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Abstract
We investigate the possibility of formalizing quantifiers in
proof theory while avoiding, as far as possible, the use of
true binding structures, α-equivalence or variable renam-
ings. We propose a solution with two kinds of variables in
terms and formulas, as originally done by Gentzen. In this
way formulas are first-order structures, and we are able to
avoid capture problems in substitutions. However at the level
of proofs and proof manipulations, some binding structure
seems unavoidable. We give a representation with de Bruijn
indices for proof rules which does not impact the formula
representation and keeps the whole set of definitions first-
order.

CCS Concepts: • Theory of computation → Proof the-
ory.
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1 Introduction
The formalization, using proof assistants, of (syntactic) re-
sults in proof theory is something appealing since they often
require a lot of (simple) cases to be considered. For example
a proof of (strong) normalization often uses a clever measure
on proofs, and then goes through checking that an impor-
tant number of proof transformations (often described as
local rewrite steps) makes the measure decrease. Once the
measure is settled, it is interesting to use the machine to
help dealing with the simple rewrite steps and to ensure that
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all cases have been covered. This works perfectly well for
various propositional systems, but as soon as (first-order)
quantifiers enter the picture, we have to face one of the
nightmares of formalization: quantifiers are binders... The
question of the formalization of binders does not yet have an
answer which makes perfect consensus1. We are not going
to address this general question. The main (more specific)
problem addressed here is to try to find dedicated ways of
formalizing quantifiers (and not arbitrary binders). The point
is to rely on particular properties of quantifiers to lead to a
simpler and convincing solution.
Concretely, a major trouble with many formalizations of

binders is the notion of α-equivalence to be dealt with (or
alternatively the use of some notion of variable renaming).
We want to study how far it is possible to go in the formal-
ization of proof theory while avoiding α-equivalence and
variable renaming. Additionally we would like an approach
formalizable with first-order constructs only, in order to be
applicable in (a priori) any proof assistant, independently
of the underlying meta-theory. Finally we would like our
formalization to be close to what could be done on paper in
order to be understandable by most logicians. This is partic-
ularly important in the case of the development of libraries
supposed to be accessible to the widest possible audience.
Following these criteria, we want to avoid relying on ad-

vanced logical approaches which, while extremely interest-
ing from the abstract point of view of formalization, are not
versatile enough (their usability depends on the chosen proof
assistant) and too far from the common practice of logicians
on paper. This is for example the case of HOAS [16], nominal
approaches [17], the ∇-quantifier [14], and even of de Bruijn
representations [3] which do not need advanced logical prin-
ciples but are considered unreadable by most people working
usually on paper.
The reason for dealing with α-equivalence (or variable

renaming) in the formalization of binders is to avoid variable-
capture problems in substitutions [15]. A recurrent approach
to control these phenomena without renamings, is to rely
on two different kinds of variables. This has been proposed
historically in major works on proof theory (Gentzen [6],
Prawitz [18]) for quantifiers, but also more recently in pro-
posals for formalizing general binders like in the locally

1https://www.seas.upenn.edu/%7eplclub/poplmark/ [1]
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nameless (lnl) [2] and locally named (ln) [13] representa-
tions.
This two-kinds-of-variables approach has been success-

fully applied in the formalization of proof theory on machine
(see for example [4, 10]). Our representation of terms and for-
mulas will be very close to those works. However in [4, 10],
proofs are mainly used as static objects. Almost no proof
transformation is considered. If such transformations were
required (as in syntactic proof theory we want to address),
they would have to face some difficulties. This is testified
by the fact that the weakening lemma (possibly one of the
simplest proof transformations one can imagine) requires
some non trivial work for the systems they consider (we will
come back to this point in Section 3.1). While not modifying
the representation of formulas and sequents, our proposal
is to introduce a restricted use of de Bruijn indices in the
construction of proof rules. We show that:

• without a full management of indices as in de Bruijn
representations for general binders,

• with limited impact on the representation of formulas
with respect to paper notations,

• while dealing with first-order structures only,
we obtain a good compromise between complexity and read-
ability for dealing with general syntactic proof transforma-
tions appearing in corner-stone results of proof theory, such
as cut elimination and proof normalization for example.

Related Works. As already mentioned, approaches based
on specific logical constructions [14, 16, 17] provide very nice
formalizations of binders and quantifiers but are dependent
on the available meta-theory (thus not suited for arbitrary
proof assistants). Moreover, in the context of proposing li-
braries for proof theory in proof assistants, not all users
would accept to dig into such specific constructions.

Let us now focus on approaches which are mostly ex-
pressible with first-order structures. The de Bruijn indices
approach [3] has the interesting properties of being very gen-
eral and of requiring only first-order constructs in the meta-
theory. Various formalizations of predicate logic follow this
methodology by using indices both in formulas and in the
definition of generalization rules [5, 8, 9]. The main defects
are the induced manipulations of indices to be dealt with, in
particular for substitutions. Moreover formulas written this
way are often difficult to read by people used to paper nota-
tions with names. For example, the formula ∀x .∃y.(Pxy →

∀z.Pxz) is represented as ∀.∃.(P10 → ∀.P20). In particular
different occurrences of the same variable (the underlined
ones) may be given different names (here 1 and 2). A similar
remark applies to the locally nameless (lnl) approaches [2]
which use indices in formulas for bound variables.

In trying to use names but avoiding α-equivalence and
variable renamings, the natural proposal is the locally named
approach (ln) [13]. It has already been used for the formal-
ization of predicate logic [4, 10]. Two kinds of names are

Table 1. Different Styles of Generalization Rules

Γ ⊢ A x not free in Γ ∀I
Γ ⊢ ∀x .A

Kleene

Γ ⊢ A[e/x ] e not in Γ,A ∀I
Γ ⊢ ∀x .A
Gentzen

Γ↑ ⊢ A ∀I
Γ ⊢ ∀.A

Γ↑ ⊢ A↑[0/x ] ∀I
Γ ⊢ ∀x .A

de Bruijn alnl

used, and no particular properties of the names used for
free variables (also called parameters) are required. Up to
an appropriate policy regarding free names in substituting
terms (they have to be parameters), a renaming-free notion
of substitution can be used without generating captures. Our
representation of terms and formulas is simply the particular
choice of the ln approach with N as underlying name-set for
free variables. Since it is the opposite choice with respect to
the lnl approach which usesN for bound variables and names
for free ones, we call our approach the anti-locally-nameless
(alnl) approach.

Let us now look at proofs and proof rules. We focus on an
example where no capture problems happen. Here is a proof
in sequent calculus of the sequent ∃x .∀y.Pxy ⊢ ∀y.∃x .Pxy:

ax
Pxy ⊢ Pxy ∃I

Pxy ⊢ ∃x .Pxy ∀L∀y.Pxy ⊢ ∃x .Pxy ∃L∃x .∀y.Pxy ⊢ ∃x .Pxy ∀I∃x .∀y.Pxy ⊢ ∀y.∃x .Pxy

It uses formulas represented with a single kind of names.
The generalization rules (∀I and ∃L) follow the Kleene-style
presentation (see Table 1). Overline and underline markings
are just given to help the reader follow variables, they are
not part of the proofs.

