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LATTICE: Machine Learning, Data Engineering, and Policy Considerations for Digital Agriculture at Scale

Digital agriculture, with the incorporation of Internetof-Things (IoT)-based technologies, presents the ability to evaluate a system at multiple levels (individual, local, regional, and global) and generate tools that allow for improved decision making in every sub-process. Recent advances in IoT hardware, such as networks of heterogeneous embedded devices, and software, such as lightweight computer vision algorithms and cloud optimization solutions, makes it possible to collect data and efficiently process data from diverse sources in a connected (smart) farm. By interconnecting these IoT devices, often across large swaths of farmland, it is possible to collect data from multiple farming operations and at different time scales, including in near real-time (i.e., delays of a few tens of seconds). This data can then be used for actionable insights, such as, precise application of soil supplements, thus reducing waste and environmental pollution. Such insights will be more powerful when leveraging federated learning techniques to utilize data from multiple farms. IoT devices that are capable of sensing different kinds of information can connect with each other in a wireless sensor network (WSN) setting. As an example, in row crop systems, large amounts of data are generated from a variety of field operations and they form a rich source for optimizing IoT data collection and analysis operations. These operations include soil sampling, fertilizer application, planting, scouting, spraying, harvesting, distribution, and processing. Leveraging the diverse and often streaming datasets generated from IoT-equipped farms, this vision paper starts off with the types of datasets in typical field operations, followed by the lifecycle for the data, the storage and fast informationretrieval solutions, and finally on how to democratize machine learning and cloud computing for agriculturists by instantiating and implementing open-source data processing frameworks. We conclude by discussing analytics for alternative agriculture for generation of biofuels and policy challenges of the implementation of digital agriculture approaches in the wild.

I. INTRODUCTION

By 2050, the world's population is projected to increase to nine billion, which will intensify the food-water-energy nexus challenges. Demand will also rise because of increase in people's wealth resulting in higher meat consumption plus the increasing use of cropland for biofuels. Site-specific farm management (precision farming) has the potential to nourish the world while increasing farm profitability under constrained resource conditions. Despite advancements in field sensors, the global positioning system (GPS), and grid soil sampling, adoption of technology by farm operators has fallen short of expectations [START_REF] Schimmelpfennig | Farm profits and adoption of precision agriculture[END_REF], [START_REF] Bullock | The value of variable rate technology: an information-theoretic approach[END_REF], [START_REF] Baerenklau | Dynamics of agricultural technology adoption: Age structure, reversibility, and uncertainty[END_REF]. Moreover, it is unclear how profitable the adoption of such technologies will be [START_REF] Bullock | From agronomic research to farm management guidelines: A primer on the economics of information and precision technology[END_REF]. Operator demographics, operation size, and perceived benefits influence the decision to invest in sitespecific management practices and adoption rates vary widely across technology types [START_REF] Thompson | Farmer perceptions of precision agriculture technology benefits[END_REF], [START_REF] Schimmelpfennig | Farm profits and adoption of precision agriculture[END_REF]. Use of variable rate technology (VRT), for example, has lagged that of yield monitors and automated guidance systems. A thorough study [START_REF] Bullock | The value of variable rate technology: an information-theoretic approach[END_REF], including rigorous analysis, has shown how the lack of widespread adoption Fig. 1: Example of no-till corn operation, data generation, and lifecycle. In modern agriculture, practices generate data during almost every operation. This data may be site-specific or more broadly defined but often there is no clear way to aggregate data layers.

of VRT can be attributed to the paucity of site-specific data. Specifically in this study, the authors attributed the scant adoption of variable rate nitrogen application to the lack of site-specific yield data. The generalizable insight from this is that site-specific detailed data about the effects of digital agriculture interventions are important to drive their adoption.

Identified gaps motivating this vision paper. One of the key bottlenecks in leveraging the promise of digital agriculture is the lack of proven benefit from data sharing by farmers (or ranchers in the case of livestock farming). There are multiple factors that result in so-called adoption challenges, namely: data ownership concerns, economics and financial incentives of data ownership and dissemination, anticipated and quantified return on investment, data aggregation and pipelining from the data sources to the desired locations, to name a few.

If even a subset of the gaps described above can be circumvented using a mix of technology, policies, and awareness, the possible outcomes of digital agriculture can shine. Some of the gaps on the agricultural side include the following:

• Seed variety mapping to performance characteristics resulting in better seed selection or engineering seed varieties using precision technologies (e.g., genome editing [START_REF] Chaterji | Crispr genome engineering for human pluripotent stem cell research[END_REF]).

• Mapping soil supplementation needs to regional and tempo-ral conditions using effective and interpretable data science approaches [START_REF] Kumar | Yield trends of corn and soybean in the midwest[END_REF].

• Machine selection for increased efficiency.

• Defining functional properties of agriculture-derived bioproducts (e.g., ethanol from corn), which may be distinct from traditional products (e.g., more or heavier kernels of corn using genome editing). On the flip side of the coin, some of the gaps in the data engineering and machine learning areas for digital agriculture include the following:

• Approximate data analytics for processing data from multiple inexpensive sensors deployed on connected farms, especially for computationally expensive workloads such as vision workloads from drone-based imaging for computation related to object classification or detection, such as in our work on approximate object detection [START_REF] Xu | Approxdet: content and contention-aware approximate object detection for mobiles[END_REF].

• Tradeoff between privacy and utility when analyzing data from multiple farms, which is akin to federated compute infrastructure that has been used profitably in other fields such as genomics [START_REF] Chaterji | Federation in genomics pipelines: techniques and challenges[END_REF]. • Network management for sparsely connected farms using newer networking solutions that are bandwidth-aware and do not require cell towers [START_REF] Chaterji | Resilient cyberphysical systems and their application drivers: A technology roadmap[END_REF], [START_REF] Jiang | Hybrid low-power wide-area mesh network for iot applications[END_REF].

• Drones and tractors for data ferrying when needed especially under sparse network connectivity conditions [START_REF] Kim | On theoretical trajectory planning of multiple drones to minimize latency in searchand-reconnaissance operations[END_REF], [START_REF] Malik | Leveraging fog computing for sustainable smart farming using distributed simulation[END_REF].

• Effective sharing of data processing and analytics load between sensors, edge devices [START_REF] Cuervo | Maui: making smartphones last longer with code offload[END_REF], [START_REF] Shi | Edge computing: Vision and challenges[END_REF], and the cloud for maximizing throughput or latency, based on the client (farmer or farm manager) preferences [START_REF] Newton | Wishbone: Profile-based partitioning for sensornet applications[END_REF], [START_REF] Wang | Big data cleaning based on mobile edge computing in industrial sensor-cloud[END_REF]. • Optimizing cloud computation for beefier machine learning workloads using vision APIs, such as Azure vision or Amazon Rekognition [START_REF] Shankar | Janus: Benchmarking commercial and open-source cloud and edge platforms for object and anomaly detection workloads[END_REF] or processing streaming workloads using on-premise database optimization or optimization using clustered cloud instances [START_REF] Mahgoub | Iris: Tuning the configuration parameters of nosql databases for high-throughput digital agricultural processing pipelines[END_REF]. Examples of such optimization frameworks can be found in our recent work for onpremise database optimization [START_REF] Mahgoub | SOPHIA: Online reconfiguration of clustered nosql databases for time-varying workloads[END_REF] for streaming workloads or cloud optimization for beefier vision [START_REF] Mahgoub | {OPTIMUSCLOUD}: Heterogeneous configuration optimization for distributed databases in the cloud[END_REF] or lighter-weight but latency-sensitive IoT workloads [START_REF] Xu | Approxdet: content and contention-aware approximate object detection for mobiles[END_REF]. • Data ethics when sharing farm data with agricultural companies or insurance providers. On the economic side, consider variable rate application technology (VRT) for example. VRT for fertilizer treatment depends on accurate intra-field soil data, which is itself expensive to obtain. Unless the economic returns to site-specific management cover both the up-front investment and the cost of collecting quality information, adoption will be low. Specifically, as an example for the economic side, the following are possible guidelines for VRT use for fertilizer application

• Marking management zones for being entered into the VRT system. • Identifying whether the system will be guided by mapbased inputs or finer-granularity sensor-based inputs. While the sensor-based inputs are more sophisticated because they reflect the changing conditions in the farm, they are also logistically and computationally more expensive because they are battery-powered and will need to continuously or intermittently be guided by anomaly or bottleneck detection [START_REF] Thomas | Minerva: A reinforcement learning-based technique for optimal scheduling and bottleneck detection in distributed factory operations[END_REF].

• Identifying the kind of data that will be used for mapping or the kind of data for the actuation of VRT dispensers. For farmers to adopt these technologies (VRT provided as an example but others such as edge-cloud data partitioning discussed in the article), concrete savings on resources (e.g., supplements or fertilizers) need to be demonstrated with potential yield increase and environmental protection from decreased farm effluents from nutrient pollution and reducing farm runoff and eutrophication (hypertrophication), such as from high levels of nitrogen and phosphorous in fresh water. In the case of livestock farmers, this translates to the decreased use of hormones, supplements, or antibiotics for the livestock, resulting in ecological gains [START_REF] He | Antibiotic resistance genes from livestock waste: occurrence, dissemination, and treatment[END_REF], [START_REF] Udikovic-Kolic | Bloom of resident antibiotic-resistant bacteria in soil following manure fertilization[END_REF].

