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Abstract— Quantification of the elastic nonlinearity of 

biological tissues is a recent refinement of measures available in 

ultrasound elastography. The measurement of the third order 

nonlinear elastic modulus of biological tissues using ultrasound 

elastography relies on acoustoelasticity (AE), consisting in 

measuring the shear wave velocity in tissues under uniaxial stress. 

Up to now, the AE theory has been developed under the hypothesis 

of tissue isotropy. However, this assumption does not hold for all 

tissues, such as muscles. Indeed, the direction of alignment of 

muscular fibers defines a rotation symmetry axis, justifying the 

modelling of muscles in terms of transverse isotropic (TI) media. 

Such tissues require a more complex elastic description, 

considering their anisotropy. In this work, the AE theory is 

transposed to quasi-incompressible TI media and tested 

experimentally. After developing the elastic energy of TI quasi-

incompressible media up to the third order, the relations between 

the shear wave speed and the applied stress are derived. In 

addition to the 3 linear elastic moduli describing a quasi-

incompressible TI medium, 4 nonlinear elastic moduli appear. 

This theoretical development is tested experimentally on TI PVA 

phantoms and on ex vivo beef muscle tissues using an experimental 

setup designed to apply controlled uniaxial stresses to the sample, 

and one of the third order nonlinear coefficients, coefficient A, is 

estimated. This work contributes to opening the path towards the 

nonlinear characterization of muscles, which has potential 

applications in muscle biomechanics and in muscular pathology 

diagnosis. 
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I. INTRODUCTION 

Quantification of the elastic nonlinearity of biological tissues 
is of increasing interest in the early diagnosis of pathologies, 
such as breast lesions [1]. Measurement of nonlinear shear 
modulus (NLSM) in biological tissues using shear wave 
elastography relies on acoustoelasticity (AE). It consists in 
measuring the shear wave velocity 𝑣𝑠 under uniaxial stress. The 
AE theory has been previously developed in isotropic quasi-
incompressible materials [2]. In the development, 3 
configurations differing in the relative orientation of the uniaxial 
stress with respect to the polarization and the propagation 
directions of the shear wave have been identified, and the 

corresponding relationships between 𝑣𝑠, the local stress (), the 
linear shear modulus (µ) and the NLSM (A) has been derived for 
each case. In transverse isotropic (TI) medium, such as muscle, 
this approach is no more valid due to anisotropy. Indeed, in 

muscles, the alignment of fibers defines a rotation symmetry 
axis. The description of muscles in terms of elasticity is 
therefore more complex, but has always to be in line with their 
geometry. The goal of this work is to transpose the AE theory to 
TI soft tissues for muscle elastic nonlinearity quantification. 
This implies considering the constraints imposed by the TI 
geometry of muscles in the AE development. 

II. THEORETICAL BACKGROUND 

The AE theory derived here for TI quasi-incompressible 

media is highly inspired from Gennisson et al. development in 

isotropic media [2]. The development aims at expressing the 

speed of elastic shear waves in an uniaxially stressed TI quasi-

incompressible solid assumed to be lossless. In the following 

section, a coordinate system which third axis coincides with the 

symmetry axis of the considered TI medium is used (Fig.  1). 

  

The theoretical development of AE is based on the 

expression of the volume strain energy (e) of the studied 

medium developed up to the third order in terms of strain (1). 

By considering the symmetries imposed by the anisotropy of 

the TI medium and the constraints due to incompressibility, the 

strain energy of a TI incompressible medium is expressed as 

(adapted from [3]): 
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Fig. 1. Coordinate system employed in part II for a TI medium. 

  

  

  



where 𝜀  is the Green-Lagrange strain tensor, 𝐼2 = Tr 𝜀2  and 

𝐼3 = Tr 𝜀3 , 2 of the 3 invariants of 𝜀 defined by Landau and 

Lifshitz [4]. E// (Young’s modulus parallel to the principal axis), 

µ⊥ and µ// (shear moduli perpendicular and parallel to the 

principal axis, respectively) are the 3 linear elastic independent 

coefficients sufficient to fully describe the linear elastic 

behavior of a TI incompressible medium. A, G, H and J are 4 

third order (nonlinear) elastic coefficients. 

From the expression of e, the first Piola-Kirchhoff stress 

tensor (Pik) is derived (2): 

 

𝑃𝑖𝑘 =
𝜕𝑒

𝜕 (
𝜕𝑢𝑖
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(2) 

  

Where (𝑢⃗ ) is the displacement vector and (𝑎 ) the position in 

Lagrangian coordinates. The expression of Pik is then employed 

to obtain the motion equation of particles in Lagrangian 

coordinates using the expression (Einstein’s summation 

convention of repeated indices is used):  

 

𝜌0𝑢𝑖̈ =
𝜕𝑃𝑖𝑘
𝜕𝑎𝑘

 (3) 

 

where (0) is the medium’s density and (ü) the acceleration 

vector. 