An alternative approach is to use two kinds of names (ln
approach) and Gentzen-style generalization rules (Table 1):

ax
Pe ′e ⊢ Pe ′e ∃I

Pe ′e ⊢ ∃x .Pxe ∀L∀y.Pe ′y ⊢ ∃x .Pxe ∃L∃x .∀y.Pxy ⊢ ∃x .Pxe ∀I∃x .∀y.Pxy ⊢ ∀y.∃x .Pxy
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The de Bruijn approach would correspond to proving
∃.∀.P10 ⊢ ∀.∃.P01 with the associated de Bruijn-style gen-
eralization rules (Table 1):

ax
P01 ⊢ P01 ∃I
P01 ⊢ ∃.P02 ∀L
∀.P10 ⊢ ∃.P02 ∃L
∃.∀.P10 ⊢ ∃.P01 ∀I∃.∀.P10 ⊢ ∀.∃.P01

Note that, in the named proofs (the first two), all the oc-
currences of the same (free) variable (overlined occurrences
or underlined occurrences) in the proof are given the same
notation. Contrariwise, in the de Bruijn approach, the no-
tations associated with a variable may vary inside proofs
and even inside sequents or formulas. Our proposal lives in
between. It relies on the new alnl-style generalization rules
(Table 1) based on the fact the we use natural numbers for
free variables:

ax
P01 ⊢ P01 ∃I

P01 ⊢ ∃x .Px1 ∀L
∀y.P0y ⊢ ∃x .Px1 ∃L

∃x .∀y.Pxy ⊢ ∃x .Px0 ∀I∃x .∀y.Pxy ⊢ ∀y.∃x .Pxy
All occurrences of a given free variable inside a sequent
share the same notation (a natural number). However the
notation may vary along the proof (when crossing other
generalization rules).

So far, the ln approach with Gentzen-style rules seems to
win. A last level to consider concerns proof transformations
such as weakening, substitution in proofs, cut elimination,
etc. The de Bruijn management of variables makes these
transformations definable with natural inductions, in par-
ticular when relying on parallel substitutions [5]. However
things are much more difficult with the Gentzen-style rules.
This starts with weakening which requires renaming manip-
ulations to be proved [4, 10]. This justifies the alnl approach
which is close to the de Bruijn one with respect to proof
transformations but keeps a writing style closer to named
notations for formulas and allows for a common notation for
occurrences of a given variable inside a formula or a sequent
(extending this to proofs does not seem compatible with a
simple description of proof transformations).

Table 2 provides a summary of key ingredients of various
typical formalizations of first-order logic we have been dis-
cussing (just a restricted choice of the existing work). The
column “Name stability” describes how far it can be ensured
that a given free variable keeps the same name (all over the
proof, inside each sequent, or not even inside a formula).

Terminology and Content. We are in a context where
the word “first-order” may refer to two different things: on
one side, terminology from universal algebra, rewriting sys-
tems, etc. when talking about first-order signature, first-order
language, etc., and on the other side terminology from logic
as in first-order logic (as opposed to second-order or propo-
sitional logic). Similar problems arise with the use of the
word “term”. In order to avoid confusion, we will try to
stick to: predicate logic for first-order logic, term for the
first-order terms used to build formulas in predicate logic,
first-order object for a term generated by a first-order sig-
nature (e.g. we could say “let propositional formulas be the
first-order objects generated by the first-order signature con-
taining one unary symbol¬ and two binary symbols∧ and∨:
F ::= X |¬F |F ∧ F |F ∨ F ”).
In the whole paper, presented rules are for intuitionistic

logic, but everything applies exactly in the same way to
classical logic, linear logic, etc.

The first part of the paper (Sections 2 and 3) discusses diffi-
culties and possible choices in trying to give a renaming-free
representation of predicate logic. The second part (Sections 4
to 6) is the heart of the paper and gives the details of our alnl
proposal.
In Section 2, we present terms and formulas built with

two kinds of variables. We discuss the impact of avoiding
variable renaming (or α-equivalence) on the formalization
of quantifier rules. Section 3 addresses the additional difficul-
ties coming from proof transformations and concludes with
the need for some kind of binding structure in proofs. Sec-
tion 4 presents the new anti-locally-nameless (alnl) approach
which relies on an ln representation of formulas with two
kinds of variables, and on a mix of the Gentzen-style and
de Bruijn-style generalization rules. This gives a restricted
use of de Bruijn indices at the level of rules and proofs to
deal with eigenvariables. Adequacy of the proposed rules is
justified in Section 5 through an explicit link with Hilbert
system. Section 6 provides the details of a concrete applica-
tion: normalization of natural deduction for the intuitionistic
predicate calculus. The goal is to convince the reader that all
the ingredients are there with no hidden part, and that the
formalism is powerful enough to deal with real-size examples.
Section 7 contains some comments on the Coq formalization
of the results of the paper. This formalization is provided as
an attached archive.

2 Formalization of Predicate Logic
2.1 Terms
Let us first consider a slight generalization of the usual notion
of term based on two disjoint sets of variablesV and E. Usual
terms can be recovered with the particular case E = ∅. Given
a first-order signature Σ, we build E-terms in the usual way
(first-order objects generated by Σ), except that we “inject”
two kinds of variables:
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Table 2. Comparison of Some Formalizations

Paper Proof
assistant

Variable
kinds

Name
stability

Generalization
rule style

Most advanced proof
transformation

FKS19 [4] Coq2 2 (named + named) proof Gentzen weakening with renaming
FKW20 [5] Coq3 1 (de Bruijn) none de Bruijn substitution
HvD19 [8] Lean4 1 (de Bruijn) none de Bruijn substitution
H02 [9] Coq5 1 (de Bruijn) none de Bruijn normalization

HKL17 [10] Coq6 2 (named + named) proof Gentzen weakening with renaming
O’C05 [15] Coq7 1 (named) proof Hilbert deduction theorem

here Coq8 2 (named + de Bruijn) sequent alnl normalization

• f-variables (“f” for formula) inV (a denumerable set,
corresponding to usual variables, fixed in the whole
paper) are denoted x , y, etc.

• e-variables (“e” for eigen) in a second set E (a countable
set) are denoted e , e ′, e1, etc. This notion of eigenvari-
ables will be discussed later (see end of Section 2.3.2).

This means E-terms are given by:

t ::= x | e | дt . . . t

The application of a function symbol д to its arguments
should respect the arity of д. Constant symbols are the 0-ary
function symbols. An E-term is f-closed if it contains no f-
variable. In particular, E-terms reduced to one e-variable or
to one constant symbol are f-closed. From the point of view
of terms and formulas, E can be considered as a special set
of constants (as in [10]).
The substitution t[u/x ] of an f-variable x by an E-term u

in an E-term t is defined by induction on t :

x[u/x ] = u

y[u/x ] = y (if x , y)
e[u/x ] = e

(дt1 . . . tk )[
u/x ] = д(t1[

u/x ]) . . . (tk [
u/x ])

This is simply the usual definition of first-order substitution.
Note that here, e-variables and constant symbols are handled
in the same way.

