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ON THE DEFINITION OF HIGHER GAMMA FUNCTIONS

RICARDO PÉREZ-MARCO

Abstract. We generalize our previous new definition of Euler Gamma function
to higher Gamma functions. With this unified approach, we characterize Barnes
higher Gamma functions, Mellin Gamma functions, Barnes multiple Gamma func-
tions, Jackson q-Gamma function, and Nishizawa higher q-Gamma functions. This
approach extends to more general functional equations. This generalization reveals
the multiplicative group structure of solutions of the functional equation that ap-
pears as a cocycle equation. We also generalize Barnes hierarchy of higher Gamma
function and multiple Gamma functions. In this new approach, Barnes-Hurwitz
zeta functions are no longer required for the definition of Barnes multiple Gamma
functions. This simplifies the classical definition, without the necessary analytic
preliminaries about the meromorphic extension of Barnes-Hurwitz zeta functions,
and defines a larger class of Gamma functions. For some algebraic independence
conditions on the parameters, we have uniqueness of the solutions, which implies
the coincidence of our multiple Gamma functions with Barnes multiple Gamma
functions.

1. Introduction

The first result is a new characterization and definition of Euler Gamma function
that was already presented in the article [19] dedicated to Euler Gamma function.
We can develop in a natural way the classical formulas in the theory from this new
definition. We denote the right half complex plane by C+ = {s ∈ C; Re s > 0}.
Theorem 1.1. There is one and only one finite order meromorphic function Γ(s),
s ∈ C, without zeros nor poles in C+, with Γ(1) = 1, Γ′(1) ∈ R, that satisfies the
functional equation

Γ(s+ 1) = sΓ(s)

Definition 1.2 (Euler Gamma function). The only solution to the above conditions
is the Euler Gamma function.
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2 R. PÉREZ-MARCO

Without the condition Γ′(1) ∈ R we don’t have uniqueness, but we have the fol-
lowing result:

Theorem 1.3. Let f be a finite order meromorphic function in C, without zeros nor
poles in C+, and satisfies the functional equation

f(s+ 1) = s f(s) ,

then there exists a ∈ Z and b ∈ C such that

f(s) = e2πias+bΓ(s) .

Moreover, if f(1) = 1 then we have

f(s) = e2πiasΓ(s) .

The proof can be found in [19] but we reproduce it here and as a preliminary result
for the generalizations that are the core of this article. We refer to the companion
article [19] for the various definitions of Euler Gamma function and the historical
development of the subject of Eulerian integrals. We strongly encourage the reader
to study first [19], and also the bibliograhic notes in [20] before going into the gener-
alizations that we develop in this article.

In the proof we use the elementary theory of entire function and Weierstrass fac-
torization that can be found in classical books as [5] (or in the Appendix of [19]).

Proof. We prove existence and then uniqueness.

Existence: If we have a function satisfying the previous conditions then its divisor
must be contained in C − C+, and the functional equation implies that it has no
zeros and only simple poles at the non-positive integers. We can construct such a
meromorphic function g with such divisor, for example,

(1) g(s) = s−1

+∞
∏

n=1

(

1 +
s

n

)−1

es/n

which converges since
∑

n≥1 n
−2 < +∞, and is of finite order. Now, we have that the

meromorphic function g(s+1)
sg(s)

has no zeros nor poles and it is of finite order (as ratio

of finite order meromorphic functions), hence there exists a polynomial P such that

g(s+ 1)

sg(s)
= eP (s) .

Consider a polynomial Q such that

(2) ∆Q(s) = Q(s+ 1)−Q(s) = P (s)
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The polynomial Q is uniquely determined from P up to a constant, hence we can
choose Q such that eQ(0) = g(1)−1. Now we have that Γ(s) = e−Q(s)g(s) satisfies the
functional equation and all the conditions.

Uniqueness: Consider a second solution f . Let F (s) = Γ(s)/f(s). Then F is an
entire function of finite order without zeros, hence we can write F (s) = expA(s) for
some polynomial A. Moreover, the functional equation shows that F is Z-periodic.
Hence, there exists an integer a ∈ Z, such that for any s ∈ C,

A(s+ 1) = A(s) + 2πia .

It follows that A(s) = 2πias + b for some b ∈ C. Since F (1) = 1, we have eb = 1.
Since F ′(1) ∈ R, and F ′(1) = F ′(1)/F (1) = 2πia ∈ R we have a = 0, thus F is
constant, F ≡ 1 and f = Γ. �

Remarks.

• Using the functional equation we can weaken the conditions and request only
that the function is meromorphic only on C+ with the corresponding finite
order growth. We can also assume that it is only defined on a cone containing
the positive real axes, a vertical strip of width larger than 1, or in general
with any region Ω which is a transitive region for the integer translations and
f satisfies the finite order growth condition in Ω when s→ +∞.

Proposition 1.4. Let Ω ⊂ C a domain such that for any s ∈ C there exists
an integer n(s) ∈ Z such that s + n(s) ∈ Ω, and |n(s)| ≤ C|s|d, for some

constants C, d > 0 depending only on Ω. Then any function Γ̃ satisfying a
finite order estimate in Ω and the functional equation Γ̃(s+ 1) = sΓ̃(s) when
s, s+ 1 ∈ Ω, extends to a finite order meromorphic function on C.

Proof. Let Γ̃ be such a function. Let Ω be corresponding region. Iterating
the functional equation we get that Γ̃ extends meromorphically to the whole
complex plane. Then, if g is the Weierstrass product (1) and Q a polynomial

given by (2), the function h(s) = Γ̃(s)/(e−Q(s)g(s)) is a Z-periodic entire
function. Since 1/(e−Qg) is an entire function of finite order, we have in Ω
the finite order estimate for h. Using that |n(s)| ≤ C|s|d, we get that h is of

finite order, hence Γ̃ is meromorphic and of finite order in the plane. �

• Assuming Γ real-analytic we get Γ′(1) ∈ R, but this last condition is much
weaker. Also, as it follows from the proof, we can replace this condition by
Γ(a) ∈ R for some a ∈ R − Z, or only request that Γ is asymptotically real,
limx∈R,x→+∞ ImΓ(x) = 0. Without the condition Γ′(1) ∈ R the proof shows
that Γ is uniquely determined up to a factor e2πiks with k ∈ Z.
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2. General definition.

2.1. General definition and characterization. We first need to recall the notion
of “Left Located Divisor” (LLD) function that is useful in the theory of Poisson-
Newton formula for finite order meromorphic functions ([14], [15]).

Definition 2.1 (LLD function). A meromorphic function f in C is in the class LLD
(Left Located Divisor) if f has no zeros nor poles in C+, i.e. Div(f) ⊂ C− C+.

The function is in the class CLD (Cone Located Divisor) if its divisor is contained
in a closed cone in C− C+.

The following Theorem is a generalization of Theorem 1.1 which results for the
simple LLD function f(s) = s.

Theorem 2.2. Let f be a real analytic LLD meromorphic function in C of finite
order. There exists a unique function Γf , the Gamma function associated to f , sat-
isfying the following properties:

(1) Γf(1) = 1 ,
(2) Γf(s+ 1) = f(s)Γf(s) ,
(3) Γf is a meromorphic function of finite order,
(4) Γf is LLD,
(5) Γf is real analytic.

If f is CLD then Γf is CLD.