 After distinguishing the dynamical (due to the propagating 

shear wave) and static (due to uniaxial stress) components of 

the displacement 𝑢⃗ , a change of coordinates from Lagrangian 

to Eulerian coordinates yields the wave equation from which 

can be deduced directly the shear wave velocity. At this stage, 

static strain terms (due to uniaxial stress) appear in the 

equations. The latter can be expressed in terms of the applied 

stress () by applying Hooke’s law in TI quasi-incompressible 

media. Rather than expressing shear wave speed in all cases 

(which would require projections and complex expressions), 

we have concentrated ourselves on 9 specific configurations 

differing in the relative orientations of stress (), polarization 

(𝑢⃗ ) and propagation (𝑘⃗ ) of the shear wave with respect to the 

principal axis of the TI medium (table 1). The mentioned 

reasoning yields the 9 elastodynamic equations specified in 

table 1. 

As for isotropic media [2], the apparent shear modulus ρ0vs
2 

depends linearly on the applied uniaxial stress in TI media. The 

stress  multiplying coefficients depend on 3 nonlinear elastic 

coefficients, as well as the 3 linear elastic moduli of a TI 

medium. By having access to all configurations and knowing 

µ//, µ⊥ and E// these relations open the path to a full nonlinearity 

quantification of TI soft tissues.  

III. MATERIAL AND METHODS 

To validate the AE theory derived above and make use of it, 
AE experiments were carried out on TI quasi-incompressible 
media. Such AE experiments require a set-up allowing to apply 

TABLE I.  ELASTODYNAMIC EQUATIONS FOR THE 9 DEFINED CONFIGURATIONS 

Configuration 
Elastodynamic equations Direction 

# 
𝒖⃗⃗  𝒌⃗⃗  𝝈 
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Fig. 2. Experimental setup used to generate controlled uniaxial stresses on 

the investigated TI media and to measure the shear wave speed. (A) Diagram 

of the setup. (B) Picture of the setup. 

B A 



known uniaxial stress on the studied medium and to measure the 
shear wave speed in the stresses medium. 

A. Studied TI media 

AE experiments were carried out on TI PVA phantoms and 

on fresh bovine ex vivo muscular tissues. 

TI PVA phantoms were produced following [5]. PVA 

(Polyvinyl alcohol hydrolyzed, Sigma-Aldrich, St Louis, MO) 

(10% in mass) is dissolved in heated water (95°C) and 

Sigmacell (type 20) (Sigmacell Cellulose type 20, Sigma-

Aldrich, St Louis, MO) (1% in mass) is added as scatterers in 

the cooled solution (at room temperature). PVA phantoms 

underwent 3 isotropic freezing-thawing cycles (15 hours at -

18°C, 9 hours at 25°C) followed by 3 anisotropic ones. During 

the latter, phantoms are placed in a jaw system and stretched in 

one direction to the maximum (Fig. 3A). This causes PVA to 

polymerize in the stretching direction. 

B. Applying known uniaxial stress in all 9 configurations 

An experimental set-up inspired from [2] was conceived and 
built (Fig. 2). Briefly, the studied sample lies on a plexiglass 
plate. To generate known uniaxial (vertical) stress, a second 
plexiglass plate is placed above the sample. A water tank 
covering the entire sample surface S is added above this plate 
and filled with a controlled water mass. The applied stress can 

be computed: 𝜎 =
𝑔 𝑚

𝑆
, with g the gravity of Earth, m the whole 

mass above the sample. 

 SL10-2 ultrasound probes (6 MHz central frequency, 192 
elements) (SuperSonic Imagine, Aix-en-Provence, France), are 
placed either below the sample or on the side and oriented as 
desired with respect to the principal axis of the studied medium 
that is detected beforehand by eye (manually). As mentioned 
below, shear wave speed is measured using the Supersonic 
Imaging (SSI) technique: therefore, the orientation of the probe 
defines the polarization direction (probe axis) and the 
considered propagation direction (lateral direction) of the 
generated shear wave. Measurements can be carried out in any 
of the 9 defined configurations, provided the system is stable and 
the sample’s dimensions are large enough. 

C. Measuring the shear wave speed 

 The shear wave speed in stresses media is measured using 
the Supersonic Shear Imaging technique [6] available on the 
ultrafast ultrasound scanning device Aixplorer V12 (SuperSonic 
Imagine, Aix-en-Provence, France). The focusing of ultrasound 
at 4 successive depths creates an ultrasonic radiation force, 
generating a quasi-cylindrical shear wave which polarization is 
aligned with the probe axis. The latter is imaged at a high frame 
rate (8 kHz) in the imaging plane using ultrafast ultrasound 
imaging. Thanks to a time of flight algorithm, the local shear 
wave speed is retrieved, and shear wave speed maps are 
obtained. For each AE measurement series (for one sample, in 
one configuration for different stress), a region of interest (ROI) 
is defined, and the mean shear wave speed is computed. The 

apparent shear modulus 0vs
2 is then deduced. 