Relevance of our team's ongoing efforts. Digital agricultureencompassing precision agriculture, data analytics and edge-cloud computing, and data privacy and ownership-has the promise to transform agricultural throughput. It can do this by applying data science for mapping input factors to crop throughput and that too in a region-specific and crop-specific manner, while bounding the available resources, both tangible farm-specific resources such as seeds, nutritional supplements, and farm machinery, and computational resources (e.g., cloud credits or CPU/GPU cycles) or networking expenses (e.g., LoRA or NBIoT towers). In addition, as the data volumes and varieties increase with the increase in sensor deployment in agricultural fields, data engineering techniques will also be instrumental in collection of distributed data as well as distributed processing of the data. These have to be done such that the latency requirements of the end users and applications are satisfied. Leveraging the need for increased crop productivity for feeding people, Purdue's Colleges of Engineering and Agriculture are looking to transform the Midwestern counties surrounding Purdue University and specifically consisting of ten counties in the area into a hub for digital agricultural innovation (Figure 2). At the same time, Microsoft has developed and is looking to spread the reaches of the FarmBeats program [START_REF] Vasisht | Farmbeats: An iot platform for data-driven agriculture[END_REF], which has the vision of empowering farmers with low-cost digital agriculture solutions using low-cost sensors, drones, and computer vision and machine learning (ML) algorithms. Understanding how farm technology and big data can improve farm productivity can significantly increase the world's food production by 2050 in the face of constrained arable land and with the water levels receding. While much has been written about digital agriculture's potential, little is known about the economic costs and benefits of these emergent systems. Alternative agriculture data sources. The post-harvest component of agricultural crops such as corn, soybeans, or cellulosic biomass (forages) is an example of an alternative source of agricultural data. In this case the information pertains to industrial or food use of the crops, with processing characteristics of a specific crop informing design and operation of processing facilities and vice versa. The ultimate indicator of a crop's market, other than trading as a commodity, is the marketing of specific products including:

1) Ethanol biofuels and co-products including protein and fiber; 2) Bioproducts, biofuels, and monomers derived by biochemical and biological conversion of sugars derived from corn or oil from soybeans; 3) Neutraceuticals isolated from process corn products. By defining process characteristics and then providing this information back to seed developers and farmers will enhance alternative post-harvest logistics of crops with alternative (often value-added products) components (i.e., starch, protein, oil, cellulose) with minimal added processing steps (represented in Figure 3).

There are important questions to be answered before we can leap into data analytics for agriculture, questions related to technical viability, economic feasibility, sustainability, and data protection and ownership. These questions cannot be looked at in isolation-for example, if some algorithm needs data from multiple data owners to be pooled together, that raises the question of data ownership and data privacy. Data privacy is especially important when the raw data and the algorithm need to be fed to cloud-based Machine learning-as-a-service (MLaaS) computing platforms [START_REF] Jiang | Differentially private collaborative learning for the iot edge[END_REF] or for collaborative learning based on training data fed by multiple edge devices [START_REF] Zhang | Privacy-preserving machine learning through data obfuscation[END_REF]. Here, data perturbation and encryption need to be orchestrated without significantly degrading the accuracy of the models. This paper is the first to bring together these questions under one roof, discussing the goals, path forward, and challenges of digital agriculture to surmount the challenges of the food-water-energy nexus. We call this integrated effort LATTICE1 , which will culminate in the incorporation of foundational advancements in AI (focusing primarily on machine learning and data engineering rather than on robotics for the sake of brevity), driven by the domain constraints and requirements of digital agriculture systems, resulting in efficient distributed computational infrastructure to execute the algorithms.

II. DATA GENERATION FROM SENSORS

This section will cover the modalities of data gathering and controlled dissemination, the volume of data generated, and the quality of the data, collected and processed from the large numbers of inexpensive sensors proliferating in farms. Fields, these days, are increasingly equipped with sensors for sensing the multi-dimensional attributes that determine the quality of the agricultural field, mapped to the resultant crop productivity. Here are some of the commonly used measurements from agricultural sensors.

• Soil sampling: Soil cores are extracted from field (may or may not be georeferenced) and sent to a lab for analysis. Lab results come back in a report detailing fertility levels. In most cases, one must manually assign geo-referenced points to report values. only has value when aggregated with additional local or regional data. • Biorefining: Process conditions for converting components of a crop, such as corn, are recorded during enzyme catalyzed conversion, fermentation, biocatalysis, and separations to achieve the desired purity for a specific product. These data can be used to identify inherent barriers, which might be overcome by modifying characteristics of the feedstock. In terms of VRT, which coincides with advancements in electronic controls and improved communication technologies, the following could be applications of the technology: fertilizer application both macro-and micro-nutrients, herbicidal and pesticidal applications, manure, seed applications, tillage as a function of soil compaction, and precise irrigation. Thus, if the VRT procedures are guided by sensors rather than more static maps, the above farm processes can benefit from the approach.

Aggregation of agricultural data is possibly the biggest challenge facing digital agriculture. Producers are reluctant to share data due to fears of regulatory issues and the lack of perceived value added to their operation. Until producers can clearly see the economic benefits of digital agriculture, adoption will be slow.

III. DATA LIFECYCLE

This section will cover the various phases in the lifecycle of big agricultural data-sanitization, loading, processing, storing, summarization, and analysis; an example is shown in Figure 1. This will go into some of the general-purpose approaches (such as, data deduplication, calibration using sensor metadata) as well as agriculture-specific approaches (such as, known variations in hyperspectral maps from ground sensing and aerial image data and effective fusion among sensor arrays).

A. Data generation sources

Data generation is the first stage of a data lifecycle. There are many ways in which data can be generated. The sources of data generation can be broadly classified into two types.

1) Localized data or private data: This is the data that is generated on the farm such as soil nutrient composition, water, and fertilizer usage. This type of data is generated from sensors that are present on the farm. 2) Public data: Data such as historic weather conditions and market prices fall under this category. Imported data is often generated at outside sources and shared with the farmers to use in precision agriculture. Such data is not farm specific. An example of data that is at the crux of localized and public data is topography and soil type, which may be somewhat localized but follow a trend for farms in geographical proximity.

B. Data warehousing

Data generated then needs to be stored in repositories called data warehouses. Data warehousing allows integration of different data from multiple sources and helps restructure the data for better performance. One recent example of data warehousing is an initiative taken from the government of India [START_REF] Sharma | Integrated national agricultural resources information system (inaris)[END_REF], titled INARIS (Integrated National Agricultural Resources Information System). [START_REF] Woodard | Big data and ag-analytics: An open source, open data platform for agricultural & environmental finance, insurance, and risk[END_REF] discusses Ag-Analytics-a platform that provides data warehousing in the field of precision agriculture. Although there are readily available platforms for data warehousing, there are several constraints when using these platforms directly in precision agriculture. Some of these constraints are discussed in [START_REF] Nilakanta | Dimensional issues in agricultural data warehouse designs[END_REF].

C. Data annotation and cleaning

Due to the large size of data, it is important to perform annotation and cleaning before data analysis. Data annotation is subjective and depends on the particular use case of precision agriculture. The choice of the data annotation technique is dictated by the size of the data set, cost of annotation per sample among many other guidelines. [START_REF] Schoofs | Annot: Automated electricity data annotation using wireless sensor networks[END_REF] proposes a data annotation technique for electricity data in wireless sensor networks (WSNs). Similar annotation techniques could be developed in the aspect of precision agriculture that can be performed in a WSN infrastructure. Data cleaning removes or corrects errors that are present in the data. There are several existing works that propose data cleaning techniques in precision agriculture. [START_REF] Simbahan | Screening yield monitor data improves grain yield maps[END_REF] proposed a screening algorithm for cleaning yield data that provided an increase in map precision. [START_REF] Sun | An integrated framework for software to provide yield data cleaning and estimation of an opportunity index for site-specific crop management[END_REF] proposes an integrated framework for software that increases mean yield through data cleaning.

D. Metadata annotation

Metadata annotation can be done manually or be automated. Since the data that we are considering is prone to be complex, automated metadata annotation is preferred. [START_REF] Roy | A comparative study of learning object metadata, learning material repositories, metadata annotation & an automatic metadata annotation tool[END_REF] provides a comparative study of the different learning techniques used for metadata annotation. [START_REF] Fiehn | Setup and annotation of metabolomic experiments by integrating biological and mass spectrometric metadata[END_REF] provides an algorithm for annotation of metadata. [START_REF] Haug | A crop/weed field image dataset for the evaluation of computer vision based precision agriculture tasks[END_REF] uses a human expert to first mark crops from raw images. Masks were then derived from using these markings. These masks are then used to acquire the metadata. Similar techniques can be used in different aspects of precision agriculture.