Proof. The proof follows the same lines as the proof of Theorem 1.1. First, we prove
that the functional equation (2) determines the divisor of Γf , then we construct a
solution using a Weierstrass product, and finally we prove the uniqueness.

• Determination of the divisor.

As usual, we denote the divisor of f as

Div(f) =
∑

ρ

nρ(f).(ρ)

where the sum is extended over ρ ∈ C and nρ(f) is the multiplicity of the zero if ρ is
a zero, the negative multiplicity of the pole if ρ is a pole, or nρ(f) = 0 if ρ is neither
a zero or pole. A divisor is said to be LLD, resp. CLD, if it is the divisor of a LLD,
resp. CLD, function.
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Lemma 2.3. If Γf is LLD and satisfies the functional equation (2), then the divisor
of Γf is

Div(Γf ) = −
∑

ρ,k≥0

nρ(f) · (ρ− k)

where
Div(f) =

∑

ρ

nρ(f) · (ρ)

and

(3) nρ(Γ
f) = −

|ρ|
∑

k=0

nρ+k(f)

If the divisor Div(f) is LLD, resp. CLD, then Div(Γf) is LLD, resp. CLD.

We allow ourselves the slight abuse of notation Div(Γf) to denote the divisor of a
potential solution Γf when we have not yet proved the existence of Γf .

Proof. For any ρ ∈ C, the functional equation gives

nρ+1(Γ
f) = nρ(f) + nρ(Γ

f) ,

or equivalently
nρ(Γ

f) = −nρ(f) + nρ+1(Γ
f) ,

Hence, by induction, we have

nρ(Γ
f) = −

m
∑

k=0

nρ+k(f) + nρ+m(Γ
f )

and since Γf is LLD, for m ≥ −Re ρ ≥ |ρ| we have nρ+m(Γ
f ) = 0, so

(4) nρ(Γ
f) = −

|ρ|
∑

k=0

nρ+k(f) = −
+∞
∑

k=0

nρ+k(f)

and we get, with ρ′ = ρ+ k,

Div(Γf ) = −
∑

k≥0

∑

ρ

nρ+k · (ρ) = −
∑

ρ′,k≥0

nρ′ · (ρ′ − k)

which gives the formula for Div(Γf ). �
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• Convergence exponent of a divisor.

Definition 2.4. The divisor of f has exponent of convergence α > 0 if

||Div(f)||α =
∑

ρ6=0

|nρ(f)|.|ρ|−α < +∞ .

We recall that a meromorphic function of finite order has a divisor with some finite
exponent of convergence. More precisely, if o(f) < +∞ is the order of f , then for
any ǫ > 0, α = o(f) + ǫ is an exponent of convergence of its divisor.

Proposition 2.5. If Div(f) is LLD of finite order, then Div(Γf) given by Lemma
2.3 is LLD and of finite order.

Proof. We already known from Lemma 2.3 that Div(Γf) is LLD. We prove that if α
is an exponent of convergence of Div(f), then 2α + 1 is an exponent of convergence
of Div(Γf) (we don’t try to be sharp here).

First, observe that since α is an exponent of convergence for f , then

||Div(f)||α =
∑

ρ6=0

|nρ(f)|.|ρ|−α ≤ C(α) < +∞ ,

so we get
|nρ(f)| ≤ C(α)|ρ|α .

Using equation (3) we have, for |ρ| ≥ 1, and C0(α) = C(α)(1 + 2α+1/(α+ 1)),

|nρ(Γf )| ≤
|ρ|
∑

k=0

|nρ+k(f)| ≤ C(α)

|ρ|
∑

k=0

|ρ+ k|α

≤ C(α)

|ρ|
∑

k=0

(|ρ|+ k)α

≤ C(α)

(

|ρ|α +
∫ |ρ|

0

(|ρ|+ x)α dx

)

≤ C(α)

(

|ρ|α + 2α+1 − 1

α+ 1
|ρ|α+1

)

≤ C0(α)|ρ|α+1

Therefore, we have

||Div(Γf )||2α+1 =
∑

ρ,|ρ|≥1

|nρ(Γf)|.|ρ|−(2α+1) < +∞ .

�
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We prove a more precise result when f is in the class CLD.

Proposition 2.6. If α > 0 is an exponent of convergence for f in the class CLD,
then Γf is CLD and α+1 is an exponent of convergence for Γf . More precisely, there
exists a constant C > 0 such that

||Div(Γf)||α+1 ≤ C ||Div(f)||α+1 +
C

α
||Div(f)||α

Proof. Lemma 2.3 proves that Γf is CLD if we start with f CLD. Now, if f is CLD,
there is a constant C > 0 such that for any k ≥ 1 and ρ in the left cone (the constant
C depends on the cone)

|ρ− k|−1 ≤ C(|ρ|+ k)−1 .

Then we have, with ρ′ = ρ+ k,

||Div(Γf)||β =
∑

ρ6=0

|nρ(Γf)|.|ρ|−β

=
∑

ρ6=0

|ρ|
∑

k=0

|nρ+k(f)|.|ρ|−β

=
∑

ρ′ /∈N

|nρ′(f)|
+∞
∑

k=0

|ρ′ − k|−β

≤ C
∑

ρ′ 6=0

|nρ′(f)|
+∞
∑

k=0

(|ρ′|+ k)−β

= C
∑

ρ′ 6=0

|nρ′(f)|.|ρ′|−β + C
∑

ρ′ 6=0

|nρ′(f)|
∫ +∞

0

(|ρ′|+ x)−β dx

≤ C
∑

ρ′ 6=0

|nρ′(f)|.|ρ′|−β +
C

β − 1

∑

ρ′ 6=0

|nρ′(f)|.|ρ′|−β+1

= C ||Div(f)||β +
C

β − 1
||Div(f)||β−1

hence, for β = α + 1 the sum is converging and we prove the Lemma. �

• Existence of Γf .

Since f has finite order, the divisor of f has a finite convergence exponent. Hence,
Div(Γf ) determined by Lemma 2.3 has a finite exponent of convergence. Let d ≥ 1
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be an integer that is an exponent of convergence for this divisor (the case d = 0 only
occurs for a finite divisor). We consider the Weierstrass product,

g(s) = s−n0(f)
∏

ρ6=0

Ed(s/ρ)
nρ(Γf )

where

Ed(x) = (1− x) exp

(

x+
x2

2
+ . . .+

xd

d

)

.

Then g has order d and Div(g) = Div(Γf ). Therefore the meromorphic function

g(s+ 1)

f(s)g(s)

is of finite order and has no zeros nor poles. So, it is an entire function of finite order
without zeros. Therefore, there exists a polynomial φ such that

(5)
g(s+ 1)

f(s)g(s)
= eφ(s)

There is a unique polynomial ψ such that ψ(0) = 0 and

(6) ψ(s+ 1)− ψ(s) = φ(s).

We can obtain ψ directly by developing φ on the bases of falling factorial polynomials,
sk = s(s− 1) . . . (s− k + 1), that diagonalize the difference operator, ∆sk = k sk−1,

φ(s) =
n
∑

k=0

ak
k!
sk

then

ψ(s) =
+∞
∑

k=0

ak
(k + 1)!

sk+1 .