D. Acoustoelasticity analysis 

The relations between the measured apparent shear moduli 
and the applied stress are analyzed based on the previously 
developed AE theory in TI quasi-incompressible media. In each 
configuration and for each sample, a least-squares linear 
regression is used to fit experimental data and to retrieve the 
slopes. The latter are used for quantification of the nonlinear 
elastic coefficient A. 

IV. RESULTS 

Representative results of AE experiments in TI media are 
presented in figure 3B for TI PVA phantoms and in figure 4 for 
bovine muscular tissues. Shear moduli measured in no stress 
conditions allow to characterize the studied medium’s 

anisotropy (µ// over µ⊥ ratio of approximatively 1.5 for PVA 

    

Fig. 3. 2 AE experiments on TI PVA phantoms. (A) Experimental setup used to stretch the PVA phantom during the 3 anisotropic freezing-thawing cycles. (B) 
Evolution of the apparent shear modulus of a TI PVA phantom as a function of the applied stress for each measured configuration. The mean apparent shear 

modulus of the considered ROI is represented. Error bars indicate the standard deviation over the ROI. Slopes obtained from the least-squares linear regression ± 

the 95% confidence interval are specified, along with the determination coefficient r2. 

A B 

TABLE II.  LINEAR (µ//, µ⊥) AND NONLINEAR (A) ELASTIC 

MODULI ESTIMATED IN THE INVESTIGATED TI MEDIA 

 TI PVA Phantom Beef muscle 1 Beef muscle 2 

µ// (kPa) 21.4 ± 0.3 (1,2)a 60.0 ± 19.0 (1,2)a 65.5 ± 0.4 (2)a 

µ⊥ (kPa) 14.2 ± 0.1 (8)a 22.1 ± 5.0 (8,9)a 24.5 ± 0.1 (8,9)a 

A (kPa) -33.0 ± 17.1 (1,2)a -2.8.103 ± 

2.5.103 (1,2) a 

-1.6.103 ± 

0.6.103 (1,2)a 

a. Configurations used to estimate the elastic moduli are specified in parentheses. 



phantoms, and of 3 for bovine muscles).  Globally, a linear 

relationship between the apparent shear modulus 0vs
2 and the 

applied uniaxial stress  is found in all investigated 
configurations (determination coefficients r2 above 0.8), as 
predicted in the theory. The estimated slopes of configurations 
1 and 2 are used to quantify the third order nonlinear coefficient 
A of the TI medium (table 2). 

V. DISCUSSION 

The AE theory in TI quasi-incompressible medium was 
successfully derived, leading to the expression of the shear wave 
speed as a function of stress in 9 specific configurations. In 

addition to the 3 independent linear elastic moduli (µ//, µ⊥, E//) 
describing the linear elastic behavior of a quasi-incompressible 
TI medium, 3 third order (nonlinear) elastic coefficients appear 
in the outcoming equations, opening the path to TI tissue elastic 
nonlinearity quantification. AE experiments were carried out on 
TI PVA phantoms and bovine muscular tissues. As expected 
from the theory, a linear relationship between the apparent shear 
modulus and the stress was found, and the slopes of the 
experimental curves were used to retrieve the nonlinear elastic 
coefficient A of the TI studied media. The obtained values in 
beef muscle are globally one order of magnitude higher (in terms 
of absolute value) compared to ex vivo measures of A in beef 
isotropic tissues (liver) [7]. To our knowledge, these are the first 
nonlinear elasticity measurements carried out in TI tissues. 

However, the quality of our estimations of A relies on the 
precision with which the stress and the probe (fixing the 
considered directions of propagation and polarization of shear 
waves) are oriented with respect to the symmetry axis of the TI 
medium. Indeed, any deviation of the experimental positions 
from the theoretical configurations results in the estimated 
slopes being a combination of the expressions related to 2 or 
more configurations, leading to errors in A estimation. The 
combination of Backscatter Tensor Imaging (BTI) [7] or Elastic 
Tensor Imaging (ETI) [8] with AE experiments in TI tissues 
would help to better match the experimental positions with the 
theoretical configurations and therefore improve the precision of 
A estimation. (Note that the use of configuration 6 along with 
configurations 1 or 2 leads to different estimations of A. The 
difficulties to match experimentally configuration 6 can account 

for the differences observed in the estimations of A.) Besides, to 
fully take advantage of the AE theory and recover H and J, the 
independent estimation of E// is necessary. However, such a 
measurement is challenging since it requires lateral strain 
estimation. This can be carried out by using static elastography 
but remains delicate because of the poor ultrasound lateral 
resolution. 

Nevertheless, this work paves the way to use the AE theory 
for a better and more complete muscle characterization in 
biomechanics, clinics and sport applications. 
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Fig. 4. AE experiment results on 2 ex vivo bovine muscular tissues. Measured apparent shear modulus of 2 bovine muscular tissues as a function of the applied 

stress for each measured configuration. The mean apparent shear modulus on the considered ROI is represented. Error bars indicate the corresponding standard 

deviation. Slopes obtained from the least-squares linear regression ± the 95% confidence interval are specified, along with the determination coefficient r2. 