E. Data processing

The last stage in the lifecycle of data. [START_REF] Steven | Satellite remote sensing for agricultural management: Opportunities and logistic constraints[END_REF] provides a good overview of the constraints faced in data processing in precision agriculture. In [START_REF] Steven | Satellite remote sensing for agricultural management: Opportunities and logistic constraints[END_REF] the authors consider the case of using satellite images for remote sensing in precision algorithms. In such use cases, one of the important aspects of data processing must be to make the data more readable. One such scenario where these images can not be directly used is in the case of cloud cover, where the images need to be processed before utilizing the data. This can be extended to data acquired through other means as well. Data acquired from soil sensors may need to be processed in order to make it more utilizable. [START_REF] Honkavaara | Processing and assessment of spectrometric, stereoscopic imagery collected using a lightweight uav spectral camera for precision agriculture[END_REF] proposes a processing chain that uses data collected from unmanned airborne vehicles to generate meaningful results. [START_REF] Loreto | Development of an automated system for field measurement of soil nitrate[END_REF] proposes an automated system that performs both the data acquisition and data processing of soil nitrate measurements. [START_REF] Murakami | An infrastructure for the development of distributed service-oriented information systems for precision agriculture[END_REF] proposes a data processing algorithm that processes yield data on a distributed systems framework.

IV. ML AND LOW-POWER COMMUNICATION TECHNOLOGIES

Here, we will cover approximate processing for in-sensor analytics, advanced processing for backend analytics on the edge or the cloud platforms, and interpretable data analytics. The first aspect is particularly useful because of the expensive nature of the wireless communication or the lack of continuous connectivity of the sensors to the backend. The second aspect is useful because there are edge platforms for agricultural data, such as, Azure IoT Edge device [START_REF] Vasisht | Farmbeats: An iot platform for data-driven agriculture[END_REF], and there may be sensitivity of the farmer to upload her personal data to a cloud platform. The final aspect is important because the farmer, a non-data science expert, will still need to be given some insights into the results of the algorithm, at her level of understanding, prompting her to take actionable measures. In Figure 4, we show a high-level architecture of the nodes deployed in different locations and showing the execution of analytics routines on the different kinds of nodes.

Data analytics plays an important role in precision agriculture. It can help farmers decide what crop to grow when, monitor the crop growth, and decide on the logistics of farm management. But agricultural data is often large and noisy and needs careful processing to distill insights from them. The following subsections elaborate on the advanced ML capabilities that can be used for such analysis. In addition, another relevant technology in this context is the use of scalable databases to house and process these data sets for downstream processing and retrieval. With this in mind, we also include some innovations in NoSQL database technologies to assist in high-throughput information retrieval from the evolving agricultural data lakes. With the advent of more sophistication in farm machinery and nutrient application, another related aspect is the reduction in latency during the application of agronutrients. In such cases, the use of low-latency channels, such as the deployment of intelligent in-sensor processing and low-latency edge processing will also be discussed.

A. Approximate processing for in-sensor analytics

A sensor network acquires real-world measurements at discrete points, where each measurement is a snapshot in time and space. In most scenarios in which sensor networks are deployed, the sensors are frequently queried resulting in continuously monitoring alongside high energy costs. Thus, one of the chief problems faced by wireless sensor networks (WSN), often deployed in farm settings, is the constrained availability of resources to these devices. The sensors used in such networks are low-power embedded devices that are expected to last for long periods of time (order of months) on standard batteries [START_REF] Raza | Low power wide area networks: An overview[END_REF]. This issue can be mitigated by leveraging a more distributed architecture and using more energy-efficient algorithms. Further, these devices generate large volumes of data, which ideally will be processed in real time in a streaming manner for usable insights. As a tradeoff between computational load and accuracy, approximate computing tools and techniques have become popular in several domains, such as, computer vision [START_REF] Mitra | Phase-aware optimization in approximate computing[END_REF] and scientific computing [START_REF] Kotipalli | Amptga: automatic mixed precision floating point tuning for gpu applications[END_REF]. The idea is to perform approximate computation over carefully chosen subset of the entire input data set. These are domains where some degree of approximation or error in the output of the algorithm is tolerable, either because humans cannot perceive these differences or downstream algorithms are not affected by such approximations. Relevant to our discussion, an example is the approximate computation can relay whether a particular soil nutrient concentration is above or below a threshold, rather than the exact value of it. Also, it may compute this over a uniform random subsample of say one in every 10 samples. Alternately, we can also use information theory principles, such as the Nyquist-Shannon sampling theorem to decide on the spacing of the sensors in the WSN [START_REF] Qin | Wideband spectrum sensing on real-time signals at sub-nyquist sampling rates in single and cooperative multiple nodes[END_REF] and also the actual redundancy needed for robust sampling from these sensors [START_REF] Shin | An optimization framework for monitoring multi-channel multi-radio wireless mesh networks[END_REF].

An important requirement of our target applications is low latency. This can be achieved by using multiple nodes to parallelize the work. However, this has to be done carefully so that the load is approximately balanced and there is not much overhead of energy to perform the distribution. For example, ApproxIOT [START_REF] Wen | Approxiot: Approximate analytics for edge computing[END_REF] proposes an algorithm based on Apache Kafka [START_REF] Thein | Apache kafka: Next generation distributed messaging system[END_REF] that uses IoT devices to generate data and forward it to edge computers, managed by service providers. As shown in Figure 4, wireless communication, like LoRa/NBIoT, is used to forward data, compressed or otherwise, to the edge devices. These data streams are then sampled and forwarded to a central location (compute server C 1 in the figure), where user-specific queries can be made. The sampling in such systems are based on two techniques,

• Stratified Sampling: The streams of data are categorized based on their distribution. A random sampling is done on these distributions, with prior knowledge of the data required for this kind of sampling. • Reservoir Sampling: A reservoir size R is maintained and at most R items are uniformly sampled from the data set.

Here, prior knowledge of the data is not required. ApproxIOT extends both these techniques to propose a weighted hierarchical sampling. The nodes conduct sampling over data generated and compute statistics, resulting in a 1.3X to 10X speedup.

In-sensor analytics is relevant to our domain because it means that the data being sensed will be (partially) analyzed locally at the sensor itself. The value proposition is that raw data will not have to be sent over the wireless network, thus saving on wireless bandwidth and energy, and thus potentially yielding lowlatency decisions. In-sensor analytics algorithms can either be value tolerant, where the approximation of values can be made and the resulting algorithms are lightweight or they can be delay tolerant, where the resulting algorithms can be more accurate at the expense of latency.

SERENE [START_REF] Baralis | Selecting representatives in a sensor network[END_REF] is a framework that selects representative nodes, among clusters of correlated sensors. Here, the framework also takes into account the dynamic changes in the network topology and the presence of outliers. Since sensor data acquisition and communication are the main power guzzlers and sensors are typically battery-powered, SERENE uses clustering algorithms to spatially and temporally aggregate the data. For example, it uses a density-based clustering algorithm, DBSCAN [START_REF] Ester | A density-based algorithm for discovering clusters in large spatial databases with noise[END_REF] for robustness against outliers and noise. This algorithm can cluster based on any shape, as the sensor readings may be correlated. Based on the cluster shape, availability of battery power, and distance of the target node from other nodes, the representative nodes-Msensors-are queried.

Another lightweight approach for in-sensor analytics is Snapshot Queries [START_REF] Kotidis | Snapshot queries: Towards data-centric sensor networks[END_REF]. Here the representative nodes are elected through a localized process. Each node maintains a data distribution model of its neighboring nodes. Based on this model, it predicts the values of the neighboring nodes. If the error between the predicted value and the actual value is less than a threshold, the predicting node can represent the neighboring node in question. The data model maintained is based on the previous correlation between the values of the node and its neighbors. Here the model is not static and is revised frequently. Hence it is robust to dynamic changes in the network.

Kartakis et al. [START_REF] Kartakis | Real-time edge analytics for cyber physical systems using compression rates[END_REF] proposed a scheme that reduces the usage of computational resources by 85% and memory resources by 55%. Fig. 4: System architecture of the distributed analytics relevant to digital agriculture

The main motivation for this work was that there is a correlation between the compression rates and data fluctuation. Hence the compression rate can be used to detect anomalies and outliers. Kalman filters are used to reduce the number of false positives. The Kalman state is updated by feeding every new input to the filter. The anomalies are detected as huge drops in the Kalman states.

The concept of lightweight algorithms can also be extended to deep neural networks. Distributed Deep Neural Networks (DDNNs) provide better fault tolerance and security than DNNs. The data generated by sensor nodes is processed locally at the edge. DDNNs are used to utilize the advantages of distributed computing hierarchy in DNNs [START_REF] Teerapittayanon | Distributed deep neural networks over the cloud, the edge and end devices[END_REF]. Further, simple ANNs have been used in tandem with Bayesian loops to reduce the number of hyperparamters in models and thus improve the interpretability of models and decrease the need for additional hyperparameter tuning. The latter, meaning having a multitude of hyperparameters to tune, is often an overkill for simpler processing needs with energy considerations in mind, as is often the case for lightweight edge processing in data analytics for sensor node analytics [START_REF] Koo | Tiresias: Context-sensitive approach to decipher the presence and strength of microrna regulatory interactions[END_REF]. This and other approaches, such as Bayesian neural networks (BNNs), sped up using hardware accelerators, can be a panacea when data volume is limited (as in cases where sensor nodes have been initialized on a farm) and to prevent overfitting plus allow for limited memory footprint [START_REF] Cai | Vibnn: Hardware acceleration of bayesian neural networks[END_REF]. Limited memory space may be the case for microcontroller-class devices or lower-resourced edge-class devices used in sensor nodes or gateway nodes (as opposed to beefier server-class machines in the well-resourced cloud ecosystem).