Now, considering a constant c such that ec = g(0)−1 the meromorphic function

(7) Γf (s) = eψ(s)+cg(s),

satisfies Γf(1) = 1 (condition (1)), the functional equation (2) and all the other
conditions in Theorem 2.2, and we have proved the existence.

• Uniqueness of Γf .

Consider a second solution G. Let F (s) = Γf (s)/G(s). Then F is an entire function
of finite order without zeros, hence we can write F (s) = expA(s) for some polynomial
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A. Moreover, the functional equation shows that F is Z-periodic. Therefore, there
exists an integer a ∈ Z, such that for any s ∈ C,

A(s+ 1) = A(s) + 2πia .

It follows that A(s) = 2πias + b for some b ∈ C. Since F (1) = 1, we have eb = 1.
Since F ′(1) ∈ R, and F ′(1) = F ′(1)/F (1) = 2πia ∈ R we have a = 0, thus F is
constant, F ≡ 1 and G = Γf .

�

2.2. Uniqueness results. It is interesting to note, following the argument for unique-
ness, that we can drop the normalisation condition (1) and the real-analyticity con-
dition (5) and we obtain the following Theorem (this is similar to Theorem 1.3),

Theorem 2.7. Let f be a LLD meromorphic function in C of finite order. We
consider a function g satisfying

(1) g(s+ 1) = f(s)g(s) ,
(2) g is a meromorphic function of finite order,
(3) g is LLD,

Then there is always a solution Γf(s) and any other solution g is of the form g(s) =
e2πias+bΓf(s) for some a ∈ Z and b ∈ C. If f is CLD then the solutions are CLD.

Moreover, we have possible further normalizations:

• If we add the condition g(1) = 1, or g(k) = 1 for some k ∈ N∗, then all
solutions are of the form g(s) = e2πiasΓf(s).

• If f−1 has a pole at 0 and we add the condition Ress=0 g = 1 then all solutions
are of the form g(s) = e2πiasΓf(s).

• If f has no zero at 0 then we can add the condition g(0) = 1 and all solutions
are of the form g(s) = e2πiasΓf(s).

• If we add the conditions g(1) = 1 and g(ω) ∈ R where ω ∈ R+ − Q then
g = Γf is unique.

• If we add the conditions g(1) = 1 and g′(1) ∈ R then the solution g = Γf is
unique.

• If we add the hypothesis that f is real analytic and the condition that g is real
analytic then all solutions are of the form g(s) = c.Γf(s) with c ∈ R∗.

Proof. With the same proof as before we get the existence of a solution Γf(s) and
that any other solution is of the form g(s) = e2πias+bΓf(s) (note that the constant 0
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function is not LLD). For another solution g, the condition g(k) = 1 for k ∈ Z implies
eb = 1, hence the first normalization result. For the second statement we observe that

Ress=0g = ebRess=0Γ
f

hence eb = 1. The third statement is similar to the first one observing that g has no
pole at s = 0. The fourth normalization condition forces b = 0 (first statement) and

e2πiaω = 1

which implies a = 0 because ω is irrational. For the fifth statement, for a second
solution we have, from g(1) = 1, g(s) = e2πiasΓf(s). Differentiate and set s = 1, then
we get

g′(1) = 2πiag(1) +
(

Γf
)′
(1) = 2πia+ 1 ∈ R

hence a = 0 and the solution is unique. For the last statement, g(s) = e2πias+bΓf(s)
and g and Γf real analytic forces a = 0, and eb ∈ R∗. �

Example 2.8. For f(s) = s and the conditions g real analytic and g(1) = 1, this
Theorem is just Theorem 1.1 and the only solution g(s) = Γ(s) is Euler Gamma
function.

Let ω ∈ C+ and consider f(s) = ωs. Then g(s) = ωsΓ(s) is a solution and all the
solutions are of the form

g(s) = e2πias+s logω+bΓ(s) =

for a ∈ Z and b ∈ C (note that the choice of the branch of log ω is irrelevant).

If ω ∈ C∗ and we request g(1) = 1, then all solutions are of the form, with a ∈ Z,

(8) g(s) = e(s−1)(2πia+log ω) Γ(s)

If ω ∈ R+, then f(s) = ωs is real analytic, and if we request g to be real analytic and
g(1) = 1, then, taking the real branch of logω, we must have a = 0 and

(9) g(s) = e(s−1) logω Γ(s)

Example 2.9. Another particular example that is worth noting in this Theorem is
when f(s) = eP (s). Then the solutions are of the form g(s) = eQk(s) where

∆Qk = P + 2πik

for k ∈ Z, where ∆ is the difference operator. This means that Qk(s) = Q0(s) +
2πiks + b, where b ∈ C. If we want solutions normalized such that g(1) = 1 then
eb = 1 and b ∈ 2πiZ.
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2.3. A continuity result. We prove the continuity of the operator Γ : f 7→ Γf for
the appropriate natural topology.

Theorem 2.10. Let (fn)n≥0 be a sequence of meromorphic functions with uniformly
bounded convergence exponent α > 0 and such that

||Div(fn)||α =
∑

ρ∈Div(fn),ρ6=0

|nρ||ρ|−α ≤ M < +∞

for a uniform bound M > 0. We assume that the functions (fn) satisfy the hypothesis
of Theorem 2.2 and that fn → f when n→ +∞, where f is a meromorphic function
and the convergence is uniform on compact sets outside the poles of f . Then f has
convergence exponent bounded by α > 0,

||Div(f)||α ≤ M < +∞
and satisfies the hypothesis of Theorem 2.2, and also we have, uniformly outside the
poles,

lim
n→+∞

Γfn = Γf

Proof. We can read the divisors Div(fn) as an integer valued functions with discrete
support which are converging to Div(f) uniformly on compact sets. By uniform
boundedness of the sums

||Div(fn)||α =
∑

ρ∈Div(fn),ρ6=0

|nρ||ρ|−α

we can pass to the limit and

||Div(f)||α = lim
n→+∞

||Div(fn)||α ≤ M .

Therefore f has finite order. The class of LLD real analytic functions is closed. The
class of functions satisfying the functional equation is also closed, hence f satisfies
the hypothesis of Theorem 2.2, so Γf is well defined.

Now, since Div(fn) → Div(f), we have using Lemma 2.3 that Div(Γfn) → Div(Γf).
On compact sets outside of the support of Div(Γf), the sequence of meromorphic
functions (Γfn)n≥0 is uniformly bounded (otherwise we would have a subsequence
with poles out of the limit that would contradict the convergence of the divisor).
Hence, we can extract converging subsequences. But any limit is identified by the
uniqueness of Theorem 2.2, and we have convergence. �

2.4. Multiplicative group property. Consider the space E of LLD finite order
meromorphic functions in the plane. We have that

E =
⋃

n>0

En
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where En is the subgroup of meromorphic functions of order ≤ n. On En we consider
the topology given by convergence of the divisor on compact sets and the convergence
of functions on compact sets outside the limit divisor. On E we consider the inductive
topology from the exhaustion by the En spaces. Also E and En are stable under
multiplication, and (E , .) and (En, .) are multiplicative topological group. Consider
the closed subgroup E0 ⊂ E of real-analytic functions f normalized such that f(1) = 1.

Theorem 2.11. The map Γ : E0 → E0 such that

Γ(f) = Γf

is an continuous injective group morphism.