2.2 Formulas
We consider E-formulas as first-order objects built from the
relation symbols of the first-order signature Σ, using first-
order quantifiers ∀ and ∃, and some propositional connec-
tives:

A ::= Pt . . . t | A⋆A | ∀x .A | ∃x .A
2https://www.ps.uni-saarland.de/extras/fol-undec/
3https://www.ps.uni-saarland.de/extras/fol-completeness/
4https://github.com/flypitch/flypitch/tree/1.2/src
5https://github.com/coq-contribs/prfx
6https://github.com/liganega/trace
7http://r6.ca/Goedel/Goedel20050512.tar.gz
8https://doi.org/10.1145/3410270

where ⋆ denotes a generic binary propositional connective
(and there can be more than one). The core of our develop-
ment does not depend on a precise choice of propositional
connectives. We will use ∧ and → (with associated deduc-
tion rules) in practice for concrete examples. Note that, to
be very precise, we consider here two-sorted constructions
since the ∀ constructor takes an f-variable and a formula as
arguments.
The notion of free or bound variable in a formula is not

very important in our setting since we will avoid renaming.
Note however that (if we refer to the usual notions of free and
bound occurrences of a variable in a formula) an e-variable
can only occur free in a formula, only f-variables can be
bound. This comes from the key fact that quantifiers only
act on f-variables. A formula with no free occurrence of
f-variable is called f-closed.

The substitution A[u/x ] of an f-variable x by an E-term u
in an E-formula A is defined by induction on A:

(Pt1 . . . tk )[
u/x ] = P(t1[

u/x ]) . . . (tk [
u/x ])

(A⋆ B)[u/x ] = (A[u/x ])⋆ (B[
u/x ])

(∀y.A)[u/x ] = ∀y.(A[u/x ]) (if x , y)
(∀x .A)[u/x ] = ∀x .A
(∃y.A)[u/x ] = ∃y.(A[u/x ]) (if x , y)
(∃x .A)[u/x ] = ∃x .A

This definition of substitution is a capture-allowing substi-
tution (for example (∀y.Px)[y/x ] = ∀y.Py), which differs
from usual first-order substitution which would give some-
thing like: (∀x .A)[u/x ] = ∀u .(A[u/x ]) or (∀x .A)[u/x ] =
∀x .(A[u/x ]). The definition case (∀x .A)[u/x ] = ∀x .A (and
the same for ∃) is the place where ∀ keeps a binding flavor in
formulas. This notion of substitution also differs from sub-
stitution up to α-renaming which would give for example
(∀x .A)[u/y ] = ∀z.(A[z/x ][u/y ]) (with z fresh) [15].

What happens here with substitutions is the same as what
happens with ln representations of binders [13].
Since this notion of substitution allows for f-variables

capture, the logical meaning of a formula can be strongly
altered by substitution: compare for example ∀y.(Px → Py)
and (∀y.(Px → Py))[y/x ] = ∀y.(Py → Py) (as opposed to

https://www.ps.uni-saarland.de/extras/fol-undec/
https://www.ps.uni-saarland.de/extras/fol-completeness/
https://github.com/flypitch/flypitch/tree/1.2/src
https://github.com/coq-contribs/prfx
https://github.com/liganega/trace
http://r6.ca/Goedel/Goedel20050512.tar.gz
https://doi.org/10.1145/3410270
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the capture-free version ∀z.(Py → Pz) with α-renaming).
In order to ensure soundness of substitutions in a setting
where we want to avoid renaming of variables, we thus
have to check that no capture occurs every time we apply a
substitution.
Capture can only occur with f-variables. It is thus in-

teresting to remark that, thanks to the introduction of e-
variables, the canonical representation of usual terms over
the signature Σ by means of f-variables only (no e-variable
at all), can also be replaced by the dual choice of using e-
variables only. In this last case, the obtained term is always
an f-closed E-term (thus not subject to capture). We will
see in particular that the set of terms is large enough to be
able to require E-terms used inside substitutions to always
be f-closed. In this way, any capture problem is avoided:
(∀y.(Px → Py))[e/x ] = ∀y.(Pe → Py).
So far we have just extended the usual notions of terms

and formulas with a new kind of variables (in fact behaving
like constants at this level). Let us start now considering
proof rules.

2.3 Quantifier Rules
We look at quantifier rules in a setting where formulas
are first-order objects without quotienting them, nor be-
ing allowed to rename variables. We will mainly work with
(sequent-based) natural deduction in the next sections. This
is a choice of presentation, the sequent calculus case is very
similar (possibly even simpler). Nevertheless for this first
discussion, we look at rules from the two systems.

Let us split quantifier rules into instantiation rules which
involve instantiating a variable in a formula by an arbitrary
term, and generalization rules which relate a “generic” in-
stance of a formula (typically with some freshness condition
on a generic name) and its quantified form.

2.3.1 Instantiation Rules. An instantiation rule involves
the substitution of a variable by an arbitrary term. This typ-
ically relates with the logical principle (∀x .A) → A[t/x ].
In the world of sequent calculus and natural deduction (for
the predicate calculus), three rules belong to this family: ∃
introduction right, ∀ elimination right, and ∀ introduction
left.

Γ ⊢ A[t/x ] ∃I
Γ ⊢ ∃x .A

Γ ⊢ ∀x .A ∀E
Γ ⊢ A[t/x ]

Γ,A[t/x ] ⊢ C ∀L
Γ,∀x .A ⊢ C

The first and the second are considered in natural deduction.
The first and the third are considered in sequent calculus.

The key point in (formalizing) such rules is to define
A[t/x ] in a meaningful way. That is in such a way that vari-
able capture is avoided. Assuming that substitution is not
allowed to do renaming (of bound variables), a meaningful
application of the ∃ introduction right rule should have the

Table 3. Ln-Style Instantiation Rules

Γ ⊢ A[t/x ] t f-closed ∃I
Γ ⊢ ∃x .A

Γ ⊢ ∀x .A t f-closed ∀E
Γ ⊢ A[t/x ]

Γ,A[t/x ] ⊢ C t f-closed ∀L
Γ,∀x .A ⊢ C

shape:
Γ ⊢ A[t/x ] no capture for t in A[t/x ] ∃I

Γ ⊢ ∃x .A
A typical logically-invalid application of the rules would be:

ax∀x .x ≤ x ⊢ ∀x .x ≤ x ∃I∀x .x ≤ x ⊢ ∃y.∀x .x ≤ y

(while for any x ∈ N, x ≤ x , it does not imply there exists a
maximal element inN, i.e. a y such that x ≤ y for any x ∈ N).
Note the conjunction of the “no renaming” hypothesis

and of the “no capture” constraint has an impact on the
provability of formulas with free variables. When trying
to apply the rules described above: Py ⊢ ∃x .∃y.Px is not
derivable. Indeed if we try in sequent calculus for example:

ax
Py ⊢ Py ∃I

Py ⊢ ∃y.P? no capture for ? in ∃y.P? ∃I
Py ⊢ ∃x .∃y.Px

We need “?” to be y in order to apply the top (∃I ) rule, but
then the bottom one involves capture.