Another aspect to reduce the energy consumption of sensor nodes is by reducing the duty cycles (sleep-wake cycling) of sensors. By activating the sensors only when required, the energy consumed by the sensors will be reduced. In our target domain, this is highly feasible since the sensing frequency can be kept low (of the order of a few minutes) due to the nature of the underlying events being sensed.

Example of trade-off between computational accuracy and resource usage: Sensors used in precision agriculture are Internet of Things or IoT devices and like all IoT devices have constraints on power and connectivity. It is necessary to have the first step of data processing that takes place at the sensor end to be energy efficient. Thus, anomalous data can be suppressed and need not be communicated. Alternately, in some scenarios, the exact opposite is desired-when an anomalous event is detected, that event needs to be communicated to the gateway promptly.

AutoRegressive Integrated Moving Average (ARIMA) is used for fitting time-series data in order to predict or estimate the trend. This can then be used for suppressing data communication -if the sensor node and the receiving gateway node use the same model to predict values and the predicted value is close to the sensed value, the sensor node can suppress the communication [START_REF] Sangar | Wichronos: energy-efficient modulation for long-range, large-scale wireless networks[END_REF], [START_REF] Zhu | Challenges: communication through silence in wireless sensor networks[END_REF]. While ARIMA models work on a linear process, more sophisticated ML algorithms can model non-linear processes. Examples of traditional ML techniques such as k-Nearest Neighbors (KNNs) and Support Vector Regression (SVR) as well as more complex Recurring Neural Networks (RNNs) [START_REF] Elman | Finding structure in time[END_REF] and Long Short-Term Memory Neural Networks (LSTMs) [START_REF] Hochreiter | Long short-term memory[END_REF] have been used for prediction of sensor network values [START_REF] Abdel-Nasser | Accurate photovoltaic power forecasting models using deep lstm-rnn[END_REF], [START_REF] Lv | Lc-rnn: A deep learning model for traffic speed prediction[END_REF]. The predicted values can again be used for suppression of redundant data communication. The tunable configuration allows us to navigate the tradeoff space between accuracy and data communication.

While RNNs and LSTMs give a superior performance over statistical methods like ARIMA and ETS, they are more complex in nature. For simpler user queries and in-sensor analytics, ARIMA and ETS models can be used as a lightweight alternative. A more detailed analysis can be done on the edge (or cloud platform) using more sophisticated ML approaches of the likes of RNN and LSTM models or with some context imparted through attention pooling for example. This is shown in Figure 4 where Makridakis et al. [START_REF] Makridakis | Statistical and machine learning forecasting methods: Concerns and ways forward[END_REF] a detailed comparison between the performance, model fitting, and complexity of different ML techniques.

B. Database management and backend analytics for large-scale agricultural sensor data

Precision agriculture allows for site-specific crop management to increase throughput and achieve more sustainable farming by applying data science to agriculture practices, learning from local data trends. More and more agricultural sensing data is being livestreamed from farms, whether it be through on-board cameras, on manned or unmanned aerial vehicles, or through ground sensors in the farms. There is thus a need for centralized databases to store and process these data sets, often in real-time, to get actionable insights for farmers. Plus, there may be some degree of federation in storage and compute resources that may be needed as the computing needs of this domain increases, as has been seen in the genomics domain [START_REF] Chaterji | Federation in genomics pipelines: techniques and challenges[END_REF]. For example, if decision can be made about the level of application of some fertilizer while the dispenser is moving through the field, this will be advantageous.

Further, the sensing data is multi-dimensional and noisy, coming from ground sensors deployed in farms to measure an array of soil characteristics, such as, moisture, nutrient levels, temperature profiles, soil acidity, etc. These live-streamed data sets need to be stored in a fail-safe repository of nodes, such as Redis installations in Amazon Web Services (AWS) Elastic Compute Cloud (EC2) [START_REF] Carlson | Redis in action[END_REF]. The aggregate live-streamed updates and queries represent a unique workload for such NoSQL datastores, as these queries vary in rate and type over time. In such cases, a workload-aware tuning system is needed to reconfigure the NoSQL cluster, whether locally or on the cloud, to provide high performance. This is becoming more important as the data from small-scale farms across the country is burgeoning both in size and diversity, slowly replacing the previously used manual datacollection processes. Maximizing the throughput of these processing pipelines of digital farm data will enable actionable insights from agricultural sensing data. Also, given that these pipelines are hosted on the cloud, we want to maximize the performance within a user-defined cost bound, as shown in our recent work on cost-aware optimization of noSQL database throughputs [START_REF] Mahgoub | SOPHIA: Online reconfiguration of clustered nosql databases for time-varying workloads[END_REF], [START_REF] Mahgoub | {OPTIMUSCLOUD}: Heterogeneous configuration optimization for distributed databases in the cloud[END_REF]. A pipeline for analytical workloads (OLAP, online analytical processing) consists of two main parts: a storage cluster (e.g., Redis or Cassandra) and a computing cluster (e.g., Spark), the latter operates on the top of the storage cluster to train ML models and execute complex analysis on the stored data. The task of the optimization is to find the best combination of configurations maximizing the objective metric, modeled as follows:

P * = arg max Conf s f (Conf s(t), W L(t)) (1) 
Where P * is the optimal performance that is achieved by the best combination of configurations Conf s. The search space of Conf s is large, e.g., noSQL databases, such as Cassandra and Redis, have 50+ and 40+ performance-sensitive configuration parameters, respectively. Hence, an exhaustive search through all possible configurations is impractical. Therefore, evolutionary search techniques are preferred in this case due to their ability to find close-to-optimal solutions in practical time, e.g., Equation 1.

C. Microservices and edge-cloud partitioning for low-latency communications

The world of connected devices has fueled the IoT era, where applications rely on a multitude of devices aggregating and processing data sets across highly heterogeneous networks. In this context, distributed deployment alongside containerization of the different information channels will shield the systems from isolated failures, conferring resiliency. The other important aspect is the partitioning of the data stream for computing at different degrees of latency-computing nodes at the edge are used for user-facing applications (face recognition, reconnaissance from a video stream, etc.) and the owners will react negatively if the computers become unusable due to intermittent edge analytics. Therefore, the prioritization of the processes needs to change dynamically. In contrast, the application itself needs to be designed in a way that it is insensitive to such dynamic, and unpredictable, changes to the priority level, e.g., it will not time out if there are client-server interactions. Another aspect of the prioritization is that the different analytics results are needed with vastly differing timing requirements. Such high-level, userexpressed requirements will be used to dynamically prioritize in the face of unpredictable arrivals of the events (e.g., a flash flood event, or onset of a locust infestation). Thus, overall the partitioning needs to happen in a top-down or bottom-up manner. Top-down means that we take the high-level user requirements on latency and accuracy and define the partitioning based on that. Bottom-up means that depending on the available resources on each platform, the resource handler decides where to run the application component. Top-down requirements naturally have a higher priority. This will leverage the significant amount of work that has been done in automatic partitioning of applications to run on mobile devices and the cloud [START_REF] Kovachev | Adaptive computation offloading from mobile devices into the cloud[END_REF], [START_REF] Mora | Distributed computational model for shared processing on cyber-physical system environments[END_REF], [START_REF] Singh | Optimize cloud computations using edge computing[END_REF], [START_REF] Li | Auto-tuning neural network quantization framework for collaborative inference between the cloud and edge[END_REF], [START_REF] Dey | Partitioning of cnn models for execution on fog devices[END_REF], [START_REF] Wang | Edge cloud offloading algorithms: Issues, methods, and perspectives[END_REF].

D. Low-power communication technologies

Low-power communication technologies for wireless IoT communication falls broadly in three categories:

• Low-power wide area networks (LPWAN), with a greater than 1 kilometer range, essentially low-power versions of cellular networks, with each "node" covering thousands of end devices. Examples include LoRaWAN, Sigfox, DASH7, and weightless. • Wireless personal area networks (WPAN), typically ranging from 10 to a few 100 meters. Examples include Bluetooth and Bluetooth Low Energy (BLE), ANT, and ZigBee, which are applicable directly in short-range personal area networks or if organized as mesh networks and with higher transmit power, larger coverage areas. • Cellular solution of IoT, including any protocol that are reliant on the cellular connection Some of the bottlenecks in wireless transmission in farm settings include the harsh physical conditions in farm settings and the proliferation of inexpensive and less reliable sensors coupled with the intrinsic challenges of the LoRaWAN and cellular network technologies, such as 5G. The core problem in farm settings is to acquire and transfer disparate data sources to support the various demands of a wide range of computation tasks while meeting the stringent constraints of heterogeneous wireless connectivity available in agricultural domain (especially for the livestock application). Data traffic from different sources and for distinct computation tasks raise diverse requirements to wireless connectivity in terms of its availability, bandwidth, responsiveness, resilience and energy efficiency. For example, sparse data relating behavior changes needs highly responsive, highly reliable communication; streaming videos captured by the drones or surveillance cameras expects high bandwidth but is elastic to varying-bandwidth with appropriate rate adaptation; A large amount of herd-level information can be delay-tolerant but requires energy-efficient connectivity. Further, compared to wireless networks in the urban and civil uses, wireless networking for the livestock experiences more practical challenges regarding coverage holes, fast-fading channels, high interference and timevarying performance. Wireless connectivity is not always available in the wild rural areas: WiFi or other local-area communication (white space, ZigBee, LoRA) to the edge is unavailable when the cattle is far away from the farm facility, and cellular connectivity is missing at places given the poor coverage in the countryside. Naturally, network performance varies at different time intervals.