Proof. Continuity results from Theorem 2.10. We observe that from

Γf(s+ 1) = f(s)Γf(s)

Γg(s+ 1) = g(s)Γg(s)

we get

Γf(s+ 1)Γg(s+ 1) = f(s)g(s)Γf(s)Γg(s)

and by uniqueness of Theorem 2.2 we get

Γf .Γg = Γfg .

Also, if Γf = 1, then directly from the functional equation we get that f = 1, and
Ker(Γ) = {1}. �

This Theorem justifies using Euler Gamma function as building block of the general
solution by decomposing along the divisor.

Remark.

Consider the shift operator T : E → E , f(s) 7→ T (f) = f(s+ 1) and the associated
multiplicative cohomological equation in g with f given,

T (g).g−1 = f .

We have proved that the cohomological equation can be solved in E by the group
morphism Γ, g = Γf . For f ∈ Eα it can be solved in Eα+1. We observe a similar
phenomenon of “loss of regularity” as in “Small Divisors” problems than in our setting
can be interpreted as “loss of transalgelbraicity”.
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3. Application: Barnes higher Gamma functions.

We generalize the classical hierarchy of Barnes Gamma functions.

Definition 3.1. Let f be a real analytic LLD meromorphic function of finite order
such that f(1) = 1. The higher Gamma functions associated to f is a family (ΓfN)N≥0

satisfying the following properties:

(1) Γf0(s) = f(s),

(2) ΓfN(1) = 1,

(3) ΓfN+1(s+ 1) = ΓfN(s)
−1 ΓfN+1(s), for N ≥ 0,

(4) ΓfN is a meromorphic function of finite order,

(5) ΓfN is LLD,

(6) ΓfN is real analytic.

Theorem 3.2. Let f be a real analytic LLD meromorphic function of finite order
such that f(1) = 1. There exists a unique family of higher Gamma functions (ΓfN)N
associated to f . If f is CLD then the ΓfN are CLD.

Proof. We set Γf0(s) = f(s), and for N ≥ 0, the function ΓfN+1 is constructed from

1/ΓfN using Theorem 2.2, and is unique. �

The uniqueness property implies the following multiplicative group morphism prop-
erty:

Corollary 3.3. For N ≥ 0, we consider the map ΓN : E0 → E0 defined by ΓN (f) =

ΓfN . Then ΓN is a continuous injective group morphism.

Proof. Given f, g ∈ E0, it is clear that the sequence of functions ΓfN .Γ
g
N satisfy all

the properties of higher Gamma functions associated to fg, hence, by uniqueness, we
have ΓfgN = ΓfNΓ

g
N , hence the group morphism property. The kernel is reduced to the

constant function 1 by uniqueness, hence the injectivity. The continuity follows as
before from Theorem 2.10. �

Definition 3.4 (Barnes higher Gamma functons ΓN ). The higher Gamma functions
associated to f(s) = s is the family of higher Barnes Gamma functions (ΓN )N≥0, and
Γ1 is Euler Gamma function.

Note that Vignéras’ normalization (1979, [28]) is slightly different and defines (for

f(s) = s) a hierarchy of functions (Gf
N)N≥0 as in Definition 3.1 but with the functional

equation replaced by

Gf
N+1(s+ 1) = Gf

N(s)G
f
N+1(s)
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We have a simple direct relation between the two hierarchies

Gf
N = (ΓfN)

(−1)N+1

.

For f(s) = s we obtain Gf
2 = G which is Barnes G-function (Barnes, 1900, [3]). The

convention in Definition 3.1 is compatible with Barnes multiple Gamma functions
that generalize the (ΓN) (Barnes, 1904, [4], and Section 6).

Proposition 3.5. The higher Barnes Gamma function ΓN is CLD of order N , and

Div(ΓN) = −
+∞
∑

n=0

(

n+N − 1

N − 1

)

.(−n)

Proof. The function ΓN is in the class CLD by induction since f is in this class. Any
α > 0 is exponent of convergence for f(s) = s, so by Proposition 2.6 we have by
induction that any α > N is exponent of convergence for ΓN . We can check this
directly using the formula for the divisor that follows by induction from Lemma 2.3
and the combinatorial identity

(

n+N

N

)

=

n
∑

k=0

(

k +N − 1

N − 1

)

If we write the Weierstrass factorization and QN denotes the Weierstrass polynomial,
we have that degQ1 = 1, and by induction the same proof gives that degQN = N . �

When we drop the real analyticity condition, there is no longer uniqueness, but we
can prove the following Theorem,

Theorem 3.6. Let f be a LLD meromorphic function of finite order such that f(1) =

1. Consider a family (gfN)N≥0 satisfying the following properties:

(1) gf0 (s) = f(s),

(2) gfN(1) = 1,

(3) gfN+1(s+ 1) = gfN(s)
−1gfN+1(s), for N ≥ 0,

(4) gfN is a meromorphic function of finite order,

(5) gfN is LLD,

Then there exists an integer sequence (ak)k≥0, such that

gfN(s) = exp

(

2πi
N
∑

k=0

aN−k

(

s

k

)

)

ΓfN(s)

Proof. This follows by induction from Theorem 2.7. We can also give a direct argu-
ment using the group structure. For any solution (gfN)N≥0, the functions h

f
N = ΓfN/g

f
N
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are solution for f = 1. The case f = 1 is easily resolved. By induction, the solutions
have no zeros nor poles, and finite order, so we have

hfN(s) = e2πiAN (s)

where the (AN)N≥0 is a sequence of polynomials satisfying

∆AN+1 = −AN
and A0(s) = a0 ∈ Z. The difference equation and the sequence aN = (−1)NAN(0)
determines the sequence of polynomials (AN)N≥0 that are given by the explicit formula

AN(s) =

N
∑

k=0

aN−k

(

s

k

)

�

4. Application: Jackson q-Gamma function.

For 0 < q < 1, Jackson (1905, [10], [11]) (see also the precursor work by Halphen
[7], vol. 1, p. 240; and Hölder [8]) defined the q-Gamma function Γq by the product
formula

Γq(s) =
(q; q)∞
(qs; q)∞

(1− q)1−s

where the ∞-Pochhammer symbol is

(z; q)∞ =

+∞
∏

k=0

(1− zqk) .

The q-Gamma function satisfies the functional equation

Γq(s+ 1) =
1− qs

1− q
Γq(s)

and Euler Gamma function appears as the limit when q → 1,

Γ(s) = lim
q→1−0

Γq(s)

Askey ([1], 1980) proved a q-analog of the Bohr-Mollerup theorem characterizing Γq
by its functional equation, the normalization Γq(1) = 1, and the real log-convexity of
Γq. It is natural to investigate if we can use our approach. The answer is affirmative
as shows the next Theorem.

Theorem 4.1. The q-Gamma function is the only real analytic, finite order mero-
morphic function such that Γq(1) = 1 and satisfying the functional equation,

Γq(s+ 1) =
1− qs

1− q
Γq(s)



16 R. PÉREZ-MARCO

Proof. This is an application of our general Theorem 2.2 with

f(s) =
1− qs

1− q

which is an order 1 real analytic function in the class LLD (but not CLD), f(1) = 1,
and

Div(f) =
∑

k∈Z

1.

(

2πik

log q

)

.

�

An application of the continuity Theorem 2.10 shows:

Proposition 4.2. We have
lim

q→1−0
Γq = Γ

uniformly on compact sets of C.