By relying on e-variables, the solution to avoid captures
will be to consider substitutions by f-closed terms only (see [4,
10, 13] for example):

Γ ⊢ A[t/x ] t f-closed ∃I
Γ ⊢ ∃x .A

(see Table 3 for the other instantiation rules).
It does not make the problem with free variables (men-

tioned above) disappear. For example, Pt → ∃x .Px is prov-
able if and only if t is f-closed. This comes from the fact that
the meaning of an E-formula containing free f-variables is
not immediate. One can argue (as in [10]) that such formulas
are ill-formed, and one could restrict systems to f-closed
formulas [13]. However ignoring this, makes the formaliza-
tion much lighter, and it has no impact on the provability
of f-closed formulas. The interested user could add every-
where the constraint that terms and formulas are f-closed
with no major change, except multiple f-closedness checks
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to deal with. This can also be done through dependent types
as in [10] (in order to be compatible with (a priori) every
proof-assistant, we prefer not to rely on such specific type
constructions). The worried reader is encouraged to ignore
such free f-variables and to refer to Proposition 5.4 for a
comparison with the more standard setting given by Hilbert
system (with only one kind of variables): in particular, prov-
ability is the same for closed formulas.
We take the opportunity of this discussion to address a

similar question regarding a control over e-variables. The
proposed rules allow us to derive (∀x .Px) → ∃x .Px (inde-
pendently of the signature Σ). One could argue that such a
formula should not be provable for a signature containing no
constant symbol. Standard solutions dealing with an explicit
context for eigenvariables [14] would work perfectly here
without interacting with what we discuss, so we make the
choice of simplicity for our presentation.

2.3.2 GeneralizationRules. Ageneralization rule allows
us to relate provability for a quantified formula and a specific
instance of it. Such rules usually work under a freshness
hypothesis. It is used to ensure that the instance is generic
enough for the reasoning on this instance not to depend on
its specific value.

We consider three rules belonging to this family: ∀ intro-
duction right, ∃ elimination right, and ∃ introduction left.

Γ ⊢ A ∀I
Γ ⊢ ∀x .A

Γ ⊢ ∃x .A Γ,A ⊢ C ∃E
Γ ⊢ C

Γ,A ⊢ C ∃L
Γ,∃x .A ⊢ C

The first and the second are considered in natural deduction.
The first and the third are considered in sequent calculus.
These are just skeletons of the rules. Real rules involve side
conditions and possibly some renamings. Let us focus on the
(∀I ) rule. A first presentation we can find in the literature is
what we call Kleene-style [12] rule:

Γ ⊢ A x not free in Γ ∀I
Γ ⊢ ∀x .A

It is a usual presentation of the rule in a context where formu-
las are considered up to α-equivalence. However if we refuse
α-equivalence and variable renaming, this rule happens not
to be powerful enough: ∀x .∀y.Px ⊢ ∀y.Py is not provable
(remark that all the involved formulas are closed, this is not
about free variables). Indeed, in the sequent calculus, the two
possible last rules are:

•
∀x .∀y.Px ⊢ Py y not free in ∀x .∀y.Px ∀I∀x .∀y.Px ⊢ ∀y.Py

but ∀x .∀y.Px ⊢ Py is not provable (same reason as for
Py ⊢ ∃x .∃y.Px above);

•
∀y.Pt ⊢ ∀y.Py y < t ∀L∀x .∀y.Px ⊢ ∀y.Py

but no proof of ∀y.Pt ⊢ ∀y.Py exists (if y < t ) neither.

An alternative approach is the presentation of Gentzen [6]:
Γ ⊢ A[e/x ] e not in Γ,A ∀I

Γ ⊢ ∀x .A
In the original paper [6], two kinds of variables are consid-
ered, with no α-equivalence and no variable renaming. These
variables are called free object variables (our e-variables)
and bound object variables (our f-variables). In [6], only the
second kind is subject to quantification, and formulas and
terms are not allowed to contain free occurrences of these
f-variables.
In these Gentzen-style rules, the e-variable e is called the

eigenvariable of the rule. As testified by the necessity for a
specific syntactic category of e-variables for representing
them, we consider this notion as central in the formalization
we consider. The status of eigenvariables is often unclear.
They behave sometimes as constants, and sometimes as vari-
ables (see discussion in [14] for example). We will try to
clarify the idea that f-variables behave as variables at the
level of formulas (thus the name “f”-variable) and are thus the
usual first-order variables for building terms and formulas,
while e-variables behave as constants at the level of formu-
las but as variables at the level of proofs and correspond to
Gentzen’s eigenvariables (thus the name “e”-variable).
At this formula level, everything works as for locally

named formalizations [13], which is perfectly fine since no
α-equivalence is involved. Ln representations become more
tricky when operations like β-reduction or α-equivalence
have to be considered.

3 Proof Transformations
At this point our approach for the formalization of quanti-
fiers is the same as in [10] (except that we do not reject free
f-variables). In situations where only provability is impor-
tant and no particular manipulations of proofs are involved,
the formalization proposed so far works perfectly well and
fulfills the initial requirements of a natural representation
of formulas with quantifiers, involving no α-equivalence
or variable renamings. The only surprising behavior comes
from the possibility of free f-variables (which can be con-
trolled if wanted, as discussed above).

We have presented the ingredients for dealing with proofs
as static objects. However proof theory involves proof trans-
formations making them dynamic. Important results such
as normalization, cut elimination, etc. induce operations on
proofs. As opposed to [10] we want to consider advanced
syntactic manipulations of proofs as involved in syntactic
cut-elimination proofs.

3.1 Weakening
A first simple example of proof transformation is weakening
which extends the context of a proof (for systems in which
it is not a primitive rule):
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Lemma 3.1 (Weakening). For any ∆, if Γ ⊢ A is provable
then also Γ,∆ ⊢ A.

In the setting described so far, this lemma is not immediate
to get. Indeed if one tries to use a direct induction on the
proof of Γ ⊢ A, the generalization rules do not go through.
One would like to apply the following transformation:

.... π
Γ ⊢ A[e/x ] e < Γ,A ∀I

Γ ⊢ ∀x .A
7→

..... IH(π )

Γ,∆ ⊢ A[e/x ] e < Γ,∆,A ∀I
Γ,∆ ⊢ ∀x .A

which is problematic in the case e ∈ ∆. It requires a renaming
property allowing to replace e by a fresh e ′ in the proof π of
Γ ⊢ A[e/x ] (see for example [10]).

