upon 

historical and social contexts that might preclude generalization. From a sociological perspective, the 

biological categorization of any individual is thought to affect his/her psychological, physical and 

material experience, making the biological sex and the social phenomenon of gender entangled. 

From that perspective, sex differences are also conceptualized as transient and context-dependent, 

through the life span, experience, and environment (Joel and McCarthy, 2017). 

Despite the observed inconclusive findings in the BOLD signal, cerebral blood flow and amplitude of 

auditory evoked responses, it is noteworthy that a rather good agreement for N1/P2 latency 

differences observed between the sexes in EEG studies involving passive listening and speaking. 

Indeed, all these studies consistently reported earlier latency of N1/P2 auditory evoked responses for 

female compared to male participants. N1 and P2 auditory evoked components are known to reflect 

synchronous neural activation in the thalamic-cortical segment of the central nervous system, with 

their sources mainly originating from the supratemporal plane of the auditory cortex, in response to 

spectral and temporal cues of an auditory stimulation (e.g., Näätänen and Picton, 1987; Woods, 

1995). During speaking, N1 and P2 are hypothesized to also reflect auditory feedback control 

mechanisms, through the comparison of actual auditory feedback with an internal auditory-sensory 

prediction (e.g., Houde et al., 2002; Heinks-Maldonado et al., 2006; Behroozmand and Larson, 2011; 

Chang et al., 2013; Niziolek et al., 2013; Sitek et al., 2015; Sato and Shiller, 2018). From these 

acknowledged and hypothesized roles of N1 and P2 components, the observed modulation of N1/P2 

latency during listening and speaking suggest sex-differences in the early auditory processing of 

spectral and temporal phonetic cues and, possibly, in the auditory feedback control of speech 

production. Based on this later hypothesis, it is noteworthy that sex differences during speech 

production under altered or delayed auditory feedback have also been demonstrated in previous 

behavioral studies, with male speakers experiencing more disruptions in speech (including decreased 

speech rate, increased dysfluencies, decreased articulation accuracy, slower vocal responses; Sutton 

et al., 1963; Bachrach, 1964; Timmons, 1971; Fukawa et al., 1988; Corey and Cuddapah, 2008; Chen 

et al., 2010). Although it is unclear why women produce faster N1/P2 auditory evoked responses, 

several possible factors might contribute to some extent to these observed sex differences, including 

differences in phonemic articulatory and acoustic spaces (due to the well-known differences 
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between men and women in the anatomy of the vocal apparatus and its consequences on speech 

behaviors; Klatt and Klatt, 1990; Ladefoged, 2006; Simpson, 2009), in anatomical connectivity (with 

greater within-hemispheric connectivity observed in men and greater between-hemispheric 

connectivity in women, see Ingalhalikar et al., 2014), in grey matter volume and tissue density 

(Ruigrock et al., 2014) and in hormonal influences (although there is no convincing evidence that sex 

hormones plays a role in neurobiological language processing, see Wallentin, 2009). Finally, it is also 

noteworthy that, at the subcortical level, non-speech specific sex differences were previously 

observed in the evoked auditory brainstem responses during acoustic stimulation, with earlier 

latencies for females compared to males. These differences in the evoked auditory brainstem 

responses were linked to the those observed in the female and male peripheral hearing system, with 

larger head and cochlear sizes for males compared to females (see Krizman et al., 2012). 

In conclusion, while no agreement between reported cortical activity differences between men and 

women was found in neurobiological studies of higher order language processing, a few EEG studies 

demonstrated subtle but consistent temporal differences between men and women in the auditory 

processing of phonetic cues during both speech perception and production. Future brain imaging 

studies are therefore required to investigate sex differences in the sensorimotor and phonetic neural 

mechanisms and brain areas that support speech perception and production. 
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