Proof. Uniformly on compact sets of C we have

lim
q→1−0

1− qs

1− q
= s

and we use Theorem 2.10. �

Nishiwaza (1996, [16]) has defined the q-analog ΓN,q of Barnes higher Gamma
functions ΓN following the Bohr-Mollerup approach. With our methods we can obtain
Nishiwaza’s ΓN,q functions directly from the higher hierarchy generated by f using
Definition 3.1 and Theorem 3.2 using the uniqueness of the solution.

Theorem 4.3. Nishiwaza’s higher q-Gamma functions ΓN,q are obtained by the higher
hierarchy from Theorem 3.2

ΓN,q = ΓfN
associated to the real analytic function

f(s) =
1− qs

1− q
.

5. Application: Mellin Gamma functions.

Mellin (1897, [13]) considered general Gamma functions satisfying the functional
equation

F (s+ 1) = R(s)F (s)

where R is a rational function. He constructs solutions by using Euler Gamma func-
tion as building block along the divisor. An application of the extension of our general
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Theorem 2.7, and the group structure Theorem 2.11, gives the precise existence char-
acterization of Mellin Gamma functions.

Definition 5.1. A meromorphic function f is LLD at infinite if f(s+ a) is LLD for
some a ∈ R.

Since Div(f(s + a)) = Div(f) − a this means that the divisor of f is in some left
half plane (not necessarily C+).

Theorem 5.2. Let R be a rational function,

R(s) = a
(s− α1) . . . (s− αn)

(s− β1) . . . (s− βm)

where a ∈ C∗, and (αk) and (βk) are the zeros, resp. the poles, of R counted with
multiplicity.

Consider the finite order meromorphic functions, LLD at infinite, that are solutions
of the functional equation

(10) F (s+ 1) = R(s)F (s) .

They are of the form

F (s) = as
Γ(s− α1) . . .Γ(s− αn)

Γ(s− β1) . . .Γ(s− βm)
e2πiks

for some k ∈ Z.

In particular, if R(1) = 1 and R is real analytic there is only one real analytic
solution such that F (1) = 1.

Proof. Let α be a zero or pole. We consider the linear function fα(s) = s− α and a
solution Γfα to

Fα(s+ 1) = fα(s)Fα(s+ 1) .

Also as is a solution to F (s+1) = aF (s). Then, Theorem 2.7 and the group structure
of the solutions, Theorem 2.11, shows that the general solutions of the functional
equation (10) are of the form

F (s) = ase2πins
Γfα1 (s)e2πik1s . . .Γfαn (s)e2πikns

Γfβ1 (s)e2πil1s . . .Γfβm (s)e2πilms

= as
Γfα1 (s) . . .Γfαn (s)

Γfβ1 (s) . . .Γfβm (s)
e2πiks

where n, k1, . . . , kn, l1, . . . , lm ∈ Z, and k = n + k1 + . . . kn + l1 + . . .+ lm.
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We finish the proof by observing that we can take Γfα(s) = Γ(s− α). When R is
real analytic, a ∈ R∗, the set of roots (αj) and poles (βj) are self-conjugated, and we
must have k = 0 to have F real analytic. �

Considering a LLD rational function R, real analytic and such that R(1) = 1, we
can define the unique associated higher Gamma functions (ΓRN)N≥0 given by Theorem
3.2. These higher Mellin Gamma functions do not seem to appear in the literature.

6. Application: Barnes multiple Gamma functions.

For N ≥ 1 and parameters ω = (ω1, . . . , ωn) ∈ Cn
+, Barnes multiple Gamma

functions Γ(s|ω1, . . . , ωN) = Γ(s|ω) are a generalization by Barnes (1904, [4]) of
Barnes higher Gamma functions ΓN studied in section 3. When ω1 = . . . = ωN = 1
we recover ΓN as

ΓN(s) = Γ(s|1, . . . , 1)
Barnes only considers the apparently more general case where ω1, . . . , ωn all belong to
a half plane limited by a line through the origin ([4] p.387). This situation that can
be reduced to our case by a rotation. Also, he assumes dimQ(ω1, . . . , ωN) ≥ 3 to have
an essentially different situation from the double Gamma function G that he studied
previously, although this condition is not the appropriate one. Barnes defines these
multiple Gamma functions à la Lerch. First, Barnes defines the Barnes-Hurwitz zeta
functions, a multiple version of Hurwitz zeta function, as

ζ(t, s|ω1, . . . , ωN) =
∑

k1,...kN≥0

(s+ k1ω1 + . . .+ kNωN)
−t ,

which is converging for Re s > N , and symmetric on ω1, . . . , ωN . This multiple zeta
function reduces to Hurwitz zeta function for N = 1 (Hurwitz, 1882, [9]). Its analytic
continuation and Lerch formula (Lerch, 1894, [12])

(11) log Γ(s) =

[

∂

∂t
ζ(t, s)

]

t=0

− ζ ′(0)

allows to define Euler Gamma function. Barnes generalizes this approach and he
shows, using a Hankel type integral, that ζ(s, t|ω1, . . . , ωN) has a meromorphic exten-
sion in (s, t). Then he defines

ΓB(s|ω) = ρN(ω) exp

([

∂

∂t
ζ(t, s|ω)

]

t=0

)

where ρN (ω) is Barnes modular function, and is defined to provide the normalization
such that ΓB(s|ω) has residue 1 at s = 0,
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(12) Ress=0ΓB(s|ω) = lim
s→1

sΓB(s|ω) = 1

From the definition we get that both ρN (ω) and ΓB(s|ω) are necessarily symmetric
on ω1, . . . , ωN . Note that for Euler Gamma function, because of the form of the
functional equation, the normalization Γ(1) = 1 is equivalent to Ress=0Γ = 1. In
general, for Γf the normalization Γf(1) = 1 is equivalent to

Ress=0Γ
f = Ress=0f

−1 .

For Barnes higher Gamma functions ΓN discussed in section 3, we see that the nor-
malization ΓN(1) = 1 is equivalent to Ress=0ΓN = 1 when we make s→ 0 in

ΓN+1(s+ 1) = (sΓN(s))
−1 sΓN+1(s)

we get
ΓN+1(1) = Ress=0ΓN+1 = 1 .

and the result follows by induction.

Barnes ([4], p.397) observes that log ρ(ω) plays the role of Stirling’s constant of the
asymptotic expansion when k → +∞ of the divergent sum

∑

ω∈Ω∗,|ω|≤k

log |ω|

where Ω∗ = N.ω1+N.ω2+ . . .+N.ωN −{0}. In this way, log ρ(ω) can also be defined.

Later applications to Number Theory by Shintani in the 70’s of Barnes multiple
Gamma functions (1976,[25], [26], [27]), and modern presentations (Ruijsenaars, [22]),
drop Barnes normalization. They define multiple Gamma functions directly by the
formula

Γ(s|ω) = exp

([

∂

∂t
ζ(t, s|ω)

]

t=0

)

We keep Shintani’s normalization that has become the usual one in recent articles.
This modern normalization has the advantage to yield a simpler functional equation
not involving Barnes modular function ρ(ω). For ω = ωk, we denote ω̂ the N − 1
dimensional vector obtained from ω removing the k-th coordinate. Then we have the
following ladder functional equation for the zeta function,

(13) ζ(t, s+ ω|ω)− ζ(t, s|ω) = −ζ(t, s|ω̂)
where we start with

ζ(t, s|∅) = s−t .