3.2 Substitution
Syntactic normalization of proofs in natural deduction re-
quires us to define a notion of substitution by a term at the
level of proofs:

.... π
Γ ⊢ A[e/x ] e < Γ,A ∀I

Γ ⊢ ∀x .A t f-closed ∀E
Γ ⊢ A[t/x ]

7→
..... π [

t/e ]

Γ ⊢ A[t/x ]

We can see that eigenvariables thus behave as constants in
terms, formulas and sequents, but now also as variables in
proofs, since they are the target of substitutions. The in-
tended meaning of π [t/e ] is that the e-variable e coming
from the ∀-introduction rule becomes substituted all over
the proof. But if this e is used many times, things may be-
come ambiguous, and we would like to avoid non-canonical
choices. In the following two proofs (which differ only by
some commutations of rules), e is the eigenvariable of the
(∀I ) rule, but it is not completely clear whether a substitution
of e should involve the occurrence of e in Qe or not:

ax
Pe ⊢ Pe ∀L∀x .Px ⊢ Pe wkL

Qe,∀x .Px ⊢ Pe ∀L∀y.Qy,∀x .Px ⊢ Pe ∀I∀y.Qy,∀x .Px ⊢ ∀x .Px

ax
Pe ⊢ Pe ∀L∀x .Px ⊢ Pe ∀I∀x .Px ⊢ ∀x .Px wkL

Qe,∀x .Px ⊢ ∀x .Px ∀L∀y.Qy,∀x .Px ⊢ ∀x .Px
The general operation we look for, should have the shape:

.... π
Γ ⊢ A

7→

..... π [
t/e ]

Γ[t/e ] ⊢ A[
t/e ]

Wewill define formally this substitution operation π [t/e ] for
proofs in Section 4.3. Note, in the general case, an additional
difficulty comes with the fact that one should avoid captur-
ing free variables in t . In our setting, as already mentioned
(thanks to the distinction of the two kinds of variables) we
can restrict ourselves to the case where t is f-closed. But this

is not enough since, at the level of proofs, e-variables act as
variables:

.... π
⊢ Pe ∀I

⊢ ∀x .Px

[t /e ]
7→

..... π [
t/e ]

⊢ Pt ???
⊢ ∀x .Px

.... π
⊢ Qe ′e ∀I

⊢ ∀x .Qe ′x

[e /e′ ]
7→

..... π [
e/e ′]

⊢ Qee
???

⊢ ∀x .Qex
This would not happen if we would have required that e-
variables used in a proof must all be eigenvariables, and of
a unique rule. However duplication breaks this uniqueness
property.

3.3 Duplication
Some proof transformations such as normalization require
to duplicate a (sub) proof to build a new one. For example:

ax
Γ,A ⊢ A

ax
Γ,A ⊢ A

∧I
Γ,A ⊢ A ∧A

→ I
Γ ⊢ A → (A ∧A)

.... π
Γ ⊢ A

→ E
Γ ⊢ A ∧A

7→

.... π
Γ ⊢ A

.... π
Γ ⊢ A

∧I
Γ ⊢ A ∧A

This shows that, without involving variable renaming, it is
not possible to preserve uniqueness of eigenvariables. Los-
ing this uniqueness could lead to problematic interactions
between e-variables as seen above.

3.4 Binding Eigenvariables
This is the point where one must admit that generalization
rules act as true binders on eigenvariables, and it is not
possible to avoid it. In fact it is not really a surprise: the
Curry-Howard correspondence tells us that the language
of proofs and proof transformations is as expressive as the
λ-calculus and β-reduction.
Even if so far we have worked precisely to avoid it, we

thus have to make a choice of formalization for binders... A
priori any choice would do the job, with all advantages and
drawbacks each choice may have. Since we focused from
the beginning on considering first-order objects (in order
in particular to be compatible with any proof assistant) and
on avoiding on-the-fly renamings, let us try to go on in this
way by relying on de Bruijn indices.

However our use of de Bruijn indices will be restricted
to the proof construction level with a smaller impact on
formulas than the full de Bruijn approach [5, 9].
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4 A Mixed Gentzen-de Bruijn Approach
Let us present now the exact ingredients of our alnl proposal.
Terms and formulas are those defined in Sections 2.1 and 2.2,
with the particular choice E = N. That is we focus on N-
terms and N-formulas. As a consequence we will denote
e-variables by n,m, etc.

In this setting, a prototype generalization rule would thus
look like:

⊢ A[0/x ] ∀I
⊢ ∀x .A

In this way no particular choice of an e has to be done: we
choose the canonical 0. But we then have to make it different
from other eigenvariables already used. Following the de
Bruijn policy, the natural number representation of an eigen-
variable will correspond to the number of generalization
rules to be crossed downwards from the place it occurs to
the generalization rule where it is introduced9. This means
we need to lift indices up when crossing a generalization
rule upwards:

Γ↑ ⊢ A↑[0/x ] ∀I
Γ ⊢ ∀x .A

Γ↑,A↑[0/x ] ⊢ C↑ ∃L
Γ,∃x .A ⊢ C

Γ ⊢ ∃x .A Γ↑,A↑[0/x ] ⊢ C↑ ∃E
Γ ⊢ C

Note there is no need for a freshness condition anymore since
the lifting guarantees there is no possible clash between 0
and previously used names. This will make weakening easy
for example (see Lemma 6.1 below).

The lifting operationA↑ onN-formulas, which increments
all e-variables by 1, is a particular case of a simultaneous
mapping function applied on e-variables (see Sections 4.2
and 4.3).

Example 4.1. In the following proof, we give the same color
(and () or () decoration for B&W printing) to occurrences
of e-variables which correspond to the same ∀-introduction
rule (the natural number itself may vary through the proof,
because of the lifting policy of de Bruijn indices, but not
inside a sequent):

ax∀x .∀y.Pxy ⊢ ∀x .∀y.Pxy ∀E∀x .∀y.Pxy ⊢ ∀y.P0y ∀E
∀x .∀y.Pxy ⊢ P01 ∀I

∀x .∀y.Pxy ⊢ ∀y.Py0

ax∀x .∀y.Pxy ⊢ ∀x .∀y.Pxy ∀E
∀x .∀y.Pxy ⊢ ∀y.P0y ∀E
∀x .∀y.Pxy ⊢ P00

∧I
∀x .∀y.Pxy ⊢ (∀y.Py0) ∧ P00 ∀I

∀x .∀y.Pxy ⊢ ∀x .((∀y.Pyx) ∧ Pxx)

9This happens to be simpler than with full de Bruijn approaches.

Table 4. Alnl-Style Natural Deduction

ax
Γ,A,∆ ⊢ A

Γ,A ⊢ B
→ I

Γ ⊢ A → B

Γ ⊢ A → B Γ ⊢ A
→ E

Γ ⊢ B

Γ↑ ⊢ A↑[0/x ] ∀I
Γ ⊢ ∀x .A

Γ ⊢ ∀x .A t f-closed ∀E
Γ ⊢ A[t/x ]

Γ ⊢ A[t/x ] t f-closed ∃I
Γ ⊢ ∃x .A

Γ ⊢ ∃x .A Γ↑,A↑[0/x ] ⊢ C↑ ∃E
Γ ⊢ C

4.1 Natural Deduction
From now on, we will focus on natural deduction with just
one binary connective:→. Terms are those defined in Sec-
tion 2.1 with e-variables being natural numbers. Formulas
are N-formulas with → as unique propositional connective:

A ::= Pt . . . t | A → A | ∀x .A | ∃x .A
Sequents of intuitionistic natural deduction are Γ ⊢ A

where Γ is a list of formulas. Rules of natural deduction are
presented in Table 4 and follow the discussions above.