A suite of techniques for data acquisition and wireless networking can work in concert to meet the diverse demands over the challenging wireless conditions IN agricultural settings. This holistic framework handles IoT data acquisition, storage, local computing, wireless communication, edge computing, as well as the feedback and control loop. It has the ability to deal with a variety of acquired data (such as batch or streaming), balance the local computing and runtime delivery, and ensure network efficiency and reliability. It basically works as follows. We first classify multi-modal data sources into a number of service classes associated with their networking requirements driven by their computation needs. For each service class, we develop a subset of technique options in data acquisition, storage, local processing and wireless delivery. At runtime, we perform two-level adaptions that first pick one or multiple technique choices out of the preconfigured subset and run fine-grained optimizations allowed by each technique component. Next, we elaborate these main ideas further after a brief discussion of data types in an agricultural setting, as exemplified by the livestock application. Driven by diverse requirements (responsiveness, accuracy, resilience, efficiency) of different data types, a suite of protocols can be designed that can work in a holistic manner to handle a variety of data acquisition requirements, and work with unpredictable and varying wireless conditions. In particular, such design should have the ability to deal with a variety of acquired data, balance the local computing and runtime delivery, and ensure network efficiency and reliability.

Agricultural data types relevant to algorithmic design: Batch Data mainly includes information collected from sensing devices, such as information of cropping, feeding, waste, livestock, etc. As the data is often sparse in time and space, it has a loose synchronization requirement and does not require a continuous wireless connectivity. Therefore, batch data can be periodically recorded and asynchronously updated. The main limitation for sensing devices is that they are usually battery powered and have limited operational lifetime. An optimized device management and transmission protocol is quite essential for energy efficient data acquisition and transmission, device lifetime maximization and sustainable development of the livestock system. Streaming Data is usually dynamic video/audio recoded by surveillance cameras or drones for real-time monitoring and early anomaly detection. Such data, especially for real-time monitoring, analytics and diagnosis is time sensitive and demands a continuous highvolume bandwidth for intensive content storage and delivery. A joint procedure of data acquisition and transmission is thus required to adapt the high data volume, handle varying wireless conditions, and support a reliable information flow.

Multi-class data acquisition, storage, and processing: We consider two main classes: delay-sensitive and delay-tolerant. Delaysensitive data is used for real-time monitoring, early anomaly detection and other highly-responsive tasks. It is further divided into multiple sub-classes depending on their bandwidth requirement: continuous high bandwidth (e.g., streaming videos recorded by the cameras or drones), continuous low bandwidth (e.g, streaming audio/voice, GPS or other in-cattle sensing data), or instantaneously-available but short connectivity (e.g., information like critical alarms). Delay-tolerant data is used for strategic tasks and includes sensing data collected for cropping, feeding, waste, livestock, etc. For different classes of data, we propose to develop a suite of techniques: 1) task-aware sampling schemes which reduce data volume but retain data samples essential to the computation tasks, 2) content-aware data aggregation and compression schemes to eliminate statistical redundancy and adjust data volume to fit the dynamic channel capacity and varying wireless condition (e.g., content-aware video frame compression).

Integrated network over heterogeneous wireless communication: We will design an integrated network to enable both delaysensitive communication and delay-tolerant communication (in an opportunistic manner) over heterogeneous wireless connectivity. We consider both infrastructure-based and ad hoc modes. Hybrid mode is also designed for whereby data resides at a location till infrastructure becomes available such as a drone as a data ferry. Network adaptation will be performed at multiple levels spanning from wireless technologies (e.g., cellular, cellular-IoT, WiFi, ZigBee, LoRA etc), transport layer (MPTCP, delay-driven optimization), lower-layer techniques like resource allocation, scheduling and rate adaption, to name a few. Many techniques can be modified at runtime to further optimize data acquisition and transmission under time-varying conditions. These include predictive optimization based on time varying wireless connectivity and data requirements and joint optimization of local storage, local processing, and wirelesss transmissions.

E. Interpretable data analytics

Although there are several predictive analyses models, it is important that the analysis obtained be interpretable. [START_REF] Molnar | Interpretable machine learning: A guide for making black box models explainable[END_REF] explains the importance of interpretable ML. This could help agriculturalists better understand why a model is predicting a certain intervention for crop growth. [START_REF] Vellido | Making machine learning models interpretable[END_REF] provides an overview of several works that address the issue of making ML techniques more interpretable. Dimensionality reduction is a popular choice in this aspect. A comparison of such existing techniques is provided in [START_REF] Van Der Maaten | Dimensionality reduction: a comparative[END_REF]. After dimensionality reduction, it becomes tractable to rank order the different features by their importance, thus providing an important insight to users of the models [START_REF] Kim | Opening up the blackbox: an interpretable deep neural network-based classifier for cell-type specific enhancer predictions[END_REF]. Another aspect of interpretability is to answer post-hoc "sanity check" questions [START_REF] Inouye | Deep density destructors[END_REF], such as, after a rain event, does the model predict the moisture content in the soil is higher. If the model fails to answer correctly a sanity-check question, then further examination of the model is done.

A key challenge in developing AI methodologies for agriculture is the fact that model parameters will vary along several dimensions: the type of animal, the particular farm, the geographic region, and others. Given the need to maintain so many model variants, the fact that sensor data is generated intermittently in large volumes (e.g., data generated during the cow milking process to measure productivity), and the variability in network connectivity over time (e.g., as device battery levels change), centralized model learning (e.g., at designated datacenters) becomes prohibitive: the delays incurred prior to processing cannot provide the latency sensitivity required for many use cases. Ideally then, model training and inference would occur in a distributed manner. Sensors on each farm, for example, could pool their individual computing resources together to operate locally on their own collected data. In distributed learning settings like these, stochastic gradient descent is typically employed for parameter learning, with each device evaluating the gradient of the loss function on a subset of the samples (those that the device itself collected) and message-passing the gradients for global aggregation and synchronization [START_REF] Chen | Communication-optimal distributed clustering[END_REF], [START_REF] Alistarh | QSGD: Communication-efficient sgd via gradient quantization and encoding[END_REF], [START_REF] Wen | Terngrad: Ternary gradients to reduce communication in distributed deep learning[END_REF]. With federated learning [START_REF] Hamer | Fedboost: A communicationefficient algorithm for federated learning[END_REF], [START_REF] Wang | Adaptive federated learning in resource constrained edge computing systems[END_REF]. The interval of time between global aggregations is varied to trade off costs between communication of the updates over the network and how much in step the local models are.

However, these existing distributed optimization techniques suffer from two key issues in the livestock system context. First is how outdated a data sample is relative to new samples being generated, a manifestation of the age of information. The age can increase across farms due to the limited frequency of sampling sensors and of information exchange across farms and thus the algorithm will have to operate on data of varying levels of staleness. For example, each farm has a limited amount of livestock and sensors, which in turn limits the frequency at which samples and corresponding labels can be collected (i.e., the time in-between observing the onset of a sickness for one livestock breed will be larger for any given farm than for the system as a whole). The data available for locally constructed AI models is thus more stale, and may not include the most upto-date information that would be contained in the system as a whole. Second is the heterogeneity of sensors' availabilities and capabilities for collecting, storing, and processing data [START_REF] Sood | Alleviating heterogeneity in SDN-IoT networks to maintain QoS and enhance security[END_REF]. In the agricultural context, different farms may use different brands of sensors, and even within the same farm, factors such as battery level and mobility will change sensor capacities over time. Thus, a solution lying between "purely centralized" and "purely distributed" model learning in the agricultural context is needed. Several promising approaches have been developed for networkaware distributed learning [START_REF] Aji | Sparse communication for distributed gradient descent[END_REF], [START_REF] Mcmahan | Communication-efficient learning of deep networks from decentralized data[END_REF], [START_REF] Tu | Networkaware optimization of distributed learning for fog computing[END_REF]. Network-aware distributed learning augments federated learning by considering costs associated with the processing and transmission of data and model parameters through the network, i.e., to address the heterogeneity challenge. Data/model compression costs may be factored in as well. Additionally, with communication between farms enabled, the most recent data (e.g., sensor measurements from the most recent cow milking) can be prioritized for model learning at available devices, i.e., to address the age of information challenge without introducing centralization. More specifically, work in this space seeks to formulate and solve an optimization that determines (i) where and when samples collected in the network should be processed, (ii) the frequency with which model aggregations and synchronizations between sensors should occur, and (iii) how models should be compressed for storage/transmission to trade off costs associated with computation, communication, latency, and machine learning model error. Data/model compression also poses a key opportunity here. When a model becomes smaller (e.g., for a neural network, having fewer layers and less neurons in each), or is quantized (i.e., uses less precision), it invariably loses some inference accuracy [START_REF] Howard | Mobilenets: Efficient convolutional neural networks for mobile vision applications[END_REF]. But in many scenarios, the gain in latency may be significantly higher and/or more important than the resulting loss in accuracy (e.g., in detecting the onset of sickness among livestock). On the other hand, smaller models may be effective in analyzing simpler video frames, whereas heavy DNN machinery might be needed to handle complex content. The stateof-the-art here is switching between a set of pre-installed models of varying complexity, but in a distributed setting, this kind of model switching with content or device context change can incur huge switching overheads or large memory penalties. For example, a state-of-the-art ensemble model MCDNN [START_REF] Han | Mcdnn: An approximation-based execution framework for deep stream processing under resource constraints[END_REF] selects from a suite of tens of local models, and we show [START_REF] Xu | Approxdet: content and contention-aware approximate object detection for mobiles[END_REF] that a single model (e.g., ResNet with only 34 layers) takes 2.4 GB of memory, while even well-resourced embedded boards have less than 10 GB of memory. Thus, we aim to compress the model on the fly within the network-aware learning optimization, taking into account the available compute resources and any networking bottlenecks.