From the zeta function functional equation we get the functional equation for the
multiple Gamma functions,

(14) Γ(s+ ω|ω) = Γ(s|ω̂)−1Γ(s|ω)
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with the convention Γ(s|∅) = s. Note that the functional equation for Barnes nor-
malized multiple Gamma functions is different:

(15) ΓB(s+ ω|ω) = ρ(ω̂)ΓB(s|ω̂)−1ΓB(s|ω) .
Example 6.1. For N = 1, Γ(s|ω) can be computed explicitly from Euler Gamma
function (see [24], p.203).

Lemma 6.2. We have

Γ(s|ω) = (2π)−1/2e(
s
ω
− 1

2) logω Γ
( s

ω

)

ρ1(ω) =

√

ω

2π

and therefore

ΓB(s|ω) =
√

2π

ω
Γ(s|ω) = e(

s
ω
−1) logω Γ

( s

ω

)

and

Γ(ω|ω) =
√

ω

2π

Ress=0Γ(s|ω) =
√

ω

2π

ΓB(ω|ω) = 1

Ress=0ΓB(s|ω) = 1

In particular,

Γ(s|1) = Γ(s)√
2π

ΓB(s|1) = Γ(s)

Proof. For ω = 1, ζ(t, s|1) = ζ(t, s) is the original Hurwitz zeta function that gener-
alizes Riemann zeta function ζ(t) = ζ(t, 1),

ζ(t, s) =
∑

k≥0

(s+ k)−t .

Making t = 0 in the first formula from Lemma 3.18 from [19] we have the classical
result (see also [29] p.267)

(16) ζ(0, s) =
1

2
− s .
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Observe now that we have ζ(t, s|ω) = ω−tζ
(

t, s
ω

)

, hence

∂

∂t
ζ(t, s|ω) = −(log ω)ω−tζ

(

t,
s

ω

)

+ ω−t ∂

∂t
ζ(t, s)

and making t = 0, using formula (16) and Lerch formula (11), we get

log Γ(s|ω) =
(

s

ω
− 1

2

)

log ω + log Γ
( s

ω

)

+ ζ ′(0) .

Now, ζ ′(0) = −1
2
log(2π) gives the first formula. Then using this formula we get

Ress=0Γ(s|ω) = lim
s→1

sΓ(s|ω) = (2π)−1/2e−
1

2
logωω =

√

ω

2π
.

�

For N ≥ 2 we create new transcendentals Γ(s|ω), which are not generated from
Euler Gamma function. For example for N = 2, if ω1 and ω2 are Q-independent we
get new transcendentals. When the parameters are Q-dependent then Γ(s|ω1ω2) can
be expressed from Barnes G-function, G2 = Γ−1

2 .

From the functional equations, and from our point of view, it is natural to aim to
characterize Γ(s|ω) by solving a tower of difference equations corresponding to the
sequence (ωk)1≤k≤n. Our approach leads to a new definition, not needing Barnes-
Hurwitz zeta functions. We start by considering real analytic multiple zeta functions
that are those relevant in Shintani’s applications to real quadratic number fields (1978,
[26]). The following result follows from Theorem 2.7.

Theorem 6.3. Let ω ∈ R+. Let f be a real analytic LLD meromorphic function
in C of finite order. There exists a unique function Γf (s|ω) satisfying the following
properties:

(1) Γf(1|ω) = 1 ,
(2) Γf(s+ ω|ω) = f(s)Γf(s|ω) ,
(3) Γf(s|ω) is a meromorphic function of finite order,
(4) Γf(s|ω) is LLD,
(5) Γf is real analytic.

If f is CLD then Γf is CLD.

If we drop condition (1) then Γf(s|ω) is unique up to multiplication by a constant
c ∈ R∗.

If Ress=0f
−1 = 1, we can replace condition (1) by the condition Ress=0Γ

f = 1.



22 R. PÉREZ-MARCO

Proof. We make the change of variables t = ω−1s. The application of Theorem 2.7
to the real analytic function h(t) = f(ωt) gives a unique real analytic solution Γh(t)
such that Γh(1) = 1 and

Γh(t + 1) = h(t)Γh(t) .

If we set Γf (s|ω) = Γh(ω−1s), this equation becomes

Γf(s+ ω|ω) = Γh(ω−1s+ 1) = h(ω−1s)Γh(ω−1s) = f(s)Γf(s|ω)
and Γf(s|ω) satisfies all conditions. Furthermore, Γf (s|ω) is unique from the unique-
ness of Γh that follows from the last uniqueness condition in Theorem 2.7. In view of
this uniqueness result, the two last statement are clear. Also if f is CDL then Γf(s|ω)
is CDL. �

Example 6.4. For f(s) = s the proof gives h(t) = ωt and a solution Γf (s|ω) =
Γh
(

t
ω

)

. The condition Γf(1|ω) = 1 is equivalent to Γh
(

1
ω

)

= 1, then according to
Example 2.8 there is a unique real analytic solution

Γh(t) = e(t−1) logω Γ(t)

Γ(ω−1)

and it follows that

Γf(s|ω) = e(
s
ω
−1) logω Γ

(

s
ω

)

Γ(ω−1)

Therefore, by uniqueness of the normalization,

ΓB(s|ω) = Γ(ω−1)Γf(s|ω)
and we recover the formula for ΓB(s|ω) from Lemma 6.2

ΓB(s|ω) = e(
s
ω
−1) logω Γ

( s

ω

)

Then the formula for Γ(s|ω) follows from

Γ(s|ω) =
√

ω

2π
ΓB(s|ω) = (2π)−1/2e(

s
ω
− 1

2) logω Γ
( s

ω

)

.

We have established,

Proposition 6.5. For f(s) = s we have

Γ(s|ω) =
√

ω

2π
Γ(ω−1) Γf(s|ω)

where Γf (s|ω) is the unique solution in Theorem 6.3.

Using similar ideas, the general version of Theorem 2.7 for ω ∈ C+ and without
the hypothesis of f being real analytic is the following:
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Theorem 6.6. Let ω ∈ C+. Let f be a LLD meromorphic function in C of finite
order. We consider a function g satisfying

(1) g(1) = 1,
(2) g(s+ ω) = f(s)g(s),
(3) g is a meromorphic function of finite order,
(4) g is LLD,

Then there is a solution Γf(s|ω). Any other solution g is of the form g(s) = e2πia
s−1

ω Γf (s|ω)
for some a ∈ Z.

If we remove condition (1) then all solutions are of the form the form g(s) = eb+2πia s
ω Γf(s|ω)

for some a ∈ Z and b ∈ C.

Proof. As before, we make the change of variables t = ω−1s and apply Theorem 2.7 to
the function h(t) = f(ωt) gives an unconditional solution Γf(s|ω) = Γh(t)/Γh(ω−1).
From the general uniqueness statement in 2.7 we know that all the other solutions
removing condition (1) are of the form g(s) = e2πia

s
ω
+b Γf (s|ω) for some a ∈ Z and

b ∈ C. Condition (1) is then equivalent to 2πia/ω + b = 2πik with k ∈ Z, hence the
general form. �

Therefore, in general for ω ∈ C∗, Γf is not uniquely determined, but its values on
1 + Z.ω are well determined. More precisely, we have

Proposition 6.7. The values taken by solutions at the points 1 + kω for k ∈ Z are
uniquely determined and do not depend on the solution chosen.