4.2 Parallel Substitution of Indices
Let us, just for this section, go back to the case of terms
parameterized by an arbitrary set E for e-variables. Given a
function r from a set E to E ′-terms, we define the parallel
substitution operation10 t[r ], mapping E-terms to E ′-terms:

x[r ] = x

e[r ] = r (e)

(дt1 . . . tk )[r ] = д(t1[r ]) . . . (tk [r ])

Note this endows (_)-terms with a structure of monad over
the category Set. We will not use this explicitly, but some
related lemmas appear below.

For formulas, we have:

(Pt1 . . . tk )[r ] = P(t1[r ]) . . . (tk [r ])

(A → B)[r ] = (A[r ]) → (B[r ])

(∀x .A)[r ] = ∀x .(A[r ])
(∃x .A)[r ] = ∃x .(A[r ])

Note the straightforward definition cases for ∀ and ∃.

10We are in debt to the anonymous referee who suggested us to use this
general operation to subsume lifting and substitution of indices.
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Lemma 4.2 (Composition).

t[r ][s] = t[e 7→ r (e)[s]]

A[r ][s] = A[e 7→ r (e)[s]]

Proof. By induction on t for the first statement and then,
using it, by induction on A for the second statement. □

4.3 Substitution in Proofs
We go back to the specific case E = N and we denote by S the
successor function: S(n) = n+1, seen as a function fromN to
N-terms. Given an N-formulaA,A↑ is defined by:A↑ = A[S].
And given r : N→ N-term, we define ⇑r : N→ N-term by:

⇑r (n) =

{
0 if n = 0
r (n − 1)↑ otherwise

Lemma 4.3.

t↑[⇑r ] = t[r ]↑

A↑[⇑r ] = A[r ]↑

Proof. By Lemma 4.2, using: for all n, (n+1)[⇑r ] = r (n)↑. □

A function r : N → N-term is called f-closed if, for any
n ∈ N, r (n) is an f-closed N-term.

Lemma 4.4. If r is f-closed,

t[u/x ][r ] = t[r ][u[r ]/x ]

A[u/x ][r ] = A[r ][u[r ]/x ]

Proof. By induction on t for the first statement and then,
using it, by induction on A for the second statement. □

An important point is that f-closed functions act not only
on terms and formulas but also on proofs:

.... π
Γ ⊢ A

7→

..... π [r ]

Γ[r ] ⊢ A[r ]

(for r f-closed)

The definition of π [r ] is given by induction on π for all r .
The key cases are:

π =

.... π1
Γ↑ ⊢ A↑[0/x ] ∀I
Γ ⊢ ∀x .A

7→

..... π1[⇑r ]

Γ[r ]↑ ⊢ A[r ]↑[0/x ] ∀I
Γ[r ] ⊢ ∀x .(A[r ]) = π [r ]

π =

.... π1
Γ ⊢ ∀x .A t f-closed ∀E

Γ ⊢ A[t/x ]

7→

..... π1[r ]

Γ[r ] ⊢ ∀x .(A[r ]) t[r ] f-closed ∀E
Γ[r ] ⊢ A[r ][t [r ]/x ]

= π [r ]

π =

.... π1
Γ ⊢ A[t/x ] t f-closed ∃I

Γ ⊢ ∃x .A

7→

..... π1[r ]

Γ[r ] ⊢ A[r ][t [r ]/x ] t[r ] f-closed ∃I
Γ[r ] ⊢ ∃x .(A[r ]) = π [r ]

π =

.... π1
Γ ⊢ ∃x .A

.... π2
Γ↑,A↑[0/x ] ⊢ C↑ ∃E
Γ ⊢ C

7→

..... π1[r ]

Γ[r ] ⊢ ∃x .(A[r ])

..... π2[⇑r ]

Γ[r ]↑,A[r ]↑[0/x ] ⊢ C[r ]↑ ∃E
Γ[r ] ⊢ C[r ]

= π [r ]

Note that π [r ] has the same size (number of rules) as π . The
obtained proofs are well formed and with the appropriate
conclusions, as shown by:

B↑[⇑r ] = B[r ]↑ (Lemma 4.3)

B[t/x ][r ] = B[r ][t [r ]/x ] (Lemma 4.4)

B[0/x ][⇑r ] = B[⇑r ][0[⇑r ]/x ] = B[⇑r ][0/x ] (Lemma 4.4)

Since de Bruijn indices allow us to identify uniquely the
generalization rule which is associated with an occurrence
of e-variable, we do not have problems anymore concerning
uniqueness of the use of eigenvariables, and non-canonical
targets of substitutions neither (see Sections 3.2 and 3.3).
Indeed, given an occurrence of the natural number n in a
proof, the unique instance of generalization rule it is related
with, is obtained by crossing n generalization rules towards
the root of the proof (or if there is less than n such rules, this
occurrence of n is not the eigenvariable of any generalization
rule in the proof).
We now go back to the definition of substitutions for

proofs, which should allow us to do the following trans-
formation in normalization:

.... π

Γ↑ ⊢ A↑[0/x ] ∀I
Γ ⊢ ∀x .A t f-closed ∀E

Γ ⊢ A[t/x ]

7→

.... ???
Γ ⊢ A[t/x ]

Given an N-term v , we consider the following function v⇓
from N to N-terms:

v⇓(n) =

{
v if n = 0
n − 1 otherwise

which is f-closed if v is f-closed. So that:
.... π

Γ ⊢ A
7→

..... π [v⇓]

Γ[v⇓] ⊢ A[v⇓]

(for v f-closed)



CPP ’21, January 18–19, 2021, Virtual, Denmark Olivier Laurent

Lemma 4.5.

t↑[v⇓] = t

A↑[v⇓] = A

Proof. By Lemma 4.2, using: for all n, (n + 1)[v⇓] = n. □

We need to check that the action of v⇓ on formulas and
sequents will be appropriate for substitution in proof nor-
malization:

Lemma 4.6. If π is a proof of Γ↑ ⊢ A↑[0/x ] and t is an f-
closed term, then π [t⇓] is a proof of Γ ⊢ A[t/x ].

Proof. By Lemmas 4.4 and 4.5 with t f-closed:

(Γ↑ ⊢ A↑[0/x ])[t⇓] = Γ ⊢ A[t/x ]

□

5 Relation with Hilbert System
In order to compare the expressiveness of our representation
of predicate logic with a more traditional one, let us consider
here Hilbert systemwith ∀ and ∃ quantifiers for intuitionistic
predicate logic.