V. DEMOCRATIZING AI FOR FARMERS

This will require the accessibility of state-of-the-art wireless, database, and ML technologies to farms-even small-scale farms-deploying leading-edge analytics and broadband modalities to gather data from farms (e.g., FarmBeats, AirBand technologies, Open Ag Data Alliance APIs). For example, in Figure 4, these is deployed on the compute server and customized to the kinds of data and the analytics for digital agriculture. This will cover the commercial angle of deploying and operating a system and the foundational (and often open-source) technologies that they build upon, such as, TV whitespace spectrum being used to upload high volume data. To bring the benefits of digital agriculture, and the ML driven insights to the farmers, we need to make these systems affordable. However, existing digital agriculture solutions are expensive for two key reasons.

First, is there Internet access, both in the farmer's house, as well as on the farm. The sensors, drones, and tractors need to send data to the cloud to train the ML models, and the insights need to be conveyed to the farmer's devices. However, the farms are far remote, and do not have access to affordable, broadband Internet. In fact, nearly half the population of the world, most of whom live is rural areas, do not have Internet access. Even in the US, around 20 million rural Americans do not have broadband access [START_REF] Commission | Eighth Broadband Progress Report[END_REF]. And a large part of farmland does not have access either. To bridge this digital divide, we need to come up with innovative solutions to bring broadband Internet in the farms. One such promising technology is the TV White Spaces, which refers to unused TV channels [START_REF] Bahl | White space networking with wi-fi like connectivity[END_REF]. There is abundant unused TV channels in farms, which can be used to send and receive data in farms. Wireless signals also propagate smoothly in the TV frequencies, and are ideal for connecting farms. Satellite-based Internet access also holds promise, where low-earth orbit (LEO) satellites could enable low-cost backhaul Internet access.

Second, the reason for expensive digital agriculture solutions is the lack of platforms of innovation in agriculture. Data acquisition systems are proprietary, and hence getting data from the farm for research is not easy. There is also a dearth of clean data from farms that can be used for building ML models. We propose the building of open-source APIs, and data repositories. These APIs, such as the one from Open Ag Data Alliance, afford researchers and startups a platform to prototype their innovation. Similarly, a cloud-based data repository, for example with drone imagery and satellite data from research farms, will enable researchers to train new models. It will also help create a benchmarking data set to evaluate new innovations in agriculture before bringing it to the growers.

VI. BIG DATA FRAMEWORKS FOR AGRICULTURAL DATA Here we will discuss the popular frameworks through which we will invoke the ML algorithms. This will involve open-source frameworks such as Apache Spark, streaming data processing frameworks such as Apache Flink, and techniques for distributing the ML processing among nodes in a cluster.

A. Streaming data processing

Since most of the data obtained in digital agriculture is real time, stream processing is preferred over batch processing. This adds several constraints: first, the data analytics code has to function at a rate at least as fast as the rate at which data is being generated; second, it has to calculate statistics (such as, range for normalization of data) without access to the entire data and based on some look-ahead window based on the workload dynamism (for example, for a more dynamic workload, the look-ahead window will be lower for higher accuracy, plus the algorithm should be configured for some degree of error handling); and third, the code has to have the right input-output interfaces so that it can ingest streaming data and output its results in a stream. Further, Now we consider some popular open source streaming analytics frameworks-Apache Spark Streaming (https://spark. apache.org/streaming/), Apache Storm (http://storm.apache.org/), Apache Flink (https://flink.apache.org/). These differ in the ways in which they can transform the data stream, i.e., the kinds of operators that they support, the latency of processing, the programming languages they support, etc. [START_REF] Carbone | Apache flink: Stream and batch processing in a single engine[END_REF] provides an opensource stream processing framework. Flink however does not provide its own data storage and needs to be supplemented by frameworks that do, such as Kafka [START_REF] Garg | Apache Kafka[END_REF] or Cassandra [START_REF] Cassandra | Apache cassandra[END_REF]. Apache Spark [START_REF] Zaharia | Apache spark: a unified engine for big data processing[END_REF] is an alternative that can also be used for data parallelism.

B. Batch data processing

There are some data analytics applications that need batch processing in this domain. This includes typically analytics that will be processed for strategic decision-making, which does not have any real-time requirement. Batch data processing is done through data warehousing tools [START_REF] Chaudhuri | An overview of data warehousing and olap technology[END_REF], [START_REF] Nargesian | Data lake management: challenges and opportunities[END_REF] and analytics frameworks like Spark (as opposed to Spark-Streaming) that can ingest data from such warehouses. The ease of this mode of processing is that there are no real-time requirements and the analytics code can access the entire data in one shot. The challenge with this mode of processing is the large volume of data. To fit within the resources of the compute nodes, the data has to be segmented and the analytics code in practice runs on the segmented data.

C. Open-source frameworks

Open-source frameworks provide extensive customization and allow collaboration. These two properties among many make them more preferable. [START_REF] Hashem | The rise of "big data" on cloud computing: Review and open research issues[END_REF] provides an overview of the existing challenges and solutions to handling big data. Hadoop is one such open-source framework that can process large data sets [START_REF] Shvachko | The hadoop distributed file system[END_REF], we have also made an open-source version of Apache-Spark available for ditributed SVM approaches [START_REF] Ghoshal | An ensemble svm model for the accurate prediction of non-canonical microrna targets[END_REF], [START_REF] Ghoshal | A distributed classifier for MicroRNA target prediction with validation through TCGA expression data[END_REF]. It functions on mapreduce programming models. Several warehousing solutions built on Hadoop such as Hive [START_REF] Thusoo | Hive: a warehousing solution over a mapreduce framework[END_REF] are also available. Apache Drill is another open-source framework that provides interactive analysis of big data [START_REF] Hausenblas | Apache drill: interactive ad-hoc analysis at scale[END_REF]. [START_REF] Chandarana | Big data analytics frameworks[END_REF] provides a comparative study of three opensource frameworks, Hadoop, Drill, and the Project Storm.

VII. ANALYTICS FOR ALTERNATIVE AGRICULTURE

Increasing global energy demand and environmental concerns associated with petroleum have raised interest in carbon-neutral biofuels for reducing dependency on fossil fuels that result in human-caused (anthropogenic) greenhouse gases. Among biofuels, although ethanol is a renewable biofuel in use, made from biomass feedstocks, it contains about 30% lesser energy than gasoline per gallon. Advanced biofuels like butanol, isobutanol, fatty-acid and isoprenoid-derivatives are more energy dense with combustion properties similar to existing fuels. However, the native pathway of microbes is significantly low for these fuels for commercialization. Metabolic engineering using control theory and ML approaches can redirect the cellular fluxes toward improving the titer of the microbial synthesis of these higher energy density biofuels. advanced biofuels. Advanced biofuels are less volatile than ethanol and are often produced from lignocellulose destruction, the structural framework for which is in the ballpark of 30-50% cellulose, 15-35% hemicelluose, and 10-20% lignin [START_REF] Leitner | Advanced biofuels and beyond: chemistry solutions for propulsion and production[END_REF]. The biofuel is generated by first breaking down the starting materials into small ingredients, followed by hydrolysis to fermentable sugar products, which are finally fermented to biofuels. This is in line with thinking of the entire managed ecosystem of "farming", whether it be for food crops, biofuels, or fibers. Following are some of the high-level optimization strategies that can be leveraged for advanced biofuel production, an exemplar alternative agriculture example for this vision article.

a) Microbial production of advanced biofuels: Microorganisms can be engineered to produce bulk chemicals such as biofuels but the produced chemicals are often toxic to the cultured cells, and there is always a trade-off between the biofuel production and cell survival, limiting biofuel production. One of the possible ways to increase biofuel production is to increase the tolerance of the cultured cells toward the end product chemical. Biofuel tolerance can be improved by reprogramming the innate metabolism of these microorganisms, such as by using genome engineering [START_REF] Chaterji | Crispr genome engineering for human pluripotent stem cell research[END_REF], [START_REF] Gleditzsch | Pam identification by crispr-cas effector complexes: diversified mechanisms and structures[END_REF] or the newer prokaryotic genome editors, which do not require the protospacer adjacent motif (PAM) sequence for cleavage [START_REF] Fu | The prokaryotic argonaute proteins enhance homology sequence-directed recombination in bacteria[END_REF]. However, tolerance to biofuels like ethanol, or glucose mixtures is not a monogenetic trait. It requires mutations in multiple genes and pathways to be accurately mapped.