If ω ∈ C+, any solution g is uniquely determined by Im g′(1), in particular, if f is
real analytic then there is a unique real analytic solution.

If dimQ(1, ω) = 2, any solution g is uniquely determined by its value g(k) for some
integer k ≥ 2.

Proof. From the functional equation we have

g(1 + kω) = g(1)
k−1
∏

j=0

f(1 + jω) =
k−1
∏

j=0

f(1 + jω)

hence the first claim.

Now, consider two solutions g1 and g2 such that Im g′1(1) = Im g′2(1). Since they are

of the form gj(s) = e2πiaj
s−1

ω Γf(s|ω) for some aj ∈ Z, taking logarithmic derivatives
we have

g′j(1) =
g′j(1)

gj(1)
= 2πi

aj
ω

+

(

Γf
)′
(1|ω)

Γf(1|ω) = 2πi
aj
ω

+
(

Γf
)′
(1|ω)
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hence

g′1(1)− g′2(1) = 2πi
a1 − a2
ω

∈ R

and the condition ω ∈ C+ forces a1 = a2.

Now assume dimQ(1, ω) = 2 and consider two solutions g1 and g2 such that g1(k) =
g2(k) for some integer k ≥ 2. Then, since s = k is neither a zero nor a pole, we have
for some l ∈ Z

g1(k)

g2(k)
= e2π(k−1)

a1−a2
ω = 1

thus, for some integer l ∈ Z, we have

(k − 1)(a1 − a2)− lω = 0

and, by Q-independence, we must have l = 0 and (k − 1)(a1 − a2) = 0, thus, since
k ≥ 2, a1 = a2 and g1 = g2. �

General Multiple Gamma Hierarchies.

Now, we can iterate Theorem 6.3 to define new real-analytic multiple Gamma
function corresponding to f and positive real parameters ω = (ω1, . . . , ωN) ∈ RN

+

For a sequence of parameters ω = (ω1, ω2, . . .) ∈ C∞
+ , we can now define a general-

ization of Barnes multiple Gamma hierarchy. We denote ωN = (ω1, . . . , ωN) ∈ CN
+ .

Definition 6.8 (General Multiple Gamma Hierarchy). Let ω = (ω1, ω2, . . .) ∈ C∞
+

and f be a LLD meromorphic function in C of finite order. A general multiple Gamma
hierarchy (ΓfN (s|ωN ))N≥0 associated to f is a sequence of functions satisfying:

(1) Γf0(s) = f(s),

(2) ΓfN+1(s+ ωN+1|ωN+1) = ΓfN(s|ωN)
−1 ΓfN+1(s|ωN+1), for N ≥ 0,

(3) ΓfN(s|ωN) is a meromorphic function of finite order,

(4) ΓfN(s|ωN) is LLD.

Next we show that, with some simple normalization, General Multiple Gamma
Hierarchies are unique for real parameters and f real analytic.

Theorem 6.9. Let ω = (ω1, ω2, . . .) ∈ R∞
+ and f a real analytic LLD meromorphic

function of finite order, such that f(1) = 1. There exists a unique General Multiple

Gamma Hierarchy (ΓfN(s|ωN))N≥1 associated to f , and normalized such that

ΓfN(1|ωN ) = 1 .

If f is CLD then the ΓfN (s|ωN ) are CLD.
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Proof. The existence and uniqueness is proved by induction on N ≥ 0. For N = 0,
Γf0(s) = f(s). We assume that the result has been proved for N ≥ 0. Then we

construct ΓfN+1(s|ωN+1) by using Theorem 6.3 using the function f = ΓfN (s|ωN )
−1.
�

The particular case f(s) = s, using uniqueness, yields Barnes multiple Gamma
functions for real parameters ω.

Definition 6.10 (Barnes multiple Gamma functions). For ω = (ω1, ω2, . . .) ∈ R∞
+ the

General Multiple Gamma Hierarchy associated to f(s) = s is Barnes Multiple Gamma

Hierarchy (ΓfN(s|ωN))N≥1 with the normalization ΓfN(1|ωN) = 1. We simplify the

notation and we denote ΓfN(s|ωN) = Γ(s|ωN).

We observe that since the Barnes multiple Gamma functions Γ(s|ωN ) are symmet-
ric on the real parameters (ω1, . . . , ωN) then, by uniqueness, the solutions of Theorem
6.9 for f(s) = s must also be symmetric on the parameters. This is general when we
can define the Gamma functions à la Lerch, including the case of complex parameters
ω = (ω1, ω2, . . .) ∈ C∞

+ . Consider f a real analytic LLD meromorphic function of
finite order, such that,

f(1) = 1

and Re f(s) > 0 for s ∈ C+. These conditions are sufficient to define f(s)−t for
s ∈ C+ by taking the principal branch of log in C+, f(s)

−t = exp(−t log f(s)). We
assume that the multiple Barnes-Hurwitz multiple zeta function associated to f ,

ζf(t, s|ω1, . . . , ωN) =
∑

k1,...kN≥0

f(s+ k1ω1 + . . .+ kNωN)
−t ,

is well defined and holomorphic in a right half plane Re t > t0 for all s ∈ C+, and has
a meromorphic extension to t ∈ C. We define Γf(s|∅) = f(s)−t, and, à la Lerch, for
s ∈ C+,

ΓfL(s|ωN) = exp

(

[

∂

∂t
ζf(t, s|ωN )

]

t=0

−
[

∂

∂t
ζf(t, s|ωN )

]

t=0,s=1

)

Note that we have normalized these functions such that ΓfL(1|ωN) = 1. By con-
struction, these functions are obviously symmetric on the parameters ω1, . . . , ωN . As
before, these functions satisfy the functional equations,

(17) ΓfL(s+ ωN |ωN) = ΓfL(s|ωN−1)
−1ΓfL(s|ωN )

which show that they have a meromorphic extension to all s ∈ C. now, using the
uniqueness from Theorem 6.9 we get for real parameters:
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Theorem 6.11. Let ω = (ω1, ω2, . . .) ∈ R∞
+ . When ΓfL(s|ωN) is well defined, we

have
ΓfL(s|ωN) = ΓfN(s|ωN)

where the (ΓfN(s|ωN))N≥0 are the solutions of Theorem 6.9.

Corollary 6.12. Let ω = (ω1, ω2, . . .) ∈ R∞
+ . The Barnes multiple Gamma hier-

archy defined by Theorem 6.9, ΓfN (s|ωN ) are symmetric on the parameters ωN =
(ω1, ω2, . . . , ωN).

We should note that our definition of the hierarchies using the functional equation
is more general than Barne’s definition à la Lerch, since we need conditions on f so
that the multiple f -Barnes-Hurwitz zeta function is well defined and holomorphic in
a half plane. If we don’t add the normalization condition

ΓfN(1|ωN ) = 1

then there are solutions that are non-symmetric on the parameters. As we see next,
this is even more evident for complex parameters since in that case, without further
hypothesis, there is no symmetry on the parameters ω. This shows that our functional
equation approach defines a larger class of functions.