5.1 Hilbert System
Terms and formulas are the usual ones, which correspond
exactly to ∅-terms and ∅-formulas defined in Sections 2.1
and 2.2. All term variables are f-variables (i.e. coming from
the given setV). No quotient on formulas (likeα-equivalence)
is introduced.
The system is built from six axioms and two deduction

rules (modus ponens and generalization). Axioms are:
A → B → A
(A → B → C) → (A → B) → A → C
∀x .A → A[t/x ] if no capture happens
∀x .(A → B) → A → ∀x .B if x is not free in A
A[t/x ] → ∃x .A if no capture happens
∀x .(A → B) → ∃x .A → B if x is not free in B

A deduction of a formula F in Hilbert system is obtained
inductively:

• by instantiating one of the axioms above with appro-
priate formulas A, B, and C to obtain F ;

• or from a deduction of A → F and a deduction of A
(this is the rule of modus ponens);

• or, if F = ∀x .A, from a deduction of A (this is the
generalization rule).

5.2 Back and Forth with Natural Deduction
We denote by ⊢H F the existence of a deduction of F in
Hilbert system, and by ⊢ND A the existence of a proof of the
sequent ⊢ A in the natural deduction system of Table 4.

Lemma 5.1 (From Hilbert to Natural Deduction). If the free
(f-)variables of F are among x1, ..., xn and ⊢H F , then, for any
f-closed terms t1, ..., tn , we have ⊢ND F [t1/x1 , . . . ,

tn /xn ].

Note we must assume t1, ..., tn to be f-closed since Py →

∃x .Px is provable in Hilbert system but not with our formal-
ization of natural deduction (see Section 2.3.1).

Lemma 5.2 (From Natural Deduction to Hilbert). If the e-
variables of A are among e1, ..., en and ⊢ND A, then ⊢H
A[x1/e1 , . . . ,

xn /en ] as soon as the xi s are chosen in such a way
that no capture happens in the substitution.

Proposition 5.3 (EmbeddingHilbert). If the free (f-)variables
of F are among x1, ..., xn then:

⊢H F ⇐⇒ ⊢ND F [1/x1 , . . . ,
n /xn ]

Proposition 5.4 (Embedding Natural Deduction). If A is
f-closed and the e-variables of A are among e1, ..., en , and if
x1, ..., xn are distinct f-variables not occurring in A, then:

⊢ND A ⇐⇒ ⊢H A[x1/e1 , . . . ,
xn /en ]

We do not give the details of these proofs which, up to
appropriate choices of fresh variables and some renaming
manipulations, follow traditional patterns (details are avail-
able in the Coq formalization, see Section 7).

6 Normalization of Natural Deduction
All ingredients being settled, let us develop a complete con-
crete example, showing that we have enough material for
a detailed syntactic proof of normalization of natural de-
duction for the intuitionistic predicate calculus (with one
propositional connective:→, and one quantifier: ∀). Present-
ing ∃ quantifiers as well would make the structure of the
proof more complex without pointing out any specific nov-
elty related with the representation of rules and quantifiers.
Indeed normalization of natural deduction with ∃ quanti-
fiers is known to require the introduction of commutative
conversions which can be avoided if we restrict ourselves to
→ and ∀ (see Section 7 for additional comments).
We consider a big-step normalization statement: to each

proof it is possible to associate a normal proof with the same
conclusion sequent. A normal proof is a proof in which no
introduction rule is followed by an elimination rule on the
introduced connective. Such normal proofs are known to
satisfy the sub-formula property [18].
Our proof mostly follows [11]. Normal proofs (NF ) (or

normal forms) can be described by a mutual induction with
neutral proofs (NE):

NE ::= ax | →E(NE,NF) | ∀E(NE)
NF ::= NE | →I (NF) | ∀I (NF)

We use here the names of rules as constructors. For example
the→E(NE,NF) entry means that if we have a neutral proof
NE and a normal form NF then the proof obtained by adding
an (→E) rule is a neutral proof.

It is easy to check that, for any r f-closed, if NF (resp. NE)
is a normal (resp. neutral) proof then NF[r ] (resp. NE[r ]) as
well.
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Lemma 6.1 (Weakening). If NF is a normal proof of Γ,∆ ⊢ A,
for any Θ, there exists a normal proof of Γ,Θ,∆ ⊢ A.

Proof. Contrarily to what can happen with Kleene-style or
Gentzen-style rules (see Section 3.1), a direct induction on
NF (and NE) works here. The typical case is (∀I ) where we
apply the induction hypothesis with the list Θ↑:

Γ↑,Θ↑,∆↑ ⊢ A↑[0/x ] ∀I
Γ,Θ,∆ ⊢ ∀x .A

□

The key lemma for normalization consists in substituting
normal proofs in normal proofs. The normal form of a proof
is then simple to obtain.

The size |A| of a formula A is defined by counting connec-
tives (the size of terms is ignored).

Lemma 6.2 (Substitution). Given two normal proofs NF1 of
Γ,∆ ⊢ A and NF2 of Γ,A,∆ ⊢ B, there exists a normal proof
NF2[NF1/A] of Γ,∆ ⊢ B.

Proof. We strengthen the statement by proving simultane-
ously that, ifNF2 is neutral and the size ofA is strictly smaller
than the size of B then NF2[NF1/A] is neutral.
The proof goes by induction on the (lexicographically

ordered) pair (size of A, size of NF2). We use sizes rather
than some structural induction because we have to move at
some point from A to A↑ (it preserves sizes but breaks the
sub-formula relation). We focus on the key cases of last rule
of NF2:

• (∀I ):

NF2 =

..... NF
′
2

Γ↑,A↑,∆↑ ⊢ B↑[0/x ] ∀I
Γ,A,∆ ⊢ ∀x .B

7→

......
NF′2[

NF1[S]/A↑]

Γ↑,∆↑ ⊢ B↑[0/x ] ∀I
Γ,∆ ⊢ ∀x .B = NF2[NF1/A]

since NF1[S] is a normal proof of Γ↑,∆↑ ⊢ A↑, and
|A↑| = |A|.

• (∀E):

NF2 =

..... NE2
Γ,A,∆ ⊢ ∀x .B t f-closed ∀E

Γ,A,∆ ⊢ B[t/x ]

7→

.... ???
Γ,∆ ⊢ B[t/x ]

We apply the induction hypothesis to NE2 to get a
normal proof NF′ = NE2[NF1/A] of Γ,∆ ⊢ ∀x .B. If NF′
is a neutral proof (in particular if |A| < |∀x .B |), we

apply a (∀E) rule to it and we obtain the appropriate
neutral proof. Otherwise NF′ ends with a (∀I ) rule
and its premise NF′′ has conclusion Γ↑,∆↑ ⊢ B↑[0/x ].
We build NF′′[t⇓] with conclusion Γ,∆ ⊢ B[t/x ] (see
Lemma 4.6).