There are several ways in which this mapping can be "learned", one of them is to culture the cells in a stressful environment containing high concentration of the chemical, for example, ethanol, against which the tolerance of the cells, for example, E. coli, is desired to be improved. This triggers mutations in the cells as a response to adapt in the given environment of high ethanol stress. These mutations could be causal, that is, adaptive mutations triggered by the high stress, or non-causal passenger mutations. Identifying the adaptive mutations from passenger mutations is a difficult problem. Studies have successfully identified single genes that are responsible for the adaptive mutation toward biofuel tolerance, albeit tolerance is a complex trait influenced by multiple genes and pathways. Near-lethal stress conditions can enable evolution producing populations that have acquired a hypermutator phenotype and are tolerant toward the stress applied. The genes and pathways responsible for this adaptive mutation can be identified using network-based computational approaches. This requires analyzing the temporal profile of adaptation to ethanol stress. The identification of mutations occurring during the evolution of the microorganism, coupled with the functional implication of each mutation at the protein level can provide us with enough information to computationally map out the adaptive pathways that lead to increased tolerance toward a certain biofuel like ethanol.

Once the results are found to be consistent in independent populations of a certain microorganism, the hypothesis can be validated in actual laboratory settings by genetically modifying the organism's genome. For example, the genome sequencing data of E. coli (strain SX4) that gradually evolved to tolerate high ethanol stress is available in the SRA repository of NCBI, PRJNA380734 (https://www.ncbi.nlm.nih.gov/bioproject/380734). The data for yeast evolving under ethanol stress is available as the YEAS-TRACT database (http://www.yeastract.com/). The mutations in the genes could be identified over time, and the corresponding genes could be maintained as nodes in a gene interaction graph. Such a data structure could make it easy to identify the pathways that lead to increased tolerance toward ethanol stress. Not all mutations are likely to be a part of the adaptive phenotype, and therefore, in previous studies, for example [START_REF] Swings | Adaptive tuning of mutation rates allows fast response to lethal stress in escherichia coli[END_REF], a relevance score was computed for all mutations based on some prior information and the frequency of occurrence during a population's increased fitness. From this graph, a sub-graph has to be computed in a way that genes with large relevance scores are chosen and the paths within the sub-graph have a higher frequency of occurrence. Such computation needs to take care that the results are least affected by noise due to passenger mutations. Since the overall approach is mathematical, the computations may be repeated with varying parameters that will result in different sized subgraph identification, or selection of mutated genes above a certain relevance score or pathways with occurrence frequency above a certain threshold. After complete analysis of the results, the best results can be chosen based on certain criteria that reflect actual biological phenomena, and biological validation can be done.

b) Biorefining: The processing facilities that would utilize microbial biocatalysts for production of advanced biofuels, and other bioproducts, have evolved and developed under major research funding from the US DOE, industry, and USDA, and government support of renewable fuels and products by the US EPA. As a consequence, a significant capital infrastructure has developed for processing corn to starch-based ethanol, and to a smaller extent, vegetable oil to biodiesel and aviation biofuels. This significant capital infrastructure, much of which has been amortized, provides a unique opportunity for implementing second generation (cellulosic) processing to obtain biofuels and bioproducts from cellulose containing feedstocks, and result in products with a much lower carbon footprint. The basic operational unit operations, shown in Figure 5, cut across different agricultural feedstocks. This equipment can incorporate the latest developments in biocatalysts that utilize similar conditions as corn processing, but enable re-purposing of existing capital infrastructure to obtain previously vetted products from cellulose instead of starch.

While these unit operations are familiar to bioprocess engineers, the advances in biotechnology that may be implemented are broad, and successful (economic) application requires care selection and optimization of enzymes, directed sequences of mixing, temperature change, pH control, feeding strategies, control of solids characteristics (as in cellulosic biomass), separations of solid/liquid and liquid/soluble components, product concentration and stabilization, water recycle, energy integration, and matching of small variations in matrices of operating conditions to different agricultural feedstocks. The reagents, catalysts, feedstocks, products, and co-products are environmentally compatible, and conditions of temperature, pressure, and fluid composition are represented by temperatures in the range of 100 • C and pressures below 200 psig, making this type of processing able to be carried out locally, much as is done now for corn dry mills. However, there is a critical need for data analytics and machine learning using inputs from industrial practice, and the literally thousands of papers, published globally, that each describe small advances in the processing of agriculturally derived renewable resources into fermentable sugars or other precursors for advanced biofuel and bioproduct manufacture.

Because of the wide-range of crops, a diverse portfolio of processes and organisms, varying compositions, requirements for using multi-enzyme formulations, new microorganisms, and a range of processing conditions, it is difficult to compare results that might lead to economically feasible processes on a side-byside basis. The opportunity now exists to assemble and analyze a huge amount, but very diverse data set to establish a ground-truth of common denominators of operating conditions that are likely to result in success criteria: high yields with high conversions, high concentrations, acceptable purity, and low energy inputs by selecting specific combinations of conditions that will be attractive in processing a range of feedstocks in existing (corn) biorefineries. Data analytics has the potential to direct future fundamental research for the engineering of renewable resources to achieve low carbon footprint and sustainable bioproducts by mapping results of previously reported, disparate studies into combinations of conditions that are likely to meet the success criteria. These conditions would form the basis of process sets that match with feedstocks and operating conditions, while identifying envelopes of uncertainty to define gaps to be addressed by hypothesis driven research.

VIII. ECONOMICS, POLICY, AND DECISION MAKING

We will discuss the policy issues that should regulate the use of big data and the economic factors that will be important for the adoption of big data. The most relevant policy questions in digital agriculture regard the value and legal status of farm and related business data. Though farm data enjoy some of the intellectual property protections afforded to trade secrets, its legal ownership structure remains ambiguous [START_REF] Miller | Estimating value, damages, and remedies when farm data are misappropriated[END_REF], [START_REF] Ferrell | Legal issues on the farm data frontier, Part I: managing firstdegree relationships in farm data transfers[END_REF]. The decision to subscribe to a data service provider may be impacted by fears of personally identifiable information (PII) being misappropriated. Yet farm data generates positive network externalities when aggregated across a large number of operations. 

A. Profitability and on-farm decision making

Site-specific farm management has the potential to enhance farm profitability while conserving resources. But despite advancements in field sensors, GPS guidance, and grid soil sampling, adoption by farmer operators of has fallen short of expectations [START_REF] Schimmelpfennig | Farm profits and adoption of precision agriculture[END_REF], [START_REF] Bullock | The value of variable rate technology: an information-theoretic approach[END_REF], [START_REF] Baerenklau | Dynamics of agricultural technology adoption: Age structure, reversibility, and uncertainty[END_REF]. Operator demographics, operation size, and perceived benefits influence the decision to invest in site-specific management practices [START_REF] Thompson | Farmer perceptions of precision agriculture technology benefits[END_REF], [START_REF] Schimmelpfennig | Farm profits and adoption of precision agriculture[END_REF]. Subsequent economic returns to adoption depend on the nature of the adopted technology and its interface with on-farm decision making [START_REF] Bullock | From agronomic research to farm management guidelines: A primer on the economics of information and precision technology[END_REF]. Miller et al. (2019) [START_REF] Miller | Farm adoption of embodied knowledge and information intensive precision agriculture technology bundles[END_REF] identify two types of precision agriculture technologies: embodied knowledge-tools that generate value in isolation such as GPS guidance systems or automatic section control-and information intensive-tools that produce data for use in future decision making such as yield monitors, grid soil sampling, or electro-chemical sensors. Embodied knowledge technologies create convenience the moment they are employed while the benefits of information-intensive technologies are revealed over a longer time horizon and depend on their role in the on-farm decision making process [START_REF] Thompson | Farmer perceptions of precision agriculture technology benefits[END_REF]. Differences in the immediacy and measurability of realized gains may explain differences in adoption rates across technology types. Use of variable rate technology (VRT) and GPS soil mapping, for example, has consistently lagged that of GPS guidance systems [START_REF] Schimmelpfennig | Farm profits and adoption of precision agriculture[END_REF].

Rather than assessing technologies in isolation, agricultural economists are increasing interested in how producers bundle complementary tools to create an overall precision technology strategy [START_REF] Schimmelpfennig | Sequential adoption and cost savings from precision agriculture[END_REF], [START_REF] Miller | Farm adoption of embodied knowledge and information intensive precision agriculture technology bundles[END_REF], [START_REF] Lambert | Bundled adoption of precision agriculture technologies by cotton producers[END_REF]. Profitable use of "hard" technologies" such as variable rate planters and fertilizer spreaders depends crucially on the availability of accurate intra-field soil data, or "soft" technology inputs [START_REF] Bullock | The value of variable rate technology: an information-theoretic approach[END_REF]. These data sources however, are themselves costly to obtain. Moreover, the optimal data collection frequency or sampling density is not obvious and likely varies by field [START_REF] Franzen | Field soil sampling density for variable rate fertilization[END_REF].

Unless the economic returns to site-specific management cover both the up-front investment and the cost of collecting actionable information, adoption will be low. The unit cost of grid soil sampling for example-traditionally around $10 per sample performed by manually extracting cores and sending to a lab for analysis-will fall as automated sampling technologies become commercially viable. This does not however, guarantee a profitable result from site-specific farm management. Without a sufficient amount of within field variation, uniform input application may be economically optimal. Future research on decision making in the field of digital agriculture should focus both on the adoption decision and how producers optimally implement technologies given their information constraints.