We observe also that the existence and uniqueness of Theorem 6.9 implies the mor-
phism property. Let ER be the multiplicative group of real-analytic LLD meromorphic
functions of finite order and

ER =
⋂

n≥0

ER
n

and ER
0 the subgroup of functions f such that f(1) = 1. With the same arguments as

before, we have

Theorem 6.13. For ω = (ω1, ω2, . . .) ∈ R∞
+ and N ≥ 0, we consider the map

ΓN (ωN) : ER
0 → ER

0

defined by ΓN (ωN)(f) = ΓfN(.|ωN ). Then ΓN (ωN) is a continuous injective group
morphism.

Complex parameters.

We study now the non-real-analytic case for complex parameters ω1, . . . , ωN ∈
C+. In general we don’t have uniqueness as in Theorem 6.9. We consider f a LLD
meromorphic function in C of finite order with f(1) = 1 and study the question
of existence and uniqueness of a general multiple Gamma functions hierarchy as in
Definition 6.8 with the normalization

ΓfN(1|ωN ) = 1 .
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We have the following result without the real analyticity condition:

Theorem 6.14. Let ω = (ω1, ω2, . . .) ∈ C∞
+ and f a LLD meromorphic function

of finite order such that f(1) = 1. There exists General Multiple Gamma Hierarchy

(ΓfN(s|ωN))N≥0 associated to f , and for any other hierarchy (Γ̃fN(s|ωN))N≥0 there
exists a sequence of polynomials (PN)N≥1 such that

Γ̃fN(s|ωN) = exp (2πiPN(s)) Γ
f
N(s|ωN)

with PN(1) ∈ Z, P0 is a constant integer, and for N ≥ 0 we have

∆ωN+1
PN+1 = −PN

where ∆ω is the ω-difference operator ∆ωP = P (s+ ω)− P (s). The space of polyno-
mials PN is isomorphic to ZN+1.

If the functions f is CLD then Γf
N (s|ωN ) and all the other solutions are CLD.

Proof. For the existence result, it is the same proof by induction as for Theorem 6.9
(without the normalization condition) and using Theorem 6.6. If a second solution

(Γ̃fN(s|ωN))N≥1 exists, then (Γ̃fN(s|ωN)/Γ
f
N(s|ωN))N≥1 is a solution of the problem

for the constant function f(s) = 1. The solution for f(s) = 1 has no divisor and is
of finite order, hence they are of the form exp(PN) where PN are polynomial which
satisfy the above difference equations. Next in what follows, we discuss uniqueness
conditions and the structure of the general polynomials PN will become clear. �

We observe that the integer sequence (PN(1))N≥1 and the difference equation de-
termine uniquely the sequence of polynomials (PN)N≥1. To simplify the recurrence,
we write QN (s) = (−1)NPN(s − 1) and aN = QN(0). The polynomials (QN) satisfy
the difference equations

∆ωN+1
QN+1 = QN .

We define the ω-descending factorial that form a triangular bases for the action of
the operator ∆ω on polynomials.

Definition 6.15. Let ω ∈ C∗. For s ∈ C and for an integer k ≥ 1, we define the
ω-descending factorial as

s[k,ω] = s(s− ω) . . . (s− (k − 1)ω)

For ω = 1 we get the usual descending factorial. A simple computation shows:

Proposition 6.16. We have

∆ωs
[k+1,ω] = (k + 1)ωs[k,ω]

Now we can give the general structure of the solutions (QN ).
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Proposition 6.17. For N ≥ 1, we have

QN (s) =
N
∑

k=0

aN−k

ω1ω2 . . . ωk

[

s[k,ωN ]

k!
+ AN,k(ω1, . . . , ωN , s)

]

where the AN,k are polynomials in N + 1 variables and their total degree in the first
N variables is strictly less than k. The coefficient a0 is an arbitrary integer.

From this Proposition it is clear that the space of solutions QN , and PN , is iso-
morphic to ZN+1 by the one-to-one correspondence QN 7→ (a0, a1, . . . , aN) ∈ ZN+1.
The proof of this Proposition follows by induction on N ≥ 1, solving the difference
equation

∆ωN+1
QN+1 = QN .

For this, we develop the polynomials

s[k,ωN ]

k!
+ AN,k(ω1, . . . , ωN , s)

in the bases (sk), then we change to the bases (s[ωN+1,k]) using the following Lemma:

Lemma 6.18. For n ≥ 1,

sn =
n
∑

k=0

Bn,k(ω)s
[ω,k]

where Bn,n = 1, Bn,k ∈ Z[X ] and degBn,k ≤ n− k.

Proof. We proceed by induction. The result is clear for n = 1, and developing s[ω,n] =
s(s− ω) . . . (s− (n− 1)ω) we get

sn = s[ω,n] −
n
∑

k=1

akω
ksn−k

and the induction hypothesis proves the result. �

Now we can study uniqueness conditions. A first result is a straightforward gener-
alization by induction of the uniqueness result from Proposition 6.7.

Proposition 6.19. Under the conditions as in Theorem 6.14, and if we assume
that for 1 ≤ n ≤ N − 1, ωn+1 and ωn are Q-independent, then the hierarchy up to
N ≥ 1, (Γfn(s|ωn))1≤n≤N is uniquely determined by its values (Γfn(k|ωn))1≤n≤N at
some integer k ≥ 2.

If we assume some algebraic independence of the parameters, we have a much
stronger result.
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Theorem 6.20. Under the same conditions as in Theorem 6.14, and if we assume
that for 1 ≤ n ≤ N ,

(18) [Q[ω1, . . . , ωn] : Q[ω1, . . . , ωn−1]] ≥ n + 1

then the hierarchy (Γfn(s|ωn))1≤n≤N is uniquely determined by any value ΓfN(k|ωN)
at some integer point k ≥ 2.

Proof. If we have two solutions (gn(s|ωn))1≤n≤N and (g̃n(s|ωn))1≤n≤N , the equality,
gN(k|ωN) = g̃N(k|ωN ), at the integer k ∈ C+, that is neither a zero nor pole of the
functions, shows that the corresponding polynomials QN and Q̃N satisfy

QN (k)− Q̃N(k) = a ∈ Z

Then, using Proposition 6.17, this gives

N
∑

k=0

aN−k − ãN−k

ω1ω2 . . . ωk

[

s[k,ωN ]

k!
+ AN,k(ω1, . . . , ωN , s)

]

= 0

or, multiplying by ω1ω2 . . . ωN , we get the algebraic relation

(a0 − ã0)
s[N,ωN ]

N !
+ . . .+ (aN − ãN) = 0

where the dots are of degre < N in ωN . The degree assumption proves that a0 = ã0.
Using the induction hypothesis on N (replacing f by g1(s|ω1) = g̃1(s|ω1), etc), we get
a1 = ã1,..., aN = ãN . �

Using Proposition 6.17 we can give other uniqueness results and characterizations.

To conclude this section, we note that Ruijsenaars (2000, [22]) exploited also the
difference equations and their minimal solutions to prove numerous properties of
Barnes multiple Gamma functions. Shintani (1976, [25]) extended Barnes approach
to multiple Gamma functions to a several variable setting. Friedman and Ruijsenaars
(2004, [6]) extended Shintani’smltiple Gamma functions. We can also apply our func-
tional equation approach to define these several variables Gamma functions without
Barnes-Hurwitz zeta functions and we will treat this case in a forthcoming article.
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