• (→ E): By induction hypotheses, we have normal
proofs NF′ of Γ,∆ ⊢ C → B and NF′′ of Γ,∆ ⊢ C . If
NF′ is a neutral proof (in particular if |A| < |C → B |),
we apply an (→ E) rule and we obtain a neutral proof
of Γ,∆ ⊢ B. Otherwise NF′ ends with an (→ I ) rule
and its premise NF′′′ has conclusion Γ,∆,C ⊢ B. Since
we can assume |A| ≥ |C → B | and thus |C | < |A|, by
induction hypothesis we obtain the required normal
form with conclusion Γ,∆ ⊢ B.

□

Theorem 6.3 (Normalization). If Γ ⊢ A is provable then it is
provable by a normal proof.

Proof. By induction on the proof π of Γ ⊢ A. Except for the
elimination rules, one can conclude by immediate application
of the induction hypotheses. Let us now consider the two
elimination rules:

• (→ E): By induction hypotheses, we have two normal
forms NF1 and NF2 with conclusions Γ ⊢ A → B and
Γ ⊢ A. Either NF1 is a neutral proof and we simply
apply an (→ E) rule with NF2 to it, or NF1 ends with
an (→ I ) rule. LetNF′1 be the premise of this rule which
has conclusion Γ,A ⊢ B, we apply Lemma 6.2 to get a
normal form NF′1[

NF2/A] with conclusion Γ ⊢ B.
• (∀E): By induction hypothesis, we have a normal form
NF with conclusion Γ ⊢ ∀x .A and we want to build a
normal form with conclusion Γ ⊢ A[t/x ]. Either NF is
a neutral proof and we simply apply a (∀E) rule to it,
or NF ends with a (∀I ) rule. Let NF′ be the premise of
this rule, NF′[t⇓] is the normal form we are looking
for.

□

Since normal proofs have the sub-formula property [18],
one can check that an f-closed formula (or sequent) can be
proved using a proof involving f-closed formulas only.

7 Comments on the Coq Formalization
We describe here shortly the Coq formalization correspond-
ing to the approach and results presented in the previous
sections. It can be found in the associated archive:

https://doi.org/10.1145/3410270

It is developed with Coq 8.12.0 (see README.md for instruc-
tions).
The only important difference between the Coq develop-

ment and the paper concerns the use of arity constraints
from the signature Σ when building terms and formulas.
To make things simpler in Coq, we consider that a copy of

https://doi.org/10.1145/3410270
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each function symbol and of each predicate symbol exists
for each arity, to that дt1 . . . tk is always well formed: it is
then implicitly assumed that the k-ary version of д has been
used.
In the whole formalization, the first-order signature Σ is

considered as an abstract parameter through the types tatom
(for function symbols) and fatom (for relation symbols).

Since we focus on proof transformations rather than deal-
ing with provability properties, proofs are defined in Type. A
definition in Prop, as often considered in Coq formalizations
of predicate logic, corresponds to defining provability rather
than proofs themselves.

By defining two specific tactics for unfolding inductions on
terms and formulas, most of the results about substitutions,
terms and formulas are proved in less than three lines, and a
number of them by a single tactic call.
We then rely on these basic lemmas to prove more in-

volved results with some automation (mostly by rewriting
with tactics defined in term_tactics.v). The total number of
lines for the tactics definitions is around 100. The total length
of the three key files leading to the normalization proof of
Section 6 (foterms.v, foformulas.v and nj1.v) is around 800
lines.

The formalization of formulas in foformulas.v is easily
reusable for other logics since they are built on top of three
abstract parameters for nullary propositional connectives
(NCon), for binary propositional connectives (BCon) and for
quantifiers (QCon). It is probably natural to consider unary
propositional connectives as well, and this must be direct.
We omit them because they were not required in the present
work and moreover they could be encoded as a pair of a
nullary connective and a binary connective by giving the
nullary one as argument to the binary one.

The extension of natural deduction to existential quanti-
fiers is presented in nj1_frlexs.v, together with the normal-
ization proof. Existentials do not really impact the repre-
sentation of formulas and proofs, but as already mentioned,
normalization is a bit harder to prove since the existential
elimination rules induce commutative steps in reduction.
The sub-formula property is formalized as well.

Concerning the link with Hilbert system presented in Sec-
tion 5, additional properties about free variables, capture
checks, renamings, and substitutions (in particular iterated
substitutions) are required. These kinds of manipulations
are precisely supposed to be avoidable when simply manip-
ulating natural deduction. These results are presented in
foterms_ext.v and foformulas_ext.v. Then the results of Sec-
tion 5 are formalized in files hilbert2nj.v, nj2hilbert.v and
nj_vs_hilbert.v.

Additional related results are available at:
https://github.com/olaure01/quantifiers

This includes work on linear logic, second-order quantifiers,
or proposals for the explicit management of arities from the
signature Σ.

8 Conclusion
We have presented a general framework based on two kinds
of variables for the formalization of quantifiers. It relies on
first-order structures only. Our goal is to be as close as pos-
sible to what would be done on paper (the only difference
here is the use of two kinds of variables as already done
in [6, 18]), and to avoid α-renaming as far as possible. At the
level of formulas, things look similar to the locally named
approach [4, 10, 13], which is very natural to deal with in an
α-equivalence-free setting. We choose N as the set of names
for free variables, leading to an anti-locally-nameless rep-
resentation of formulas. At the level of proofs, things look
more like a locally nameless approach [2]: we never rename
(quantified) f-variables and the renaming of eigenvariables
is handled by the management of de Bruijn indices. These
e-variables never being bound in formulas, the management
of indices is lighter than in full de Bruijn representations.
The only remaining defect of the use of de Bruijn indices
is that different natural numbers at different positions in a
proof may refer to the same eigenvariable. However, since
this is not the case inside a sequent, it has a lower impact.
Everything can be adapted to propositional second-order

logic, that is first-order-free second-order logic (also known
as Girard’s System F [7]). A typical definition of formulas
for this system is:

A ::= P | X | n | A → A | ∀X .A
where P comes from a given set of predicate symbols, X
belongs to the set of second-order variables (f-variables),
and n is a natural number (e-variables). However mixing
first-order quantification and second-order quantification
seems out of reach. The binding structures become richer and
substitution in formulas already involves a general binding
behavior:

(∀y.Xy)[∀y .Pxy/Xx ] = ∀y.((∀y.Pxy)[y/x ]) = ∀y.∀y.Pyy
(with troubles if y = y).

One of the main targets of application is the development
of libraries for the formalization of meta-theoretical proper-
ties in proof theory with the hope to make it accessible to the
largest audience. This should include people wanting to stick
to traditional paper presentations of predicate logic. But also,
users only interested in the propositional aspects should not
be impacted with what happens for quantifiers. We plan in
particular to introduce this representation of quantifiers in
the Yalla11 library which provides meta-theoretical results
on the proof-theory of linear logic.

11https://perso.ens-lyon.fr/olivier.laurent/yalla/

https://github.com/olaure01/quantifiers
https://perso.ens-lyon.fr/olivier.laurent/yalla/
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