B. Policy

The most relevant policy questions in digital agriculture regard the value and legal status of farm data. Agricultural data generates benefits when aggregated across a large number of farm operations [START_REF] Miller | Estimating value, damages, and remedies when farm data are misappropriated[END_REF]. These benefits-referred to as network effects or network externalities-grow with the number of participants [START_REF] Rohlfs | A theory of interdependent demand for a communications service[END_REF]. Business models such as Farmers Business Network, Inc. (FBN) have demonstrated the value of data sharing through its crowdsourced database of input costs and performance bench-marking. But farm data often remains siloed within the farm gate [START_REF] Coble | Big data in agriculture: A challenge for the future[END_REF]. An individual farm's data leads to more reliable recommendations when pooled with comparable operations using similar practices and inputs. To overcome this "small data" problem, the perceived benefits of joining a big data community must exceed the perceived costs-most of which stem from privacy concerns over data misappropriation [START_REF] Griffin | Big data considerations for rural property professionals[END_REF]. In particular, farm operators may fear that personally identifiable information (PII) could be used against them by regulators or environmental activists [START_REF] Ferrell | Legal issues on the farm data frontier, Part I: managing firstdegree relationships in farm data transfers[END_REF].

To better understand the privacy concerns of producers, the nature and legal status of agricultural data must be considered. [START_REF] Miller | Estimating value, damages, and remedies when farm data are misappropriated[END_REF] [START_REF] Miller | Estimating value, damages, and remedies when farm data are misappropriated[END_REF] discuss farm data's place on the privatepublic good spectrum. For a good to be a "private good", i.e., its benefits and costs are fully realized by the owner, it must be both rivalrous and excludable. A "public good" is neither rivalrous nor excludable meaning one's enjoyment of the good does not diminish another's nor can anyone be prevented from using it. Farm data is unlike other farm assets in its intangibility. Copies of farm data can be shared without inhibiting its use by the original owner. In this way, farm data is clearly non-rivalrous [START_REF] Griffin | Big data considerations for rural property professionals[END_REF].

The ability of a farm operator to exclude others from using their data depends on their relationships with data service providers and the data sharing agreements that govern those relationships. For example, equipment manufacturers collect telematics data on newly sold products for the purpose of improving performance and service. The equipment owner has no reasonable expectation of excludability and may not even be aware they opted into such an agreement. Farms that subscribe to a data service provider to manage and analyze their data, e.g. Climate FieldView, are similarly forfeiting excludability. However, data may be partially excludable if access is limited to within the network, or "club," of subscribers. As such, farm data most closely satisfies the definition of a "club good" [START_REF] Miller | Estimating value, damages, and remedies when farm data are misappropriated[END_REF].

Coble et al. (2016) [START_REF] Coble | Advancing u.s. agricultural competitiveness with big data and agricultural economic market information, analysis, and research[END_REF] point out that a farmer's data is not legally protected from disclosure in the way medical records are protected by the Health Insurance Portability and Accountability Act (HIPAA) or education information is protected by the Family Educational Rights and Privacy Act (FERPA). Without overarching legal safeguards for farm data, individual sharing agreements dictate the terms of access and use. Though farm data enjoy some of the intellectual property protections afforded to trade secrets, its legal ownership structure remains ambiguous [START_REF] Ferrell | Legal issues on the farm data frontier, Part I: managing firstdegree relationships in farm data transfers[END_REF]. A recent survey by the American Farm Bureau Federation highlights this concern. Nearly 80% of farmers reported being concerned or extremely concerned about which entities can access their data. Even among data service subscribers, 55% did not know whether they themselves owned or controlled their data [START_REF] Federation | Privacy and security principles for farm data[END_REF]. It is not surprising then that organizations such as Ag Data Transparent and the Ag Data Coalition have emerged to strengthen privacy protections for farm data and give farmers control over how their data is used. Academic research should focus on designing incentive compatible mechanisms that encourage data sharing while protecting farmers' intellectual property.

IX. LOOKING AHEAD

Big data and precision agriculture will likely be a disruptive force in the farm economy over the medium to long-term range. Digital agriculture, with the incorporation of Internet-of-Things (IoT)-based technologies, presents the ability to evaluate a system at multiple levels (individual, local, regional, and global) and generate tools that allow for improved decision making in every sub-process related to digital agriculture. In this article, we have reviewed the different types of datasets and relevant data science processing algorithms in typical field operations together with thoughts on the typical lifecycle for the data to be contributory to the digital farm economy. We have then discussed the storage and fast information-retrieval solutions. Then, we have developed the idea of Machine Learning being adapted for use in digital agriculture, which means putting domain-specific requirements regarding interpretability, distribution, ability to handle intermittent wireless connectivity, and low cost. Finally, we have developed the theme of machine learning and cloud computing for agriculturists by instantiating and implementing open-source data processing frameworks. We conclude by discussing analytics for alternative agriculture for generation of biofuels and policy challenges of the implementation of digital agriculture approaches in the wild.

An important focus of the paper is on the convergence of IoT and ML on the one side and agricultural sustainability on the other. The ability to track virtually every farm activity through ubiquitous and inexpensive sensors has spurred efforts to increase sustainability and can be verified and certified by third-parties. For example, there are already commercial efforts to monetize on-farm carbon sequestration for farms using regenerative practices [START_REF] Ag | Indigo Ag: Driving progress from seed to soil to sale[END_REF]. Blockchain technology promises to increase sustainability and ensure food safety by authenticating information across the food system [START_REF] Nagaraj | Panel 3 position paper: Blockchain can be the backbone of india's economy[END_REF]. In additional to privacy concerns, adoption of precision agriculture and big data is limited by the availability of broadband internet in rural areas [START_REF] Whitacre | How connected are our farms?[END_REF]. Thus, looking at the policy angle, integrated farm equipment and sensors pipe data up to the cloud in real time meaning farmers are more reliant on upload speeds than the typical user. The societal returns to rural broadband are large though immediate private gains are often unclear. This suggests that highspeed internet will be under-supplied in the market and stresses a role for governmental support. This has been argued by federal government sources like USDA [START_REF]Insights on Rural Broadband Infrastructure and Next Generation Precision Agriculture Technologies[END_REF] as well state government sources, such as in Indiana [START_REF] Grant | Estimation of the Net Benefits of Indiana Statewide Adoption of Rural Broadband[END_REF].
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  Yield maps are generated by harvesters and saved in a proprietary format based on the manufacturer.

	In irrigated fields, soil moisture sensors are often used to
	determine irrigation intervals. Despite the wealth of available
	data in most operations, very little is actually analyzed
	and used to inform future decisions. The most commonly
	used data sets are scouting data (used to make chemical
	application decisions) and soil sampling data (used to make
	fertilizer recommendations). More progressive producers use
	yield data to determine variable rate fertilizer application and
	for comparison of seed varieties. Much of the data collected

• Fertilizer application: Based on the results of the soil sampling, a fertilizer recommendation is generated. If georeferenced points are used, a variable rate prescription can be generated. If fertility results are aggregated across the field, a flat rate is applied, maybe proprietary or shapefile.

• Planting: Can generate as applied maps that include information on population, singlulation, misses, again proprietary or shapefile. • Scouting: Conducted as frequently as once a week during growing season. Traditionally data comes in the form of a report that details presence of disease, insect, and weed pressure. Currently much research is being conducted on drone-based scouting using multi-spectral imagery to determine nutrient and water deficiencies as well as detect disease, insect, and weed pressure. Data format is large image files that need post processing. • Spraying: Based on the results of the scouting reports spraying operations are conducted. Most modern sprayers can generate as applied maps. Files are saved in a proprietary format based on the sprayer manufacturer. • Harvesting:

Table I :

 I Example of Matrix for Mapping Biorefining Steps with Operational Conditions.

													Added
													Chemi-
													cals
	Unit Operation	Solids (in	Enzyme	MicroorganismTime		Temp	Pres	Mixing	Viscosity	pH	Acid	Base
		water)	Loading							(Yield			Surfactant
		Concen-								Stress) Pa			Other
		tration										
	Preprocessing	80	?	NA	hrs		Amb.	1 bar	NA	NA	6	none
	Storage	80	NA	NA	days	to	Amb.	1 bar	NA	NA	7	none
					months							
	Feedstock	25	1 mg/g	NA	hrs		50 • C	1 to 4 bar	tbd	100	5	none
	Disassembly											
	Deconstruction (hy-	25	1 mg/g	Yeast	hrs		50 • C	1 bar	tbd	20	5	tbd
	drolysis)											
	Fermentation	25	1 mg/g	Yeast	days		30 • C	1 bar	tbd	20	5	tbd
	Separations	20	NA	NA	minute		25 • C	1 bar	tbd	NA	NA	tbd
	Solid/Liquid											
	Separations	10	NA	NA	minute		100 • C	1 bar	tbd	NA	NA	tbd
	Liquid/Solubles											
	Product Recovery	>99.9%	NA	NA	NA		Not	1 bar	tbd	NA	NA	tbd
							Known					
	Business models, such as Farmers Business Network, Inc. (FBN),					
	have demonstrated the value of data sharing. Academic research					
	should focus on designing incentive-compatible mechanisms that					
	encourage data sharing with public universities while protecting					
	farmers' intellectual property (IP).									

Our name derives from Distributed Learning for Agriculture Systems through Artificial intelligence. This is an inspiration from arrayed lattices that integrate into innovative structures mapped to both structural cohesion and creativitya reflection on how the correct optimization techniques can result in targeted lattices or cherry-picked neural network architectures for desired tasks.